1
|
Funikov S, Rezvykh A, Akulenko N, Liang J, Sharakhov IV, Kalmykova A. Analysis of somatic piRNAs in the malaria mosquito Anopheles coluzzii reveals atypical classes of genic small RNAs. RNA Biol 2025; 22:1-16. [PMID: 39916410 PMCID: PMC11834523 DOI: 10.1080/15476286.2025.2463812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/18/2025] Open
Abstract
Piwi-interacting small RNAs (piRNA) play a key role in controlling the activity of transposable elements (TEs) in the animal germline. In diverse arthropod species, including the pathogen vectors mosquitoes, the piRNA pathway is also active in nongonadal somatic tissues, where its targets and functions are less clear. Here, we studied the features of small RNA production in head and thorax tissues of an uninfected laboratory strain of Anopheles coluzzii focusing on the 24-32-nt-long RNAs. Small RNAs derived from repetitive elements constitute a minor fraction while most small RNAs process from long noncoding RNAs (lncRNAs) and protein-coding gene mRNAs. The majority of small RNAs derived from repetitive elements and lncRNAs exhibited typical piRNAs features. By contrast, majority of protein-coding gene-derived 24-32 nt small RNAs lack the hallmarks of piRNAs and have signatures of nontemplated 3' end tailing. Most of the atypical small RNAs exhibit female-biased expression and originate from mitochondrial and nuclear genes involved in energy metabolism. We also identified atypical genic small RNAs in Anopheles gambiae somatic tissues, which further validates the noncanonical mechanism of their production. We discuss a novel mechanism of small RNA production in mosquito somatic tissues and the possible functional significance of genic small RNAs.
Collapse
Affiliation(s)
- Sergei Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia Akulenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Jiangtao Liang
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Igor V. Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- The Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Department of Genetics and Cell Biology, Tomsk State University, Tomsk, Russia
| | - Alla Kalmykova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Fernández-Pérez I, Jiménez-Balado J, Macias-Gómez A, Suárez-Pérez A, Vallverdú-Prats M, Pérez-Giraldo A, Viles-García M, Peris-Subiza J, Vidal-Notari S, Giralt-Steinhauer E, Guisado-Alonso D, Esteller M, Rodriguez-Campello A, Jiménez-Conde J, Ois A, Cuadrado-Godia E. Blood DNA Methylation Analysis Reveals a Distinctive Epigenetic Signature of Vasospasm in Aneurysmal Subarachnoid Hemorrhage. Transl Stroke Res 2025; 16:715-727. [PMID: 38649590 DOI: 10.1007/s12975-024-01252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024]
Abstract
Vasospasm is a potentially preventable cause of poor prognosis in patients with aneurysmal subarachnoid hemorrhage (aSAH). Epigenetics might provide insight on its molecular mechanisms. We aimed to analyze the association between differential DNA methylation (DNAm) and development of vasospasm. We conducted an epigenome-wide association study in 282 patients with aSAH admitted to our hospital. DNAm was assessed with the EPIC Illumina chip (> 850 K CpG sites) in whole-blood samples collected at hospital admission. We identified differentially methylated positions (DMPs) at the CpG level using Cox regression models adjusted for potential confounders, and then we used the DMP results to find differentially methylated regions (DMRs) and enriched biological pathways. A total of 145 patients (51%) experienced vasospasm. In the DMP analysis, we identified 31 CpGs associated with vasospasm at p-value < 10-5. One of them (cg26189827) was significant at the genome-wide level (p-value < 10-8), being hypermethylated in patients with vasospasm and annotated to SUGCT gene, mainly expressed in arteries. Region analysis revealed 13 DMRs, some of them annotated to interesting genes such as POU5F1, HLA-DPA1, RUFY1, and CYP1A1. Functional enrichment analysis showed the involvement of biological processes related to immunity, inflammatory response, oxidative stress, endothelial nitric oxide, and apoptosis. Our findings show, for the first time, a distinctive epigenetic signature of vasospasm in aSAH, establishing novel links with essential biological pathways, including inflammation, immune responses, and oxidative stress. Although further validation is required, our results provide a foundation for future research into the complex pathophysiology of vasospasm.
Collapse
Affiliation(s)
- Isabel Fernández-Pérez
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | - Joan Jiménez-Balado
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain.
| | - Adrià Macias-Gómez
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | - Antoni Suárez-Pérez
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | - Marta Vallverdú-Prats
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | | | - Marc Viles-García
- Neuroradiology Department, Hospital del Mar, Barcelona, Catalunya, Spain
| | | | | | - Eva Giralt-Steinhauer
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| | - Daniel Guisado-Alonso
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Research Institute Against Leukemia Josep Carreras, Badalona, Catalunya, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalunya, Spain
| | - Ana Rodriguez-Campello
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| | - Jordi Jiménez-Conde
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| | - Angel Ois
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| | - Elisa Cuadrado-Godia
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| |
Collapse
|
3
|
Aguilar-Lacasaña S, Cosin-Tomas M, Raimbault B, Gómez-Herrera L, Sánchez O, Zanini MJ, Capdevila RP, Foraster M, Gascon M, Rivas I, Llurba E, Gómez-Roig MD, Sunyer J, Bustamante M, Vrijheid M, Dadvand P. Epigenome-wide association study of pregnancy exposure to green space and placental DNA methylation. ENVIRONMENTAL RESEARCH 2025; 274:121286. [PMID: 40043929 DOI: 10.1016/j.envres.2025.121286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 05/04/2025]
Abstract
Green space exposure during pregnancy has been associated with lower risk of adverse birth outcomes, but the biological mechanisms remain unclear. Epigenetic changes, such as DNA methylation (DNAm), may contribute to this association. The placenta, crucial for foetal development, has been understudied in relation to prenatal green space exposure and DNAm on a genome-wide scale. Here, we aimed to investigate the association between green space exposure during pregnancy and epigenome-wide placental DNAm in 550 mother-child pairs from the Barcelona Life Study Cohort (BiSC) in Spain. Green space exposure was assessed as (i) residential surrounding greenness (satellite-based Normalized Difference Vegetation Index (NDVI) in buffers of 100 m, 300 m and 500 m), (ii) residential distance to the nearest major green space (meters), (iii) use of green space (hours/week), and (iv) visual access to greenery through the home window (≥half of the view). Placental DNAm was measured with the EPIC array. Differentially methylated positions (DMPs) were identified using robust linear regression models adjusted for covariates, while differentially methylated regions (DMRs) were identified using the dmrff method. After Bonferroni correction, cg14852540, annotated to SLC25A10 gene, showed an inverse association with residential greenness within 500 m buffer. Additionally, 101 DMPs were suggestively significant (p-values <1 × 10-5) and annotated to genes involved in glucocorticoid-related pathways, inflammatory response, oxidative stress response, and oocyte maturation. No DMRs were identified. Overall, we identified an association between residential greenness and DNAm levels at one CpG in the SLC25A10 gene. Larger studies are needed to validate these findings and understand the biological pathways.
Collapse
Affiliation(s)
- Sofía Aguilar-Lacasaña
- ISGlobal, Barcelona, Spain; Universitat de Barcelona (UB), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Spain.
| | - Marta Cosin-Tomas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Spain
| | - Bruno Raimbault
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Spain
| | - Laura Gómez-Herrera
- ISGlobal, Barcelona, Spain; Universitat de Barcelona (UB), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Spain
| | - Olga Sánchez
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0001), Spain; Department of Obstetrics and Gynaecology. Hospital de la Santa Creu i Sant Pau, Institut de Recerca (IR SANT PAU), Barcelona, 08041, Spain
| | - Maria Julia Zanini
- Department of Obstetrics and Gynaecology. Hospital de la Santa Creu i Sant Pau, Institut de Recerca (IR SANT PAU), Barcelona, 08041, Spain
| | - Rosalia Pascal Capdevila
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0003), Spain; BCNatal. Barcelona Center for Maternal Foetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), University of Barcelona, Barcelona, Spain
| | - Maria Foraster
- PHAGEX Research Group, Blanquerna School of Health Science, Universitat Ramon Llull (URL), Barcelona, Spain
| | - Mireia Gascon
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Spain; Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Manresa, Spain
| | - Ioar Rivas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Spain
| | - Elisa Llurba
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0001), Spain; Department of Obstetrics and Gynaecology. Hospital de la Santa Creu i Sant Pau, Institut de Recerca (IR SANT PAU), Barcelona, 08041, Spain
| | - Maria Dolores Gómez-Roig
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0003), Spain; BCNatal. Barcelona Center for Maternal Foetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), University of Barcelona, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Spain.
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Spain
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Spain
| |
Collapse
|
4
|
Praiss AM, Moukarzel LA, Zhu Y, Longhini ALF, Derakhshan F, Hoang T, Pesci G, Green H, Ozsoy MA, Hanlon E, Kahn R, Brodeur MN, Sia T, Abu-Rustum NR, Gardner G, Roche KL, Sonoda Y, Zivanovic O, Chi DS, Merghoub T, Gardner R, Weigelt B, Zamarin D. Evolution of tumor stress response during cytoreductive surgery for ovarian cancer. iScience 2025; 28:112317. [PMID: 40256326 PMCID: PMC12008711 DOI: 10.1016/j.isci.2025.112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/28/2025] [Accepted: 03/25/2025] [Indexed: 04/22/2025] Open
Abstract
Upfront treatment for patients with advanced high-grade serous ovarian cancer (HGSOC) includes a multi-hour cytoreductive surgery. Although the procedure is necessary for maximal tumor cytoreduction, understanding of the biology of systemic and intratumoral responses induced by surgical cytoreduction is limited. Through analysis of matched tumor and normal tissues and peripheral blood collected at multiple time points during cytoreductive surgery in patients with HGSOC, we demonstrate that surgery leads to rapid induction of systemic inflammatory response and activation of inflammatory signaling in the tumor and normal tissue, with interleukin-6 emerging as a dominant inflammatory pathway. A parallel study in a syngeneic murine HGSOC model recapitulated these findings and demonstrated accelerated tumor growth in response to surgery. This study highlights the previously unappreciated impact of specimen collection timing on the tumor signaling networks and provides insights into stress pathways activated by surgery, generating rationale for perioperative therapeutic interventions to reduce protumorigenic effects.
Collapse
Affiliation(s)
- Aaron M. Praiss
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lea A. Moukarzel
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yingjie Zhu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ana Leda F. Longhini
- Department of Flow Cytometry, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fatemeh Derakhshan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy Hoang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giulio Pesci
- Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
| | - Hunter Green
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melih A. Ozsoy
- Department of OB/GYN, Weill Cornell Medical College, New York, NY, USA
| | - Etta Hanlon
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan Kahn
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Tiffany Sia
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem R. Abu-Rustum
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of OB/GYN, Weill Cornell Medical College, New York, NY, USA
| | - Ginger Gardner
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of OB/GYN, Weill Cornell Medical College, New York, NY, USA
| | - Kara Long Roche
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of OB/GYN, Weill Cornell Medical College, New York, NY, USA
| | - Yukio Sonoda
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of OB/GYN, Weill Cornell Medical College, New York, NY, USA
| | - Oliver Zivanovic
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dennis S. Chi
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of OB/GYN, Weill Cornell Medical College, New York, NY, USA
| | - Taha Merghoub
- Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
| | - Rui Gardner
- Department of Flow Cytometry, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dmitriy Zamarin
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
5
|
Lee TR, Ahn JM, Lee J, Kim D, Park J, Jeong BH, Oh D, Kim SM, Jung GC, Choi BH, Kwon MJ, Wang M, Salmans M, Carson A, Leatham B, Fathe K, Lee BI, Jung B, Ki CS, Park YS, Cho EH. Integrating Plasma Cell-Free DNA Fragment End Motif and Size with Genomic Features Enables Lung Cancer Detection. Cancer Res 2025; 85:1696-1707. [PMID: 40136052 DOI: 10.1158/0008-5472.can-24-1517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/28/2024] [Accepted: 11/08/2024] [Indexed: 03/27/2025]
Abstract
Early detection of lung cancer is important for improving patient survival rates. Liquid biopsy using whole-genome sequencing of cell-free DNA (cfDNA) offers a promising avenue for lung cancer screening, providing a potential alternative or complementary approach to current screening modalities. Here, we aimed to develop and validate an approach by integrating fragment and genomic features of cfDNA to enhance lung cancer detection accuracy across diverse populations. Deep learning-based classifiers were trained using comprehensive cfDNA fragmentomic features from participants in multi-institutional studies, including a Korean discovery dataset (218 patients with lung cancer and 2,559 controls), a Korean validation dataset (111 patients with lung cancer and 1,136 controls), and an independent Caucasian validation cohort (50 patients with lung cancer and 50 controls). In the discovery dataset, classifiers using fragment end motif by size, a feature that captures both fragment end motif and size profiles, outperformed standalone fragment end motif and fragment size classifiers, achieving an area under the curve (AUC) of 0.917. The ensemble classifier integrating fragment end motif by size and genomic coverage achieved an improved performance, with an AUC of 0.937. This performance extended to the Korean validation dataset and demonstrated ethnic generalizability in the Caucasian validation cohort. Overall, the development of a deep learning-based classifier integrating cfDNA fragmentomic and genomic features in this study highlights the potential for accurate lung cancer detection across diverse populations. Significance: Evaluating fragment-based features and genomic coverage in cell-free DNA offers an accurate lung cancer screening method, promising improvements in early cancer detection and addressing challenges associated with current screening methods.
