1
|
Marques A, Belchior A, Silva F, Marques F, Campello MPC, Pinheiro T, Santos P, Santos L, Matos APA, Paulo A. Dose Rate Effects on the Selective Radiosensitization of Prostate Cells by GRPR-Targeted Gold Nanoparticles. Int J Mol Sci 2022; 23:ijms23095279. [PMID: 35563666 PMCID: PMC9105611 DOI: 10.3390/ijms23095279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022] Open
Abstract
For a while, gold nanoparticles (AuNPs) have been recognized as potential radiosensitizers in cancer radiation therapy, mainly due to their physical properties, making them appealing for medical applications. Nevertheless, the performance of AuNPs as radiosensitizers still raises important questions that need further investigation. Searching for selective prostate (PCa) radiosensitizing agents, we studied the radiosensitization capability of the target-specific AuNP-BBN in cancer versus non-cancerous prostate cells, including the evaluation of dose rate effects in comparison with non-targeted counterparts (AuNP-TDOTA). PCa cells were found to exhibit increased AuNP uptake when compared to non-tumoral ones, leading to a significant loss of cellular proliferation ability and complex DNA damage, evidenced by the occurrence of multiple micronucleus per binucleated cell, in the case of PC3 cells irradiated with 2 Gy of γ-rays, after incubation with AuNP-BBN. Remarkably, the treatment of the PC3 cells with AuNP-BBN led to a much stronger influence of the dose rate on the cellular survival upon γ-photon irradiation, as well as on their genomic instability. Overall, AuNP-BBN emerged in this study as a very promising nanotool for the efficient and selective radiosensitization of human prostate cancer PC3 cells, therefore deserving further preclinical evaluation in adequate animal models for prostate cancer radiotherapy.
Collapse
Affiliation(s)
- Ana Marques
- Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
| | - Ana Belchior
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Correspondence: (A.B.); (F.S.)
| | - Francisco Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Correspondence: (A.B.); (F.S.)
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
| | - Teresa Pinheiro
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
- Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Pedro Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
| | - Luis Santos
- Laboratório de Metrologia, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
| | - António P. A. Matos
- Centro de Investigação Interdisciplinar Egas Moniz, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal;
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
| |
Collapse
|
2
|
Palmioli A, Nicolini G, Tripodi F, Orsato A, Ceresa C, Donzelli E, Arici M, Coccetti P, Rocchetti M, La Ferla B, Airoldi C. Targeting GRP receptor: Design, synthesis and preliminary biological characterization of new non-peptide antagonists of bombesin. Bioorg Chem 2021; 109:104739. [PMID: 33626451 DOI: 10.1016/j.bioorg.2021.104739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/29/2023]
Abstract
We report the rational design, synthesis, and in vitro preliminary evaluation of a new small library of non-peptide ligands of Gastrin Releasing Peptide Receptor (GRP-R), able to antagonize its natural ligand bombesin (BN) in the nanomolar range of concentration. GRP-R is a transmembrane G-protein coupled receptor promoting the stimulation of cancer cell proliferation. Being overexpressed on the surface of different human cancer cell lines, GRP-R is ideal for the selective delivery to tumor cells of both anticancer drug and diagnostic devices. What makes very challenging the design of non-peptide BN analogues is that the 3D structure of the GRP-R is not available, which is the case for many membrane-bound receptors. Thus, the design of GRP-R ligands has to be based on the structure of its natural ligands, BN and GRP. We recently mapped the BN binding epitope by NMR and here we exploited the same spectroscopy, combined with MD, to define BN conformation in proximity of biological membranes, where the interaction with GRP-R takes place. The gained structural information was used to identify a rigid C-galactosidic scaffold able to support pharmacophore groups mimicking the BN key residues' side chains in a suitable manner for binding to GRP-R. Our BN antagonists represent hit compounds for the rational design and synthesis of new ligands and modulators of GRP-R. The further optimization of the pharmacophore groups will allow to increase the biological activity. Due to their favorable chemical properties and stability, they could be employed for the active receptor-mediated targeting of GRP-R positive tumors.
