1
|
Moutsoglou D, Ramakrishnan P, Vaughn BP. Microbiota transplant therapy in inflammatory bowel disease: advances and mechanistic insights. Gut Microbes 2025; 17:2477255. [PMID: 40062406 PMCID: PMC11901402 DOI: 10.1080/19490976.2025.2477255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Microbiota transplant therapy is an emerging therapy for inflammatory bowel disease, but factors influencing its efficacy and mechanism remain poorly understood. In this narrative review, we outline key elements affecting therapeutic outcomes, including donor factors (such as age and patient relationship), recipient factors, control selection, and elements impacting engraftment and its correlation with clinical response. We also examine potential mechanisms through inflammatory bowel disease trials, focusing on the interplay between the microbiota, host, and immune system. Finally, we briefly explore potential future directions for microbiota transplant therapy and promising emerging treatments.
Collapse
Affiliation(s)
- Daphne Moutsoglou
- Gastroenterology Section, Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Byron P. Vaughn
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Faith JJ. Assessing live microbial therapeutic transmission. Gut Microbes 2025; 17:2447836. [PMID: 39746875 DOI: 10.1080/19490976.2024.2447836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
The development of fecal microbiota transplantation and defined live biotherapeutic products for the treatment of human disease has been an empirically driven process yielding a notable success of approved drugs for the treatment of recurrent Clostridioides difficile infection. Assessing the potential of this therapeutic modality in other indications with mixed clinical results would benefit from consistent quantitative frameworks to characterize drug potency and composition and to assess the impact of dose and composition on the frequency and duration of strain engraftment. Monitoring these drug properties and engraftment outcomes would help identify minimally sufficient sets of microbial strains to treat disease and provide insights into the intersection between microbial function and host physiology. Broad and correct usage of strain detection methods is essential to this advancement. This article describes strain detection approaches, where they are best applied, what data they require, and clinical trial designs that are best suited to their application.
Collapse
Affiliation(s)
- Jeremiah J Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Chen L, Chen C, Bai Y, Li C, Wei C, Wei R, Luo R, Li R, Ma Q, Geng Y. Evaluation of the effects of different formulations of protectants on the preservation of the microbiota in fecal microbiota transplantation. Int Microbiol 2025:10.1007/s10123-025-00663-6. [PMID: 40411710 DOI: 10.1007/s10123-025-00663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 04/22/2025] [Accepted: 04/30/2025] [Indexed: 05/26/2025]
Abstract
BACKGROUND With the increasing indications for fecal microbiota transplantation for the treatment of diseases, there is a growing demand for the preparation of frozen or lyophilized fecal microbiota products that are viable and can stably colonize the recipient. The addition of protective agents plays an important role in the preparation. However, there has been no systematic evaluation of the protective agents used in fecal microbiota sample transplantation preparation for transplantation. METHODS We were used the donor bacterial flora containing 10 different formulations of protective agents were frozen, lyophilized, and stored. Plate counting, CCK8 assay, flow cytometry after LIVE/DEAD staining, and fluorescence intensity were used to assess viable bacteria in vitro. In addition, the donor bacterial flora samples containing different formulations protective agents were transplanted into antibiotic-treated SPF mice, with 3 mice in each group and a total of 5 groups. Fecal samples were collected for metagenomic sequencing to observe the colonization of the bacterial flora in the recipient mice. RESULTS The preliminary screening results showed that the survival rate of bacteria in the 5% trehalose (T) groups, and 5% sucrose, 5% inulin, and 1% cysteine hydrochloride (SI) groups was slightly higher than that in the other groups. SI groups tended to be more protective against anaerobes than T groups. The donor gut microbiota containing the SI groups protective agent exhibited the best colonization of the recipient mice. The protective effects of different formulations of protective agents on the colonized probiotic strains and the metabolic function of the bacterial flora in recipient mice were found to be species specific. CONCLUSIONS SI groups can not only better protect the activity of anaerobic bacteria in the intestine, but also effectively promote the effective colonization of donor intestinal bacteria in the recipient mice, and the effect of frozen storage method is less, and can be used at the same time as frozen and freeze-dried preparation. It can be used as a reference for the selection of protective agents in the preparation of fecal microbiota transplantation samples.
Collapse
Affiliation(s)
- Liyu Chen
- Department of Gastroenterology, 923, Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China
| | - Chong Chen
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518037, China
| | - Yang Bai
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Cailan Li
- Department of Gastroenterology, 923, Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China
| | - Chongai Wei
- Department of Gastroenterology, 923, Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China
| | - Riqing Wei
- Institute of Biopharmacy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Rongrong Luo
- Department of Gastroenterology, 923, Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China
| | - Ru Li
- Institute of Biopharmacy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qiang Ma
- Institute of Biopharmacy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Yan Geng
- Department of Gastroenterology, 923, Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China.
| |
Collapse
|
4
|
Kamath S, Bryant RV, Costello SP, Day AS, Forbes B, Haifer C, Hold G, Kelly CR, Li A, Pakuwal E, Stringer A, Tucker EC, Wardill HR, Joyce P. Translational strategies for oral delivery of faecal microbiota transplantation. Gut 2025:gutjnl-2025-335077. [PMID: 40301116 DOI: 10.1136/gutjnl-2025-335077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/09/2025] [Indexed: 05/01/2025]
Abstract
Faecal microbiota transplantation (FMT) has emerged as a transformative therapy for Clostridioides difficile infections and shows promise for various GI and systemic diseases. However, the poor patient acceptability and accessibility of 'conventional' FMT, typically administered via colonoscopies or enemas, hinders its widespread clinical adoption, particularly for chronic conditions. Oral administration of FMT (OralFMT) overcomes these limitations, yet faces distinct challenges, including a significant capsule burden, palatability concerns and poor microbial viability during gastric transit. This review provides a comprehensive analysis of emerging strategies that aim to advance OralFMT by: (1) refining processing technologies (eg, lyophilisation) that enable manufacturing of low-volume FMT formulations for reducing capsule burden and (2) developing delivery technologies that improve organoleptic acceptability and safeguard the microbiota for targeted colonic release. These advancements present opportunities for OralFMT to expand its therapeutic scope, beyond C. difficile infections, towards chronic GI conditions requiring frequent dosing regimens. While this review primarily focuses on optimising OralFMT delivery, it is important to contextualise these advancements within the broader shift towards defined microbial consortia. Live biotherapeutic products (LBPs) offer an alternative approach, yet the interplay between OralFMT and LBPs in clinical practice remains unresolved. We postulate that continued innovation in OralFMT and LBPs via a multidisciplinary approach can further increase therapeutic efficacy and scalability by enabling disease site targeting, co-delivery of therapeutic compounds and overcoming colonisation resistance. Realising these goals positions OralFMT as a cornerstone of personalised care across a range of diseases rooted in microbiome health.
Collapse
Affiliation(s)
- Srinivas Kamath
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Robert V Bryant
- Department of Gastroenterology and Hepatology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Samuel P Costello
- Department of Gastroenterology and Hepatology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- The University of Adelaide, Adelaide, South Australia, Australia
| | - Alice S Day
- Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Gastroenterology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | | | - Craig Haifer
- Department of Gastroenterology, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Georgina Hold
- Microbiome Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Colleen R Kelly
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Anna Li
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Evance Pakuwal
- Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrea Stringer
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Emily C Tucker
- Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Infectious Diseases Unit, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Hannah Rose Wardill
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Paul Joyce
- University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Randolph NK, Salerno M, Klein H, Diaz-Campos D, van Balen JC, Winston JA. Preparation of Fecal Microbiota Transplantation Products for Companion Animals. PLoS One 2025; 20:e0319161. [PMID: 40203217 PMCID: PMC11981653 DOI: 10.1371/journal.pone.0319161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/28/2025] [Indexed: 04/11/2025] Open
Abstract
Fecal microbiota transplantation (FMT) is increasingly utilized in small animal medicine for the treatment of a variety of gastrointestinal and non-gastrointestinal disorders. Despite proven clinical efficacy, there is no detailed protocol available for the preparation and storage of FMT products for veterinarians in a variety of clinical settings. Herein, the effect of processing technique on the microbial community structure was assessed with amplicon sequence analysis. Microbial viability was assessed with standard culture techniques using selective media. Given the fastidious nature of many intestinal microbes, colony forming units are considered surrogate viable microbes, representing a portion of potentially viable microbes. FMT products from four screened canine fecal donors and six screened feline fecal donors were processed aerobically according to a double centrifugation protocol adapted from the human medical literature. Fresh feces from an additional three screened canine fecal donors were used to evaluate the effect of cryopreservative, centrifugation, and short-term storage on microbial community structure and in vitro surrogate bacterial viability. Finally, fresh feces from a third group of three screened canine and three screened feline fecal donors were used to evaluate the long-term in vitro surrogate bacterial viability of three frozen and lyophilized FMT products. Microbiota analysis revealed that each canine fecal donor has a unique microbial profile. Processing of canine and feline feces for FMT does not significantly alter the overall microbial community structure. The addition of cryopreservatives and lyopreservatives significantly improved long-term viability, up to 6 months, for frozen and lyophilized FMT products compared to unprocessed raw feces with no cryopreservative. These results prove the practicality of this approach for FMT preparation in veterinary medicine and provide a detailed protocol for researchers and companion animal practitioners. Future in vivo research is needed to evaluate how the preparation and microbial viability of FMT impacts the recipient's microbial community and clinical outcomes across multiple disease phenotypes.
Collapse
Affiliation(s)
- Nina K. Randolph
- Department of Veterinary Clinical Sciences. College of Veterinary Medicine, The Ohio State University. Columbus, Ohio, United States of America
- Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Matthew Salerno
- Department of Veterinary Clinical Sciences. College of Veterinary Medicine, The Ohio State University. Columbus, Ohio, United States of America
- Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Hannah Klein
- Department of Veterinary Clinical Sciences. College of Veterinary Medicine, The Ohio State University. Columbus, Ohio, United States of America
- Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Dubraska Diaz-Campos
- Department of Veterinary Clinical Sciences. College of Veterinary Medicine, The Ohio State University. Columbus, Ohio, United States of America
| | - Joany C. van Balen
- Department of Veterinary Clinical Sciences. College of Veterinary Medicine, The Ohio State University. Columbus, Ohio, United States of America
| | - Jenessa A. Winston
- Department of Veterinary Clinical Sciences. College of Veterinary Medicine, The Ohio State University. Columbus, Ohio, United States of America
- Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
6
|
Sedeek SA, Farowski F, Youssafi S, Tsakmaklis A, Brodesser S, El-Attar MM, Abdelmalek MO, Vehreschild MJGT. In vitro validation concept for lyophilized fecal microbiota products with a focus on bacterial viability. World J Microbiol Biotechnol 2025; 41:83. [PMID: 40011318 PMCID: PMC11865215 DOI: 10.1007/s11274-025-04291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Fecal microbiota transplantation (FMT) effectively treats recurrent Clostridioides difficile infection (rCDI), typically administered as a fresh or frozen stool suspension through colonoscopy, nasojejunal tube, or oral capsules. Lyophilized fecal microbiota (LFM) are an alternative to frozen FM products. We aimed to assess whether lyophilization affects bacterial viability and metabolite levels and to develop LFM capsules for clinical use in Germany. Fecal donations from pre-screened volunteers were aliquoted and analyzed through microbial cell counting, bacterial culture, 16S rRNA gene amplicon sequencing, and bile acid assays. Results showed higher counts of viable bacterial cells and cultured anaerobes in unprocessed stool compared to freshly processed stool (p = 0.012 and p < 0.001, respectively). No significant difference in viable bacterial counts was found between freshly processed (day 0), lyophilized (day 3) and frozen FM (day 3) (p = 0.15), nor between freshly processed (day 0), lyophilized (days 30 and 90) and frozen FM (day 30) (p = 0.07). lyophilization did not significantly impact bile acid and 16S rRNA profiling. Encapsulation of lyophilized powder required fewer capsules (10-14) than frozen capsules (30). LFM products are a practical, viable alternative to frozen and fresh FM products, potentially improving storage and patient acceptance.
Collapse
Affiliation(s)
- Sara A Sedeek
- Department of Internal Medicine II, Infectious Diseases, Goethe University Frankfurt, University Hospital Frankfurt, Frankfurt am Main, Germany
- Department of Tropical Medicine and Gastroenterology, Assiut University, Assiut, Egypt
| | - Fedja Farowski
- Department of Internal Medicine II, Infectious Diseases, Goethe University Frankfurt, University Hospital Frankfurt, Frankfurt am Main, Germany
- Faculty of Medicine, Department I of Internal Medicine, Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Stella Youssafi
- Faculty of Medicine, Department I of Internal Medicine, Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Anastasia Tsakmaklis
- Faculty of Medicine, Department I of Internal Medicine, Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Susanne Brodesser
- Faculty of Medicine, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, University Hospital of Cologne, Cologne, Germany
| | - Madiha M El-Attar
- Department of Tropical Medicine and Gastroenterology, Assiut University, Assiut, Egypt
| | | | - Maria J G T Vehreschild
- Department of Internal Medicine II, Infectious Diseases, Goethe University Frankfurt, University Hospital Frankfurt, Frankfurt am Main, Germany.
- Faculty of Medicine, Department I of Internal Medicine, Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, University Hospital Cologne, Cologne, Germany.