Collapse
Affiliation(s)
- Tae-Rim Lee
- Genome Research Center, GC Genome, Yongin-si, South Korea
| | - Jin Mo Ahn
- Genome Research Center, GC Genome, Yongin-si, South Korea
| | - Junnam Lee
- Genome Research Center, GC Genome, Yongin-si, South Korea
| | - Dasom Kim
- Genome Research Center, GC Genome, Yongin-si, South Korea
| | - Juntae Park
- Genome Research Center, GC Genome, Yongin-si, South Korea
| | - Byeong-Ho Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dongryul Oh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | | - Min-Jung Kwon
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | - Byoungsok Jung
- Genome Research Center, GC Genome, Yongin-si, South Korea
| | - Chang-Seok Ki
- Genome Research Center, GC Genome, Yongin-si, South Korea
| | - Young Sik Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Eun-Hae Cho
- Genome Research Center, GC Genome, Yongin-si, South Korea
| |
Collapse
|
6
|
Quah FX, Almeida MV, Blumer M, Yuan CU, Fischer B, See K, Jackson B, Zatha R, Rusuwa B, Turner GF, Santos ME, Svardal H, Hemberg M, Durbin R, Miska E. Lake Malawi cichlid pangenome graph reveals extensive structural variation driven by transposable elements. Genome Res 2025; 35:1094-1107. [PMID: 40210437 PMCID: PMC12047535 DOI: 10.1101/gr.279674.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 02/06/2025] [Indexed: 04/12/2025]
Abstract
Pangenome methods have the potential to uncover hitherto undiscovered sequences missing from established reference genomes, making them useful to study evolutionary and speciation processes in diverse organisms. The cichlid fishes of the East African Rift Lakes represent one of nature's most phenotypically diverse vertebrate radiations, but single-nucleotide polymorphism (SNP)-based studies have revealed little sequence difference, with 0.1%-0.25% pairwise divergence between Lake Malawi species. These were based on aligning short reads to a single linear reference genome and ignored the contribution of larger-scale structural variants (SVs). We constructed a pangenome graph that integrates six new and two existing long-read genome assemblies of Lake Malawi haplochromine cichlids. This graph intuitively represents complex and nested variation between the genomes and reveals that the SV landscape is dominated by large insertions, many exclusive to individual assemblies. The graph incorporates a substantial amount of extra sequence across seven species, the total size of which is 33.1% longer than that of a single cichlid genome. Approximately 4.73% to 9.86% of the assembly lengths are estimated as interspecies structural variation between cichlids, suggesting substantial genomic diversity underappreciated in SNP studies. Although coding regions remain highly conserved, our analysis uncovers a significant proportion of SV sequences as transposable element (TE) insertions, especially DNA, LINE, and LTR TEs. These findings underscore that the cichlid genome is shaped both by small-nucleotide mutations and large, TE-derived sequence alterations, both of which merit study to understand their interplay in cichlid evolution.
Collapse
Affiliation(s)
- Fu Xiang Quah
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom;
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | | | - Moritz Blumer
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Chengwei Ulrika Yuan
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Bettina Fischer
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Kirsten See
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Ben Jackson
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Richard Zatha
- Department of Biological Sciences, University of Malawi, P.O. Box 280, Zomba, Malawi
| | - Bosco Rusuwa
- Department of Biological Sciences, University of Malawi, P.O. Box 280, Zomba, Malawi
| | - George F Turner
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2TH, United Kingdom
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Hannes Svardal
- Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Martin Hemberg
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Eric Miska
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom;
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
7
|
Ankley PJ, Challis J, Xia P, Gong Y, Zhou Y, Hecker M, Giesy JP, Brinkmann M. Interactions of erythromycin and an antibiotic mixture with the gut microbiome of juvenile rainbow trout. CHEMOSPHERE 2025; 377:144263. [PMID: 40120561 DOI: 10.1016/j.chemosphere.2025.144263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 12/20/2024] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
Erythromycin (ERY) is a commonly used antibiotic found in wastewater effluents and the environment globally. Due to the bioactivity by which they kill and prevent bacterial growth, ERY and other antibiotics may have significant unwanted impacts on the gut microbiome of fishes. The overall objective of this project was to assess effects on the gut microbiome in response to exposure to ERY alone or in a mixture with other common antibiotics, which was accomplished in two experiments. The objectives of experiment 1 as a pilot study were to understand uptake and depuration of ERY in juvenile rainbow trout (RBT) over a 7-d exposure to three concentrations of ERY followed by a 7-d depuration period. Furthermore, throughout the study changes in gut microbiome were assessed. In experiment 2, an identical experimental design was used to assess the effects of a mixture of antibiotics containing, in addition to ERY, 100 μg/g each of ampicillin, metronidazole, and ciprofloxacin. In that study, three matrices were analyzed, with gut collected for 16S rRNA metabarcoding, blood plasma for non-targeted metabolomics, and brain tissue for mRNA-seq analysis. ERY was relatively quickly depurated from fish and gut microbiome dysbiosis was observed at 7 d after exposure, with a slight recovery after the 7-d depuration period. A greater number of plasma metabolites was dysregulated at 14 d compared to 7 d revealing distinct temporal dynamics compared to gut microbiome dysbiosis. Furthermore, several transformation products of antibiotics and biomarker metabolites were observed in plasma due to antibiotic exposure. The transcriptome of the brain was only slightly altered due to antibiotic exposure. Results of these studies will help inform aquaculture practitioners and risk assessors when assessing the potential impacts of antibiotics present in fish feed and the environment, with implications for host health.
Collapse
Affiliation(s)
- Phillip J Ankley
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
| | - Jonathan Challis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, T1J 4B1, Canada
| | - Pu Xia
- Environmental Genomics Group, School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Yufeng Gong
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, Canada
| | - Yutong Zhou
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, S7N 5CN, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada; Department of Veterinary Biomedical Sciences and Toxicology Centre, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada; Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA; Department of Environmental Sciences, Baylor University, Waco, 76706, USA
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, S7N 5CN, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, M5S 3H6, Canada.
| |
Collapse
|
8
|
Tafrishi A, Alva T, Chartron J, Wheeldon I. Ribo-seq guided design of enhanced protein secretion in Komagataella phaffii. Metab Eng 2025:S1096-7176(25)00071-0. [PMID: 40315981 DOI: 10.1016/j.ymben.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/12/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
The production of recombinant proteins requires the precise coordination of various biological processes, including protein synthesis, folding, trafficking, and secretion. The overproduction of a heterologous protein can impose various bottlenecks on these networks. Identifying and alleviating these bottlenecks can guide strain engineering efforts to enhance protein production. The methylotrophic yeast Komagataella phaffii is used for its high capacity to produce recombinant proteins. Here, we use ribosome profiling to identify bottlenecks in protein secretion during heterologous expression of human serum albumin (HSA). Validation of this analysis showed that the knockout of non-essential genes whose gene products target the ER, through co- and post-translational mechanisms, and have high ribosome utilization can increase production of a heterologous protein, HSA. A triple knockout in co-translationally translocated carbohydrate and acetate transporter Gal2p, cell wall maintenance protein Ydr134cp, and the post-translationally translocated cell wall protein Aoa65896.1 increased HSA production by 35%. This data-driven strain engineering approach uses cell-level information to identify gene targets for phenotype improvement. This specific case identifies hits and creates strains with improved HSA production, with Ribo-seq and bioinformatic analysis to identify non-essential ER targeted proteins that are high ribosome utilizers.
Collapse
Affiliation(s)
- Aida Tafrishi
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Troy Alva
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Justin Chartron
- Bioengineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA; Center for Industrial Biotechnology, University of California-Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
9
|
Eneh S, Hartikainen JM, Heikkinen S, Sironen R, Tengström M, Kosma VM, Ahuja S, Mannermaa A. High expression of miR-7974 predicts poor prognosis and is associated with autophagy in estrogen receptor-positive breast cancer. PLoS One 2025; 20:e0322179. [PMID: 40300005 PMCID: PMC12040258 DOI: 10.1371/journal.pone.0322179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/17/2025] [Indexed: 05/01/2025] Open
Abstract
Estrogen receptor-positive (ER+) breast cancers (BC) cause death despite well-established treatments. MicroRNAs (miRNAs) have potential as biomarkers specific to cancer subtypes and tissues, therefore miRNA-based biomarkers could help improve patient survival. In this study, we investigated a relatively unknown miRNA, miR-7974. We utilized small RNA data from 204 breast tissue samples to study miR-7974 association with clinicopathological features and outcomes for BC patients. Additionally, in vitro and in ovo methods were used to identify miR-7974 role at molecular and cellular level in MCF-7 cells. Findings were validated using MDA-MB-453 cells. MiR-7974 was upregulated in many clinicopathological features of BC (P<0.05). Furthermore, the highest expression of miR-7974 was associated with poor relapse-free survival in ER+ BC patients [hazard ratio (HR)=8.70; 95% confidence interval (CI)=3.28-23.06; P=1.37x10-05] and poor BC-specific survival in patients receiving only surgical treatment (HR=8.36; 95% CI=1.01-69.06; P=0.049). Our studies revealed that miR-7974 targets autophagy gene, MAP1LC3B, identified as direct miR-7974 target (P<0.05) in MCF-7 cells. In vitro analyses indicated overexpressing miR-7974 had anti-proliferative effect in MCF7 and MDA-MB-453 cells. Overall, our results demonstrate potential prognostic role of miR-7974 in ER+ BC.
Collapse
Affiliation(s)
- Stralina Eneh
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jaana M. Hartikainen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Multidisciplinary Cancer Research Community (Cancer RC), University of Eastern Finland, Kuopio, Finland
- Genome Center of Eastern Finland, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Reijo Sironen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Multidisciplinary Cancer Research Community (Cancer RC), University of Eastern Finland, Kuopio, Finland
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Maria Tengström
- Cancer Center, Department of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Veli-Matti Kosma
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Multidisciplinary Cancer Research Community (Cancer RC), University of Eastern Finland, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland.
| | - Saket Ahuja
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Arto Mannermaa
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Multidisciplinary Cancer Research Community (Cancer RC), University of Eastern Finland, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
10
|
Zhao J, Shi D, Kaeufer K, Song C, Both D, Thier AL, Cao H, Lassen L, Xu X, Hamamura Y, Luzzietti L, Bennett T, Kaufmann K, Greb T. Strigolactones optimise plant water usage by modulating vessel formation. Nat Commun 2025; 16:3854. [PMID: 40295470 PMCID: PMC12037892 DOI: 10.1038/s41467-025-59072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Wood formation is crucial for plant growth, enabling water and nutrient transport through vessel elements, derived from cambium stem cells (CSCs). CSCs produce vascular cell types in a bidirectional manner, but their regulation and cell fate trajectories remain unclear. Here, using single-cell transcriptome analysis in Arabidopsis thaliana, we reveal that the strigolactone (SL) signalling pathway negatively regulates vessel element formation, impacting plant water usage. While SL signalling is generally active in differentiating vascular tissues, it is low in developing vessels and CSCs, where it modulates cell fate decisions and drought response. SL-dependent changes in vessel element formation directly affect transpiration rates via stomata, underscoring the importance of vascular tissue composition in water balance. Our findings demonstrate the role of structural alignment in water-transport tissues under unstable water conditions, offering insights for enhancing drought resistance in plants through long-term modulation of vascular development.
Collapse
Affiliation(s)
- Jiao Zhao
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Dongbo Shi
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.
- Genetics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
| | - Kiara Kaeufer
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Changzheng Song
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Dominik Both
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Anna Lea Thier
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Hui Cao
- Genetics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Linus Lassen
- Genetics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Xiaocai Xu
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yuki Hamamura
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Laura Luzzietti
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Greb
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
11
|
Fox JA, Reader SM, Barrett RDH. Rapid Neural DNA Methylation Responses to Predation Stress in Trinidadian Guppies. Mol Ecol 2025:e17774. [PMID: 40277378 DOI: 10.1111/mec.17774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
DNA methylation (DNAm) is a well-studied epigenetic mechanism implicated in environmentally induced phenotypes and phenotypic plasticity. However, few studies investigate the timescale of DNAm shifts. Thus, it is uncertain whether DNAm can change on timescales relevant for rapid phenotypic shifts, such as during the expression of short-term behavioural plasticity. DNAm could be especially reactive in the brain, potentially increasing its relevance for behavioural plasticity. Most research investigating neural changes in methylation has been conducted in mammalian systems, on isolated individuals, and using stressors that are less ecologically relevant, reducing their generalisability to other natural systems. We exposed pairs of male and female Trinidadian guppies (Poecilia reticulata) to alarm cue, conspecific skin extract that reliably induces anti-predator behaviour, or a control cue. Whole-genome bisulphite sequencing on whole brains at various time points following cue exposure (0.5, 1, 4, 24, and 72 h) allowed us to uncover the timescale of neural DNAm responses. Males and females both showed rapid shifts in DNAm in as little as 0.5 h. However, males and females differed in the time course of their responses: both sexes showed a peak in the number of loci showing significant responses at 4 h, but males showed an additional peak at 72 h. We suggest that this finding could be due to the differing longer-term plastic responses between the sexes. This study shows that DNAm can be rapidly induced by an ecologically relevant stressor in fish and suggests that DNAm could be involved in short-term behavioural plasticity.
Collapse
Affiliation(s)
- Janay A Fox
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Simon M Reader
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
12
|
Li C, Gong FX, Yang Z, Fu X, Shi H, Sun X, Zhang X, Xiao R. Alternative splicing categorizes organ development by stage and reveals unique human splicing variants linked to neuromuscular disorders. J Biol Chem 2025:108542. [PMID: 40288647 DOI: 10.1016/j.jbc.2025.108542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Alternative splicing (AS) diversifies protein expression and contributes to species-specific differences in organ development. Here, we focused on stage-specific splicing variants and their correlation with disease in human compared to mouse during brain and heart development. Temporal transcriptomic analysis revealed that splicing factors (SFs) can accurately classify organ developmental stages, and 5 SFs were identified specifically upregulated in human during organogenesis. Additionally, inter-stage splicing variations were identified across analogous human and mouse developmental stages. Developmentally dynamic alternative splicing genes (devASGs) were enriched in various neurodevelopmental disorders in both species, with the most significant changes observed in human newborn brain and 16 weeks post-conception heart. Intriguingly, diseases specifically enriched in humans were primarily associated with neuro-muscular dysfunction, and human-specific neuromuscular devASGs were linked to mannose glycosylation and ciliary motility. These findings highlight the significance of SFs and AS events in organogenesis, and inform the selection of appropriate models for translational research.
Collapse
Affiliation(s)
- Chen Li
- Research Center of Plastic Surgery Hospital, CAMS Key Laboratory of Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Fu-Xing Gong
- Research Center of Plastic Surgery Hospital, CAMS Key Laboratory of Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Zhigang Yang
- Research Center of Plastic Surgery Hospital, CAMS Key Laboratory of Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, CAMS Key Laboratory of Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Hang Shi
- Research Center of Plastic Surgery Hospital, CAMS Key Laboratory of Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Xuejian Sun
- Research Center of Plastic Surgery Hospital, CAMS Key Laboratory of Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Xiaorong Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300074, China.