Collapse
Affiliation(s)
- Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126 Milan, Italy; Milan Center for Neuroscience, University of Milano-Bicocca, P.zza dell'Ateneo Nuovo 1, 20126 Milano, Italy
| | - Gabriella Nicolini
- Milan Center for Neuroscience, University of Milano-Bicocca, P.zza dell'Ateneo Nuovo 1, 20126 Milano, Italy; School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900 Monza, MB, Italy
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126 Milan, Italy
| | - Alexandre Orsato
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126 Milan, Italy; Departamento de Química, CCE, Universidade Estadual de Londrina, CEP 86057-970 Londrina, Paraná, Brazil
| | - Cecilia Ceresa
- Milan Center for Neuroscience, University of Milano-Bicocca, P.zza dell'Ateneo Nuovo 1, 20126 Milano, Italy; School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900 Monza, MB, Italy
| | - Elisabetta Donzelli
- Milan Center for Neuroscience, University of Milano-Bicocca, P.zza dell'Ateneo Nuovo 1, 20126 Milano, Italy; School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900 Monza, MB, Italy
| | - Martina Arici
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126 Milan, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126 Milan, Italy
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126 Milan, Italy
| | - Barbara La Ferla
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126 Milan, Italy.
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126 Milan, Italy; Milan Center for Neuroscience, University of Milano-Bicocca, P.zza dell'Ateneo Nuovo 1, 20126 Milano, Italy.
| |
Collapse
|
3
|
Mansour N, Dumulon-Perreault V, Ait-Mohand S, Paquette M, Lecomte R, Guérin B. Impact of dianionic and dicationic linkers on tumor uptake and biodistribution of [64Cu]Cu/NOTA peptide-based gastrin-releasing peptide receptors antagonists. J Labelled Comp Radiopharm 2017; 60:200-212. [DOI: 10.1002/jlcr.3491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/12/2017] [Accepted: 01/24/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Nematallah Mansour
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Véronique Dumulon-Perreault
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Samia Ait-Mohand
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Michel Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Roger Lecomte
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| |
Collapse
|
4
|
Boonstra MC, de Geus SWL, Prevoo HAJM, Hawinkels LJAC, van de Velde CJH, Kuppen PJK, Vahrmeijer AL, Sier CFM. Selecting Targets for Tumor Imaging: An Overview of Cancer-Associated Membrane Proteins. BIOMARKERS IN CANCER 2016; 8:119-133. [PMID: 27721658 PMCID: PMC5040425 DOI: 10.4137/bic.s38542] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/30/2022]
Abstract
Tumor targeting is a booming business: The global therapeutic monoclonal antibody market accounted for more than $78 billion in 2012 and is expanding exponentially. Tumors can be targeted with an extensive arsenal of monoclonal antibodies, ligand proteins, peptides, RNAs, and small molecules. In addition to therapeutic targeting, some of these compounds can also be applied for tumor visualization before or during surgery, after conjugation with radionuclides and/or near-infrared fluorescent dyes. The majority of these tumor-targeting compounds are directed against cell membrane-bound proteins. Various categories of targetable membrane-bound proteins, such as anchoring proteins, receptors, enzymes, and transporter proteins, exist. The functions and biological characteristics of these proteins determine their location and distribution on the cell membrane, making them more, or less, accessible, and therefore, it is important to understand these features. In this review, we evaluate the characteristics of cancer-associated membrane proteins and discuss their overall usability for cancer targeting, especially focusing on imaging applications.