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
7
|
Rågård N, Baumwall SMD, Paaske SE, Hansen MM, Høyer KL, Mikkelsen S, Erikstrup C, Dahlerup JF, Hvas CL. Validation methods for encapsulated faecal microbiota transplantation: a scoping review. Therap Adv Gastroenterol 2025; 18:17562848251314820. [PMID: 39926318 PMCID: PMC11806493 DOI: 10.1177/17562848251314820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025] Open
Abstract
Faecal microbiota transplantation (FMT) is increasingly used for diseases associated with a disrupted intestinal microbiome, mainly Clostridioides difficile infection. Encapsulated FMT is a patient-friendly application method that improves accessibility and convenience. Capsule processing may be standardised, but validation protocols are warranted. This review aimed to describe published validation methods for encapsulated FMT. Original studies reporting using encapsulated faecal formulations were included, regardless of indication. Studies were excluded if they did not address processing and validation or used non-donor-derived content. We conducted a comprehensive scoping review, implementing a systematic search strategy in PubMed, Embase and Web of Science. Processing data and validation methods were registered during full-text analysis and combined to create an overview of approaches for assessing quality in encapsulated FMT processing. The searches identified 324 unique studies, of which 44 were included for data extraction and analysis. We identified eight validation covariables: donor selection, pre-processing, preservation, oxygen-sparing processing, microbial count, viability, engraftment and clinical effect outcomes, from which we constructed a model for quality assessment of encapsulated FMT that exhaustively categorised processing details and validation measures. Our model comprised three domains: (1) Processing (donor selection and processing protocol), (2) Content analysis (microbiota measures and dose measures) and (3) Clinical effect (engraftment and clinical outcomes). No studies presented a reproducible capsule protocol; their validation strategies were sparse and divergent. The validation of FMT capsules is heterogeneous, and processing requires relevant standardisation protocols, mainly focusing on capsule content. Future studies should report validation covariables to enable accurate comparative assessments of clinical effects.
Collapse
Affiliation(s)
- Nina Rågård
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Sara Ellegaard Paaske
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mette Mejlby Hansen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Katrine Lundby Høyer
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Christian Erikstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Frederik Dahlerup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christian Lodberg Hvas
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, DK-8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Bednárik DS, Földvári-Nagy KC, Simon V, Rancz A, Gede N, Veres DS, Paraskevopoulos P, Schnabel T, Erőss B, Hegyi P, Lenti K, Földvári-Nagy L. Comparative effectiveness of different therapies for Clostridioides difficile infection in adults: a systematic review and network meta-analysis of randomized controlled trials. THE LANCET REGIONAL HEALTH. EUROPE 2025; 49:101151. [PMID: 39989875 PMCID: PMC11846439 DOI: 10.1016/j.lanepe.2024.101151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 02/25/2025]
Abstract
Background Clostridioides difficile infection (CDI) is a leading cause of healthcare-associated diarrhea, with substantial morbidity and mortality. CDI is a severe and growing problem with numerous treatment options. We evaluated the effectiveness of all therapies in recurrent and non-recurrent infections and their prevention. Methods This network meta-analysis and systematic review of randomized controlled trials (RCTs) compared all CDI therapies and preventions. We included RCTs published until 19 August 2024 and focused on adult population. We performed a systematic search in MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials. Inclusion criteria were patients: adults (>16) treated against CDI; study type: randomized controlled trial; outcome: cure rate, recurrence or effectiveness of prevention. Any publication not meeting all criteria was considered to be ineligible and excluded. We applied random-effects meta-analysis using frequentist methods. We reported our main results as odds ratios (as a symmetric effect size measure, OR) with 95% confidence interval (95% CI). We used the Cochrane risk-of-bias tool to assess the risk of bias. Our study protocol was preregistered in PROSPERO (CRD42022371210). Findings We assessed 73 RCTs with 28 interventions, involving 27,959 patients (49.2% female) in five networks. Fecal microbiota transplantation (FMT) was the most effective treatment in terms of the cure rate overall (P-score: 0.9952) and in recurrent cases (P-score: 0.9836). In recurrent cases, fidaxomicin (P-score: 0.6734) showed significantly greater effectiveness than vancomycin (P-score: 0.3677) and tolevamer (P-score: 0.0365). For non-recurrent CDI treatments ridinilazole, fidaxomicin, FMT and nitazoxanide were equally effective. Ridinilazole (P-score: 0.7671) and fidaxomicin (P-score: 0.7627) emerged as the most effective in preventing recurrence. Probiotics were not effective in preventing CDI, since network meta-analyses did not show significant differences between probiotics and placebo. In probiotics' subgroups pairwise meta-analyses Lactobacillaceae proved to be significantly more effective in prevention than placebo. Oral and colonoscopic FMT administration methods were equally effective. The study-level aggregated risk of bias of the publications included ranged from low to high. We observed relevant heterogeneity among studies in therapeutic doses, treatment durations, and follow-up times. Interpretation The superiority of FMT in the treatment of CDI highlights the potential for increased use of FMT in clinical settings. Further research on optimizing FMT protocols and exploring its long-term safety and efficacy in larger samples is needed. Our findings suggest that the preventive use of probiotics might be questioned. Funding None.
Collapse
Affiliation(s)
- Dániel Steve Bednárik
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Heim Pál National Pediatric Institute, Budapest, Hungary
| | - Kincső Csepke Földvári-Nagy
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Viktor Simon
- Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Anett Rancz
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Noémi Gede
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Dániel Sándor Veres
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | | | - Tamás Schnabel
- Department of Gastroenterology, Skien Hospital, Telemark Hospital Trust, Skien, Norway
| | - Bálint Erőss
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Katalin Lenti
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - László Földvári-Nagy
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
Vinterberg JE, Oddsdottir J, Nye M, Pinton P. Management of Recurrent Clostridioides difficile Infection (rCDI): A Systematic Literature Review to Assess the Feasibility of Indirect Treatment Comparison (ITC). Infect Dis Ther 2025; 14:327-355. [PMID: 39821840 PMCID: PMC11829878 DOI: 10.1007/s40121-024-01105-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025] Open
Abstract
Recurrent Clostridioides difficile infection (rCDI) is a major cause of increased morbidity, mortality, and healthcare costs. Fecal-microbiota-based therapies are recommended for rCDI on completion of standard-of-care (SoC) antibiotics to prevent further recurrence: these therapies include conventional fecal-microbiota transplantation and the US Food and Drug Administration-approved therapies REBYOTA® (RBL) and VOWST Oral Spores™ (VOS). As an alternative to microbiota-based therapies, bezlotoxumab, a monoclonal antibody, is used as adjuvant to SoC antibiotics to prevent rCDI. There are no head-to-head clinical trials comparing different microbiota-based therapies or bezlotoxumab for rCDI. To address this gap, we conducted a systematic literature review to identify clinical trials on rCDI treatments and assess the feasibility of using them to conduct an indirect treatment comparison (ITC). The feasibility analysis determined that trial heterogeneity, particularly relating to inclusion criteria, may significantly compromise ITC and prevent cross-trial comparisons. Our analysis underlines the need to adopt standardized protocols to ensure comparability across trials.
Collapse
Affiliation(s)
| | | | - Maria Nye
- EMEA RW Methods and Evidence Generation, IQVIA, Athens, Greece
| | - Philippe Pinton
- Global Research and Medical, Ferring Pharmaceuticals, Kastrup, Denmark.
- Global Research and Medical, International PharmaScience Center, Ferring Pharmaceuticals A/S, Amager Strandvej 405, 2770, Kastrup, Denmark.
| |
Collapse
|
10
|
Vázquez-Cuesta S, Olmedo M, Kestler M, Álvarez-Uría A, De la Villa S, Alcalá L, Marín M, Rodríguez-Fernández S, Sánchez-Martínez C, Muñoz P, Bouza E, Reigadas E. Prospective analysis of biomarkers associated with successful faecal microbiota transplantation in recurrent Clostridioides difficile infection. Clin Microbiol Infect 2025:S1198-743X(25)00034-5. [PMID: 39870349 DOI: 10.1016/j.cmi.2025.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
OBJECTIVES Faecal microbiota transplantation (FMT) is an established treatment for recurrent Clostridioides difficile infection (CDI). This study aimed to identify calprotectin and microbiome characteristics as potential biomarkers of FMT success. METHODS We conducted a prospective study of patients who underwent oral FMT (single dose of 4-5 capsules) for recurrent CDI (January 2018 to December 2022). Samples were collected at three time points: at CDI diagnosis, within 24 hours before FMT administration, and 30 days post-FMT. Calprotectin levels were assessed and the V4 region of the 16S rRNA gene was sequenced to analyse the microbiota composition. Sequencing data analysis and statistical analysis were performed using MOTHUR and R. RESULTS Ninety-seven patients underwent FMT (totalling 105 procedures). A total of 221 samples were processed, including 21 donor samples, 24 capsule contents, and 176 patient faecal samples (39 at diagnosis, 63 pre-FMT, and 74 post-FMT). FMT achieved an overall success rate of 85.1% (86/101 cases). The abundance of Bacteroides, Ruminococcus, Megamonas, and certain Prevotella operational taxonomic units was significantly higher in capsules associated with 100% success compared with less effective capsules. FMT engraftment was observed in 95% of patients with favourable outcomes versus 62% of those with recurrences (p 0.006). Additionally, a negative correlation was found between calprotectin levels and specific microbial genera, suggesting an association with successful outcomes. DISCUSSION This study highlights differences in the evolution of faecal microbiota, bacterial engraftment, and inflammation markers (e.g. calprotectin) between patients with varying FMT outcomes. Potential biomarkers for successful FMT were identified, providing valuable insights for optimizing FMT strategies.
Collapse
Affiliation(s)
- Silvia Vázquez-Cuesta
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Biochemistry and Molecular Biology Department, School of Biology, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - María Olmedo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Martha Kestler
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Ana Álvarez-Uría
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Sofía De la Villa
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Luis Alcalá
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Centro de investigación biomédica en red de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Mercedes Marín
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain; Centro de investigación biomédica en red de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Sara Rodríguez-Fernández
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Celia Sánchez-Martínez
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain; Centro de investigación biomédica en red de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain; Centro de investigación biomédica en red de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Elena Reigadas
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain.
| |
Collapse
|
11
|
Augustijn QJJ, Grefhorst A, de Groen P, Wortelboer K, Seegers JFM, Gül IS, Suenaert P, Verheij J, de Vos WM, Herrema H, Nieuwdorp M, Holleboom AG. Randomised double-blind placebo-controlled trial protocol to evaluate the therapeutic efficacy of lyophilised faecal microbiota capsules amended with next-generation beneficial bacteria in individuals with metabolic dysfunction-associated steatohepatitis. BMJ Open 2025; 15:e088290. [PMID: 39788762 PMCID: PMC11784342 DOI: 10.1136/bmjopen-2024-088290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND The spectrum of metabolic dysfunction-associated steatotic liver disease (MASLD) is highly prevalent, affecting 30% of the world's population, with a significant risk of hepatic and cardiometabolic complications. Different stages of MASLD are accompanied by distinct gut microbial profiles, and several microbial components have been implicated in MASLD pathophysiology. Indeed, earlier studies demonstrated that hepatic necroinflammation was reduced in individuals with MASLD after allogenic faecal microbiota transplantation (FMT) from healthy donors on a vegan diet. Here, we further investigate the therapeutic potential of gut microbiome modulation using a syntrophic combination of next-generation beneficial bacteria with FMT in individuals with advanced MASLD. METHODS AND ANALYSIS This trial is a randomised, double-blind, placebo-controlled study investigating the therapeutic potential of lyophilised faecal microbiota capsules (LFMCs) in individuals with metabolic dysfunction-associated steatohepatitis. In this study, 48 participants will be randomised 1:1 to receive either healthy vegan donor LFMCs or placebo for 24 weeks. In addition, all participants will be supplemented with a set of next-generation beneficial bacteria, including Anaerobutyricum soehngenii, pasteurised Akkermansia muciniphila and Bifidobacterium animalis subsp. lactis, as well as fructo-oligosaccharides. A liver biopsy will be performed at baseline and at the end of the trial. In addition, participants will be assessed through MRI, FibroScan, blood tests, faecal samples and continuous glucose monitoring. The first participant was enrolled on 25 April 2023. ETHICS AND DISSEMINATION Ethical approval was obtained from the Medical Ethics Committee of the University Medical Centre of Amsterdam. The results of this study will be disseminated through peer-reviewed journals. TRIAL REGISTRATION NUMBER The trial is registered on clinicaltrials.gov (NCT05821010).
Collapse
Affiliation(s)
- Quinten J J Augustijn
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, Netherlands
- University of Amsterdam, Amsterdam, Netherlands
| | - Aldo Grefhorst
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, Netherlands
- University of Amsterdam, Amsterdam, Netherlands
| | - Pleun de Groen
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, Netherlands
- University of Amsterdam, Amsterdam, Netherlands
| | - Koen Wortelboer
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, Netherlands
- University of Amsterdam, Amsterdam, Netherlands
| | | | | | | | | | | | - Hilde Herrema
- Amsterdam University Medical Centres, Amsterdam, Netherlands
| | - Max Nieuwdorp
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Academisch Medisch Centrum, Amsterdam, Netherlands
| | | |
Collapse
|
12
|
Liu YH, Chen J, Chen X, Liu H. Factors of faecal microbiota transplantation applied to cancer management. J Drug Target 2024; 32:101-114. [PMID: 38174845 DOI: 10.1080/1061186x.2023.2299724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 01/05/2024]
Abstract
The homeostasis of the microbiota is essential for human health. In particular, the gut microbiota plays a critical role in the regulation of the immune system. Thus, faecal microbiota transplantation (FMT), a technology that has rapidly developed in the last decade, has specifically been utilised for the treatment of intestinal inflammation and has recently been found to be able to treat tumours in combination with immunotherapy. FMT has become a breakthrough in enhancing the response rate to immunotherapy in cancer patients by altering the composition of the patient's gut microbiota. This review discusses the mechanisms of faecal microorganism effects on tumour development, drug treatment efficacy, and adverse effects and describes the recent clinical research trials on FMT. Moreover, the factors influencing the efficacy and safety of FMT are described. We summarise the possibilities of faecal transplantation in the treatment of tumours and its complications and propose directions to explore the development of FMT.
Collapse
Affiliation(s)
- Yi-Huang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Lee JY, Kim Y, Kim J, Kim JK. Fecal Microbiota Transplantation: Indications, Methods, and Challenges. J Microbiol 2024; 62:1057-1074. [PMID: 39557804 DOI: 10.1007/s12275-024-00184-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/25/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024]
Abstract
Over the past two decades, as the importance of gut microbiota to human health has become widely known, attempts have been made to treat diseases by correcting dysbiosis of gut microbiota through fecal microbiota transplantation (FMT). Apart from current knowledge of gut microbiota, FMT to treat disease has a long history, from the treatment of food poisoning in the fourth century to the treatment of Clostridioides difficile infections in the twentieth century. In 2013, FMT was recognized as a standard treatment for recurrent C. difficile because it consistently showed high efficacy. Though recurrent C. difficile is the only disease internationally recognized for FMT efficacy, FMT has been tested for other diseases and shown some promising preliminary results. Different FMT methods have been developed using various formulations and administration routes. Despite advances in FMT, some issues remain to be resolved, such as donor screening, manufacturing protocols, and unknown components in the fecal microbiota. In this review, we discuss the mechanisms, clinical indications, methods, and challenges of current FMT. We also discuss the development of alternative therapies to overcome the challenges of FMT.