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, CAMS Key Laboratory of Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China.
| |
Collapse
|
13
|
Chen L, Zhang L, Zhao Y, He M, Wu H, Wang J, Chen Z, Zhao Y, Shen F, Zhang X. Impact of DNA methylation on digestive and metabolic gene expression in red pandas (Ailurus fulgens) during the transition from milk to bamboo diet. BMC Genomics 2025; 26:404. [PMID: 40275147 PMCID: PMC12023452 DOI: 10.1186/s12864-025-11606-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND DNA methylation plays a crucial role in species development and environmental adaptation. In mammals, there are significant dietary changes from infancy to adulthood. Notably, the red panda transitions from milk consumption as juveniles to a bamboo-based diet as adults, with significant alterations in food characteristics and nutritional content. However, the regulatory role of DNA methylation in this process remains unclear. In this study, we investigate the regulatory role of DNA methylation on the expression of digestive and metabolic genes in the liver and pancreas during the red panda's dietary transition from suckling stage to adulthood. RESULTS Our findings reveal significant differences in DNA methylation patterns before and after dietary transition, highlighting the specific alterations in the methylation profiles of genes involved in lipid, carbohydrate, and amino acid metabolism. We found that perilipin-4 (PLIN4) is hypomethylated and highly expressed in the liver of adult red pandas, facilitating lipid droplet formation and storage, crucial for adapting to the low-fat content in bamboo. In contrast, genes like lipoprotein lipase (LPL), crucial for lipid breakdown, exhibited hypermethylated with low-expression patterns, reflecting a reduced lipid metabolism capacity in adults. Carbohydrate metabolism-related genes like ADH4 and FAM3C are hypomethylated and highly expressed in adults, enhancing glycogen production and glucose utilization. Genes involved in protein metabolism like CTSZ and GLDC, exhibit hypomethylated with high-expression and hypermethylated with low-expression patterns in the pancreas of adults, respectively, contributing to protein metabolism balance post-weaning. CONCLUSION This study reveals the regulatory role of DNA methylation in the dietary transition of red pandas from milk to bamboo and provides methylation evidence for the molecular regulation of adaptive expression of digestive and metabolic genes in red pandas with specialized diets.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Liang Zhang
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, China
| | - Yanni Zhao
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Ming He
- China Conservation and Research Center for the Giant Panda, Dujiangyan, 611800, China
| | - Honglin Wu
- China Conservation and Research Center for the Giant Panda, Dujiangyan, 611800, China
| | - Jingheng Wang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Zhoulong Chen
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Yongqi Zhao
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Fujun Shen
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
14
|
Nguyen TN, Lee T, Turaga N, Gentleman R, Geistlinger L, Morgan M. AlphaMissenseR: an integrated framework for investigating missense mutations in human protein-coding genes. BIOINFORMATICS ADVANCES 2025; 5:vbaf093. [PMID: 40303903 PMCID: PMC12040380 DOI: 10.1093/bioadv/vbaf093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Summary AlphaMissense is an AI model from Google DeepMind that predicts the pathogenicity of every possible missense mutation in the human proteome. We present AlphaMissenseR, an R/Bioconductor package that facilitates performant and reproducible access to these predictions and that provides functionality for analysis, visualization, validation, and benchmarking. AlphaMissenseR integrates with Bioconductor facilities for genomic region analysis, and provides multi-level visualization and interactive exploration of variant pathogenicity in a genome browser and on 3D protein structures. In addition, AlphaMissenseR integrates with major clinical and experimental variant databases for contrasting predicted and clinically derived pathogenicity scores, and for systematic benchmarking of existing and new variant effect prediction methods across a large collection of deep mutational scanning assays. Availability and implementation AlphaMissense data resources are distributed under the CC-BY 4.0 license and the AlphaMissenseR package is available from Bioconductor (https://bioconductor.org/packages/AlphaMissenseR) under the Artistic 2.0 license.
Collapse
Affiliation(s)
- Tram N Nguyen
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02115, United States
| | - Tyrone Lee
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02115, United States
| | - Nitesh Turaga
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02115, United States
| | - Robert Gentleman
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02115, United States
- Dana Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, United States
| | - Ludwig Geistlinger
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02115, United States
| | - Martin Morgan
- Roswell Park Comprehensive Cancer Center, Buffalo, NY 14221, United States
| |
Collapse
|
15
|
Muñoz-Martín N, Simon-Chica A, Díaz-Díaz C, Cadenas V, Temiño S, Esteban I, Ludwig A, Schormair B, Winkelmann J, Olejnickova V, Sedmera D, Filgueiras-Rama D, Torres M. Meis transcription factors regulate cardiac conduction system development and adult function. Cardiovasc Res 2025; 121:311-323. [PMID: 39691060 PMCID: PMC12012448 DOI: 10.1093/cvr/cvae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 12/19/2024] Open
Abstract
AIMS The cardiac conduction system (CCS) is progressively specified during development by interactions among a discrete number of transcription factors (TFs) that ensure its proper patterning and the emergence of its functional properties. Meis genes encode homeodomain TFs with multiple roles in mammalian development. In humans, Meis genes associate with congenital cardiac malformations and alterations of cardiac electrical activity; however, the basis for these alterations has not been established. Here, we studied the role of Meis TFs in cardiomyocyte development and function during mouse development and adult life. METHODS AND RESULTS We studied Meis1 and Meis2 conditional deletion mouse models that allowed cardiomyocyte-specific elimination of Meis function during development and inducible elimination of Meis function in cardiomyocytes of the adult CCS. We studied cardiac anatomy, contractility, and conduction. We report that Meis factors are global regulators of cardiac conduction, with a predominant role in the CCS. While constitutive Meis deletion in cardiomyocytes led to congenital malformations of the arterial pole and atria, as well as defects in ventricular conduction, Meis elimination in cardiomyocytes of the adult CCS produced sinus node dysfunction and delayed atrio-ventricular conduction. Molecular analyses unravelled Meis-controlled molecular pathways associated with these defects. Finally, we studied in transgenic mice the activity of a Meis1 human enhancer related to an single-nucleotide polymorphism (SNP) associated by Genome-wide association studies (GWAS) to PR (P and R waves of the electrocardiogram) elongation and found that the transgene drives expression in components of the atrio-ventricular conduction system. CONCLUSION Our study identifies Meis TFs as essential regulators of the establishment of cardiac conduction function during development and its maintenance during adult life. In addition, we generated animal models and identified molecular alterations that will ease the study of Meis-associated conduction defects and congenital malformations in humans.
Collapse
MESH Headings
- Animals
- Myeloid Ecotropic Viral Integration Site 1 Protein/genetics
- Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism
- Myeloid Ecotropic Viral Integration Site 1 Protein/deficiency
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Heart Conduction System/metabolism
- Heart Conduction System/physiopathology
- Heart Conduction System/growth & development
- Mice, Knockout
- Gene Expression Regulation, Developmental
- Action Potentials
- Heart Rate
- Phenotype
- Myocardial Contraction
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/genetics
- Heart Defects, Congenital/metabolism
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/physiopathology
- Age Factors
- Sinoatrial Node/metabolism
- Sinoatrial Node/physiopathology
Collapse
Affiliation(s)
- Noelia Muñoz-Martín
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 3 Melchor Fernández Almagro, Madrid 28029, Spain
| | - Ana Simon-Chica
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 3 Melchor Fernández Almagro, Madrid 28029, Spain
| | - Covadonga Díaz-Díaz
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 3 Melchor Fernández Almagro, Madrid 28029, Spain
| | - Vanessa Cadenas
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 3 Melchor Fernández Almagro, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 3-5 Av. Monforte de Lemos, Madrid 28029, Spain
| | - Susana Temiño
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 3 Melchor Fernández Almagro, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 3-5 Av. Monforte de Lemos, Madrid 28029, Spain
| | - Isaac Esteban
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 3 Melchor Fernández Almagro, Madrid 28029, Spain
| | - Andreas Ludwig
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 17 Fahrstraße, Erlangen 91054, Germany
| | - Barbara Schormair
- Institute of Neurogenomics, Helmholtz-Zentrum, 1 Ingolstädter Landstraße, Neuherberg 85764, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz-Zentrum, 1 Ingolstädter Landstraße, Neuherberg 85764, Germany
| | - Veronika Olejnickova
- First Faculty of Medicine, Institute of Anatomy, Charles University, U Nemocnice 3, Praha 2, 128 00, Czech Republic
| | - David Sedmera
- First Faculty of Medicine, Institute of Anatomy, Charles University, U Nemocnice 3, Praha 2, 128 00, Czech Republic
| | - David Filgueiras-Rama
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 3 Melchor Fernández Almagro, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 3-5 Av. Monforte de Lemos, Madrid 28029, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle del Prof Martín Lagos, Madrid 28040, Spain
| | - Miguel Torres
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 3 Melchor Fernández Almagro, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 3-5 Av. Monforte de Lemos, Madrid 28029, Spain
| |
Collapse
|
16
|
Kim WJ, Crosse EI, De Neef E, Etxeberria I, Sabio EY, Wang E, Bewersdorf JP, Lin KT, Lu SX, Belleville A, Fox N, Castro C, Zhang P, Fujino T, Lewis J, Rahman J, Zhang B, Winick JH, Lewis AM, Stanley RF, DeWolf S, Urben BM, Takizawa M, Krause T, Molina H, Chaligne R, Koppikar P, Molldrem J, Gigoux M, Merghoub T, Daniyan A, Chandran SS, Greenbaum BD, Klebanoff CA, Bradley RK, Abdel-Wahab O. Mis-splicing-derived neoantigens and cognate TCRs in splicing factor mutant leukemias. Cell 2025:S0092-8674(25)00399-X. [PMID: 40273911 DOI: 10.1016/j.cell.2025.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 02/06/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025]
Abstract
Mutations in RNA splicing factors are prevalent across cancers and generate recurrently mis-spliced mRNA isoforms. Here, we identified a series of bona fide neoantigens translated from highly stereotyped splicing alterations promoted by neomorphic, leukemia-associated somatic splicing machinery mutations. We utilized feature-barcoded peptide-major histocompatibility complex (MHC) dextramers to isolate neoantigen-reactive T cell receptors (TCRs) from healthy donors, patients with active myeloid malignancy, and following curative allogeneic stem cell transplant. Neoantigen-reactive CD8+ T cells were present in the blood of patients with active cancer and had a distinct phenotype from virus-reactive T cells with evidence of impaired cytotoxic function. T cells engineered with TCRs recognizing SRSF2 mutant-induced neoantigens arising from mis-splicing events in CLK3 and RHOT2 resulted in specific recognition and cytotoxicity of SRSF2-mutant leukemia. These data identify recurrent RNA mis-splicing events as sources of actionable public neoantigens in myeloid leukemias and provide proof of concept for genetically redirecting T cells to recognize these targets.
Collapse
Affiliation(s)
- Won Jun Kim
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Edie I Crosse
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Emma De Neef
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Erich Y Sabio
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Eric Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jan Philipp Bewersdorf
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | | | - Sydney X Lu
- Department of Medicine, Division of Hematology, Stanford University, Palo Alto, CA, USA
| | - Andrea Belleville
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nina Fox
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Cynthia Castro
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Pu Zhang
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Takeshi Fujino
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Jennifer Lewis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Jahan Rahman
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Beatrice Zhang
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Jacob H Winick
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Alexander M Lewis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Robert F Stanley
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Susan DeWolf
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | | | - Meril Takizawa
- Single-cell Analytics Innovation Laboratory, MSK, New York, NY, USA
| | - Tobias Krause
- Single-cell Analytics Innovation Laboratory, MSK, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, Rockefeller University, New York, NY, USA
| | - Ronan Chaligne
- Single-cell Analytics Innovation Laboratory, MSK, New York, NY, USA
| | - Priya Koppikar
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey Molldrem
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mathieu Gigoux
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, USA
| | - Anthony Daniyan
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | | | - Benjamin D Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, MSK, New York, NY, USA
| | - Christopher A Klebanoff
- Human Oncology and Pathogenesis Program, MSK, New York, NY, USA; Parker Institute for Cancer Immunotherapy, New York, NY, USA.
| | - Robert K Bradley
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA.
| |
Collapse
|
17
|
Kline EM, Jernigan JE, Scharer CD, Maurer J, Hicks SL, Herrick MK, Wallings RL, Kelly SD, Chang J, Menees KB, McFarland NR, Boss JM, Tansey MG, Joers V. MHCII reduction is insufficient to protect mice from alpha-synuclein-induced degeneration and the Parkinson's HLA locus exhibits epigenetic regulation. Sci Rep 2025; 15:13705. [PMID: 40258905 PMCID: PMC12012047 DOI: 10.1038/s41598-025-95679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/24/2025] [Indexed: 04/23/2025] Open
Abstract
Major histocompatibility complex class II (MHCII) molecules are antigen presentation proteins and increased in post-mortem Parkinson's disease (PD) brain. Attempts to decrease MHCII expression have led to neuroprotection in PD mouse models. Our group reported that a single nucleotide polymorphism (SNP) at rs3129882 in the MHCII gene Human Leukocyte Antigen (HLA) DRA is associated with increased MHCII transcripts and surface protein and increased risk for late-onset idiopathic PD. We therefore hypothesized that decreased MHCII may mitigate dopaminergic degeneration. During an ongoing α-synuclein lesion, mice with MHCII reduction in systemic and brain innate immune cells (LysMCre + I-Abfl/fl or CRE+) displayed brain T cell repertoire shifts and greater preservation of the dopaminergic phenotype in nigrostriatal terminals. Next, we investigated a human cohort to characterize the immunophenotype of subjects with and without the high-risk GG genotype at the rs3129882 SNP. We confirmed that the high-risk GG genotype is associated with peripheral changes in MHCII inducibility, frequency of CD4 + T cells, and differentially accessible chromatin regions within the MHCII locus. Although our mouse studies indicate that myeloid MHCII reduction coinciding with an intact adaptive immune system is insufficient to fully protect dopamine neurons from α-synuclein-induced degeneration, our data are consistent with the overwhelming evidence implicating antigen presentation in PD pathophysiology.