Collapse
Affiliation(s)
- Martin C Boonstra
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Susanna W L de Geus
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Lukas J A C Hawinkels
- Department of Gastroenterology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands.; Antibodies for Research Applications BV, Gouda, the Netherlands
| | | | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands.; Antibodies for Research Applications BV, Gouda, the Netherlands
| |
Collapse
|
5
|
Richter S, Wuest M, Bergman CN, Krieger S, Rogers BE, Wuest F. Metabolically Stabilized (68)Ga-NOTA-Bombesin for PET Imaging of Prostate Cancer and Influence of Protease Inhibitor Phosphoramidon. Mol Pharm 2016; 13:1347-57. [PMID: 26973098 DOI: 10.1021/acs.molpharmaceut.5b00970] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptide receptor-based targeted molecular imaging and therapy of cancer is on the current forefront of nuclear medicine preclinical research and clinical practice. The frequent overexpression of gastrin-releasing peptide (GRP) receptors in prostate cancer stimulated the development of radiolabeled bombesin derivatives as high affinity peptide ligands for selective targeting of the GRP receptor. In this study, we have evaluated a novel (68)Ga-labeled bombesin derivative for PET imaging of prostate cancer in vivo. In addition, we were interested in testing the recently proposed "serve-and-protect" strategy to improve metabolic stability of radiolabeled peptides in vivo and to enhance tumor uptake. GRP receptor targeting peptides NOTA-BBN2 and (nat)Ga-NOTA-BBN2 demonstrated a characteristic antagonistic profile and high binding affinity toward the GRP receptor in PC3 cells (IC50 4.6-8.2 nM). Radiolabeled peptide (68)Ga-NOTA-BBN2 was obtained from NOTA-BBN2 in radiochemical yields greater than 62% (decay-corrected). Total synthesis time was 35 min, including purification using solid-phase extraction. (68)Ga-NOTA-BBN2 exhibited favorable resistance against metabolic degradation by peptidases in vivo within the investigated time frame of 60 min. Interestingly, metabolic stability was not further enhanced in the presence of protease inhibitor phosphoramidon. Dynamic PET studies showed high tumor uptake in both PC3- and LNCaP-bearing BALB/c nude mice (SUV5min > 0.6; SUV60min > 0.5). Radiotracer (68)Ga-NOTA-BBN2 represents a novel radiometal-based bombesin derivative suitable for GRP receptor targeting in PC3 and LNCaP mouse xenografts. Further increase of metabolic stability in vivo and enhanced tumor uptake were not observed upon administration of protease inhibitor phosphoramidon. This led to the conclusion that the recently proposed "serve-and-protect" strategy may not be valid for peptides exhibiting favorable intrinsic metabolic stability in vivo.
Collapse
Affiliation(s)
- Susan Richter
- Department of Oncology, University of Alberta, Cross Cancer Institute , Edmonton, Alberta T6G 2X4, Canada
| | - Melinda Wuest
- Department of Oncology, University of Alberta, Cross Cancer Institute , Edmonton, Alberta T6G 2X4, Canada
| | - Cody N Bergman
- Department of Oncology, University of Alberta, Cross Cancer Institute , Edmonton, Alberta T6G 2X4, Canada
| | - Stephanie Krieger
- Department of Radiation Oncology, Washington University School of Medicine , St. Louis, Missouri 63108, United States
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University School of Medicine , St. Louis, Missouri 63108, United States
| | - Frank Wuest
- Department of Oncology, University of Alberta, Cross Cancer Institute , Edmonton, Alberta T6G 2X4, Canada
| |
Collapse
|
6
|
Lee DJ, Jin C, Kim EJ, Lee JM, Jung HS. Gastrin-releasing peptide expression and its effect on the calcification of developing mouse incisor. Histochem Cell Biol 2015; 144:273-9. [PMID: 26126650 DOI: 10.1007/s00418-015-1335-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
Abstract
Gastrin-releasing peptide (GRP) is considered to be one of the cancer growth factors. This peptide's receptor (GRPR) is known as a G protein-coupled receptor, regulating intracellular calcium storage and releasing signals. This study is the first to investigate the function of GRP during mouse incisor development. We hypothesized that GRP is one of the factors that affects the regulation of calcification during tooth development. To verify the expression pattern of GRP, in situ hybridization was processed during incisor development. GRP was expressed at the late bell stage and hard tissue formation stage in the epithelial tissue. To identify the genuine function of GRP during incisor development, a gain-of-function analysis was performed. After GRP overexpression in culture, the phenotype of ameloblasts, odontoblasts and predentin was altered compared to control group. Moreover, enamel and dentin thickness was increased after renal capsule transplantation of GRP-overexpressed incisors. With these results, we suggest that GRP plays a significant role in the formation of enamel and dentin by regulating ameloblasts and predentin formation, respectively. Thus, GRP signaling is strongly related to calcium acquisition and secretion during mouse incisor development.