Collapse
Affiliation(s)
- Jee Young Lee
- Department of Microbiology, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Yehwon Kim
- Department of Medicine, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Jiyoun Kim
- Department of Medicine, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Jiyeun Kate Kim
- Department of Microbiology, Kosin University College of Medicine, Busan, 49267, Republic of Korea.
| |
Collapse
|
14
|
Islam J, Ohtani N, Shimizu Y, Tanimizu M, Goto Y, Sato M, Makino E, Shimada T, Ueda C, Matsuo A, Suyama Y, Sakai Y, Karrow NA, Yoneyama H, Hirakawa R, Furukawa M, Tanaka H, Nochi T. Freeze-dried fecal microorganisms as an effective biomaterial for the treatment of calves suffering from diarrhea. Sci Rep 2024; 14:28078. [PMID: 39543390 PMCID: PMC11564888 DOI: 10.1038/s41598-024-79267-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
Fecal microbiota transplantation (FMT) is a therapeutic modality for treating neonatal calf diarrhea. Several practical barriers, including donor selection, fecal collection, and a limited timeframe for FMT, are the main constraints to using fresh feces for implementing on-farm FMT. We report the utility of FMT with pretreated ready-to-use frozen (F) or freeze-dried (FD) microorganisms for treating calf diarrhea. In total, 19 FMT (F-FMT, n = 10 and FD-FMT, n = 9) treatments were conducted. Both FMT treatments were 100% clinically effective; however, multi-omics analysis showed that FD-FMT was superior to F-FMT. Machine learning analysis with SourceTracker confirmed that donor microbiota was retained four times better in the recipient calves treated with FD-FMT than F-FMT. A predictive model based on receiver operating characteristic curve analysis and area under the curve showed that FD-FMT was more discriminative than F-FMT of the observed changes in microbiota and metabolites during disease recovery. These results provide new insights into establishing methods for preparing fecal microorganisms to increase the quality of FMT in animals and may contribute to FMT in humans.
Collapse
Affiliation(s)
- Jahidul Islam
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan
- Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
- Laboratory of Animal Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Natsuki Ohtani
- Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
- Laboratory of Animal Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
- Chiba Prefectural Federation of Agricultural Mutual Aid Association, Chiba, 299-0126, Japan
| | - Yu Shimizu
- Chiba Prefectural Federation of Agricultural Mutual Aid Association, Chiba, 299-0126, Japan
| | - Masae Tanimizu
- Chiba Prefectural Federation of Agricultural Mutual Aid Association, Chiba, 299-0126, Japan
| | - Yoshiaki Goto
- Chiba Prefectural Federation of Agricultural Mutual Aid Association, Chiba, 299-0126, Japan
| | - Masumi Sato
- Chiba Prefectural Federation of Agricultural Mutual Aid Association, Chiba, 299-0126, Japan
| | - Eiji Makino
- Chiba Prefectural Federation of Agricultural Mutual Aid Association, Chiba, 299-0126, Japan
| | - Toru Shimada
- Chiba Prefectural Federation of Agricultural Mutual Aid Association, Chiba, 299-0126, Japan
| | - Chise Ueda
- Chiba Prefectural Federation of Agricultural Mutual Aid Association, Chiba, 299-0126, Japan
| | - Ayumi Matsuo
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan
| | - Yoshihisa Suyama
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan
| | - Yoshifumi Sakai
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan
| | - Niel A Karrow
- Ontario Agricultural College, University of Guelph, Ontario, N1G 2W1, Canada
| | - Hiroshi Yoneyama
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan
| | - Ryota Hirakawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan
- Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
- Laboratory of Animal Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Mutsumi Furukawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan
- Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
- Laboratory of Animal Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Hidekazu Tanaka
- Chiba Prefectural Federation of Agricultural Mutual Aid Association, Chiba, 299-0126, Japan.
- West Veterinary Clinical Center, Chiba Prefectural Federation of Agricultural Mutual Aid Association, 2-5-12 Midorigaoka, Yachiyo, Chiba, 276-0049, Japan.
| | - Tomonori Nochi
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan.
- Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan.
- Laboratory of Animal Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan.
- Ontario Agricultural College, University of Guelph, Ontario, N1G 2W1, Canada.
- Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
- Center for Professional Development, Institute for Excellence in Higher Education, Tohoku University, Miyagi, 980-8576, Japan.
| |
Collapse
|
15
|
Jochumsen EA, Kragsnaes MS, Nilsson AC, Rasmussen KF, Ellingsen T, Juul MA, Kjeldsen J, Holm DK. 'Does this fecal microbiota transplant work?' Quality assurance of capsule based fecal microbiota transplant production. Scand J Gastroenterol 2024; 59:1234-1239. [PMID: 39350740 DOI: 10.1080/00365521.2024.2401460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Fecal Microbiota Transplant (FMT) is an effective treatment for recurring Clostridioides Difficile Infections (rCDI). FMT administered via oral capsules (caFMT) offers several practical advantages to conventional liquid FMT. We began using caFMT in 2021 imported from an external institution. Based on similar production methods, we began our own caFMT production in 2022. We aimed to evaluate the quality of our caFMT. STUDY DESIGN AND METHODS We created a database of all FMT treatments (n = 180) provided by our institution. Quality of all FMT was evaluated by treatment success rates. We compared our caFMT to the imported caFMT. RESULTS Our caFMT yielded similar success rates compared to that of the imported caFMT, 65% (CI 95% 58-72%) and 72% (CI 95% 66-79%) respectively. FMT administered via colonoscopy had a significantly higher success rate, 79% (CI 95% 73-85%) than own our caFMT and other routes of administration. The combined success rate of treatments increased notably for all routes of administration when repeating FMT after prior failure. DISCUSSION The fact that our caFMT compared similarly to the imported caFMT was viewed as a success in terms of quality assurance. Our caFMT had a slightly lower success rates compared to data from other studies, but could be affected by several other factors than our FMT-production methods. A lower success rate of caFMT compared to FMT via colonoscopy is acceptable due to the practical advantages offed by caFMT. Our study serves as a practical example, proving that of the standardization of caFMT production is indeed viable.
Collapse
Affiliation(s)
| | | | | | | | - Torkell Ellingsen
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - Mie Agerbaek Juul
- Department of Gastroenterology, Hospital South West Jutland, Esbjerg, Denmark
| | - Jens Kjeldsen
- Department of Gastroenterology, Odense University Hospital, Odense, Denmark
| | | |
Collapse
|
16
|
Campagnoli LIM, Marchesi N, Varesi A, Morozzi M, Mascione L, Ricevuti G, Esposito C, Galeotti N, Pascale A. New therapeutic avenues in multiple sclerosis: Is there a place for gut microbiota-based treatments? Pharmacol Res 2024; 209:107456. [PMID: 39389400 DOI: 10.1016/j.phrs.2024.107456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The bidirectional interaction between the gut and the central nervous system (CNS), the so-called gut microbiota-brain axis, is reported to influence brain functions, thus having a potential impact on the development or the progression of several neurodegenerative disorders. Within this context, it has been documented that multiple sclerosis (MS), an autoimmune inflammatory, demyelinating, and neurodegenerative disease of the CNS, is associated with gastrointestinal symptoms, including constipation, dysphagia, and faecal incontinence. Moreover, some evidence suggests the existence of an altered gut microbiota (GM) composition in MS patients with respect to healthy individuals, as well as the potential influence of GM dysbiosis on typical MS features, including increased intestinal permeability, disruption of blood-brain barrier integrity, chronic inflammation, and altered T cells differentiation. Starting from these assumptions, the possible involvement of GM alteration in MS pathogenesis seems likely, and its restoration could represent a supplemental beneficial strategy against this disabling disease. In this regard, the present review will explore possible preventive approaches (including several dietary interventions, the administration of probiotics, prebiotics, synbiotics, and postbiotics, and the use of faecal microbiota transplantation) to be pursued as prophylaxis or in combination with pharmacological treatments with the aim of re-establishing a proper GM, thus helping to prevent the development of this disease or to manage it by alleviating symptoms or slowing down its progression.
Collapse
Affiliation(s)
| | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| | - Angelica Varesi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Martina Morozzi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Linda Mascione
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
17
|
Duo H, Yang Y, Zhang G, Chen Y, Cao Y, Luo L, Pan H, Ye Q. Comparative effectiveness of treatments for recurrent Clostridioides difficile infection: a network meta-analysis of randomized controlled trials. Front Pharmacol 2024; 15:1430724. [PMID: 39484168 PMCID: PMC11525118 DOI: 10.3389/fphar.2024.1430724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Background Clostridioides difficile infection (CDI) is the most common cause of healthcare-associated infectious diarrhea. A major clinical challenge is recurrent CDI (rCDI) without effective standard drug-based therapy. Additionally, a comprehensive comparison of various therapy effectiveness in rCDI patients is still under investigation. Methods A Bayesian network meta-analysis (NMA) of randomized control trials up to March 2024 was performed to investigate the efficacy of rCDI interventions. Results Seventeen trials were included, comprising 4,148 CDI patients with ten interventions, including fecal microbiota transplantation (FMT) by lower gastrointestinal (LGI), FMT by upper gastrointestinal (UGI), Autologous FMT (AFMT), vancomycin + FMT, vancomycin, placebo, fidaxomicin, Vowst (SER109), Rebyota (RBX2660), and monoclonal antibody. NMA showed that FMT by LGI had the highest efficacy in treating rCDIs with an odds ratio (95% confidence interval) of 32.33 (4.03, 248.69) compared with placebo. FMT by UGI also showed high efficacy, whereas the efficacy comparison between FMT by LGI and UGI was not statistically significant (ORs) (95% CI), 1.72 (0.65, 5.21). The rankogram and surface under the cumulative ranking curve (SUCRA) also showed FMT by LGI ranked at the top and FMT by UGI ranked second in the curative effect. Conclusion NMA demonstrates FMT's significant efficacy in rCDI management, regardless of administration route (lower or upper gastrointestinal). Despite its significant benefits, FMT's safety is a concern due to the lack of standardized FDAcompliant manufacturing and oversight. Microbiota-based therapies also exhibit potential. However, limited research mandates further clinical exploration. Antibiotics, in contrast, display comparatively reduced efficacy in rCDI, potentially linked to disruptions in native gut microflora balance. Systematic Review https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=368435, Identifier CRD42022368435.
Collapse
Affiliation(s)
- Hong Duo
- Hubei Key Laboratory of Medical Technology on Transplantation, National Quality Control Center for Donated Organ Procurement, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, Hubei, China
| | - Yanwei Yang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Guqing Zhang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingxin Chen
- Global Health Institute, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yumeng Cao
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linjie Luo
- Department of Experimental Radiation Oncology and Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Huaqin Pan
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplantation Intensive Care Unit, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Qifa Ye
- Hubei Key Laboratory of Medical Technology on Transplantation, National Quality Control Center for Donated Organ Procurement, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
18
|
Prosty C, Katergi K, Papenburg J, Lawandi A, Lee TC, Shi H, Burnham P, Swem L, Routy B, Yansouni CP, Cheng MP. Causal role of the gut microbiome in certain human diseases: a narrative review. EGASTROENTEROLOGY 2024; 2:e100086. [PMID: 39944364 PMCID: PMC11770457 DOI: 10.1136/egastro-2024-100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/16/2024] [Indexed: 03/19/2025]
Abstract
Composed of an elaborate ecosystem of bacteria, fungi, viruses and protozoa residing in the human digestive tract, the gut microbiome influences metabolism, immune modulation, bile acid homeostasis and host defence. Through observational and preclinical data, the gut microbiome has been implicated in the pathogenesis of a spectrum of chronic diseases ranging from psychiatric to gastrointestinal in nature. Until recently, the lack of unequivocal evidence supporting a causal link between gut microbiome and human health outcomes incited controversy regarding its significance. However, recent randomised controlled trial (RCT) evidence in conditions, such as Clostridioides difficile infection, cancer immunotherapy and ulcerative colitis, has supported a causal relationship and has underscored the potential of the microbiome as a therapeutic target. This review delineates the RCT evidence substantiating the potential for a causal relationship between the gut microbiome and human health outcomes, the seminal observational evidence that preceded these RCTs and the remaining knowledge gaps.
Collapse
Affiliation(s)
- Connor Prosty
- Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Khaled Katergi
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jesse Papenburg
- Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Alexander Lawandi
- Division of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Todd C Lee
- Division of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Hao Shi
- Kanvas Biosciences, Princeton, New Jersey, USA
| | | | - Lee Swem
- Kanvas Biosciences, Princeton, New Jersey, USA
| | - Bertrand Routy
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Universite de Montreal, Montreal, Quebec, Canada
| | - Cedric P Yansouni
- Division of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
- JD MacLean Centre for Tropical Diseases, McGill University, Montreal, Quebec, Canada
| | - Matthew P Cheng
- Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Division of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
- Kanvas Biosciences, Princeton, New Jersey, USA
| |
Collapse
|
19
|
Fuhri Snethlage CM, de Wit D, Wortelboer K, Rampanelli E, Hanssen NMJ, Nieuwdorp M. Can fecal microbiota transplantations modulate autoimmune responses in type 1 diabetes? Immunol Rev 2024; 325:46-63. [PMID: 38752578 DOI: 10.1111/imr.13345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease targeting insulin-producing pancreatic beta cells. T1D is a multifactorial disease incorporating genetic and environmental factors. In recent years, the advances in high-throughput sequencing have allowed researchers to elucidate the changes in the gut microbiota taxonomy and functional capacity that accompany T1D development. An increasing number of studies have shown a role of the gut microbiota in mediating immune responses in health and disease, including autoimmunity. Fecal microbiota transplantations (FMT) have been largely used in murine models to prove a causal role of the gut microbiome in disease progression and have been shown to be a safe and effective treatment in inflammatory human diseases. In this review, we summarize and discuss recent research regarding the gut microbiota-host interactions in T1D, the current advancement in therapies for T1D, and the usefulness of FMT studies to explore microbiota-host immunity encounters in murine models and to shape the course of human type 1 diabetes.