Collapse
Affiliation(s)
- Elizabeth M Kline
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Janna E Jernigan
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida Health, Gainesville, FL, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeffrey Maurer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sakeenah L Hicks
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mary K Herrick
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida Health, Gainesville, FL, USA
| | - Rebecca L Wallings
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida Health, Gainesville, FL, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sean D Kelly
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jianjun Chang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kelly B Menees
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida Health, Gainesville, FL, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nikolaus R McFarland
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida Health, Gainesville, FL, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Valerie Joers
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida Health, Gainesville, FL, USA.
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
18
|
Trouth A, Ravichandran K, Gafken PR, Martire S, Boyle GE, Veronezi GMB, La V, Namciu SJ, Banaszynski LA, Sarthy JF, Ramachandran S. The length of G1 phase is an essential determinant of H3K27me3 landscape across diverse cell types. PLoS Biol 2025; 23:e3003119. [PMID: 40245079 DOI: 10.1371/journal.pbio.3003119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 03/17/2025] [Indexed: 04/19/2025] Open
Abstract
Stem cells have lower facultative heterochromatin as defined by trimethylation of histone H3 lysine 27 (H3K27me3) compared to differentiated cells. However, the mechanisms underlying these differential H3K27me3 levels remain elusive. Because H3K27me3 levels are diluted 2-fold in every round of replication and then restored through the rest of the cell cycle, we reasoned that the cell cycle length could be a key regulator of total H3K27me3 levels. Here, we propose that a short G1 phase restricts H3K27me3 levels in stem cells. To test this model, we determined changes to H3K27me3 levels in mouse embryonic stem cells (mESCs) globally and at specific loci upon G1 phase lengthening - accomplished by thymidine block or growth in the absence of serum (with the "2i medium"). H3K27me3 levels in mESCs increase with G1 arrest when grown in serum and in 2i medium. Additionally, we observed via CUT&RUN and ChIP-seq that regions that gain H3K27me3 in G1 arrest and 2i media overlap, supporting our model of G1 length as a critical regulator of the stem cell epigenome. Furthermore, we demonstrate the inverse effect - that G1 shortening in differentiated human HEK293 cells results in a loss of H3K27me3 levels. Finally, in human tumor cells with extreme H3K27me3 loss, lengthening of the G1 phase leads to H3K27me3 recovery despite the presence of the dominant negative, sub-stoichiometric H3.K27M mutation. Our results indicate that G1 length is an essential determinant of H3K27me3 landscapes across diverse cell types.
Collapse
Affiliation(s)
- Abby Trouth
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kamesh Ravichandran
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Philip R Gafken
- Proteomics and Metabolomics Shared Resource, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Sara Martire
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Gabriel E Boyle
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Giovana M B Veronezi
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Van La
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Stephanie J Namciu
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Laura A Banaszynski
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jay F Sarthy
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
19
|
Ravet A, Zervudacki J, Singla-Rastogi M, Charvin M, Thiebeauld O, Perez-Quintero AL, Courgeon L, Candat A, Lebeau L, Fortunato AE, Mendu V, Navarro L. Vesicular and non-vesicular extracellular small RNAs direct gene silencing in a plant-interacting bacterium. Nat Commun 2025; 16:3533. [PMID: 40229238 PMCID: PMC11997071 DOI: 10.1038/s41467-025-57908-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 03/04/2025] [Indexed: 04/16/2025] Open
Abstract
Extracellular plant small RNAs (sRNAs) and/or double-stranded RNA (dsRNA) precursors act as triggers of RNAi in interacting filamentous pathogens. However, whether any of these extracellular RNA species direct gene silencing in plant-interacting bacteria remains unknown. Here, we show that Arabidopsis transgenic plants expressing sRNAs directed against virulence factors of a Pseudomonas syringae strain, reduce its pathogenesis. This Antibacterial Gene Silencing (AGS) phenomenon is directed by Dicer-Like (DCL)-dependent antibacterial sRNAs, but not cognate dsRNA precursors. Three populations of active extracellular sRNAs were recovered in the apoplast of these transgenic plants. The first one is mainly non-vesicular and associated with proteins, whereas the second one is located inside Extracellular Vesicles (EVs). Intriguingly, the third population is unbound to proteins and in a dsRNA form, unraveling functional extracellular free sRNAs (efsRNAs). Both Arabidopsis transgene- and genome-derived efsRNAs were retrieved inside bacterial cells. Finally, we show that salicylic acid (SA) promotes AGS, and that a substantial set of endogenous efsRNAs exhibits predicted bacterial targets that are down-regulated by SA biogenesis and/or signaling during infection. This study thus unveils an unexpected AGS phenomenon, which may have wider implications in the understanding of how plants regulate microbial transcriptome, microbial community composition and genome evolution of associated bacteria.
Collapse
Affiliation(s)
- Antinéa Ravet
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Jérôme Zervudacki
- ImmunRise Technologies (IRT), 75005, Paris, France
- ENgreen Technologies, 33100, Bordeaux, France
| | - Meenu Singla-Rastogi
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Magali Charvin
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | | | - Alvaro L Perez-Quintero
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Lucas Courgeon
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Adrien Candat
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Liam Lebeau
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | | | - Venugopal Mendu
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Lionel Navarro
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France.
| |
Collapse
|
20
|
Karakulak T, Zajac N, Bolck HA, Bratus-Neuenschwander A, Zhang Q, Qi W, Basu D, Oltra TC, Rehrauer H, von Mering C, Moch H, Kahraman A. Heterogeneous and novel transcript expression in single cells of patient-derived clear cell renal cell carcinoma organoids. Genome Res 2025; 35:698-711. [PMID: 40107723 PMCID: PMC12047245 DOI: 10.1101/gr.279345.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
Splicing is often dysregulated in cancer, leading to alterations in the expression of canonical and alternatively spliced isoforms. We used the multiplexed arrays sequencing (MAS-seq) protocol of PacBio to sequence full-length transcripts in patient-derived organoid (PDO) cells of clear cell renal cell carcinoma (ccRCC). The sequencing revealed a heterogeneous dysregulation of splicing across 2599 single ccRCC cells. The majority of novel transcripts could be removed with stringent filtering criteria. The remaining 31,531 transcripts (36.6% of the 86,182 detected transcripts on average) were previously uncharacterized. In contrast to known transcripts, many of the novel transcripts have cell-specific expression. Novel transcripts common to ccRCC cells belong to genes involved in ccRCC-related pathways, such as hypoxia and oxidative phosphorylation. A novel transcript of the ccRCC-related gene nicotinamide N-methyltransferase is validated using PCR. Moreover, >50% of novel transcripts possess a predicted complete protein-coding open reading frame. An analysis of the most dominant transcript-switching events between ccRCC and non-ccRCC cells shows many switching events that are cell- and sample-specific, underscoring the heterogeneity of alternative splicing events in ccRCC. Overall, our study elucidates the intricate transcriptomic architecture of ccRCC, underlying its aggressive phenotype and providing insights into its molecular complexity.
Collapse
Affiliation(s)
- Tülay Karakulak
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, 8091 Zurich, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Natalia Zajac
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Functional Genomics Center Zurich, ETH, 8057 Zurich, Switzerland
| | - Hella Anna Bolck
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, 8091 Zurich, Switzerland
- Centre for AI, School of Engineering, Zurich University of Applied Sciences (ZHAW), 8400 Winterthur, Switzerland
| | | | - Qin Zhang
- Functional Genomics Center Zurich, ETH, 8057 Zurich, Switzerland
| | - Weihong Qi
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Functional Genomics Center Zurich, ETH, 8057 Zurich, Switzerland
| | - Debleena Basu
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, 8091 Zurich, Switzerland
| | | | - Hubert Rehrauer
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Functional Genomics Center Zurich, ETH, 8057 Zurich, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Abdullah Kahraman
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland;
- School for Life Sciences, Institute for Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland, 4132 Muttenz, Switzerland
| |
Collapse
|
21
|
Ben Aribi H, Dixon I, Abassi N, Awe OI. Efficient and easy gene expression and genetic variation data analysis and visualization using exvar. Sci Rep 2025; 15:12264. [PMID: 40210898 PMCID: PMC11985497 DOI: 10.1038/s41598-025-93067-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 03/04/2025] [Indexed: 04/12/2025] Open
Abstract
RNA sequencing data manipulation workflows are complex and require various skills and tools. This creates the need for user-friendly and integrated genomic data analysis and visualization tools. We developed a novel R package using multiple Cran and Bioconductor packages to perform gene expression analysis and genetic variant calling from RNA sequencing data. Multiple public datasets were analyzed using the developed package to validate the pipeline for all the supported species. The developed R package, named "exvar", includes multiple data analysis functions and three data visualization shiny apps integrated as functions. Also, it could be used to analyze several species' data. The exvar package is available in the project's GitHub repository ( https://github.com/omicscodeathon/exvar ).
Collapse
Affiliation(s)
- Hiba Ben Aribi
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia.
| | - Imraan Dixon
- Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Najla Abassi
- Higher Institute of Biotechnology Sidi Thabet, Manouba University, Manouba, Tunisia
| | - Olaitan I Awe
- Department of Computer Science, University of Ibadan, Ibadan, Oyo State, Nigeria
- African Society for Bioinformatics and Computational Biology, Cape Town, South Africa
| |
Collapse
|
22
|
Semenchenko E, Tsybulskyi V, Meyer IM. DuplexDiscoverer: a computational method for the analysis of experimental duplex RNA-RNA interaction data. Nucleic Acids Res 2025; 53:gkaf266. [PMID: 40219963 PMCID: PMC11992671 DOI: 10.1093/nar/gkaf266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/07/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
For a few years, it has been possible to experimentally probe the universe of cis and trans RNA-RNA interactions in a transcriptome-wide manner. These experiments give rise to so-called duplex data, i.e. short reads generated via high-throughput sequencing that each encode information on a cis or trans RNA-RNA interaction. These raw duplex data require complex, subsequent computational analyses in order to be interpreted as solid evidence for actual cis and trans RNA-RNA interactions. While several methods have already been proposed to tackle this challenge, almost all of them lack one or more desirable feature-computational efficiency, ability to readily alter the main processing steps and parameter values, p-value estimation for predictions, and interoperability with the common bioinformatics tools for transcriptomics. To overcome these challenges, we present DuplexDiscoverer-a computational method and R package that allows for the efficient, adjustable, and conceptually coherent analysis of duplex data. DuplexDiscoverer is readily adaptable to analysing data from different experimental protocols and its results seamlessly integrate with the most commonly used bioinformatics tools for transcriptomics in R. Most importantly, DuplexDiscoverer generates predictions that are of superior or comparable quality to those of the existing methods while significantly improving time and memory efficiency.
Collapse
Affiliation(s)
- Egor Semenchenko
- Laboratory of bioinformatics of RNA Structure and Transcriptome Regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Thielallee 63, Freie Universität Berlin, 14195 Berlin, Germany
| | - Volodymyr Tsybulskyi
- Laboratory of bioinformatics of RNA Structure and Transcriptome Regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Thielallee 63, Freie Universität Berlin, 14195 Berlin, Germany
| | - Irmtraud M Meyer
- Laboratory of bioinformatics of RNA Structure and Transcriptome Regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Thielallee 63, Freie Universität Berlin, 14195 Berlin, Germany
- Department of Mathematics and Computer Science, Institute of Computer Science, Takustraße 9, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
23
|
Ahrend F, Konstantinidou P, Loubalova Z, Wang Y, Lorenzi H, Meister G, Haase AD. Protocol for assembling, prioritizing, and characterizing piRNA clusters using the piRNA Cluster Builder. STAR Protoc 2025; 6:103759. [PMID: 40220304 PMCID: PMC12023778 DOI: 10.1016/j.xpro.2025.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/19/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
PIWI-interacting RNAs (piRNAs) play a critical role in safeguarding genome integrity in germ cells, ensuring fertility. Here, we provide a protocol for processing piRNA sequencing data, identifying piRNA-rich genomic regions as piRNA clusters, and preparing these clusters for downstream analyses. We describe steps for assembling piRNA cluster regions using an R-based tool, the piRNA Cluster Builder (PICB), which integrates unique and multimapping piRNA reads stepwise. The protocol allows for parameter optimizations and generates normalized outputs for prioritization of piRNA clusters. For complete details on the use and execution of this protocol, please refer to Konstantinidou et al.1.
Collapse
Affiliation(s)
- Franziska Ahrend
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany.
| | - Parthena Konstantinidou
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zuzana Loubalova
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yuejun Wang
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; The TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hernan Lorenzi
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; The TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Astrid D Haase
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Bian Z, Xu Z, Peer A, Choi Y, Priest SJ, Akritidou K, Dasgupta A, Dahlmann TA, Kück U, Nowrousian M, Sachs MS, Sun S, Heitman J. Essential genes encoded by the mating-type locus of the human fungal pathogen Cryptococcus neoformans. mBio 2025; 16:e0022325. [PMID: 39998264 PMCID: PMC11980393 DOI: 10.1128/mbio.00223-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Fungal sexual reproduction is controlled by the mating-type (MAT) locus. In contrast to a majority of species in the phylum Basidiomycota that have tetrapolar mating-type systems, the opportunistic human pathogen Cryptococcus neoformans employs a bipolar mating-type system, with two mating types (a and α) determined by a single MAT locus that is unusually large (~120 kb) and contains more than 20 genes. While several MAT genes are associated with mating and sexual development, others control conserved cellular processes (e.g., cargo transport and protein synthesis), of which five (MYO2, PRT1, RPL22, RPL39, and RPO41) have been hypothesized to be essential. In this study, through genetic analysis involving sporulation of heterozygous diploid deletion mutants, as well as in some cases construction and analyses of conditional expression alleles of these genes, we confirmed that with the exception of MYO2, both alleles of the other four MAT genes are indeed essential for cell viability. We further showed that while MYO2 is not essential, its function is critical for infectious spore production, faithful cytokinesis, adaptation for growth at high temperature, and pathogenicity in vivo. Our results demonstrate the presence of essential genes in the MAT locus that are divergent between cells of opposite mating types. We discuss possible mechanisms to maintain functional alleles of these essential genes in a rapidly evolving genomic region in the context of fungal sexual reproduction and mating-type evolution.IMPORTANCESexual reproduction is essential for long-term evolutionary success. Fungal cell-type identity is governed by the MAT locus, which is typically rapidly evolving and highly divergent between different mating types. In this study, we show that the a and α alleles of four genes encoded in the MAT locus of the opportunistic human fungal pathogen C. neoformans are essential. We demonstrate that a fifth gene, MYO2, which had been predicted to be essential, is in fact dispensable for cell viability. However, a functional MYO2 allele is important for cytokinesis and fungal pathogenicity. Our study highlights the need for careful genetic analyses in determining essential genes, which is complementary to high-throughput approaches. Additionally, the presence of essential genes in the MAT locus of C. neoformans provides insights into the function, maintenance, and evolution of these fast-evolving genomic regions.