Collapse
Affiliation(s)
- Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, 120-752, Korea
| | | | | | | | | |
Collapse
|
7
|
Ischia J, Patel O, Bolton D, Shulkes A, Baldwin GS. Expression and function of gastrin-releasing peptide (GRP) in normal and cancerous urological tissues. BJU Int 2014; 113 Suppl 2:40-7. [PMID: 24894852 DOI: 10.1111/bju.12594] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gastrin-releasing peptide (GRP) acts as an important regulatory peptide in several normal physiological processes and as a growth factor in certain cancers. In this review we provide a comprehensive overview of the current state of knowledge of GRP in urological tissues under both normal and cancerous conditions. GRP and its receptor, GRP-R, are expressed in the normal kidney and renal cancers. GRP can stimulate the growth of renal cancer cells. GRP and GRP-R are expressed in prostate cancer and GRP can stimulate the growth of prostate cancer cell lines. Importantly, GRP is a key neuroendocrine peptide, which may be involved in the progression of advanced prostate cancer and in the neuroendocrine differentiation of prostate cancer. Recent animal studies have shown that GRP and GRP-R are an integral part of male sexual function and play a crucial role in spinal control of erections and ejaculation.
Collapse
Affiliation(s)
- Joseph Ischia
- Department of Surgery, Austin Health, Melbourne, VIC, Australia; Department of Urology, University of Melbourne, Austin Health, Melbourne, VIC, Australia
| | | | | | | | | |
Collapse
|
8
|
Levi J, Sathirachinda A, Gambhir SS. A high-affinity, high-stability photoacoustic agent for imaging gastrin-releasing peptide receptor in prostate cancer. Clin Cancer Res 2014; 20:3721-9. [PMID: 24850845 DOI: 10.1158/1078-0432.ccr-13-3405] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate the utility of targeted photoacoustic imaging (PAI) in providing molecular information to complement intrinsic functional and anatomical details of the vasculature within prostate lesion. EXPERIMENTAL DESIGN We developed a PAI agent, AA3G-740, that targets gastrin-releasing peptide receptor (GRPR), found to be highly overexpressed in prostate cancer. The binding specificity of the agent was evaluated in human prostate cancer cell lines, PC3 and LNCaP, and antagonist properties determined by cell internalization and intracellular calcium mobilization studies. The imaging sensitivity was assessed for the agent itself and for the PC3 cells labeled with agent. The in vivo stability of the agent was determined in human plasma and in the blood of living mice. The in vivo binding of the agent was evaluated in PC3 prostate tumor models in mice, and was validated ex vivo by optical imaging. RESULTS AA3G-740 demonstrated strong and specific binding to GRPR. The sensitivity of detection in vitro indicated suitability of the agent to image very small lesions. In mice, the agent was able to bind to GRPR even in poorly vascularized tumors leading to nearly 2-fold difference in photoacoustic signal relative to the control agent. CONCLUSIONS The ability to image both vasculature and molecular profile outside the blood vessels gives molecular PAI a unique advantage over currently used imaging techniques. The imaging method presented here can find application both in diagnosis and in image-guided biopsy.
Collapse
Affiliation(s)
- Jelena Levi
- Authors' Affiliations: Canary Center at Stanford for Cancer Early Detection; and Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Palo Alto, Stanford, California
| | - Ataya Sathirachinda
- Authors' Affiliations: Canary Center at Stanford for Cancer Early Detection; and Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Palo Alto, Stanford, California
| | - Sanjiv S Gambhir
- Authors' Affiliations: Canary Center at Stanford for Cancer Early Detection; and Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Palo Alto, Stanford, California
| |
Collapse
|
9
|
Marsouvanidis PJ, Nock BA, Hajjaj B, Fehrentz JA, Brunel L, M'Kadmi C, van der Graaf L, Krenning EP, Maina T, Martinez J, de Jong M. Gastrin releasing peptide receptor-directed radioligands based on a bombesin antagonist: synthesis, (111)in-labeling, and preclinical profile. J Med Chem 2013; 56:2374-84. [PMID: 23427837 DOI: 10.1021/jm301692p] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Novel bombesin (BBN) antagonists were synthesized by coupling the chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) to H-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 (JMV594) through linkers of increasing number of (βAla)x residues (x = 1-3). Labeling with (111)In afforded the respective radiotracers in high purity and high specific activity. Bioconjugate affinity for the gastrin releasing peptide receptor (GRPR) as determined against [(125)I-Tyr(4)]BBN was high (IC50 values in the lower nanomolar range). Radioligands poorly internalized in PC-3 cells at 37 °C. Radiopeptides remained >60% intact 5 min after entering the bloodstream of healthy mice. After injection in SCID mice bearing human PC-3 xenografts all analogues showed high tumor uptake and rapid background clearance via the kidneys into urine. Interestingly, pancreatic uptake, albeit GRPR-specific, declined rapidly with time. (111)In-DOTA-(βAla)2-JMV594 achieved the highest tumor values among the group (17.0 ± 2.8%ID/g vs. 8-10%ID/g, respectively, at 4 h pi) indicating that the (βAla)2-linker favors in vivo interaction of radiopeptides with the GRPR.