Collapse
Affiliation(s)
- Coco M Fuhri Snethlage
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Douwe de Wit
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Koen Wortelboer
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Elena Rampanelli
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| | - Nordin M J Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Zaidi SMH, Haider R, Kazmi SAB, Husnain A, Khan S, Merchant S, Tayyab H, Wazeen FR, Chaudhary AJ. Beyond Antibiotics: Novel Approaches in the Treatment of Recurrent Clostridioides difficile Infection. ACG Case Rep J 2024; 11:e01333. [PMID: 39081300 PMCID: PMC11286250 DOI: 10.14309/crj.0000000000001333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/06/2024] [Indexed: 08/02/2024] Open
Affiliation(s)
| | - Ramsha Haider
- Karachi Medical and Dental College, Karachi, Pakistan
| | | | - Ali Husnain
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Saniah Khan
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | | | - Hamnah Tayyab
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Fazl Rahim Wazeen
- Department of Medicine, Greater Baltimore Medical Center, Towson, MD
| | | |
Collapse
|
21
|
Mullish BH, Merrick B, Quraishi MN, Bak A, Green CA, Moore DJ, Porter RJ, Elumogo NT, Segal JP, Sharma N, Marsh B, Kontkowski G, Manzoor SE, Hart AL, Settle C, Keller JJ, Hawkey P, Iqbal TH, Goldenberg SD, Williams HRT. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridioides difficile infection and other potential indications: second edition of joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. Gut 2024; 73:1052-1075. [PMID: 38609165 DOI: 10.1136/gutjnl-2023-331550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/03/2024] [Indexed: 04/14/2024]
Abstract
The first British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS)-endorsed faecal microbiota transplant (FMT) guidelines were published in 2018. Over the past 5 years, there has been considerable growth in the evidence base (including publication of outcomes from large national FMT registries), necessitating an updated critical review of the literature and a second edition of the BSG/HIS FMT guidelines. These have been produced in accordance with National Institute for Health and Care Excellence-accredited methodology, thus have particular relevance for UK-based clinicians, but are intended to be of pertinence internationally. This second edition of the guidelines have been divided into recommendations, good practice points and recommendations against certain practices. With respect to FMT for Clostridioides difficile infection (CDI), key focus areas centred around timing of administration, increasing clinical experience of encapsulated FMT preparations and optimising donor screening. The latter topic is of particular relevance given the COVID-19 pandemic, and cases of patient morbidity and mortality resulting from FMT-related pathogen transmission. The guidelines also considered emergent literature on the use of FMT in non-CDI settings (including both gastrointestinal and non-gastrointestinal indications), reviewing relevant randomised controlled trials. Recommendations are provided regarding special areas (including compassionate FMT use), and considerations regarding the evolving landscape of FMT and microbiome therapeutics.
Collapse
Affiliation(s)
- Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Mohammed Nabil Quraishi
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - Aggie Bak
- Healthcare Infection Society, London, UK
| | - Christopher A Green
- Department of Infectious Diseases & Tropical Medicine, University Hospitals NHS Foundation Trust, Birmingham Heartlands Hospital, Birmingham, UK
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - David J Moore
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Robert J Porter
- Department of Microbiology, Royal Devon and Exeter Hospitals, Barrack Road, UK
| | - Ngozi T Elumogo
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norfolk and Norwich University Hospital, Norwich, UK
| | - Jonathan P Segal
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Naveen Sharma
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - Belinda Marsh
- Lay representative for FMT Working Party, Healthcare Infection Society, London, UK
| | - Graziella Kontkowski
- Lay representative for FMT Working Party, Healthcare Infection Society, London, UK
- C.diff support, London, UK
| | - Susan E Manzoor
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
| | - Ailsa L Hart
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Department of Gastroenterology and Inflammatory Bowel Disease Unit, St Mark's Hospital and Academic Institute, Middlesex, UK
| | | | - Josbert J Keller
- Department of Gastroenterology, Haaglanden Medisch Centrum, The Hague, The Netherlands
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Hawkey
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Public Health Laboratory, Faculty of Medicine, University of Birmingham, Birmingham, UK
| | - Tariq H Iqbal
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - Simon D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Horace R T Williams
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
22
|
Pacuta I, Gancarcikova S, Lauko S, Hajduckova V, Janicko M, Demeckova V, Rynikova M, Adamkova P, Mudronova D, Ambro L, Fialkovicova M, Nemetova D, Bertkova I. Evaluation of the Suitability of Selecting a Faecal Microbiota Transplant: Bacterial Composition and Subsequent Long-Term Monitoring of the Viability of Its Frozen and Lyophilised Forms. APPLIED SCIENCES 2024; 14:4856. [DOI: 10.3390/app14114856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Objectives: The aim of this study was to confirm the effectiveness of FMT on the basis of optimum composition of the faecal microbiota of the donor for support therapy in patients with ulcerative colitis, and to observe the viability of the microbiota in frozen and lyophilised administration forms of FMT under various storage conditions. Methods: The bacterial microbiota composition of the FMT samples was assessed using amplicon sequencing via next-generation sequencing (NGS) technology, conducted on the Illumina MiSeq platform. The BD FACS Canto flow cytometer was used to analyse the metabolic activity of FMT samples. Results: FMT analysis confirmed the presence of key butyrate-producing organisms, specifically highlighting species such as Bifidobacterium adolescentis, Faecalibacterium prausnitzi, Coprococcus catus, Eubacterium rectale, alongside contributions from genera Roseburia and Blautia. These organisms play a crucial role in maintaining intestinal health in humans. The viable microorganism counts were significantly higher (p < 0.001) in the frozen form of FMT (−70 °C) in comparison to lyophilised forms (−70 °C, 4 °C and 20 °C) throughout the storage period. Conclusion: The conducted NGS analyses allowed us to confirm the suitability of our FMT donor as a potential candidate for the target group of patients diagnosed with ulcerative colitis. From the point of view of optimum utilisation of FMT at its highest metabolic activity for the purpose of transplantation, its storage for a maximum of 2 months under specified conditions was confirmed as the most suitable for the frozen and all lyophilised FMT forms.
Collapse
Affiliation(s)
- Ivan Pacuta
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Sona Gancarcikova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Stanislav Lauko
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Vanda Hajduckova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Martin Janicko
- 2nd Department of Internal Medicine, Faculty of Medicine, Pavol Jozef Safarik University and Louis Pasteur University Hospital in Kosice, 040 11 Kosice, Slovakia
| | - Vlasta Demeckova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia
| | - Maria Rynikova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia
| | - Petra Adamkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia
| | - Dagmar Mudronova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Lubos Ambro
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia
| | - Maria Fialkovicova
- Small Animal Clinic, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Daniela Nemetova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Izabela Bertkova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia
| |
Collapse
|
23
|
Mullish BH, Merrick B, Quraishi MN, Bak A, Green CA, Moore DJ, Porter RJ, Elumogo NT, Segal JP, Sharma N, Marsh B, Kontkowski G, Manzoor SE, Hart AL, Settle C, Keller JJ, Hawkey P, Iqbal TH, Goldenberg SD, Williams HRT. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridioides difficile infection and other potential indications: second edition of joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. J Hosp Infect 2024; 148:189-219. [PMID: 38609760 DOI: 10.1016/j.jhin.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
The first British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS)-endorsed faecal microbiota transplant (FMT) guidelines were published in 2018. Over the past 5 years, there has been considerable growth in the evidence base (including publication of outcomes from large national FMT registries), necessitating an updated critical review of the literature and a second edition of the BSG/HIS FMT guidelines. These have been produced in accordance with National Institute for Health and Care Excellence-accredited methodology, thus have particular relevance for UK-based clinicians, but are intended to be of pertinence internationally. This second edition of the guidelines have been divided into recommendations, good practice points and recommendations against certain practices. With respect to FMT for Clostridioides difficile infection (CDI), key focus areas centred around timing of administration, increasing clinical experience of encapsulated FMT preparations and optimising donor screening. The latter topic is of particular relevance given the COVID-19 pandemic, and cases of patient morbidity and mortality resulting from FMT-related pathogen transmission. The guidelines also considered emergent literature on the use of FMT in non-CDI settings (including both gastrointestinal and non-gastrointestinal indications), reviewing relevant randomised controlled trials. Recommendations are provided regarding special areas (including compassionate FMT use), and considerations regarding the evolving landscape of FMT and microbiome therapeutics.
Collapse
Affiliation(s)
- B H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK; Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - B Merrick
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - M N Quraishi
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - A Bak
- Healthcare Infection Society, London, UK
| | - C A Green
- Department of Infectious Diseases & Tropical Medicine, University Hospitals NHS Foundation Trust, Birmingham Heartlands Hospital, Birmingham, UK; School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - D J Moore
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - R J Porter
- Department of Microbiology, Royal Devon and Exeter Hospitals, Barrack Road, UK
| | - N T Elumogo
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Norfolk and Norwich University Hospital, Norwich, UK
| | - J P Segal
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - N Sharma
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - B Marsh
- Lay Representative for FMT Working Party, Healthcare Infection Society, London, UK
| | - G Kontkowski
- Lay Representative for FMT Working Party, Healthcare Infection Society, London, UK; C.diff support, London, UK
| | - S E Manzoor
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
| | - A L Hart
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK; Department of Gastroenterology and Inflammatory Bowel Disease Unit, St Mark's Hospital and Academic Institute, Middlesex, UK
| | - C Settle
- South Tyneside and Sunderland NHS Foundation Trust, South Shields, UK
| | - J J Keller
- Department of Gastroenterology, Haaglanden Medisch Centrum, The Hague, The Netherlands; Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - P Hawkey
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK; Public Health Laboratory, Faculty of Medicine, University of Birmingham, Birmingham, UK
| | - T H Iqbal
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - S D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK.
| | - H R T Williams
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK; Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
24
|
DuPont HL, DuPont AW, Tillotson GS. Microbiota restoration therapies for recurrent Clostridioides difficile infection reach an important new milestone. Therap Adv Gastroenterol 2024; 17:17562848241253089. [PMID: 38800353 PMCID: PMC11119484 DOI: 10.1177/17562848241253089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Microbiota restoration therapy has become a standard treatment for recurrent Clostridioides difficile infection (rCDI). In this article, we review the studies supporting the licensure of two live biotherapeutic products (LBPs) designed to prevent rCDI and to provide clinicians with a perspective on their differences. PubMed was reviewed on 1 October 2023, for all papers published concerning the current Food and Drug Administration allowance of the use of fecal microbiota transplantation (FMT) and the studies that led to the licensure of RBX2660 (REBYOTA™), generic name, fecal microbiota, live-jslm, and SER-109 (VOWST™), generic name, fecal microbiota spores, live-brpk. OpenBiome continues to produce fecal products for patients with rCDI at their treatment sites, and the American Gastroenterology Association has a National Registry focused on long-term safety of administering fecal microbiota products. The science behind the licensing of fecal microbiota, live-jslm, a consortium of fecal anaerobes found in stool augmented with strains of Bacteroidetes and fecal microbiota spores, live-brpk, a mixture of 50 species of purified Firmicutes spores is reviewed. Both products appear to be safe in clinical trials and effective in reducing rCDI episodes by mechanisms established for FMT, including normalization of α- and β-diversity of the microbiome and by increasing fecal secondary bile acids. The different makeup of the two LBPs suggests that rCDI responds to a variety of engrafting microbiota which explains why nearly all donors in FMT of rCDI are generally effective. Fecal microbiota, live-jslm has also been shown to successfully treat rCDI in elderly patients with advanced comorbidities. With the licensure of two novel LBPs, we are entering a new phase of microbiota replacement therapy. Having standardized manufacturing and proper monitoring of products, harnessing the microbiome to control and prevent disease has a new beginning.
Collapse
Affiliation(s)
- Herbert L. DuPont
- Infectious Diseases and Epidemiology, Department of Epidemiology, University of Texas School of Public Health, 1200 Pressler Street, Houston, TX 77030, USA
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Kelsey Research Foundation, Houston, TX, USA
| | - Andrew W. DuPont
- Division of Gastroenterology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | |
Collapse
|
25
|
Wang Y, Hunt A, Danziger L, Drwiega EN. A Comparison of Currently Available and Investigational Fecal Microbiota Transplant Products for Recurrent Clostridioides difficile Infection. Antibiotics (Basel) 2024; 13:436. [PMID: 38786164 PMCID: PMC11117328 DOI: 10.3390/antibiotics13050436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Clostridioides difficile infection (CDI) is an intestinal infection that causes morbidity and mortality and places significant burden and cost on the healthcare system, especially in recurrent cases. Antibiotic overuse is well recognized as the leading cause of CDI in high-risk patients, and studies have demonstrated that even short-term antibiotic exposure can cause a large and persistent disturbance to human colonic microbiota. The recovery and sustainability of the gut microbiome after dysbiosis have been associated with fewer CDI recurrences. Fecal microbiota transplantation (FMT) refers to the procedure in which human donor stool is processed and transplanted to a patient with CDI. It has been historically used in patients with pseudomembranous colitis even before the discovery of Clostridioides difficile. More recent research supports the use of FMT as part of the standard therapy of recurrent CDI. This article will be an in-depth review of five microbiome therapeutic products that are either under investigation or currently commercially available: Rebyota (fecal microbiota, live-jslm, formerly RBX2660), Vowst (fecal microbiota spores, live-brpk, formerly SER109), VE303, CP101, and RBX7455. Included in this review is a comparison of the products' composition and dosage forms, available safety and efficacy data, and investigational status.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA
| | - Aaron Hunt
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA
| | - Larry Danziger
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA
- Division of Infectious Diseases, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Emily N. Drwiega
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA
| |
Collapse
|
26
|
Lee MA, Questa M, Wanakumjorn P, Kol A, McLaughlin B, Weimer BC, Buono A, Suchodolski JS, Marsilio S. Safety profile and effects on the peripheral immune response of fecal microbiota transplantation in clinically healthy dogs. J Vet Intern Med 2024; 38:1425-1436. [PMID: 38613431 PMCID: PMC11099722 DOI: 10.1111/jvim.17061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/21/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) is increasingly used for gastrointestinal and extra-gastrointestinal diseases in veterinary medicine. However, its effects on immune responses and possible adverse events have not been systematically investigated. HYPOTHESIS/OBJECTIVES Determine the short-term safety profile and changes in the peripheral immune system after a single FMT administration in healthy dogs. ANIMALS Ten client-owned, clinically healthy dogs as FMT recipients, and 2 client-owned clinically healthy dogs as FMT donors. METHODS Prospective non-randomized clinical trial. A single rectal enema of 5 g/kg was given to clinically healthy canine recipients. During the 28 days after FMT administration, owners self-reported adverse events and fecal scores. On Days 0 (baseline), 1, 4, 10, and 28 after FMT, fecal and blood samples were collected. The canine fecal dysbiosis index (DI) was calculated using qPCR. RESULTS No significant changes were found in the following variables: CBC, serum biochemistry, C-reactive protein, serum cytokines (interleukins [IL]-2, -6, -8, tumor necrosis factor [TNF]-α), peripheral leukocytes (B cells, T cells, cluster of differentiation [CD]4+ T cells, CD8+ T cells, T regulatory cells), and the canine DI. Mild vomiting (n = 3), diarrhea (n = 4), decreased activity (n = 2), and inappetence (n = 1) were reported, and resolved without intervention. CONCLUSIONS AND CLINICAL IMPORTANCE Fecal microbiota transplantation did not significantly alter the evaluated variables and recipients experienced minimal adverse events associated with FMT administration. Fecal microbiota transplantation was not associated with serious adverse events, changes in peripheral immunologic variables, or the canine DI in the short-term.