Collapse
Affiliation(s)
- Zhuyun Bian
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ziyan Xu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Anushka Peer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yeseul Choi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Shelby J. Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Konstantina Akritidou
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ananya Dasgupta
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Tim A. Dahlmann
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Matthew S. Sachs
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
25
|
Wang Z, Belay K, Paterson J, Bewick P, Singer W, Song Q, Zhang B, Li S. Long-read sequencing reveals novel structural variation markers for key agronomic and quality traits of food-grade soybean. FRONTIERS IN PLANT SCIENCE 2025; 16:1557748. [PMID: 40265112 PMCID: PMC12011826 DOI: 10.3389/fpls.2025.1557748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/17/2025] [Indexed: 04/24/2025]
Abstract
Long read sequencing has been widely used to detect structure variations that are not captured by short read sequencing in plant genomic research. In this study, we described an analysis of whole genome re-sequencing of 29 soybean varieties using nanopore long-read sequencing. The compiled germplasm reflects diverse applications of food-grade soybeans, including soy milk and tofu production, as well as consumption of natto, sprout, and edamame (vegetable soybean). We have identified 365,497 structural variations in these newly re-sequenced genomes and found that the newly identified structural variations are associated with important agronomic traits. These traits include seed weight, flowering time, plant height, oleic acid content, methionine content, and Kunitz trypsin inhibitor content, all of which significantly impact soybean production, quality, and market value. Experimental validation supports the roles of predicted candidate genes and structural variants in these biological processes. Our research provides a new source for rapid marker discovery in soybean and other crop genomes using structural variation and whole genome sequencing.
Collapse
Affiliation(s)
- Zhibo Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Kassaye Belay
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
- Graduate Program in Genetics, Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA, United States
| | - Joe Paterson
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Patrick Bewick
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - William Singer
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
26
|
Kalra S, Coolon JD. Decoding RAP1 's Role in Yeast mRNA Splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647307. [PMID: 40291741 PMCID: PMC12026737 DOI: 10.1101/2025.04.04.647307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Messenger RNA (mRNA) splicing is a fundamental and tightly regulated process in eukaryotes, where the spliceosome removes non-coding sequences from pre-mRNA to produce mature mRNA for protein translation. Alternative splicing enables the generation of multiple RNA isoforms and protein products from a single gene, regulating both isoform diversity and abundance. While splicing is widespread in eukaryotes, only ∼3% of genes in Saccharomyces cerevisiae undergo splicing, with most containing a single intron. However, intron-containing genes, primarily ribosomal protein genes, are highly expressed and constitute about one-third of the total mRNA pool. These genes are transcriptionally regulated by Repressor Activator Protein 1 ( RAP1 ), prompting us to investigate whether RAP1 influences mRNA splicing. Using RNA sequencing, we identified a novel role for RAP1 in alternative splicing, particularly in intron retention (IR) while minor effects were observed on alternative 3' and 5' splice site usage. Many IR-containing transcripts introduced premature termination codons, likely leading to degradation via nonsense-mediated decay (NMD). Consistent with previous literature, genes with predicted NMD in our study also had reduced overall expression levels suggesting that RAP1 plays an important role in this understudied mechanism of gene expression regulation.
Collapse
|
27
|
Lee JJ, Yang L, Kotzin JJ, Ahimovic D, Bale MJ, Nigrovic PA, Josefowicz SZ, Mathis D, Benoist C. Early transcriptional effects of inflammatory cytokines reveal highly redundant cytokine networks. J Exp Med 2025; 222:e20241207. [PMID: 39873673 PMCID: PMC11865922 DOI: 10.1084/jem.20241207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
Inflammatory cytokines are fundamental mediators of the organismal response to injury, infection, or other harmful stimuli. To elucidate the early and mostly direct transcriptional signatures of inflammatory cytokines, we profiled all immunologic cell types by RNAseq after systemic exposure to IL1β, IL6, and TNFα. Our results revealed a significant overlap in the responses, with broad divergence between myeloid and lymphoid cells, but with very few cell-type-specific responses. Pathway and motif analysis identified several main controllers (NF-κB, IRF8, and PU.1), but the largest portion of the response appears to be mediated by MYC, which was also implicated in the response to γc cytokines. Indeed, inflammatory and γc cytokines elicited surprisingly similar responses (∼50% overlap in NK cells). Significant overlap with interferon-induced responses was observed, paradoxically in lymphoid but not myeloid cell types. These results point to a highly redundant cytokine network, with intertwined effects between disparate cytokines and cell types.
Collapse
Affiliation(s)
- Juliana J. Lee
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Liang Yang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Jonathan J. Kotzin
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Dughan Ahimovic
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Michael J. Bale
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Peter A. Nigrovic
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven Z. Josefowicz
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christophe Benoist
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
28
|
Mondragon-Estrada E, Morton SU. Protocol to analyze deep-learning-predicted functional scores for noncoding de novo variants and their correlation with complex brain traits. STAR Protoc 2025; 6:103738. [PMID: 40198216 PMCID: PMC12008569 DOI: 10.1016/j.xpro.2025.103738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
Functional impact of noncoding variants can be predicted using computational approaches. Although predictive scores can be insightful, implementing the scores for a custom variant set and associating scores with complex traits require multiple phases of analysis. Here, we present a protocol for prioritizing variants by generating deep-learning-predicted functional scores and relating them with brain traits. We describe steps for score prediction, statistical comparison, phenotype correlation, and functional enrichment analysis. This protocol can be generalized to different models and phenotypes. For complete details on the use and execution of this protocol, please refer to Mondragon-Estrada et al.1.
Collapse
Affiliation(s)
- Enrique Mondragon-Estrada
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sarah U Morton
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Radhouani M, Farhat A, Hakobyan A, Zahalka S, Pimenov L, Fokina A, Hladik A, Lakovits K, Brösamlen J, Dvorak V, Nunes N, Zech A, Idzko M, Krausgruber T, Köhl J, Uluckan O, Kovarik J, Hoehlig K, Vater A, Eckhard M, Sombke A, Fortelny N, Menche J, Knapp S, Starkl P. Eosinophil innate immune memory after bacterial skin infection promotes allergic lung inflammation. Sci Immunol 2025; 10:eadp6231. [PMID: 40184438 DOI: 10.1126/sciimmunol.adp6231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/22/2024] [Accepted: 02/27/2025] [Indexed: 04/06/2025]
Abstract
Microbial exposure at barrier interfaces drives development and balance of the immune system, but the consequences of local infections for systemic immunity and secondary inflammation are unclear. Here, we show that skin exposure to the bacterium Staphylococcus aureus persistently shapes the immune system of mice with specific impact on progenitor and mature bone marrow neutrophil and eosinophil populations. The infection-imposed changes in eosinophils were long-lasting and associated with functional as well as imprinted epigenetic and metabolic changes. Bacterial exposure enhanced cutaneous allergic sensitization and resulted in exacerbated allergen-induced lung inflammation. Functional bone marrow eosinophil reprogramming and pulmonary allergen responses were driven by the alarmin interleukin-33 and the complement cleavage fragment C5a. Our study highlights the systemic impact of skin inflammation and reveals mechanisms of eosinophil innate immune memory and organ cross-talk that modulate systemic responses to allergens.
Collapse
Affiliation(s)
- Mariem Radhouani
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Asma Farhat
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anna Hakobyan
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Sophie Zahalka
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lisabeth Pimenov
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Alina Fokina
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Anastasiya Hladik
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Karin Lakovits
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Jessica Brösamlen
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| | | | - Natalia Nunes
- Center for Tumor Biology and Immunology, Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Andreas Zech
- Department of Medicine II, Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Marco Idzko
- Department of Medicine II, Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Thomas Krausgruber
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ozge Uluckan
- Novartis Biomedical Research, Basel, Switzerland
| | - Jiri Kovarik
- Novartis Biomedical Research, Basel, Switzerland
| | | | | | - Margret Eckhard
- Center for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Andy Sombke
- Center for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Nikolaus Fortelny
- Center for Tumor Biology and Immunology, Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Jörg Menche
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
- Faculty of Mathematics, University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Network Medicine at the University of Vienna, Vienna, Austria
| | - Sylvia Knapp
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Vienna, Austria
| | - Philipp Starkl
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Fu S, Li WV. Predicting and comparing transcription start sites in single cell populations. PLoS Comput Biol 2025; 21:e1012878. [PMID: 40179341 PMCID: PMC11968111 DOI: 10.1371/journal.pcbi.1012878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/15/2025] [Indexed: 04/05/2025] Open
Abstract
The advent of 5' single-cell RNA sequencing (scRNA-seq) technologies offers unique opportunities to identify and analyze transcription start sites (TSSs) at a single-cell resolution. These technologies have the potential to uncover the complexities of transcription initiation and alternative TSS usage across different cell types and conditions. Despite the emergence of computational methods designed to analyze 5' RNA sequencing data, current methods often lack comparative evaluations in single-cell contexts and are predominantly tailored for paired-end data, neglecting the potential of single-end data. This study introduces scTSS, a computational pipeline developed to bridge this gap by accommodating both paired-end and single-end 5' scRNA-seq data. scTSS enables joint analysis of multiple single-cell samples, starting with TSS cluster prediction and quantification, followed by differential TSS usage analysis. It employs a Binomial generalized linear mixed model to accurately and efficiently detect differential TSS usage. We demonstrate the utility of scTSS through its application in analyzing transcriptional initiation from single-cell data of two distinct diseases. The results illustrate scTSS's ability to discern alternative TSS usage between different cell types or biological conditions and to identify cell subpopulations characterized by unique TSS-level expression profiles.
Collapse
Affiliation(s)
- Shiwei Fu
- Department of Statistics, University of California, Riverside, Riveside, California, United States of America
| | - Wei Vivian Li
- Department of Statistics, University of California, Riverside, Riveside, California, United States of America
| |
Collapse
|
31
|
Jiang Q, Braun DA, Clauser KR, Ramesh V, Shirole NH, Duke-Cohan JE, Nabilsi N, Kramer NJ, Forman C, Lippincott IE, Klaeger S, Phulphagar KM, Chea V, Kim N, Vanasse AP, Saad E, Parsons T, Carr-Reynolds M, Carulli I, Pinjusic K, Jiang Y, Li R, Syamala S, Rachimi S, Verzani EK, Stevens JD, Lane WJ, Camp SY, Meli K, Pappalardi MB, Herbert ZT, Qiu X, Cejas P, Long HW, Shukla SA, Van Allen EM, Choueiri TK, Churchman LS, Abelin JG, Gurer C, MacBeath G, Childs RW, Carr SA, Keskin DB, Wu CJ, Kaelin WG. HIF regulates multiple translated endogenous retroviruses: Implications for cancer immunotherapy. Cell 2025; 188:1807-1827.e34. [PMID: 40023154 PMCID: PMC11988688 DOI: 10.1016/j.cell.2025.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/14/2024] [Accepted: 01/31/2025] [Indexed: 03/04/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC), despite having a low mutational burden, is considered immunogenic because it occasionally undergoes spontaneous regressions and often responds to immunotherapies. The signature lesion in ccRCC is inactivation of the VHL tumor suppressor gene and consequent upregulation of the HIF transcription factor. An earlier case report described a ccRCC patient who was cured by an allogeneic stem cell transplant and later found to have donor-derived T cells that recognized a ccRCC-specific peptide encoded by a HIF-responsive endogenous retrovirus (ERV), ERVE-4. We report that ERVE-4 is one of many ERVs that are induced by HIF, translated into HLA-bound peptides in ccRCCs, and capable of generating antigen-specific T cell responses. Moreover, ERV expression can be induced in non-ccRCC tumors with clinical-grade HIF stabilizers. These findings have implications for leveraging ERVs for cancer immunotherapy.
Collapse
Affiliation(s)
- Qinqin Jiang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - David A Braun
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Yale Center of Cellular and Molecular Oncology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Vijyendra Ramesh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Nitin H Shirole
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph E Duke-Cohan
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Nicholas J Kramer
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Cleo Forman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Isabelle E Lippincott
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Susan Klaeger
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Kshiti M Phulphagar
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Vipheaviny Chea
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nawoo Kim
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Allison P Vanasse
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Eddy Saad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Isabel Carulli
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Katarina Pinjusic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yijia Jiang
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rong Li
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sudeepa Syamala
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Suzanna Rachimi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Eva K Verzani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Jonathan D Stevens
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - William J Lane
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Sabrina Y Camp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Kevin Meli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | - Zachary T Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sachet A Shukla
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Toni K Choueiri
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jennifer G Abelin
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | | | | | - Richard W Childs
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Derin B Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Computer Science, Metropolitan College, Boston University, Boston, MA 02215, USA; Section for Bioinformatics, Department of Health Technology, Technical University of Denmark 2800 Lyngby, Denmark.
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA.
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
32
|
Khyzha N, Ahmad K, Henikoff S. Profiling transcriptome composition and dynamics within nuclear compartments using SLAM-RT&Tag. Mol Cell 2025; 85:1366-1380.e4. [PMID: 40073862 DOI: 10.1016/j.molcel.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/09/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
Nuclear compartments are membrane-less regions enriched in functionally related molecules. RNA is a major component of many nuclear compartments, but the identity and dynamics of transcripts within nuclear compartments are poorly understood. Here, we applied reverse transcribe and tagment (RT&Tag) to human cell lines to identify the transcript populations of Polycomb domains and nuclear speckles. We also developed SLAM-RT&Tag, which combines RNA metabolic labeling with RT&Tag, to quantify transcript dynamics within nuclear compartments. We observed unique transcript populations with differing structures and dynamics within each compartment. Intriguingly, exceptionally long genes are transcribed adjacent to Polycomb domains and are transiently associated with chromatin. By contrast, nuclear speckles act as quality control checkpoints that transiently confine incompletely spliced polyadenylated transcripts and facilitate their post-transcriptional splicing. In summary, we demonstrate that transcripts at Polycomb domains and nuclear speckles undergo distinct RNA processing mechanisms, highlighting the pivotal role of compartmentalization in RNA maturation.