Collapse
Affiliation(s)
- Panteleimon J Marsouvanidis
- Molecular Radiopharmacy, INRASTES, National Center for Scientific Research "Demokritos", Ag. Paraskevi Attikis, GR-153 10 Athens, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fournier P, Dumulon-Perreault V, Ait-Mohand S, Tremblay S, Bénard F, Lecomte R, Guérin B. Novel Radiolabeled Peptides for Breast and Prostate Tumor PET Imaging: 64Cu/and 68Ga/NOTA-PEG-[d-Tyr6,βAla11,Thi13,Nle14]BBN(6–14). Bioconjug Chem 2012; 23:1687-93. [DOI: 10.1021/bc3002437] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick Fournier
- Centre d’imagerie moléculaire
de Sherbrooke (CIMS), Centre Hospitalier Universitaire de Sherbrooke
and, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001, 12th Avenue
North, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Véronique Dumulon-Perreault
- Centre d’imagerie moléculaire
de Sherbrooke (CIMS), Centre Hospitalier Universitaire de Sherbrooke
and, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001, 12th Avenue
North, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Samia Ait-Mohand
- Centre d’imagerie moléculaire
de Sherbrooke (CIMS), Centre Hospitalier Universitaire de Sherbrooke
and, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001, 12th Avenue
North, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Sébastien Tremblay
- Centre d’imagerie moléculaire
de Sherbrooke (CIMS), Centre Hospitalier Universitaire de Sherbrooke
and, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001, 12th Avenue
North, Sherbrooke, Quebec, Canada, J1H 5N4
| | - François Bénard
- BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - Roger Lecomte
- Centre d’imagerie moléculaire
de Sherbrooke (CIMS), Centre Hospitalier Universitaire de Sherbrooke
and, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001, 12th Avenue
North, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Brigitte Guérin
- Centre d’imagerie moléculaire
de Sherbrooke (CIMS), Centre Hospitalier Universitaire de Sherbrooke
and, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001, 12th Avenue
North, Sherbrooke, Quebec, Canada, J1H 5N4
| |
Collapse
|
11
|
Patrikidou A, Vlachostergios PJ, Voutsadakis IA, Hatzidaki E, Valeri RM, Destouni C, Apostolou E, Papandreou CN. Neuropeptide-inducible upregulation of proteasome activity precedes nuclear factor kappa B activation in androgen-independent prostate cancer cells. Cancer Cell Int 2012; 12:31. [PMID: 22715899 PMCID: PMC3441896 DOI: 10.1186/1475-2867-12-31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/11/2012] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Upregulation of nuclear factor kappa B (NFκB) activity and neuroendocrine differentiation are two mechanisms known to be involved in prostate cancer (PC) progression to castration resistance. We have observed that major components of these pathways, including NFκB, proteasome, neutral endopeptidase (NEP) and endothelin 1 (ET-1), exhibit an inverse and mirror image pattern in androgen-dependent (AD) and -independent (AI) states in vitro. METHODS We have now investigated for evidence of a direct mechanistic connection between these pathways with the use of immunocytochemistry (ICC), western blot analysis, electrophoretic mobility shift assay (EMSA) and proteasome activity assessment. RESULTS Neuropeptide (NP) stimulation induced nuclear translocation of NFκB in a dose-dependent manner in AI cells, also evident as reduced total inhibitor κB (IκB) levels and increased DNA binding in EMSA. These effects were preceded by increased 20 S proteasome activity at lower doses and at earlier times and were at least partially reversed under conditions of NP deprivation induced by specific NP receptor inhibitors, as well as NFκB, IκB kinase (IKK) and proteasome inhibitors. AD cells showed no appreciable nuclear translocation upon NP stimulation, with less intense DNA binding signal on EMSA. CONCLUSIONS Our results support evidence for a direct mechanistic connection between the NPs and NFκB/proteasome signaling pathways, with a distinct NP-induced profile in the more aggressive AI cancer state.