Collapse
Affiliation(s)
- Mary Ann Lee
- Department of Medicine and EpidemiologyUniversity of California School of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| | - Maria Questa
- Department of Medicine and EpidemiologyUniversity of California School of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| | - Patrawin Wanakumjorn
- Department of Pathology, Microbiology & ImmunologySchool of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| | - Amir Kol
- Department of Pathology, Microbiology & ImmunologySchool of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| | - Bridget McLaughlin
- Flow Cytometry Shared Resource LaboratoryUniversity of California, DavisDavisCaliforniaUSA
| | - Bart C. Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome ProjectUniversity of California School of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| | - Agostino Buono
- Gastrointestinal LaboratoryTexas A&M School of Veterinary Medicine & Biomedical SciencesCollege StationTexasUSA
| | - Jan S. Suchodolski
- Gastrointestinal LaboratoryTexas A&M School of Veterinary Medicine & Biomedical SciencesCollege StationTexasUSA
| | - Sina Marsilio
- Department of Medicine and EpidemiologyUniversity of California School of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
27
|
Manrique P, Montero I, Fernandez-Gosende M, Martinez N, Cantabrana CH, Rios-Covian D. Past, present, and future of microbiome-based therapies. MICROBIOME RESEARCH REPORTS 2024; 3:23. [PMID: 38841413 PMCID: PMC11149097 DOI: 10.20517/mrr.2023.80] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 06/07/2024]
Abstract
Technological advances in studying the human microbiome in depth have enabled the identification of microbial signatures associated with health and disease. This confirms the crucial role of microbiota in maintaining homeostasis and the host health status. Nowadays, there are several ways to modulate the microbiota composition to effectively improve host health; therefore, the development of therapeutic treatments based on the gut microbiota is experiencing rapid growth. In this review, we summarize the influence of the gut microbiota on the development of infectious disease and cancer, which are two of the main targets of microbiome-based therapies currently being developed. We analyze the two-way interaction between the gut microbiota and traditional drugs in order to emphasize the influence of gut microbial composition on drug effectivity and treatment response. We explore the different strategies currently available for modulating this ecosystem to our benefit, ranging from 1st generation intervention strategies to more complex 2nd generation microbiome-based therapies and their regulatory framework. Lastly, we finish with a quick overview of what we believe is the future of these strategies, that is 3rd generation microbiome-based therapies developed with the use of artificial intelligence (AI) algorithms.
Collapse
|
28
|
Iwaniak P, Owe-Larsson M, Urbańska EM. Microbiota, Tryptophan and Aryl Hydrocarbon Receptors as the Target Triad in Parkinson's Disease-A Narrative Review. Int J Mol Sci 2024; 25:2915. [PMID: 38474162 DOI: 10.3390/ijms25052915] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
In the era of a steadily increasing lifespan, neurodegenerative diseases among the elderly present a significant therapeutic and socio-economic challenge. A properly balanced diet and microbiome diversity have been receiving increasing attention as targets for therapeutic interventions in neurodegeneration. Microbiota may affect cognitive function, neuronal survival and death, and gut dysbiosis was identified in Parkinson's disease (PD). Tryptophan (Trp), an essential amino acid, is degraded by microbiota and hosts numerous compounds with immune- and neuromodulating properties. This broad narrative review presents data supporting the concept that microbiota, the Trp-kynurenine (KYN) pathway and aryl hydrocarbon receptors (AhRs) form a triad involved in PD. A disturbed gut-brain axis allows the bidirectional spread of pro-inflammatory molecules and α-synuclein, which may contribute to the development/progression of the disease. We suggest that the peripheral levels of kynurenines and AhR ligands are strongly linked to the Trp metabolism in the gut and should be studied together with the composition of the microbiota. Such an approach can clearly delineate the sub-populations of PD patients manifesting with a disturbed microbiota-Trp-KYN-brain triad, who would benefit from modifications in the Trp metabolism. Analyses of the microbiome, Trp-KYN pathway metabolites and AhR signaling may shed light on the mechanisms of intestinal distress and identify new targets for the diagnosis and treatment in early-stage PD. Therapeutic interventions based on the combination of a well-defined food regimen, Trp and probiotics seem of potential benefit and require further experimental and clinical research.
Collapse
Affiliation(s)
- Paulina Iwaniak
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Maja Owe-Larsson
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
- Laboratory of Center for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Ewa M Urbańska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
29
|
Monday L, Tillotson G, Chopra T. Microbiota-Based Live Biotherapeutic Products for Clostridioides Difficile Infection- The Devil is in the Details. Infect Drug Resist 2024; 17:623-639. [PMID: 38375101 PMCID: PMC10876012 DOI: 10.2147/idr.s419243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024] Open
Abstract
Clostridioides difficile infection (CDI) remains a significant contributor to healthcare costs and morbidity due to high rates of recurrence. Currently, available antibiotic treatment strategies further disrupt the fecal microbiome and do not address the alterations in commensal flora (dysbiosis) that set the stage for CDI. Advances in microbiome-based research have resulted in the development of new agents, classified as live biotherapeutic products (LBPs), for preventing recurrent CDI (rCDI) by restoring eubiosis. Prior to the LBPs, fecal microbiota transplantation (FMT) was available for this purpose; however, lack of large-scale availability and safety concerns have remained barriers to its widespread use. The LBPs are an exciting development, but questions remain. Some are derived directly from human stool while other developmental products contain a defined microbial consortium manufactured ex vivo, and they may be composed of either living bacteria or their spores, making it difficult to compare members of this heterogenous drug class to one another. None have been studied head-to head or against FMT in preventing rCDI. As a class, they have considerable variability in their biologic composition, biopharmaceutic science, route of administration, stages of development, and clinical trial data. This review will start by explaining the role of dysbiosis in CDI, then give the details of the biopharmaceutical components for the LBPs which are approved or in development including how they differ from FMT and from one another. We then discuss the clinical trials of the LBPs currently approved for rCDI and end with the future clinical directions of LBPs beyond C. difficile.
Collapse
Affiliation(s)
- Lea Monday
- Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Teena Chopra
- Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
30
|
Ren Z, Zheng Z, Feng X. Role of gut microbes in acute lung injury/acute respiratory distress syndrome. Gut Microbes 2024; 16:2440125. [PMID: 39658851 PMCID: PMC11639474 DOI: 10.1080/19490976.2024.2440125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/31/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024] Open
Abstract
Acute lung injury (ALI) is an acute, diffuse inflammatory lung condition triggered by factors of severe infections, trauma, shock, burns, ischemia-reperfusion, and mechanical ventilation. It is primarily characterized by refractory hypoxemia and respiratory distress. The more severe form, acute respiratory distress syndrome (ARDS), can progress to multi-organ failure and has a high mortality rate. Despite extensive research, the exact pathogenesis of ALI and ARDS remains complex and not fully understood. Recent advancements in studying the gut microecology of patients have revealed the critical role that gut microbes play in ALI/ARDS onset and progression. While the exact mechanisms are still under investigation, evidence increasingly points to the influence of gut microbes and their metabolites on ALI/ARDS. This review aims to summarize the role of gut microbes and their metabolites in ALI/ARDS caused by various triggers. Moreover, it explores potential mechanisms and discusses how gut microbe-targeting interventions might offer new clinical strategies for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Zixuan Ren
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhihuan Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
31
|
Wu D, Zhang C, Liu Y, Yao J, Yang X, Wu S, Du J, Yang X. Beyond faecal microbiota transplantation, the non-negligible role of faecal virome or bacteriophage transplantation. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:893-908. [PMID: 36890066 DOI: 10.1016/j.jmii.2023.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 02/27/2023]
Abstract
Intestinal microbiota, which contains bacteria, archaea, fungi, protists, and viruses including bacteriophages, is symbiotic and evolves together with humans. The balanced intestinal microbiota plays indispensable roles in maintaining and regulating host metabolism and health. Dysbiosis has been associated with not only intestinal diseases but other diseases such as neurology disorders and cancers. Faecal microbiota transplantation (FMT) or faecal virome or bacteriophage transplantation (FVT or FBT), transfers faecal bacteria or viruses, with a focus on bacteriophage, from one healthy individual to another individual (normally unhealthy condition), and aims to restore the balanced gut microbiota and assist in subduing diseases. In this review, we summarized the applications of FMT and FVT in clinical settings, discussed the advantages and challenges of FMT and FVT currently and proposed several considerations prospectively. We further provided our understanding of why FMT and FVT have their limitations and raised the possible future development strategy of FMT and FVT.
Collapse
Affiliation(s)
- Dengyu Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Chenguang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Juan Du
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| |
Collapse
|
32
|
Rossier L, Matter C, Burri E, Galperine T, Hrúz P, Juillerat P, Schoepfer A, Vavricka SR, Zahnd N, Décosterd N, Seibold F. Swiss expert opinion: current approaches in faecal microbiota transplantation in daily practice. Swiss Med Wkly 2023; 153:40100. [PMID: 37769622 DOI: 10.57187/smw.2023.40100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION Faecal microbiota transplantation (FMT) is an established therapy for recurrent C. difficile infection, and recent studies have reported encouraging results of FMT in patients with ulcerative colitis. Few international consensus guidelines exist for this therapy, and thus FMT policies and practices differ among European countries. As of 2019, stool transplants are considered a non-standardised medicinal product in Switzerland, and a standardised production process requires authorisation by the Swiss Agency for Therapeutic Products. This authorisation leads to prolonged administrative procedures and increasing costs, which reduces treatment accessibility. In particular, patients with ulcerative colitis in Switzerland can only benefit from FMT off-label, even though it is a valid therapeutic option. Therefore, this study summarised the available data on FMT and established a framework for the standardised use of FMT. METHODS A panel of Swiss gastroenterologists with a special interest in inflammatory bowel disease was established to identify the current key issues of FMT. After a comprehensive review of the literature, statements were formulated about FMT indications, donor screening, stool transplant preparation and administration, and safety aspects. The panel then voted on the statements following the Delphi process; the statements were reformulated and revoted until a consensus was reached. The manuscript was then reviewed by an infectiologist (the head of Lausanne's FMT centre). RESULTS The established statements are summarised in the supplementary tables in the appendix to this paper. The working group hopes these will help standardise FMT practice in Switzerland and contribute to making faecal microbiota transplantation a safe and accessible treatment for patients with recurrent C. difficile infections and selected patients with ulcerative colitis, as well as other indications in the future.
Collapse
Affiliation(s)
- Laura Rossier
- Intesto - Gastroenterology practice and Crohn-colitis Center, Bern, Switzerland
| | - Christoph Matter
- Intesto - Gastroenterology practice and Crohn-colitis Center, Bern, Switzerland
| | - Emanuel Burri
- Department of Gastroenterology and Hepatology, University Medical Clinic, Baselland Canton Hospital, Liestal, Switzerland
| | - Tatiana Galperine
- Fecal microbiota transplantation center, Department of infectious disease, Lausanne University Hospital, Lausanne, Switzerland
| | - Petr Hrúz
- Clarunis, Department of Gastroenterology, St Clara hospital and University hospital Basel, Basel, Switzerland
| | - Pascal Juillerat
- GastroGeb - Gastroenterology practice and Crohn-colitis Center, Lausanne - Bulle, Switzerland
| | - Alain Schoepfer
- Department of Gastroenterology, Lausanne University Hospital, Lausanne, Switzerland
| | - Stephan R Vavricka
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Natalie Décosterd
- Intesto - Gastroenterology practice and Crohn-colitis Center, Bern, Switzerland
| | - Frank Seibold
- Intesto - Gastroenterology practice and Crohn-colitis Center, Bern, Switzerland
| |
Collapse
|
33
|
Tariq R, Pardi DS, Khanna S. Resolution rates in clinical trials for microbiota restoration for recurrent Clostridioides difficile infection: an updated systematic review and meta-analysis. Therap Adv Gastroenterol 2023; 16:17562848231174293. [PMID: 37274301 PMCID: PMC10236242 DOI: 10.1177/17562848231174293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/20/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Microbiota restoration is highly effective to treat recurrent Clostridioides difficile infection (CDI) in observational studies (cure rates >90%) but efficacy in controlled clinical trials appears to be lower. OBJECTIVES To perform an updated meta-analysis to assess the efficacy of microbiota restoration for recurrent CDI in open-label registered prospective clinical trials compared to randomized controlled trials (RCTs). DESIGN A systematic review and meta-analysis was conducted. DATA SOURCES AND METHODS A systematic search of various databases was performed up to July 2022 to identify studies of interest. Clinical trials of microbiota restoration for recurrent CDI with clinical resolution with one dose were included. We calculated weighted pooled rates (WPRs) with 95% confidence intervals (CIs). RESULTS In all, 19 clinical trials with 1176 recurrent CDI patients were included. Of the patients treated with microbiota restoration, 897 experienced a clinical cure with a single microbiota restoration therapy (WPR, 78%; 95% CI, 71-85%). There was significant heterogeneity among studies with an I2 of 88%. Analysis of trials with a control arm (non-microbiota restoration) revealed CDI resolution in 373 of 523 patients (WPR, 72%; 95% CI, 60-82%) with microbiota restoration. Among the nine open-label clinical trials, CDI resolution was seen in 524 of 653 patients after initial microbiota restoration (WPR, 84%; 95% CI, 74-92%). Comparison of resolution rates between RCTs and open-label trials revealed a lower cure rate in RCTs compared to open-label trials (WPR, 73 versus 84%, p < 0.0001). CONCLUSIONS Microbiota restoration in a randomized controlled setting leads to lower resolution rates compared to open label and observational settings, likely due to stricter definitions and inclusion criteria. Resolution rates in open-label studies were similar to observational studies.