Collapse
Affiliation(s)
- Nadiya Khyzha
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
33
|
Sinke L, Beekman M, Raz Y, Gehrmann T, Moustakas I, Boulinguiez A, Lakenberg N, Suchiman E, Bogaards FA, Bizzarri D, van den Akker EB, Waldenberger M, Butler‐Browne G, Trollet C, de Groot CPGM, Heijmans BT, Slagboom PE. Tissue-specific methylomic responses to a lifestyle intervention in older adults associate with metabolic and physiological health improvements. Aging Cell 2025; 24:e14431. [PMID: 39618079 PMCID: PMC11984676 DOI: 10.1111/acel.14431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Accepted: 11/14/2024] [Indexed: 04/12/2025] Open
Abstract
Across the lifespan, diet and physical activity profiles substantially influence immunometabolic health. DNA methylation, as a tissue-specific marker sensitive to behavioral change, may mediate these effects through modulation of transcription factor binding and subsequent gene expression. Despite this, few human studies have profiled DNA methylation and gene expression simultaneously in multiple tissues or examined how molecular levels react and interact in response to lifestyle changes. The Growing Old Together (GOTO) study is a 13-week lifestyle intervention in older adults, which imparted health benefits to participants. Here, we characterize the DNA methylation response to this intervention at over 750 thousand CpGs in muscle, adipose, and blood. Differentially methylated sites are enriched for active chromatin states, located close to relevant transcription factor binding sites, and associated with changing expression of insulin sensitivity genes and health parameters. In addition, measures of biological age are consistently reduced, with decreases in grimAge associated with observed health improvements. Taken together, our results identify responsive molecular markers and demonstrate their potential to measure progression and finetune treatment of age-related risks and diseases.
Collapse
Affiliation(s)
- Lucy Sinke
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - Yotam Raz
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - Thies Gehrmann
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied MicrobiologyUniversity of AntwerpAntwerpBelgium
| | - Ioannis Moustakas
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
- Sequencing Analysis Support Core, Department of Biomedical Data SciencesLeiden University Medical CenterLeidenThe Netherlands
| | - Alexis Boulinguiez
- Myology Center for Research, U974Sorbonne Université, INSERM, AIM, GH Pitié Salpêtrière Bat BabinskiParisFrance
| | - Nico Lakenberg
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - Eka Suchiman
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - Fatih A. Bogaards
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
- Division of Human NutritionWageningen University and ResearchWageningenThe Netherlands
| | - Daniele Bizzarri
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
- Delft Bioinformatics Lab, Pattern Recognition and BioinformaticsDelftThe Netherlands
| | - Erik B. van den Akker
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
- Delft Bioinformatics Lab, Pattern Recognition and BioinformaticsDelftThe Netherlands
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Institute of EpidemiologyHelmholtz Munich, German Research Center for Environmental HealthNeuherbergGermany
- German Center for Cardiovascular Research (DZHK)Partner Site Munich Heart AllianceMunichGermany
| | - Gillian Butler‐Browne
- Myology Center for Research, U974Sorbonne Université, INSERM, AIM, GH Pitié Salpêtrière Bat BabinskiParisFrance
| | - Capucine Trollet
- Myology Center for Research, U974Sorbonne Université, INSERM, AIM, GH Pitié Salpêtrière Bat BabinskiParisFrance
| | - C. P. G. M. de Groot
- Division of Human NutritionWageningen University and ResearchWageningenThe Netherlands
| | - Bastiaan T. Heijmans
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - P. Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| |
Collapse
|
34
|
Darieva Z, Zarrineh P, Phillips N, Mallen J, Garcia Mora A, Donaldson I, Bridoux L, Douglas M, Dias Henriques SF, Schulte D, Birket MJ, Bobola N. Ubiquitous MEIS transcription factors actuate lineage-specific transcription to establish cell fate. EMBO J 2025; 44:2232-2262. [PMID: 40021842 PMCID: PMC12000411 DOI: 10.1038/s44318-025-00385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 03/03/2025] Open
Abstract
Control of gene expression is commonly mediated by distinct combinations of transcription factors (TFs). This cooperative action allows the integration of multiple biological signals at regulatory elements, resulting in highly specific gene expression patterns. It is unclear whether combinatorial binding is also necessary to bring together TFs with distinct biochemical functions, which collaborate to effectively recruit and activate RNA polymerase II. Using a cardiac differentiation model, we find that the largely ubiquitous homeodomain proteins MEIS act as actuators, fully activating transcriptional programs selected by lineage-restricted TFs. Combinatorial binding of MEIS with lineage-enriched TFs, GATA, and HOX, provides selectivity, guiding MEIS to function at cardiac-specific enhancers. In turn, MEIS TFs promote the accumulation of the methyltransferase KMT2D to initiate lineage-specific enhancer commissioning. MEIS combinatorial binding dynamics, dictated by the changing dosage of its partners, drive cells into progressive stages of differentiation. Our results uncover tissue-specific transcriptional activation as the result of ubiquitous actuator TFs harnessing general transcriptional activator at tissue-specific enhancers, to which they are directed by binding with lineage- and domain-specific TFs.
Collapse
Affiliation(s)
- Zoulfia Darieva
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Peyman Zarrineh
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Naomi Phillips
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Joshua Mallen
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Araceli Garcia Mora
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ian Donaldson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Laure Bridoux
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Megan Douglas
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Dorothea Schulte
- Goethe University, University Hospital Frankfurt, Neurological Institute (Edinger Institute), Frankfurt am Main, Germany
| | - Matthew J Birket
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Nicoletta Bobola
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
35
|
Torrens L, Moody S, de Carvalho AC, Kazachkova M, Abedi-Ardekani B, Cheema S, Senkin S, Cattiaux T, Cortez Cardoso Penha R, Atkins JR, Gaborieau V, Chopard P, Carreira C, Abbasi A, Bergstrom EN, Vangara R, Wang J, Fitzgerald S, Latimer C, Diaz-Gay M, Jones D, Teague J, Ribeiro Pinto F, Kowalski LP, Polesel J, Giudici F, de Oliveira JC, Lagiou P, Lagiou A, Vilensky M, Mates D, Mates IN, Arantes LM, Reis R, Podesta JRV, von Zeidler SV, Holcatova I, Curado MP, Canova C, Fabianova E, Rodríguez-Urrego PA, Humphreys L, Alexandrov LB, Brennan P, Stratton MR, Perdomo S. The complexity of tobacco smoke-induced mutagenesis in head and neck cancer. Nat Genet 2025; 57:884-896. [PMID: 40164736 PMCID: PMC11985354 DOI: 10.1038/s41588-025-02134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/18/2025] [Indexed: 04/02/2025]
Abstract
Tobacco smoke, alone or combined with alcohol, is the predominant cause of head and neck cancer (HNC). We explore how tobacco exposure contributes to cancer development by mutational signature analysis of 265 whole-genome sequenced HNC samples from eight countries. Six tobacco-associated mutational signatures were detected, including some not previously reported. Differences in HNC incidence between countries corresponded with differences in mutation burdens of tobacco-associated signatures, consistent with the dominant role of tobacco in HNC causation. Differences were found in the burden of tobacco-associated signatures between anatomical subsites, suggesting that tissue-specific factors modulate mutagenesis. We identified an association between tobacco smoking and alcohol-related signatures, indicating a combined effect of these exposures. Tobacco smoking was associated with differences in the mutational spectra, repertoire of driver mutations in cancer genes and patterns of copy number change. Our results demonstrate the multiple pathways by which tobacco smoke can influence the evolution of cancer cell clones.
Collapse
Affiliation(s)
- Laura Torrens
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Sarah Moody
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Ana Carolina de Carvalho
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Mariya Kazachkova
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Behnoush Abedi-Ardekani
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Saamin Cheema
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Sergey Senkin
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Thomas Cattiaux
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | | | - Joshua R Atkins
- Cancer Epidemiology Unit, The Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Valérie Gaborieau
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Priscilia Chopard
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Christine Carreira
- Evidence Synthesis and Classification Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Ammal Abbasi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Erik N Bergstrom
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Jingwei Wang
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Stephen Fitzgerald
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Calli Latimer
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Marcos Diaz-Gay
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - David Jones
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Jon Teague
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | | | | | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Fabiola Giudici
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | | | - Pagona Lagiou
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Areti Lagiou
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marta Vilensky
- Instituto de Oncología 'Angel Roffo', Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dana Mates
- National Institute of Public Health, Bucharest, Romania
| | - Ioan N Mates
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Saint Mary Clinic of General and Esophageal Surgery, Bucharest, Romania
| | | | - Rui Reis
- Barretos Cancer Hospital, Barretos, Brazil
| | - Jose Roberto V Podesta
- Hospital Santa Rita de Cássia-Associação Feminina de Educação e Combate ao Câncer (AFECC), Vitória, Brazil
| | | | - Ivana Holcatova
- Charles University in Prague, 2nd Faculty of Medicine, IPHPM, Prague, Czech Republic
| | | | - Cristina Canova
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Elenora Fabianova
- Regional Authority of Public Health, Banská Bystrica, Slovak Republic
| | | | - Laura Humphreys
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA, USA
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Sandra Perdomo
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France.
| |
Collapse
|
36
|
Drnevich J, Tan FJ, Almeida-Silva F, Castelo R, Culhane AC, Davis S, Doyle MA, Geistlinger L, Ghazi AR, Holmes S, Lahti L, Mahmoud A, Nishida K, Ramos M, Rue-Albrecht K, Shih DJH, Gatto L, Soneson C. Learning and teaching biological data science in the Bioconductor community. PLoS Comput Biol 2025; 21:e1012925. [PMID: 40261894 PMCID: PMC12013867 DOI: 10.1371/journal.pcbi.1012925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
Modern biological research is increasingly data-intensive, leading to a growing demand for effective training in biological data science. In this article, we provide an overview of key resources and best practices available within the Bioconductor project-an open-source software community focused on omics data analysis. This guide serves as a valuable reference for both learners and educators in the field.
Collapse
Affiliation(s)
- Jenny Drnevich
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Champaign, Illinois, United States of America
| | - Frederick J. Tan
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Robert Castelo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Aedin C. Culhane
- Limerick Digital Cancer Research Centre, School of Medicine, University of Limerick, Limerick, Ireland
| | - Sean Davis
- University of Colorado Anschutz School of Medicine, Denver, Colorado, United States of America
| | - Maria A. Doyle
- Limerick Digital Cancer Research Centre, School of Medicine, University of Limerick, Limerick, Ireland
| | - Ludwig Geistlinger
- Core for Computational Biomedicine, Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew R. Ghazi
- Core for Computational Biomedicine, Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Susan Holmes
- Statistics Department, Stanford University, Stanford, California, United States of America
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Alexandru Mahmoud
- Channing Division of Network Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kozo Nishida
- RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo, Japan
| | - Marcel Ramos
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, New York, United States of America
| | - Kevin Rue-Albrecht
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - David J. H. Shih
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Laurent Gatto
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Charlotte Soneson
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
37
|
Cui X, Yang H, Cai C, Beaman C, Yang X, Liu H, Ren X, Amador Z, Jones IR, Keough KC, Zhang M, Fair T, Abnousi A, Mishra S, Ye Z, Hu M, Pollen AA, Pollard KS, Shen Y. Comparative characterization of human accelerated regions in neurons. Nature 2025; 640:991-999. [PMID: 40011774 DOI: 10.1038/s41586-025-08622-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 01/10/2025] [Indexed: 02/28/2025]
Abstract
Human accelerated regions (HARs) are conserved genomic loci that have experienced rapid nucleotide substitutions following the divergence from chimpanzees1,2. HARs are enriched in candidate regulatory regions near neurodevelopmental genes, suggesting their roles in gene regulation3. However, their target genes and functional contributions to human brain development remain largely uncharacterized. Here we elucidate the cis-regulatory functions of HARs in human and chimpanzee induced pluripotent stem (iPS) cell-induced excitatory neurons. Using genomic4 and chromatin looping information, we prioritized 20 HARs and their chimpanzee orthologues for functional characterization via single-cell CRISPR interference, and demonstrated their species-specific gene regulatory functions. Our findings reveal diverse functional outcomes of HAR-mediated cis-regulation in human neurons, including attenuated NPAS3 expression by altering the binding affinities of multiple transcription factors in HAR202 and maintaining iPS cell pluripotency and neuronal differentiation capacities through the upregulation of PUM2 by 2xHAR.319. Finally, we used prime editing to demonstrate differential enhancer activity caused by several HAR26;2xHAR.178 variants. In particular, we link one variant in HAR26;2xHAR.178 to elevated SOCS2 expression and increased neurite outgrowth in human neurons. Thus, our study sheds new light on the endogenous gene regulatory functions of HARs and their potential contribution to human brain evolution.
Collapse
Affiliation(s)
- Xiekui Cui
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Han Yang
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Charles Cai
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Cooper Beaman
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Xiaoyu Yang
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Hongjiang Liu
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Xingjie Ren
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Zachary Amador
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Ian R Jones
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Kathleen C Keough
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Meng Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Tyler Fair
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, Univeristy of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Armen Abnousi
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Shreya Mishra
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Zhen Ye
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alex A Pollen
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, Univeristy of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Katherine S Pollard
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics and Bakar Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Yin Shen
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
38
|
Lu J, Huang S, Wei S, Cheng J, Li W, Fei Y, Yang J, Hu R, Huang S, Zhai W, Wu Z, Liu M, Xu Q, Hu P, Chen L. Heat inducible nuclear translocation of Kdm6bb drives temperature dependent sex reversal in Nile tilapia. PLoS Genet 2025; 21:e1011664. [PMID: 40305565 PMCID: PMC12043187 DOI: 10.1371/journal.pgen.1011664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
Understanding the primary molecular events driving temperature-dependent sex reversal (TSR) has proven challenging, particularly in distinguishing these from secondary effects of sexual differentiation. The mechanisms translating temperature into a sex-determining signal in fish are still largely unknown. Through combined transcriptomic and genome-wide histone methylation analyses of gonads in Nile tilapia (Oreochromis niloticus) exposed to normal and elevated temperatures, we observed significant upregulation of male-promoting genes (amh, dmrt1, gsdf) and suppression of female-promoting genes (wt1a and foxl3) at high temperature. These changes were correlated with methylation changes in H3K27 and H3K4 in the promoter regions of these genes. Among the histone methylation enzymes induced by high temperature, we identified the H3K27 demethylase Kdm6bb to be a key factor. Gene deletion and biochemical studies confirmed that Kdm6bb significantly impacts the H3K27 methylation level, that influences sex determination. Crucially, we discovered that the TSR function of Kdm6bb is mediated by the alternative inclusion of a previously unrecognized intron, enabling nuclear translocation of the demethylase to perform its function. Our findings refute the previously proposed "translation deficiency" mechanism of kdm6bb, and highlight the critical role of mRNA alternative splicing and subcellular localization of the demethylase in temperature-induced sex reversal.