Collapse
Affiliation(s)
- Anna Patrikidou
- Department of Medicine, Institut Gustave Roussy, Villejuif, France
| | | | - Ioannis A Voutsadakis
- Centre Pluridisciplinaire d’Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Eleana Hatzidaki
- Department of Medical Oncology, University Hospital of Larissa, Larissa, Greece
| | | | - Chariklia Destouni
- Department of Cytopathology, “Theagenio” Cancer Hospital, Thessaloniki, Greece
| | - Effie Apostolou
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, Cambridge, MA, USA
| | | |
Collapse
|
12
|
Tsapakidis K, Vlachostergios PJ, Voutsadakis IA, Befani CD, Patrikidou A, Hatzidaki E, Daliani DD, Moutzouris G, Liakos P, Papandreou CN. Bortezomib reverses the proliferative and antiapoptotic effect of neuropeptides on prostate cancer cells. Int J Urol 2012; 19:565-574. [PMID: 22324515 DOI: 10.1111/j.1442-2042.2012.02967.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Neuropeptides are important signal initiators in advanced prostate cancer, partially acting through activation of nuclear factor kappa B. Central to nuclear factor kappa B regulation is the ubiquitin-proteasome system, pharmacological inhibition of which has been proposed as an anticancer strategy. We investigated the putative role of the proteasome inhibitor bortezomib in neuropeptides signaling effects on prostate cancer cells. METHODS Human prostate cancer cell lines, LNCaP and PC-3, were used to examine cell proliferation, levels of proapoptotic (caspase-3, Bad) and cell cycle regulatory proteins (p53, p27, p21), as well as total and phosphorylated Akt and p44/42 mitogen-activated protein kinase proteins. Furthermore, 20S proteasome activity, subcellular localization of nuclear factor kappa B and transcription of nuclear factor kappa B target genes, interleukin-8 and vascular endothelial growth factor, were assessed. RESULTS Neuropeptides (endothelin-1, bombesin) increased cell proliferation, whereas bortezomib decreased proliferation and induced apoptosis, an effect maintained after cotreatment with neuropeptides. Bad, p53, p21 and p27 were downregulated by neuropeptides in PC-3, and these effects were reversed with the addition of bortezomib. Neuropeptides increased proteasomal activity and nuclear factor kappa B levels in PC-3, and these effects were prevented by bortezomib. Interleukin-8 and vascular endothelial growth factor transcripts were induced after neuropeptides treatment, but downregulated by bortezomib. These results coincided with the ability of bortezomib to reduce mitogen-activated protein kinase signaling in both cell lines. CONCLUSIONS These findings are consistent with bortezomib-mediated abrogation of neuropeptides-induced proliferative and antiapoptotic signaling. Thus, the effect of the drug on the neuropeptides axis needs to be further investigated, as neuropeptide action in prostate cancer might entail involvement of the proteasome.
Collapse
|
13
|
Park HJ, Kim SR, Kim MK, Choi KS, Jang HO, Yun I, Bae SK, Bae MK. Neuromedin B receptor antagonist suppresses tumor angiogenesis and tumor growth in vitro and in vivo. Cancer Lett 2011; 312:117-27. [PMID: 21908103 DOI: 10.1016/j.canlet.2011.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/05/2011] [Accepted: 08/09/2011] [Indexed: 11/29/2022]
Abstract
Neuromedin B (NMB), a member of the mammalian bombesin-like peptide family, and its receptor were aberrantly expressed in vascularized solid tumors. Here, the NMB receptor (NMB-R) antagonist PD168368 specifically inhibited both NMB-induced in vivo and in vitro angiogenesis. In addition, PD168368 showed growth inhibitory effects on MDA-MB-231 breast cancer cells by inducing cell cycle arrest and apoptosis. Furthermore, PD168368 effectively suppressed tumor growth in a xenograft model of breast tumor in vivo. Overall, NMB-R antagonist exhibited a significant antitumor activity by simultaneously inhibiting neovascularization and cancer cell growth, thereby suggesting that NMB-R could be a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Hyun-Joo Park