Collapse
Affiliation(s)
- Raseen Tariq
- Division of Gastroenterology and Hepatology,
Mayo Clinic, Rochester, MN, USA
| | - Darrell S. Pardi
- Division of Gastroenterology and Hepatology,
Mayo Clinic, Rochester, MN, USA
| | - Sahil Khanna
- Division of Gastroenterology and Hepatology,
Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| |
Collapse
|
34
|
Boicean A, Bratu D, Bacila C, Tanasescu C, Fleacă RS, Mohor CI, Comaniciu A, Băluță T, Roman MD, Chicea R, Cristian AN, Hasegan A, Birsan S, Dura H, Mohor CI. Therapeutic Perspectives for Microbiota Transplantation in Digestive Diseases and Neoplasia-A Literature Review. Pathogens 2023; 12:766. [PMID: 37375456 PMCID: PMC10302701 DOI: 10.3390/pathogens12060766] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
In a mutually beneficial connection with its host, the gut microbiota affects the host's nutrition, immunity, and metabolism. An increasing number of studies have shown links between certain types of disease and gut dysbiosis or specific microorganisms. Fecal microbiota transplantation (FMT) is strongly advised for the treatment of recurrent or resistant Clostridium difficile infection (CDI) due to its outstanding clinical effectiveness against CDI. The therapeutic potential of FMT for other disorders, particularly inflammatory bowel diseases and malignancies, is currently gaining more and more attention. We summarized the most recent preclinical and clinical evidence to show the promise of FMT in the management of cancer as well as complications related to cancer treatment after reviewing the most recent research on the gut microbiota and its relationship to cancer.
Collapse
Affiliation(s)
- Adrian Boicean
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Dan Bratu
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Ciprian Bacila
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
| | - Ciprian Tanasescu
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Radu Sorin Fleacă
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Calin Ilie Mohor
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Andra Comaniciu
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
| | - Teodora Băluță
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
| | - Mihai Dan Roman
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Radu Chicea
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Adrian Nicolae Cristian
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Adrian Hasegan
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Sabrina Birsan
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Horațiu Dura
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Cosmin Ioan Mohor
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| |
Collapse
|
35
|
Minkoff NZ, Aslam S, Medina M, Tanner-Smith EE, Zackular JP, Acra S, Nicholson MR, Imdad A. Fecal microbiota transplantation for the treatment of recurrent Clostridioides difficile (Clostridium difficile). Cochrane Database Syst Rev 2023; 4:CD013871. [PMID: 37096495 PMCID: PMC10125800 DOI: 10.1002/14651858.cd013871.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
BACKGROUND Clostridioides difficile (formerly known as Clostridium difficile) is a bacterium that can cause potentially life-threatening diarrheal illness in individuals with an unhealthy mixture of gut bacteria, known as dysbiosis, and can cause recurrent infections in nearly a third of infected individuals. The traditional treatment of recurrent C difficile infection (rCDI) includes antibiotics, which may further exacerbate dysbiosis. There is growing interest in correcting the underlying dysbiosis in rCDI using of fecal microbiota transplantation (FMT); and there is a need to establish the benefits and harms of FMT for the treatment of rCDI based on data from randomized controlled trials. OBJECTIVES To evaluate the benefits and harms of donor-based fecal microbiota transplantation for the treatment of recurrent Clostridioides difficile infection in immunocompetent people. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search date was 31 March 2022. SELECTION CRITERIA We considered randomized trials of adults or children with rCDI for inclusion. Eligible interventions must have met the definition of FMT, which is the administration of fecal material containing distal gut microbiota from a healthy donor to the gastrointestinal tract of a person with rCDI. The comparison group included participants who did not receive FMT and were given placebo, autologous FMT, no intervention, or antibiotics with activity against C difficile. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were 1. proportion of participants with resolution of rCDI and 2. serious adverse events. Our secondary outcomes were 3. treatment failure, 4. all-cause mortality, 5. withdrawal from study, 6. rate of new CDI infection after a successful FMT, 7. any adverse event, 8. quality of life, and 9. colectomy. We used the GRADE criteria to assess certainty of evidence for each outcome. MAIN RESULTS We included six studies with 320 participants. Two studies were conducted in Denmark, and one each in the Netherlands, Canada, Italy, and the US. Four were single-center and two were multicenter studies. All studies included only adults. Five studies excluded people who were severely immunocompromised, with only one study including 10 participants who were receiving immunosuppressive therapy out of the 64 enrolled; these were similarly distributed between the FMT arm (4/24 or 17%) and comparison arms (6/40 or 15%). The route of administration was the upper gastrointestinal tract via a nasoduodenal tube in one study, two studies used enema only, two used colonoscopic only delivery, and one used either nasojejunal or colonoscopic delivery, depending on a clinical determination of whether the recipient could tolerate a colonoscopy. Five studies had at least one comparison group that received vancomycin. The risk of bias (RoB 2) assessments did not find an overall high risk of bias for any outcome. All six studies assessed the efficacy and safety of FMT for the treatment of rCDI. Pooled results from six studies showed that the use of FMT in immunocompetent participants with rCDI likely leads to a large increase in resolution of rCDI in the FMT group compared to control (risk ratio (RR) 1.92, 95% confidence interval (CI) 1.36 to 2.71; P = 0.02, I2 = 63%; 6 studies, 320 participants; number needed to treat for an additional beneficial outcome (NNTB) 3; moderate-certainty evidence). Fecal microbiota transplantation probably results in a slight reduction in serious adverse events; however, the CIs around the summary estimate were wide (RR 0.73, 95% CI 0.38 to 1.41; P = 0.24, I² = 26%; 6 studies, 320 participants; NNTB 12; moderate-certainty evidence). Fecal microbiota transplantation may result in a reduction in all-cause mortality; however, the number of events was small, and the CIs of the summary estimate were wide (RR 0.57, 95% CI 0.22 to 1.45; P = 0.48, I2 = 0%; 6 studies, 320 participants; NNTB 20; low-certainty evidence). None of the included studies reported colectomy rates. AUTHORS' CONCLUSIONS In immunocompetent adults with rCDI, FMT likely leads to a large increase in the resolution of recurrent Clostridioides difficile infection compared to alternative treatments such as antibiotics. There was no conclusive evidence regarding the safety of FMT for the treatment of rCDI as the number of events was small for serious adverse events and all-cause mortality. Additional data from large national registry databases might be required to assess any short-term or long-term risks with using FMT for the treatment of rCDI. Elimination of the single study that included some immunocompromised people did not alter these conclusions. Due to the low number of immunocompromised participants enrolled, conclusions cannot be drawn about the risks or benefits of FMT for rCDI in the immunocompromised population.
Collapse
Affiliation(s)
- Nathan Zev Minkoff
- Pediatric Gastroenterology, Hepatology and Nutrition, Valley Children's Hospital, Madera, California, USA
| | - Scheherzade Aslam
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Melissa Medina
- Department of Public Health and Preventative Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Emily E Tanner-Smith
- Counseling Psychology and Human Services, University of Oregon, Eugene, Oregon, USA
| | - Joseph P Zackular
- Department of Pathology and Laboratory Medicine, University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sari Acra
- Department of Pediatrics, D. Brent Polk Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Maribeth R Nicholson
- Department of Pediatrics, D. Brent Polk Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Aamer Imdad
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
36
|
DuPont HL, Suescun J, Jiang ZD, Brown EL, Essigmann HT, Alexander AS, DuPont AW, Iqbal T, Utay NS, Newmark M, Schiess MC. Fecal microbiota transplantation in Parkinson's disease-A randomized repeat-dose, placebo-controlled clinical pilot study. Front Neurol 2023; 14:1104759. [PMID: 36937520 PMCID: PMC10019775 DOI: 10.3389/fneur.2023.1104759] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Background and purpose The intestinal microbiome plays a primary role in the pathogenesis of neurodegenerative disorders and may provide an opportunity for disease modification. We performed a pilot clinical study looking at the safety of fecal microbiota transplantation (FMT), its effect on the microbiome, and improvement of symptoms in Parkinson's disease. Methods This was a randomized, double-blind placebo-controlled pilot study, wherein orally administered lyophilized FMT product or matching placebo was given to 12 subjects with mild to moderate Parkinson's disease with constipation twice weekly for 12 weeks. Subjects were followed for safety and clinical improvement for 9 additional months (total study duration 12 months). Results Fecal microbiota transplantation caused non-severe transient upper gastrointestinal symptoms. One subject receiving FMT was diagnosed with unrelated metastatic cancer and was removed from the trial. Beta diversity (taxa) of the microbiome, was similar comparing placebo and FMT groups at baseline, however, for subjects randomized to FMT, it increased significantly at 6 weeks (p = 0.008) and 13 weeks (p = 0.0008). After treatment with FMT, proportions of selective families within the phylum Firmicutes increased significantly, while proportion of microbiota belonging to Proteobacteria were significantly reduced. Objective motor findings showed only temporary improvement while subjective symptom improvements were reported compared to baseline in the group receiving FMT. Constipation, gut transient times (NS), and gut motility index (p = 0.0374) were improved in the FMT group. Conclusions Subjects with Parkinson's disease tolerated multi-dose-FMT, and experienced increased diversity of the intestinal microbiome that was associated with reduction in constipation and improved gut transit and intestinal motility. Fecal microbiota transplantation administration improved subjective motor and non-motor symptoms. Clinical trial registration ClinicalTrial.gov, identifier: NCT03671785.
Collapse
Affiliation(s)
- Herbert L. DuPont
- Microbiome Research Center, Kelsey Research Foundation, Houston, TX, United States
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, United States
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX, United States
- Medical Services and Specialties, Kelsey Seybold Clinic, Houston, TX, United States
| | - Jessika Suescun
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, United States
| | - Zhi-Dong Jiang
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, United States
| | - Eric L. Brown
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, United States
| | - Heather T. Essigmann
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, United States
| | - Ashley S. Alexander
- Microbiome Research Center, Kelsey Research Foundation, Houston, TX, United States
| | - Andrew W. DuPont
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX, United States
| | - Tehseen Iqbal
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, United States
| | - Netanya S. Utay
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Michael Newmark
- Microbiome Research Center, Kelsey Research Foundation, Houston, TX, United States
- Medical Services and Specialties, Kelsey Seybold Clinic, Houston, TX, United States
| | - Mya C. Schiess
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, United States
| |
Collapse
|
37
|
Gangwani MK, Aziz M, Aziz A, Priyanka F, Weissman S, Phan K, Dahiya DS, Ahmed Z, Sohail AH, Lee-Smith W, Kamal F, Javaid T, Nawras A, Hart B. Fresh Versus Frozen Versus Lyophilized Fecal Microbiota Transplant for Recurrent Clostridium Difficile Infection: A Systematic Review and Network Meta-analysis. J Clin Gastroenterol 2023; 57:239-245. [PMID: 36656270 DOI: 10.1097/mcg.0000000000001777] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Clostridium difficile Infection is a significant source of morbidity and mortality, which is on the rise. Fecal Microbiota Transplantation (FMT) is an alternative therapy to antibiotics with a high success rate and low relapse rate. Current data regarding the efficacy of the types of FMT used, namely fresh, frozen, and lyophilized is conflicting. Our review attempts to consolidate this data and highlight the most efficacious treatment currently available. METHODOLOGY MEDLINE, Embase, Web of Science Core Collection, Cochrane Central Register of Controlled Trials, SciELO, the Korean Citation Index, and Global Index Medicus were systematically searched from inception through May 3, 2022. Studies in which patients are undergoing any form of FMT who had failed antibiotic treatment previously were included. Both pairwise (direct) and network (direct + indirect) meta-analysis were performed using a random effects model and DerSimonian-Laird approach. A frequentist approach was used for network meta-analysis. Risk differences with (RD) with 95% confidence interval (CI) were calculated. RESULTS A total of 8 studies, including 4 RCTs and 4 cohort studies, were included with a total of 616 patients. Fresh FMT was determined to be most successful with 93% efficacy 95% CI (0.913 to 0.999) followed by frozen with 88% efficacy 95% CI (0.857 to 0.947) and lyophilized with 83% efficacy 95% CI (0.745 to 0.910). The direct meta-analysis showed no statistically significant difference between fresh and frozen group. (RD -0.051 95% CI -0.116 to 0.014 P =0.178). No significant differences were noted in frozen versus lyophilized groups with an overall trend towards Fresh FM (RD -0.061 95% CI -0.038 to 0.160 P =0.617). On network meta-analysis, when compared with fresh group, a lower recovery rate was noted with both frozen group (RD -0.06 95% CI -0.11 to 0.00 P =0.05) and lyophilized group (RD -0.16 95% CI -0.27 to -0.05 P =0.01). CONCLUSION We conclude the efficacy of Frozen and Lyophilized preparations is high with no difference in direct comparison, and the relative efficacy reduction based on network analysis is outweighed by the safety, accessibility, and practicality of Frozen or Lyophilized preparations.