Collapse
Affiliation(s)
- Jigang Lu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Siqi Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shicen Wei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Jiangbo Cheng
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Wei Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yueyue Fei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Jihui Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Ruiqin Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Songqian Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wanying Zhai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Zhichao Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Mingli Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Qianghua Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
39
|
Parks B, Greenleaf W. Scalable high-performance single cell data analysis with BPCells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645853. [PMID: 40236161 PMCID: PMC11996304 DOI: 10.1101/2025.03.27.645853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The growth of single-cell datasets to multi-million cell atlases has uncovered major scalability problems for single-cell analysis software. Here, we present BPCells, a package for high-performance single-cell analysis of RNA-seq and ATAC-seq datasets. BPCells uses disk-backed streaming compute algorithms to reduce memory requirements by nearly 70-fold compared to in-memory workflows with little to no loss of execution speed. BPCells also introduces high-performance compressed formats based on bitpacking compression for ATAC-seq fragment files and single-cell sparse matrices. These novel compression algorithms help to accelerate disk-backed analysis by reducing data transfer from disk, while providing the lowest computational overhead of all compression algorithms tested. Using BPCells, we perform normalization and PCA of a 44 million cell dataset on a laptop, demonstrating that BPCells makes working with the largest contemporary single-cell datasets feasible on modest hardware, while leaving headroom on servers for future datasets an order of magnitude larger.
Collapse
|
40
|
Bellitto D, Bozzo M, Ravera S, Bertola N, Rosamilia F, Milia J, Barboro P, Vargas GC, Di Lisa D, Pastorino L, Lantieri F, Castagnola P, Iervasi E, Ponassi M, Profumo A, Tkachenko K, Rosano C, Candiani S, Bachetti T. A multi-omics approach reveals impaired lipid metabolism and oxidative stress in a zebrafish model of Alexander disease. Redox Biol 2025; 81:103544. [PMID: 40023981 PMCID: PMC11915002 DOI: 10.1016/j.redox.2025.103544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/01/2025] [Accepted: 02/11/2025] [Indexed: 03/04/2025] Open
Abstract
Alexander disease (AxD) is a rare leukodystrophy caused by heterozygous mutations in the GFAP gene. To date, several in vitro and in vivo models have been generated in an attempt to unravel the main mechanisms underlying this complex disease. However, none of these models is suitable for investigating the global dysregulation caused by AxD. To address this shortcoming, we have generated a stable transgenic zebrafish line (zAxD) carrying the human GFAP p.R239C mutation, which is associated with severe phenotypes of AxD type I patients. We then performed transcriptomics and proteomics analyses on the whole larvae of our zAxD model, confirming the involvement of several pathways such as the immune system response and inflammation, oxidative stress, extracellular matrix, lipoxidation and lipid metabolism, which were previously reported in more limited omic studies. Interestingly, new pathways emerged as well, including tyrosine and butanoate metabolic processes. Biochemical assays confirmed alterations in cell respiration and lipid metabolism as well as elevated oxidative stress. These findings confirm the reliability of the zAxD model to apply a whole-organism approach to investigate the molecular basis of the disease.
Collapse
Affiliation(s)
- Deianira Bellitto
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Genova, Italy
| | - Matteo Bozzo
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Genova, Italy
| | - Silvia Ravera
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Nadia Bertola
- IRCCS Ospedale Policlinico San Martino, Genova, Unità Patologia Clinica, Italy
| | - Francesca Rosamilia
- Bioinformatica Clinica, Direzione Scientifica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Jessica Milia
- Centro di Ricerca, Sviluppo e Studi Superiori in Sardegna (CRS4), Pula, Italy
| | - Paola Barboro
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Donatella Di Lisa
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, Università di Genova, Genova, Italy
| | - Laura Pastorino
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, Università di Genova, Genova, Italy
| | - Francesca Lantieri
- Dipartimento di Scienze della Salute, Università di Genova, Genova, Italy
| | - Patrizio Castagnola
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Genova, Italy
| | - Erika Iervasi
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Marco Ponassi
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Aldo Profumo
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | | | - Simona Candiani
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | | |
Collapse
|
41
|
Chen Y, Davidson NM, Wan YK, Yao F, Su Y, Gamaarachchi H, Sim A, Patel H, Low HM, Hendra C, Wratten L, Hakkaart C, Sawyer C, Iakovleva V, Lee PL, Xin L, Ng HEV, Loo JM, Ong X, Ng HQA, Wang J, Koh WQC, Poon SYP, Stanojevic D, Tran HD, Lim KHE, Toh SY, Ewels PA, Ng HH, Iyer NG, Thiery A, Chng WJ, Chen L, DasGupta R, Sikic M, Chan YS, Tan BOP, Wan Y, Tam WL, Yu Q, Khor CC, Wüstefeld T, Lezhava A, Pratanwanich PN, Love MI, Goh WSS, Ng SB, Oshlack A, Göke J. A systematic benchmark of Nanopore long-read RNA sequencing for transcript-level analysis in human cell lines. Nat Methods 2025; 22:801-812. [PMID: 40082608 PMCID: PMC11978509 DOI: 10.1038/s41592-025-02623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/04/2025] [Indexed: 03/16/2025]
Abstract
The human genome contains instructions to transcribe more than 200,000 RNAs. However, many RNA transcripts are generated from the same gene, resulting in alternative isoforms that are highly similar and that remain difficult to quantify. To evaluate the ability to study RNA transcript expression, we profiled seven human cell lines with five different RNA-sequencing protocols, including short-read cDNA, Nanopore long-read direct RNA, amplification-free direct cDNA and PCR-amplified cDNA sequencing, and PacBio IsoSeq, with multiple spike-in controls, and additional transcriptome-wide N6-methyladenosine profiling data. We describe differences in read length, coverage, throughput and transcript expression, reporting that long-read RNA sequencing more robustly identifies major isoforms. We illustrate the value of the SG-NEx data to identify alternative isoforms, novel transcripts, fusion transcripts and N6-methyladenosine RNA modifications. Together, the SG-NEx data provide a comprehensive resource enabling the development and benchmarking of computational methods for profiling complex transcriptional events at isoform-level resolution.
Collapse
Affiliation(s)
- Ying Chen
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Nadia M Davidson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Yuk Kei Wan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Fei Yao
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yan Su
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Hasindu Gamaarachchi
- School of Computer Science and Engineering, UNSW Sydney, Sydney, New South Wales, Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Andre Sim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | | | - Hwee Meng Low
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Christopher Hendra
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Institute of Data Science, National University of Singapore, Singapore, Singapore
| | - Laura Wratten
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | | | - Chelsea Sawyer
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Viktoriia Iakovleva
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Puay Leng Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Lixia Xin
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Hui En Vanessa Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jia Min Loo
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Xuewen Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Hui Qi Amanda Ng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Jiaxu Wang
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Wei Qian Casslynn Koh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Suk Yeah Polly Poon
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Dominik Stanojevic
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Electronic Systems and Information Processing, Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Hoang-Dai Tran
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Kok Hao Edwin Lim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Shen Yon Toh
- National Cancer Centre Singapore, Singapore, Singapore
| | | | - Huck-Hui Ng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - N Gopalakrishna Iyer
- National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Alexandre Thiery
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ramanuj DasGupta
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Mile Sikic
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Electronic Systems and Information Processing, Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Yun-Shen Chan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Boon Ooi Patrick Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Yue Wan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qiang Yu
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Chiea Chuan Khor
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Torsten Wüstefeld
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- National Cancer Centre Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alexander Lezhava
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ploy N Pratanwanich
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Chula Intelligent and Complex Systems Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Michael I Love
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wee Siong Sho Goh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Sarah B Ng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Alicia Oshlack
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
| | - Jonathan Göke
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
42
|
Longo GMC, Sayols S, Kotini AG, Heinen S, Möckel MM, Beli P, Roukos V. Linking CRISPR-Cas9 double-strand break profiles to gene editing precision with BreakTag. Nat Biotechnol 2025; 43:608-622. [PMID: 38740992 PMCID: PMC11994453 DOI: 10.1038/s41587-024-02238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Cas9 can cleave DNA in both blunt and staggered configurations, resulting in distinct editing outcomes, but what dictates the type of Cas9 incisions is largely unknown. In this study, we developed BreakTag, a versatile method for profiling Cas9-induced DNA double-strand breaks (DSBs) and identifying the determinants of Cas9 incisions. Overall, we assessed cleavage by SpCas9 at more than 150,000 endogenous on-target and off-target sites targeted by approximately 3,500 single guide RNAs. We found that approximately 35% of SpCas9 DSBs are staggered, and the type of incision is influenced by DNA:gRNA complementarity and the use of engineered Cas9 variants. A machine learning model shows that Cas9 incision is dependent on the protospacer sequence and that human genetic variation impacts the configuration of Cas9 cuts and the DSB repair outcome. Matched datasets of Cas9 and engineered variant incisions with repair outcomes show that Cas9-mediated staggered breaks are linked with precise, templated and predictable single-nucleotide insertions, demonstrating that a scission-based gRNA design can be used to correct clinically relevant pathogenic single-nucleotide deletions.
Collapse
Affiliation(s)
| | - Sergi Sayols
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Andriana G Kotini
- Department of Biology, Medical School, University of Patras, Patras, Greece
| | - Sabine Heinen
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz, Germany
- Johannes Gutenberg University (JGU), Mainz, Germany
| | - Vassilis Roukos
- Institute of Molecular Biology (IMB), Mainz, Germany.
- Department of Biology, Medical School, University of Patras, Patras, Greece.
| |
Collapse
|
43
|
Dyer M, Siu G, Thieffry D, Benoukraf T. Leveraging the MethMotif Toolkit to Characterize Context-Specific Features and Roles of Methylation Sensitive Transcription Factors. Curr Protoc 2025; 5:e70129. [PMID: 40279252 PMCID: PMC12026370 DOI: 10.1002/cpz1.70129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
This article presents a comprehensive guide for using the MethMotif platform, which includes the MethMotif database, the TFregulomeR R package, and a new R library, Forked-TF, designed specifically for analyzing leucine-zipper transcription factors (TFs) that bind DNA as dimers. The MethMotif platform integrates transcription factor binding site (TFBS) motifs with DNA methylation profiles, providing an in-depth analysis of how methylation modulates TF binding across different cell types and conditions. The protocols are organized into three main workflows: (1) Exploration of transcription factor dimerization partners, (2) visualization of methylation-specific TF motifs using TFregulomeR, and (3) characterization of leucine-zipper TF binding patterns with a focus on dimerization. Using the platform's MethMotif database, users can retrieve ChIP-seq and DNA methylation data, intersect TFBS peak regions, and generate TFBS-methylation-informed motif logos. A case study of CEBPB in K562 cells is included to demonstrate the use of the platform, showing how to identify TF dimers, analyze their co-binding behavior, and visualize the impact of DNA methylation on binding specificity. The protocols also provide step-by-step instructions for software installation, data input formats, and interpretation of results, making it accessible to researchers with varying levels of computational expertise. Through these protocols, users can uncover how DNA methylation and TF dimerization influence gene regulatory networks, with a focus on leucine-zipper TFs in a cell-type-specific context. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Exploration of transcription factor dimerization partners Support Protocol 1: Software installation Support Protocol 2: Docker installation Support Protocol 3: Verifying installation Basic Protocol 2: Visualization of alternative cofactors Basic Protocol 3: Characterization of bZIP partners/cofactors Basic Protocol 4: Context-independent and context-dependent analysis.
Collapse
Affiliation(s)
- Matthew Dyer
- Division of BioMedical Sciences, Faculty of Medicine, Craig L. Dobbin Genetics Research Centre MemorialUniversity of NewfoundlandSt. John'sNLCanada
| | - Gastongay Siu
- Division of BioMedical Sciences, Faculty of Medicine, Craig L. Dobbin Genetics Research Centre MemorialUniversity of NewfoundlandSt. John'sNLCanada
| | - Denis Thieffry
- Département de Biologie de l’École Normale SupérieurePSL Research UniversityParisFrance
- Institut Curie–INSERM U900–Mines ParisPSL Research UniversityParisFrance
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Touati Benoukraf
- Division of BioMedical Sciences, Faculty of Medicine, Craig L. Dobbin Genetics Research Centre MemorialUniversity of NewfoundlandSt. John'sNLCanada
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| |
Collapse
|
44
|
Noble AJ, Adams AT, Satsangi J, Boden JM, Osborne AJ. Prenatal cannabis exposure is associated with alterations in offspring DNA methylation at genes involved in neurodevelopment, across the life course. Mol Psychiatry 2025; 30:1418-1429. [PMID: 39277688 PMCID: PMC11919715 DOI: 10.1038/s41380-024-02752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Prenatal cannabis exposure (PCE) is of increasing concern globally, due to the potential impact on offspring neurodevelopment, and its association with childhood and adolescent brain development and cognitive function. However, there is currently a lack of research addressing the molecular impact of PCE, that may help to clarify the association between PCE and neurodevelopment. To address this knowledge gap, here we present epigenome-wide association study data across multiple time points, examining the effect of PCE and co-exposure with tobacco using two longitudinal studies, the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Christchurch Health and Development Study (CHDS) at birth (0 y), 7 y and 15-17 y (ALSPAC), and ~27 y (CHDS). Our findings reveal genome-wide significant DNA methylation differences in offspring at 0 y, 7 y, 15-17 y, and 27 y associated with PCE alone, and co-exposure with tobacco. Importantly, we identified significantly differentially methylated CpG sites within the genes LZTS2, NPSR1, NT5E, CRIP2, DOCK8, COQ5, and LRP5 that are shared between different time points throughout development in offspring. Notably, functional pathway analysis showed enrichment for differential DNA methylation in neurodevelopment, neurotransmission, and neuronal structure pathways, and this was consistent across all timepoints in both cohorts. Given the increasing volume of epidemiological evidence that suggests a link between PCE and adverse neurodevelopmental outcomes in exposed offspring, this work highlights the need for further investigation into PCE, particularly in larger cohorts.