- School of Dentistry, Pusan National University, Yangsan 626-870, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ait-Mohand S, Fournier P, Dumulon-Perreault V, Kiefer GE, Jurek P, Ferreira CL, Bénard F, Guérin B. Evaluation of 64Cu-labeled bifunctional chelate-bombesin conjugates. Bioconjug Chem 2011; 22:1729-35. [PMID: 21761921 DOI: 10.1021/bc2002665] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Several bifunctional chelates (BFCs) were investigated as carriers of (64)Cu for PET imaging. The most widely used chelator for (64)Cu labeling of BFCs is DOTA (1,4,7,10-tetraazacyclododecane-N,N',N″,N'''-tretraacetic acid), even though this complex exhibits only moderate in vivo stability. In this study, we prepared a series of alternative chelator-peptide conjugates labeled with (64)Cu, measured in vitro receptor binding affinities in human breast cancer T47D cells expressing the gastrin-releasing peptide receptor (GRPR) and compared their in vivo stability in mice. DOTA-, NOTA-(1,4,7-triazacyclononane-1,4,7-triacetic acid), PCTA-(3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid), and Oxo-DO3A-(1-oxa-4,7,10-triazacyclododecane-4,7,10-triacetic acid) peptide conjugates were prepared using H(2)N-Aoc-[d-Tyr(6),βAla(11),Thi(13),Nle(14)]bombesin(6-14) (BBN) as a peptide template. The BBN moiety was selected since it binds with high affinity to the GRPR, which is overexpressed on human breast cancer cells. A convenient synthetic approach for the attachment of aniline-BFC to peptides on solid support is also presented. To facilitate the attachment of the aniline-PCTA and aniline-Oxo-DO3A to the peptide via an amide bond, a succinyl spacer was introduced at the N-terminus of BBN. The partially protected aniline-BFC (p-H(2)N-Bn-PCTA(Ot-Bu)(3) or p-H(2)N-Bn-DO3A(Ot-Bu)(3)) was then coupled to the resulting N-terminal carboxylic acid preactivated with DEPBT/ClHOBt on resin. After cleavage and purification, the peptide-conjugates were labeled with (64)Cu using [(64)Cu]Cu(OAc)(2) in 0.1 M ammonium acetate buffer at 100 °C for 15 min. Labeling efficacy was >90% for all peptides; Oxo-DO3A-BBN was incubated an additional 150 min at 100 °C to achieve this high yield. Specific activities varied from 76 to 101 TBq/mmol. Competition assays on T47D cells showed that all BFC-BBN complexes retained high affinity for the GRPR. All BFC-BBN (64)Cu-conjugates were stable for over 20 h when incubated at 37 °C in mouse plasma samples. However, in vivo, only 37% of the (64)Cu/Oxo-DO3A complex remained intact after 20 h while the (64)Cu/DOTA-BBN complex was completely demetalated. In contrast, both (64)Cu/NOTA- and (64)Cu/PCTA-BBN conjugates remained stable during the 20 h time period. Our results indicate that it is possible to successfully conjugate aniline-BFC with peptide on solid support. Our data also show that (64)Cu-labeled NOTA- and PCTA-BBN peptide conjugates are promising radiotracers for PET imaging of many human cancers overexpressing the GRP receptor.
Collapse
Affiliation(s)
- Samia Ait-Mohand
- Centre d'imagerie moléculaire de Sherbrooke, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001, 12th North Avenue Sherbrooke, Qubec, Canada, J1H 5N4
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Steinmetz NF, Ablack AL, Hickey JL, Ablack J, Manocha B, Mymryk JS, Luyt LG, Lewis JD. Intravital imaging of human prostate cancer using viral nanoparticles targeted to gastrin-releasing Peptide receptors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1664-72. [PMID: 21520408 PMCID: PMC3163449 DOI: 10.1002/smll.201000435] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 09/27/2010] [Indexed: 05/02/2023]
Abstract
Multivalent nanoparticles have several key advantages in terms of solubility, binding avidity, and uptake, making them particularly well suited to molecular imaging applications. Herein is reported the stepwise synthesis and characterization of NIR viral nanoparticles targeted to gastrin-releasing peptide receptors that are over-expressed in human prostate cancers. The pan-bombesin analogue, [β-Ala11, Phe13, Nle14]bombesin-(7-14), is conjugated to cowpea mosaic virus particles functionalized with an NIR dye (Alexa Fluor 647) and polyethylene glycol (PEG) using the copper(I)-catalyzed azide-alkyne cycloaddition reaction. Targeting and uptake in human PC-3 prostate cells is demonstrated in vitro. Tumor homing is observed using human prostate tumor xenografts on the chicken chorioallantoic membrane model using intravital imaging. Further development of this viral nanoparticle platform may open the door to potential clinical noninvasive molecular imaging strategies.