Collapse
Affiliation(s)
| | - Muhammad Aziz
- Division of Gastroenterology and Hepatology, University of Toledo Medical Center
| | - Abeer Aziz
- Division of Medicine, Aga Khan University, Karachi
| | - Fnu Priyanka
- Division of Medicine, Shaheed Mohtarma Benazir Bhutto University, Larkana, Pakistan
| | - Simcha Weissman
- Department of Medicine, Hackensack University, Palisade Medical Center, North Bergen, NJ
| | - Khiem Phan
- Department of Medicine, Hackensack University, Palisade Medical Center, North Bergen, NJ
| | - Dushyant Singh Dahiya
- Department of Medicine, Central Michigan University College of Medicine, Saginaw, MI
| | | | - Amir Humza Sohail
- Department of General Surgery, New York University Langone Health, Long Island, NY
| | - Wade Lee-Smith
- University of Toledo Libraries, University of Toledo, Toledo, Ohio
| | - Faisal Kamal
- Division of Gastroenterology, University of San Francisco, San Francisco, CA
| | - Toseef Javaid
- Division of Gastroenterology and Hepatology, University of Toledo Medical Center
| | - Ali Nawras
- Division of Gastroenterology and Hepatology, University of Toledo Medical Center
| | - Benjamin Hart
- Division of Gastroenterology and Hepatology, University of Toledo Medical Center
| |
Collapse
|
38
|
Green JE, McGuinness AJ, Berk M, Castle D, Athan E, Hair C, Strandwitz P, Loughman A, Nierenberg AA, Cryan JF, Mohebbi M, Jacka F. Safety and feasibility of faecal microbiota transplant for major depressive disorder: study protocol for a pilot randomised controlled trial. Pilot Feasibility Stud 2023; 9:5. [PMID: 36624505 PMCID: PMC9827014 DOI: 10.1186/s40814-023-01235-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mental disorders, including major depressive disorder (MDD), are a leading cause of non-fatal burden of disease globally. Current conventional treatments for depression have significant limitations, and there have been few new treatments in decades. The microbiota-gut-brain-axis is now recognised as playing a role in mental and brain health, and promising preclinical and clinical data suggest Faecal Microbiota Transplants (FMT) may be efficacious for treating a range of mental illnesses. However, there are no existing published studies in humans evaluating the efficacy of FMT for MDD. METHODS AND DESIGN This protocol describes an 8-week, triple-blind, 2:1 parallel group, randomised controlled pilot trial (n = 15), of enema-delivered FMT treatment (n = 10) compared with a placebo enema (n = 5) in adults with moderate-to-severe MDD. There will be a further 26-week follow-up to monitor longer-term safety. Participants will receive four FMT or placebo enemas over four consecutive days. The primary aims of the study are to evaluate feasibility and safety of FMT as an adjunctive treatment for MDD in adults. Changes in gut microbiota will be assessed as a secondary outcome. Other data will be collected, including changes in depression and anxiety symptoms, and safety parameters. DISCUSSION Modification of the microbiota-gut-brain axis via FMT is a promising potential treatment for MDD, but there are no published rigorous clinical trials evaluating its use. If this study finds that our FMT strategy is safe and feasible, a larger fully powered RCT is planned. Further high-quality research in this field is urgently needed to address unmet need. TRIAL REGISTRATION Australian and New Zealand Clinical Trials Registry: ACTRN12621000932864.
Collapse
Affiliation(s)
- Jessica E. Green
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia ,grid.1002.30000 0004 1936 7857Monash Alfred Psychiatry Research Centre (MAPrc), Central Clinical School, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia ,grid.466993.70000 0004 0436 2893Department of Psychiatry, Peninsula Health, Frankston, Australia
| | - Amelia J. McGuinness
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia ,grid.1008.90000 0001 2179 088XDepartment of Psychiatry, University of Melbourne, Parkville, Australia ,grid.488596.e0000 0004 0408 1792Orygen Youth Health Research Centre and the Centre of Youth Mental Health, Melbourne, Australia ,grid.418025.a0000 0004 0606 5526The Florey Institute for Neuroscience and Mental Health, Parkville, Australia ,grid.414257.10000 0004 0540 0062Barwon Health, Geelong, Australia
| | - David Castle
- grid.17063.330000 0001 2157 2938Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Eugene Athan
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia ,grid.414257.10000 0004 0540 0062Barwon Health, Geelong, Australia ,grid.1021.20000 0001 0526 7079School of Medicine, Deakin University, Geelong, Australia
| | - Christopher Hair
- grid.414257.10000 0004 0540 0062Barwon Health, Geelong, Australia
| | | | - Amy Loughman
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Andrew A. Nierenberg
- grid.32224.350000 0004 0386 9924Dauten Family Center for Bipolar Treatment Innovation, Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - John F. Cryan
- grid.7872.a0000000123318773Department of Anatomy and Neuroscience, University College Cork and APC Microbiome, Cork, Ireland
| | - Mohammadreza Mohebbi
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice Jacka
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia ,grid.416107.50000 0004 0614 0346Centre for Adolescent Health, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Australia ,grid.418393.40000 0001 0640 7766Black Dog Institute, Melbourne, Australia ,grid.1011.10000 0004 0474 1797James Cook University, Townsville, Australia
| |
Collapse
|
39
|
Bier N, Hanson B, Jiang ZD, DuPont HL, Arias CA, Miller WR. A Case of Successful Treatment of Recurrent Urinary Tract Infection by Extended-Spectrum β-Lactamase Producing Klebsiella pneumoniae Using Oral Lyophilized Fecal Microbiota Transplant. Microb Drug Resist 2023; 29:34-38. [PMID: 36576900 PMCID: PMC9885536 DOI: 10.1089/mdr.2022.0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recurrent urinary tract infections (UTIs) are a challenging clinical entity that can be frustrating for patient and physician alike. Repeated rounds of antibiotics can select for multidrug-resistant organisms, further complicating care. We describe the successful use of fecal microbiota transplantation (FMT) for the treatment of recurrent extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae UTIs in a patient with an ileal conduit and urostomy. In the 18 months after FMT, the patient had not experienced new infections with ESBL-producing organisms. The urine and stool microbiomes of the patient were tracked before and post-FMT using 16s RNA sequencing with measurement of α-diversity. Sequencing of the recipient microbiota did not mirror the donor stool taxa at either site, but an increase in the relative proportion of the genus Bacteroides as compared with Prevotella was noted in the stool post-transplant. FMTs may be a promising treatment option for recurrent multidrug-resistant infections.
Collapse
Affiliation(s)
- Naomi Bier
- Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, Houston, Texas, USA
| | - Blake Hanson
- Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, Houston, Texas, USA
| | - Zhi-Dong Jiang
- Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston, Texas, USA
| | - Herbert L. DuPont
- Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston, Texas, USA
| | - Cesar A. Arias
- Division of Infectious Diseases, Department of Internal Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - William R. Miller
- Division of Infectious Diseases, Department of Internal Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
40
|
Fekete EE, Figeys D, Zhang X. Microbiota-directed biotherapeutics: considerations for quality and functional assessment. Gut Microbes 2023; 15:2186671. [PMID: 36896938 PMCID: PMC10012963 DOI: 10.1080/19490976.2023.2186671] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Mounting evidence points to causative or correlative roles of gut microbiome in the development of a myriad of diseases ranging from gastrointestinal diseases, metabolic diseases to neurological disorders and cancers. Consequently, efforts have been made to develop and apply therapeutics targeting the human microbiome, in particular the gut microbiota, for treating diseases and maintaining wellness. Here we summarize the current development of gut microbiota-directed therapeutics with a focus on novel biotherapeutics, elaborate the need of advanced -omics approaches for evaluating the microbiota-type biotherapeutics, and discuss the clinical and regulatory challenges. We also discuss the development and potential application of ex vivo microbiome assays and in vitro intestinal cellular models in this context. Altogether, this review aims to provide a broad view of promises and challenges of the emerging field of microbiome-directed human healthcare.
Collapse
Affiliation(s)
- Emily Ef Fekete
- Regulatory Research Division, Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Xu Zhang
- Regulatory Research Division, Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
41
|
Franc A, Vetchý D, Fülöpová N. Commercially Available Enteric Empty Hard Capsules, Production Technology and Application. Pharmaceuticals (Basel) 2022; 15:1398. [PMID: 36422528 PMCID: PMC9696354 DOI: 10.3390/ph15111398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 08/10/2023] Open
Abstract
Currently, there is a growing need to prepare small batches of enteric capsules for individual therapy or clinical evaluation since many acidic-sensitive substances should be protected from the stomach's acidic environment, including probiotics or fecal material, in the fecal microbiota transplantation (FMT) process. A suitable method seems to be the encapsulation of drugs or lyophilized alternatively frozen biological suspensions in commercial hard enteric capsules prepared by so-called Enteric Capsule Drug Delivery Technology (ECDDT). Manufacturers supply these types of capsules, made from pH-soluble polymers, in products such as AR Caps®, EnTRinsicTM, and Vcaps® Enteric, or capsules made of gelling polymers that release their content as the gel erodes over time when passing through the digestive tract. These include DRcaps®, EMBO CAPS® AP, BioVXR®, or ACGcaps™ HD. Although not all capsules in all formulations meet pharmaceutical requirements for delayed-release dosage forms in disintegration and dissolution tests, they usually find practical application. This literature review presents their composition and properties. Since ECDDT is a new technology, this article is based on a limited number of references.
Collapse
Affiliation(s)
- Aleš Franc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 612 42 Brno, Czech Republic
| | - David Vetchý
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 612 42 Brno, Czech Republic
| | - Nicole Fülöpová
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 612 42 Brno, Czech Republic
| |
Collapse
|
42
|
Svensson CK, Cold F, Ribberholt I, Zangenberg M, Mirsepasi-Lauridsen HC, Petersen AM, Helms M. The Efficacy of Faecal Microbiota Transplant and Rectal Bacteriotherapy in Patients with Recurrent Clostridioides difficile Infection: A Retrospective Cohort Study. Cells 2022; 11:3272. [PMID: 36291139 PMCID: PMC9600246 DOI: 10.3390/cells11203272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/18/2022] Open
Abstract
The most effective treatment for recurrent Clostridioides difficile infection (CDI) is faecal microbiota transplantation (FMT); however, the optimal route of administration is thus far unknown. This retrospective cohort study of 343 patients sought to evaluate the efficacy of treatment with FMT capsules, FMT enema, and rectal bacteriotherapy (RBT) during a five-year period. The primary endpoint was clinical resolution from CDI after eight weeks, and secondary endpoints were time to recurrence and death during the follow-up period. The proportion of patients with clinical resolution was 79.9% in the FMT capsule group, 53.3% in the FMT enema group, and 61.8% in the RBT group, corresponding to an adjusted odds ratio of 3.79 (CI: 1.82 to 8.26) in the FMT capsule group compared with FMT enema, and 2.92 (CI: 1.49 to 6.03) compared with RBT. The hazards ratio for recurrence within the first 12 months of follow-up was 0.24 (CI: 0.06 to 0.89) in the FMT capsule group compared with FMT enema, and 0.26 (CI: 0.08 to 0.91) compared with RBT. There was no difference in mortality. In conclusion, FMT capsules were more effective than both FMT enema and RBT as treatment of recurrent CDI and reduced the risk of further recurrences.
Collapse
Affiliation(s)
- Camilla Kara Svensson
- Department of Infectious Diseases, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Frederik Cold
- Gastro Unit, Medical Division, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
- Department of Plant and Environmental Sciences, Copenhagen University, 1871 Copenhagen, Denmark
| | - Iben Ribberholt
- Department of Infectious Diseases, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Mike Zangenberg
- Department of Infectious Diseases, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | | | - Andreas Munk Petersen
- Gastro Unit, Medical Division, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, 2100 Copenhagen, Denmark
| | - Morten Helms
- Department of Infectious Diseases, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, 2100 Copenhagen, Denmark
| |
Collapse
|
43
|
Khanna S, Sims M, Louie TJ, Fischer M, LaPlante K, Allegretti J, Hasson BR, Fonte AT, McChalicher C, Ege DS, Bryant JA, Straub TJ, Ford CB, Henn MR, Wang EEL, von Moltke L, Wilcox MH. SER-109: An Oral Investigational Microbiome Therapeutic for Patients with Recurrent Clostridioides difficile Infection (rCDI). Antibiotics (Basel) 2022; 11:1234. [PMID: 36140013 PMCID: PMC9495252 DOI: 10.3390/antibiotics11091234] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Clostridioides difficile infection (CDI) is classified as an urgent health threat by the Centers for Disease Control and Prevention (CDC), and affects nearly 500,000 Americans annually. Approximately 20−25% of patients with a primary infection experience a recurrence, and the risk of recurrence increases with subsequent episodes to greater than 40%. The leading risk factor for CDI is broad-spectrum antibiotics, which leads to a loss of microbial diversity and impaired colonization resistance. Current FDA-approved CDI treatment strategies target toxin or toxin-producing bacteria, but do not address microbiome disruption, which is key to the pathogenesis of recurrent CDI. Fecal microbiota transplantation (FMT) reduces the risk of recurrent CDI through the restoration of microbial diversity. However, FDA safety alerts describing hospitalizations and deaths related to pathogen transmission have raised safety concerns with the use of unregulated and unstandardized donor-derived products. SER-109 is an investigational oral microbiome therapeutic composed of purified spore-forming Firmicutes. SER-109 was superior to a placebo in reducing CDI recurrence at Week 8 (12% vs. 40%, respectively; p < 0.001) in adults with a history of recurrent CDI with a favorable observed safety profile. Here, we discuss the role of the microbiome in CDI pathogenesis and the clinical development of SER-109, including its rigorous manufacturing process, which mitigates the risk of pathogen transmission. Additionally, we discuss compositional and functional changes in the gastrointestinal microbiome in patients with recurrent CDI following treatment with SER-109 that are critical to a sustained clinical response.