Collapse
Affiliation(s)
- Alexandra J Noble
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK.
| | - Alex T Adams
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK
- Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK
- Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Joseph M Boden
- Christchurch Health and Development Study, Department of Psychological Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Amy J Osborne
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
45
|
Milner AR, Johnson AC, Attipoe EM, Wu W, Challagundla L, Garrett MR. Methylseq, single-nuclei RNAseq, and discovery proteomics identify pathways associated with nephron-deficit CKD in the HSRA rat model. Am J Physiol Renal Physiol 2025; 328:F470-F488. [PMID: 39982494 DOI: 10.1152/ajprenal.00258.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/01/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025] Open
Abstract
Low nephron numbers are associated with an increased risk of developing chronic kidney disease (CKD) and hypertension, which are significant global health problems. To investigate the impact of nephron deficiency, our laboratory developed a novel inbred rat model (HSRA rat). In this model, ∼75% of offspring are born with a single kidney (HSRA-S), compared with two-kidney littermates (HSRA-C). HSRA-S rats show impaired kidney development, resulting in ∼20% fewer nephrons. Our previous data and current findings demonstrate that nephron deficit (failure of one kidney to form and altered development in the remaining kidney) predisposes HSRA-S to CKD late in life (with increased proteinuria by 18 mo of age in HSRA-S = 51 ± 3.4 vs. HSRA-C = 8 ± 1.5 mg/24 h). To understand early molecular mechanisms contributing to the increased predisposition to CKD, Methylseq using reduced representation bisulfite sequencing, single-nuclei (sn)RNAseq, and discovery proteomics were performed in kidneys of 4-wk-old HSRA rats. Methylation analysis revealed a small number of differences, including five differentially methylated cytosines and six differentially methylated regions between groups. The snRNAseq analysis identified differentially expressed genes in most kidney cell types, with several hundred genes dysregulated depending on the analysis method (Seurat vs. DESeq2). Notably, many genes are involved in kidney development. Discovery proteomic analysis identified 366 differentially expressed proteins. A key finding was dysregulation of Deptor/DEPTOR and Amdhd2/AMDHD2 across omics layers, suggesting a potential role in compensatory mechanisms or the genetic basis of altered kidney development. Further understanding of these mechanisms may guide interventions to preserve nephron health and slow kidney disease progression.NEW & NOTEWORTHY The HSRA rat is a novel model of nephron deficiency and provides a unique opportunity to study the association between nephron number and chronic kidney disease (CKD). Previous work characterized the impact of age, hypertension, and diabetes on the development of CKD in HSRA animals. This study examined early changes in epigenetics, cell-type specific transcriptome, and proteomic changes in the kidney that likely predispose the model to CKD with age.
Collapse
Affiliation(s)
- Andrew R Milner
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Ashley C Johnson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Esinam M Attipoe
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Wenjie Wu
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lavanya Challagundla
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Michael R Garrett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, Mississippi, United States
- Department of Pediatrics (Genetics), University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
46
|
Petroll R, Papareddy RK, Krela R, Laigle A, Rivière Q, Bišova K, Mozgová I, Borg M. The Expansion and Diversification of Epigenetic Regulatory Networks Underpins Major Transitions in the Evolution of Land Plants. Mol Biol Evol 2025; 42:msaf064. [PMID: 40127687 PMCID: PMC11982613 DOI: 10.1093/molbev/msaf064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
Epigenetic silencing is essential for regulating gene expression and cellular diversity in eukaryotes. While DNA and H3K9 methylation silence transposable elements (TEs), H3K27me3 marks deposited by the Polycomb repressive complex 2 (PRC2) silence varying proportions of TEs and genes across different lineages. Despite the major development role epigenetic silencing plays in multicellular eukaryotes, little is known about how epigenetic regulatory networks were shaped over evolutionary time. Here, we analyze epigenomes from diverse species across the green lineage to infer the chronological epigenetic recruitment of genes during land plant evolution. We first reveal the nature of plant heterochromatin in the unicellular chlorophyte microalga Chlorella sorokiniana and identify several genes marked with H3K27me3, highlighting the deep origin of PRC2-regulated genes in the green lineage. By incorporating genomic phylostratigraphy, we show how genes of differing evolutionary age occupy distinct epigenetic states in plants. While young genes tend to be silenced by H3K9 methylation, genes that emerged in land plants are preferentially marked with H3K27me3, some of which form part of a common network of PRC2-repressed genes across distantly related species. Finally, we analyze the potential recruitment of PRC2 to plant H3K27me3 domains and identify conserved DNA-binding sites of ancient transcription factor families known to interact with PRC2. Our findings shed light on the conservation and potential origin of epigenetic regulatory networks in the green lineage, while also providing insight into the evolutionary dynamics and molecular triggers that underlie the adaptation and elaboration of epigenetic regulation, laying the groundwork for its future consideration in other eukaryotic lineages.
Collapse
Affiliation(s)
- Romy Petroll
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Ranjith K Papareddy
- Gregor Mendel Institute for Molecular Plant Biology, Vienna Biocenter, Vienna, Austria
| | - Rafal Krela
- Biology Centre CAS—Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Alice Laigle
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Quentin Rivière
- Biology Centre CAS—Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Kateřina Bišova
- Institute of Microbiology CAS, Centre Algatech, Třeboň, Czech Republic
| | - Iva Mozgová
- Biology Centre CAS—Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| |
Collapse
|
47
|
Liu J, Perren JO, Rogers CM, Nimer S, Wen AX, Halliday JA, Fitzgerald DM, Mei Q, Nehring RB, Crum M, Kozmin SG, Xia J, Cooke MB, Zhai Y, Bates D, Li L, Hastings PJ, Artsimovitch I, Herman C, Sung PM, Miller KM, Rosenberg SM. Endogenous DNA damage at sites of terminated transcripts. Nature 2025; 640:240-248. [PMID: 39972147 DOI: 10.1038/s41586-024-08578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/26/2024] [Indexed: 02/21/2025]
Abstract
DNA damage promotes mutations that fuel cancer, ageing and neurodegenerative diseases1-3, but surprisingly, the causes and types of damage remain largely unknown. There are three identified mechanisms that damage DNA during transcription: collision of RNA polymerase (RNAP) with the DNA-replication machinery head-on and co-directionally4-6, and R-loop-induced DNA breakage7-10. Here we identify novel DNA damage reaction intermediates11,12 and uncover a fourth transcription-related source of DNA damage: endogenous DNA damage at sites of terminated transcripts. We engineered proteins to capture single-stranded DNA (ssDNA) ends with 3' polarity in bacterial and human cells. In Escherichia coli, spontaneous 3'-ssDNA-end foci were unexpectedly frequent, at one or more per cell division, and arose via two identifiable pathways, both of which were dependent on DNA replication. A pathway associated with double-strand breaks was suppressed by overexpression of replicative DNA polymerase (pol) III, suggesting competition between pol III and DNA damage-promoting proteins. Mapping of recurrent 3'-ssDNA-ends identified distinct 3'-ssDNA-end-hotspots, mostly unrelated to double-strand breaks, next to the 5'-CCTTTTTT transcription-terminator-like sequence. These 3'-ssDNA-termini coincide with RNA 3'-termini identified by DirectRNA sequencing13 or simultaneous 5' and 3' end RNA sequencing (SEnd-seq)14 and were prevented by a mutant RNAP that reads through terminators. Our findings reveal that transcription termination or pausing can promote DNA damage and subsequent genomic instability.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jullian O Perren
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Cody M Rogers
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sadeieh Nimer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Alice X Wen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer A Halliday
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Devon M Fitzgerald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Qian Mei
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Ralf B Nehring
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Mary Crum
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Stanislav G Kozmin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jun Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Matthew B Cooke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Yin Zhai
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - David Bates
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Lei Li
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Patrick M Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kyle M Miller
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, University of Texas at Austin, Austin, TX, USA.
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA.
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
48
|
Chen S, He Y, Lv L, Liu B, Li C, Deng H, Xu J. Transient chemical-mediated epigenetic modulation confers unrestricted lineage potential on human primed pluripotent stem cells. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1084-1101. [PMID: 39825205 DOI: 10.1007/s11427-024-2660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/19/2024] [Indexed: 01/20/2025]
Abstract
Human primed pluripotent stem cells are capable of generating all the embryonic lineages. However, their extraembryonic trophectoderm potentials are limited. It remains unclear how to expand their developmental potential to trophectoderm lineages. Here we show that transient treatment with a cocktail of small molecule epigenetic modulators imparts trophectoderm lineage potentials to human primed pluripotent stem cells while preserving their embryonic potential. These chemically treated cells can generate trophectoderm-like cells and downstream trophoblast stem cells, diverging into syncytiotrophoblast and extravillous trophoblast lineages. Transcriptomic and CUT&Tag analyses reveal that these induced cells share transcriptional profiles with in vivo trophectoderm and cytotrophoblast, and exhibit reduced H3K27me3 modification at gene loci specific to trophoblast lineages compared with primed pluripotent cells. Mechanistic exploration highlighted the critical roles of epigenetic modulators HDAC2, EZH1/2, and KDM5s in the activation of trophoblast lineage potential. Our findings demonstrate that transient epigenetic resetting activates unrestricted lineage potential in human primed pluripotent stem cells, and offer new mechanistic insights into human trophoblast lineage specification and in vitro models for studying placental development and related disorders.
Collapse
Affiliation(s)
- Shi Chen
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Yuanyuan He
- Academy of Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Lejun Lv
- BeiCell Therapeutics, Beijing, 100094, China
| | - Bei Liu
- BeiCell Therapeutics, Beijing, 100094, China.
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, 100871, China.
| | - Hongkui Deng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Jun Xu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| |
Collapse
|
49
|
Lo EKW, Idrizi A, Tryggvadottir R, Zhou W, Hou W, Ji H, Cahan P, Feinberg AP. DNA methylation memory of pancreatic acinar-ductal metaplasia transition state altering Kras-downstream PI3K and Rho GTPase signaling in the absence of Kras mutation. Genome Med 2025; 17:32. [PMID: 40156071 PMCID: PMC11951614 DOI: 10.1186/s13073-025-01452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND A critical area of recent cancer research is the emergence of transition states between normal and cancer that exhibit increased cell plasticity which underlies tumor cell heterogeneity. Pancreatic ductal adenocarcinoma (PDAC) can arise from the combination of a transition state termed acinar-to-ductal metaplasia (ADM) and a gain-of-function mutation in the proto-oncogene KRAS. During ADM, digestive enzyme-producing acinar cells acquire a transient ductal epithelium-like phenotype while maintaining their geographical acinar organization. One route of ADM initiation is the overexpression of the Krüppel-like factor 4 gene (KLF4) in the absence of oncogenic driver mutations. Here, we asked to what extent cells acquire and retain an epigenetic memory of the ADM transition state in the absence of oncogene mutation. METHODS We profiled the DNA methylome and transcriptome of KLF4-induced ADM in transgenic mice at various timepoints during and after recovery from ADM. We validated the identified DNA methylation and transcriptomic signatures in the widely used caerulein model of inducible pancreatitis. RESULTS We identified differential DNA methylation at Kras-downstream PI3K and Rho/Rac/Cdc42 GTPase pathway genes during ADM, as well as a corresponding gene expression increase in these pathways. Importantly, differential methylation persisted after gene expression returned to normal. Caerulein exposure, which induces widespread digestive system changes in addition to ADM, showed similar changes in DNA methylation in ADM cells. Regions of differential methylation were enriched for motifs of KLF and AP-1 family transcription factors, as were those of human pancreatic intraepithelial neoplasia (PanIN) samples, demonstrating the relevance of this epigenetic transition state memory in human carcinogenesis. Finally, single-cell spatial transcriptomics revealed that these ADM transition cells were enriched for PI3K pathway and AP1 family members. CONCLUSIONS Our comprehensive study of DNA methylation in the acinar-ductal metaplasia transition state links epigenetic memory to cancer-related cell plasticity even in the absence of oncogenic mutation.
Collapse
Affiliation(s)
- Emily K W Lo
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, MD, USA
| | - Adrian Idrizi
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, MD, USA
| | - Rakel Tryggvadottir
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, MD, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Wenpin Hou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Andrew P Feinberg
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, MD, USA.
| |
Collapse
|
50
|
Brida KL, Jorgensen ET, Robert A Phillips Iii, Newman CE, Tuscher JJ, Morring EK, Zipperly ME, Ianov L, Montgomery KD, Tippani M, Hyde TM, Maynard KR, Martinowich K, Day JJ. Reelin marks cocaine-activated striatal neurons, promotes neuronal excitability, and regulates cocaine reward. SCIENCE ADVANCES 2025; 11:eads4441. [PMID: 40138397 DOI: 10.1126/sciadv.ads4441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025]
Abstract
Drugs of abuse activate defined neuronal populations in reward structures such as the nucleus accumbens (NAc), which promote the enduring synaptic, circuit, and behavioral consequences of drug exposure. While the molecular and cellular effects arising from experience with drugs like cocaine are increasingly well understood, mechanisms that dictate NAc neuronal recruitment remain unknown. Here, we leveraged unbiased single-nucleus transcriptional profiling and targeted in situ detection to identify Reln (encoding the secreted glycoprotein, Reelin) as a marker of cocaine-activated neuronal populations within the rat NAc. A CRISPR interference approach enabling selective Reln knockdown in the adult NAc altered expression of calcium signaling genes, promoted a transcriptional trajectory consistent with loss of cocaine sensitivity, and decreased MSN excitability. Behaviorally, Reln knockdown prevented cocaine locomotor sensitization, abolished cocaine place preference memory, and decreased cocaine self-administration behavior. These results identify Reelin as a critical mechanistic link between neuronal activation and cocaine-induced behavioral adaptations.
Collapse
Affiliation(s)
- Kasey L Brida
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Emily T Jorgensen
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robert A Phillips Iii
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Catherine E Newman
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer J Tuscher
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Emily K Morring
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Morgan E Zipperly
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lara Ianov
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kelsey D Montgomery
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|