Collapse
Affiliation(s)
- Sahil Khanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew Sims
- Section of Infectious Diseases and International Medicine, Department of Internal Medicine, Beaumont, Royal Oak, MI 48073, USA
- Department of Internal Medicine and Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Thomas J. Louie
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Monika Fischer
- Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, IN 46202, USA
| | - Kerry LaPlante
- Department of Pharmacy Practice, University of Rhode Island, Kingston, RI 02881, USA
- Division of Infectious Diseases, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Jessica Allegretti
- Division of Gastroenterology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | - Mark H. Wilcox
- University of Leeds, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| |
Collapse
|
44
|
Zain NMM, Ter Linden D, Lilley AK, Royall PG, Tsoka S, Bruce KD, Mason AJ, Hatton GB, Allen E, Goldenberg SD, Forbes B. Design and manufacture of a lyophilised faecal microbiota capsule formulation to GMP standards. J Control Release 2022; 350:324-331. [PMID: 35963468 DOI: 10.1016/j.jconrel.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Faecal microbiota transplant (FMT) is an established and effective treatment for recurrent Clostridioides difficile infection (CDI) and has many other potential clinical applications. However, preparation and quality of FMT is poorly standardised and clinical studies are hampered by a lack of well-defined FMT formulations that meet regulatory standards for medicines. As an alternative to FMT suspensions for administration by nasojejunal tube or colonoscopy, which is invasive and disliked by many patients, this study aimed to develop a well-controlled, standardised method for manufacture of lyophilised FMT capsules and to provide stability data allowing storage for extended time periods. Faecal donations were collected from healthy, pre-screened individuals, homogenised, filtered and centrifuged to remove dietary matter. The suspension was centrifuged to pellet bacteria, which were resuspended with trehalose and lyophilised to produce a powder which was filled into 5 enteric-coated capsules (size 0). Live-dead bacterial cell quantitative PCR assay showed <10 fold viable bacterial load reduction through the manufacturing process. No significant loss of viable bacterial load was observed after storage at -80 °C for 36 weeks (p = 0.24, n = 5). Initial clinical experience demonstrated that the capsules produced clinical cure in patients with CDI with no adverse events reported (n = 7). We provide the first report of a detailed manufacturing protocol and specification for an encapsulated lyophilised formulation of FMT. As clinical trials into intestinal microbiota interventions proceed, it is important to use a well-controlled investigational medicinal product in the studies so that any beneficial results can be replicated in clinical practice.
Collapse
Affiliation(s)
- Nur Masirah M Zain
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Daniëlle Ter Linden
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Andrew K Lilley
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Paul G Royall
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, United Kingdom
| | - Kenneth D Bruce
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - A James Mason
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Grace B Hatton
- Institute of Liver Studies, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Elizabeth Allen
- Early Clinical Development Centre of Excellence, IQVIA, Reading, United Kingdom
| | - Simon D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Ben Forbes
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
45
|
Yang L, Li W, Zhang X, Tian J, Ma X, Han L, Wei H, Meng W. The evaluation of different types fecal bacteria products for the treatment of recurrent Clostridium difficile associated diarrhea: A systematic review and network meta-analysis. Front Surg 2022; 9:927970. [PMID: 36468073 PMCID: PMC9709817 DOI: 10.3389/fsurg.2022.927970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/01/2022] [Indexed: 06/18/2025] Open
Abstract
PURPOSE To determine the efficacy of different types of fecal microbiota transplantation for the treatment of recurrent clostridium difficile associated diarrhea (RCDAD). METHODS We searched PubMed, Embase, The Cochrane Library, Web of Science, China Biomedical Medicine (CBM), China National Knowledge Infrastructure (CNKI) and WanFang database. We also tracked the references found in systematic reviews of RCDAD treated with fecal microbiota transplantation. We included randomized controlled trials (RCTs) comparing different types of fecal microbiota transplantation with other methods for the treatment of RCDAD. The search period was from the date of inception of this treatment method to January 16, 2022. Two reviewers independently screened the published literature, extracted the data and assessed the risk of bias. Systematic review and network meta-analysis were conducted using RevMan 5.4, Stata 16.0 and R 4.1.2 software. RESULTS Ten RCTs involving 765 patients were included in this network meta-analysis. The results showed that treatment with fresh fecal bacteria and frozen fecal bacteria were better than vancomycin, fresh vs. vancomycin [odds ratio, (OR) = 8.98, 95% confidence interval (95% CI) (1.84, 43.92)], frozen vs. vancomycin [OR = 7.44, 95% CI (1.39, 39.75)]. However, there were no statistically significant differences in cure rate [fresh vs. frozen: OR = 1.21, 95% CI (0.22, 6.77); fresh vs. lyophilized, OR = 1.95, 95% CI (0.20, 19.44); frozen vs. lyophilized, OR = 1.62, 95% CI (0.30, 8.85)]. The Surface Under the Cumulative Ranking (SUCRA) indicated that fresh fecal bacteria were the best treatment for RCDAD. CONCLUSIONS Fresh fecal bacteria are the best treatment of RCDAD, frozen fecal bacteria and lyophilized fecal bacteria can achieve the same effect. Fecal microbiota transplantation is worthy of clinical and commercial application.
Collapse
Affiliation(s)
- Liping Yang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Wenrui Li
- School of Nursing, Lanzhou University, Lanzhou, China
| | - Xianzhuo Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jinhui Tian
- Evidence-Based Medicine Center, Lanzhou University, Lanzhou, China
| | - Xiaojia Ma
- Lanzhou Library, Chinese Academy of Sciences, Lanzhou, China
| | - Lulu Han
- School of Nursing, Lanzhou University, Lanzhou, China
| | - Huaping Wei
- Department of Nursing, The First Hospital of Lanzhou University, Lanzhou, China
| | - Wenbo Meng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
46
|
Feuerstadt P, Aroniadis OC, Svedlund FL, Garcia M, Stong L, Boules M, Khanna S. Heterogeneity of Randomized Controlled Trials of Fecal Microbiota Transplantation in Recurrent Clostridioides difficile Infection. Dig Dis Sci 2022; 67:2763-2770. [PMID: 34275058 PMCID: PMC9236970 DOI: 10.1007/s10620-021-07141-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Clinical trials have demonstrated the efficacy of FMT for reduction in CDI recurrences (rCDI), but this treatment and its reporting in the literature has significant heterogeneity. Recent publications (e.g., Ramai et al. in Dig Dis Sci 2020. https://doi.org/10.1007/s10620-020-06185-7 ) present the clinical outcomes for different FMT methodologies. However, to understand, compare, and contextualize outcomes, this heterogeneity in methods and reporting must be understood. METHODS We performed a literature review of randomized controlled trials (RCTs) of FMT for rCDI to evaluate heterogeneity among trials. A methodical search between January 2010 and May 2019 of Medline, Embase, and Cochrane was conducted for studies investigating FMT in adults with rCDI. RCTs were evaluated for a variety of methodological and reporting criteria. RESULTS Eight RCTs were identified, wherein 14 different FMT preparations were considered (each with distinct protocols for processing, storage, administration, and dosing). Sample sizes were generally small, with only two studies performing FMT in more than 100 patients. Three studies used non-FMT controls (vancomycin), while the remaining compared FMT with differing routes of administration or formulations. Across the identified studies, there was no standardized manner for reporting the timing of the FMT procedure. All studies tracked adverse events; however, follow-up periods were limited. CONCLUSIONS Considerable variability exists among RCTs, with marked differences in study design, control groups, and outcome assessment. Lack of a standard-of-care control in many trials may impact reproducibility of FMT trial outcomes in patients with rCDI. Widespread use of FMT for rCDI is still investigational; therefore, these foundational studies provide opportunities to optimize future trials.
Collapse
Affiliation(s)
- Paul Feuerstadt
- PACT-Gastroenterology Center, Hamden, CT, USA.
- Yale University School of Medicine, New Haven, CT, USA.
| | - Olga C Aroniadis
- Division of Gastroenterology, Renaissance School of Medicine At Stony, Brook University, Stony Brook, NY, USA
| | | | | | - Laura Stong
- Ferring Pharmaceuticals, Inc, Parsippany, NJ, USA
| | - Mena Boules
- Ferring Pharmaceuticals, Inc, Parsippany, NJ, USA
| | - Sahil Khanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
47
|
Aira A, Rubio E, Ruiz A, Vergara A, Casals-Pascual C, Rico V, Suñé-Negre JM, Soriano A. New Procedure to Maintain Fecal Microbiota in a Dry Matrix Ready to Encapsulate. Front Cell Infect Microbiol 2022; 12:899257. [PMID: 35755849 PMCID: PMC9226551 DOI: 10.3389/fcimb.2022.899257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is one of the recommended treatments for recurrent Clostridioides difficile infection, but endoscopy and available oral formulations still have several limitations in their preparation, storage, and administration. The need for a viable oral formulation that facilitates the implementation of this highly effective therapy in different settings has led us to test the microcrystalline cellulose particles as an adsorbent of concentrated filtered fresh feces in comparison to lyophilized feces. This free-flowing material can provide protection to bacteria and results in a dried product able to maintain the viability of the microbiota for a long time. Adsorbate formulation showed a stabilizing effect in gut microbiota, maintaining bacteria viability and preserving its diversity, and is a competitive option for lyophilized capsules.
Collapse
Affiliation(s)
- Andrea Aira
- Department of Infectious Diseases, Hospital Clinic of Barcelona, Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | - Elisa Rubio
- Department of Clinical Microbiology, Hospital Clinic of Barcelona, Barcelona, Spain
| | | | - Andrea Vergara
- Department of Clinical Microbiology, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Climent Casals-Pascual
- University of Barcelona, Barcelona, Spain.,Department of Clinical Microbiology, Hospital Clinic of Barcelona, Barcelona, Spain.,Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Verónica Rico
- Department of Infectious Diseases, Hospital Clinic of Barcelona, Barcelona, Spain.,University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Alex Soriano
- Department of Infectious Diseases, Hospital Clinic of Barcelona, Barcelona, Spain.,University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
48
|
Rakotonirina A, Galperine T, Allémann E. Fecal microbiota transplantation: a review on current formulations in Clostridioides difficile infection and future outlooks. Expert Opin Biol Ther 2022; 22:929-944. [PMID: 35763604 DOI: 10.1080/14712598.2022.2095901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The role of the gut microbiota in health and the pathogenesis of several diseases has been highlighted in recent years. Even though the precise mechanisms involving the microbiome in these ailments are still unclear, microbiota-modulating therapies have been developed. Fecal microbiota transplantation (FMT) has shown significant results against Clostridioides difficile infection (CDI), and its potential has been investigated for other diseases. Unfortunately, the technical aspects of the treatment make it difficult to implement. Pharmaceutical technology approaches to encapsulate microorganisms could play an important role in providing this treatment and render the treatment modalities easier to handle. AREAS COVERED After an overview of CDI, this narrative review aims to discuss the current formulations for FMT and specifically addresses the technical aspects of the treatment. This review also distinguishes itself by focusing on the hurdles and emphasizing the possible improvements using pharmaceutical technologies. EXPERT OPINION FMT is an efficient treatment for recurrent CDI. However, its standardization is overlooked. The approach of industrial and hospital preparations of FMT are different, but both show promise in their respective methodologies. Novel FMT formulations could enable further research on dysbiotic diseases in the future.
Collapse
Affiliation(s)
- Adèle Rakotonirina
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Tatiana Galperine
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland.,French Group of Faecal Microbiota Transplantation
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
49
|
Halaweish HF, Boatman S, Staley C. Encapsulated Fecal Microbiota Transplantation: Development, Efficacy, and Clinical Application. Front Cell Infect Microbiol 2022; 12:826114. [PMID: 35372103 PMCID: PMC8968856 DOI: 10.3389/fcimb.2022.826114] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
Fecal microbiota transplantation (FMT) has been established as a highly restorative therapeutic approach for treating recurrent Clostridioides difficile infection (rCDI). Recently, the use of capsule-based fecal microbiota transplantation (cFMT) has been shown to be a clinically effective approach to restore intestinal microbiota composition. This convenient, oral delivery provides an easy route of administration and a newfound flexibility for clinicians and patients. In this review, we discuss the development of cFMT, paying particular attention to lyophilized cFMT products. We review the available published clinical studies comparing cFMT with lower endoscopic FMT (eFMT) or placebo. We further discuss the pharmacokinetics of FMT, which should be understood in a framework of microbial ecology that considers the complex and dynamic interactions of gut microbiota with host factors and other microorganisms. Promisingly, the results of multiple trials investigating cFMT vs. eFMT in rCDI show cFMT to be as effective as eFMT at preventing rCDI. However, its efficacy in non-rCDI conditions, including obesity and metabolic syndrome, inflammatory bowel disease, HIV, and neurologic conditions, is less clear and more research is needed in these areas. Standardization of formulation, dose, and timing of administration to ensure optimal microbiota engraftment and clinical response is also a challenge to be addressed. Overall, cFMT is a practical method for fecal microbiota transplantation, with similar efficacy to eFMT in the resolution of rCDI, that holds therapeutic potential in a variety of other diseases.
Collapse
Affiliation(s)
- Hossam F. Halaweish
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Sonja Boatman
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Christopher Staley
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, MN, United States
- *Correspondence: Christopher Staley,
| |
Collapse
|
50
|
Haindl R, Totzauer L, Kulozik U. Preservation by lyophilization of a human intestinal microbiota: influence of the cultivation pH on the drying outcome and re‐establishment ability. Microb Biotechnol 2022; 15:886-900. [PMID: 35124900 PMCID: PMC8913864 DOI: 10.1111/1751-7915.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/05/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Regina Haindl
- Chair of Food and Bioprocess Engineering TUM School of Life Sciences ZIEL‐Institute for Food and Health Technical University of Munich Weihenstephaner Berg 1 Freising‐Weihenstephan Germany
| | - Lisa Totzauer
- Chair of Food and Bioprocess Engineering TUM School of Life Sciences ZIEL‐Institute for Food and Health Technical University of Munich Weihenstephaner Berg 1 Freising‐Weihenstephan Germany
| | - Ulrich Kulozik
- Chair of Food and Bioprocess Engineering TUM School of Life Sciences ZIEL‐Institute for Food and Health Technical University of Munich Weihenstephaner Berg 1 Freising‐Weihenstephan Germany
| |
Collapse
|