Collapse
Affiliation(s)
- Nicole F. Steinmetz
- Department of Cell Biology, Center of Integrative Molecular Biosciences, The Scripps Research Institute, North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Amber L. Ablack
- Translational Prostate Cancer Research Group, London Regional Cancer Program, Room A4-823, 790 Commissioners Rd. E., London, Ontario N6A 4L6, Canada
| | - Jennifer L. Hickey
- Department of Chemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Jailal Ablack
- Department of Oncology, London Regional Cancer Program, 790 Commissioners Rd. E., London, Ontario N6A 4L6, Canada
| | - Bhavik Manocha
- Translational Prostate Cancer Research Group London Regional Cancer Program, Room A4-823, 790 Commissioners Rd. E., London, Ontario N6A 4L6, Canada
| | - Joe S. Mymryk
- Department of Oncology, London Regional Cancer Program, 790 Commissioners Rd. E., London, Ontario N6A 4L6, Canada
| | - Leonard G. Luyt
- Department of Chemistry University of Western Ontario London, Ontario N6A 5C1, Canada
| | - John D. Lewis
- Translational Prostate Cancer Research Group London Regional Cancer Program, Room A4-823, 790 Commissioners Rd. E., London, Ontario N6A 4L6, Canada
| |
Collapse
|
16
|
Sotomayor S, Muñoz-Moreno L, Carmena MJ, Schally AV, Sánchez-Chapado M, Prieto JC, Bajo AM. Regulation of HER expression and transactivation in human prostate cancer cells by a targeted cytotoxic bombesin analog (AN-215) and a bombesin antagonist (RC-3095). Int J Cancer 2010; 127:1813-22. [PMID: 20099275 DOI: 10.1002/ijc.25192] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bombesin (BN) and gastrin-releasing peptide (GRP) have been shown to stimulate the growth of human prostate cancer in vivo and in vitro by mechanisms initiated by binding of the peptide to BN/GRP receptor (GRPR). GRPR is overexpressed in a variety of human cancers, including human prostatic carcinoma. This led us to evaluate the effectiveness of blocking GRPR and of chemotherapy targeted to GRPR in androgen-dependent (LNCaP) and androgen-independent (PC-3) prostate cancer cells, which exhibit different features of disease progression. Thus, we used a cytotoxic BN/GRP analog, AN-215, consisting of 2-pyrrolinodoxorubicin (AN-201) linked to BN-like carrier peptide, and a BN/GRP receptor antagonist, RC-3095. Semiquantitative RT-PCR and Western blotting revealed that mRNA and protein levels for GRPR increased in prostate cancer cells as compared with nonneoplastic RWPE-1 cells. Immunofluorocytochemistry and Western blot assays revealed that AN-215 was the most effective analog decreasing both the expression of epidermal growth factor receptor family members and the activation of epidermal growth factor receptor and HER-2, which are associated to a poor prognosis. Furthermore, analogs targeted to BN/GRP receptors, AN-215 and RC-3095, blocked the effect of BN on cell growth in RWPE-1, LNCaP and PC-3 cells. These findings shed light on the mechanisms of action of these analogs and support the view that the use of AN-215 and RC-3095 for blocking BN/GRP receptors for targeted therapy may be of benefit for treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Sandra Sotomayor
- Department of Biochemistry and Molecular Biology, Alcalá University, Alcalá de Henares, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours. Eur J Nucl Med Mol Imaging 2010; 38:97-107. [DOI: 10.1007/s00259-010-1596-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 08/04/2010] [Indexed: 11/25/2022]
|
18
|
Action, localization and structure-function relationship of growth factors and their receptors in the prostate. ACTA ACUST UNITED AC 2009. [DOI: 10.1017/s0962279900001265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Whereas the direct action of sex steroids, namely of androgens, on prostate cell division was questioned as early as in the 1970s, and remains so, the interest in prostatic growth factors (GFs) is rather recent but has expanded tremendously in the last five years. This lag period can be partly explained by the fact that, at the time, androgen receptors had just been discovered, and newly developed hormonal regimens or strategies to treat patients with prostate carcinoma (PCa) or epithelioma had generated great enthusiasm and hopes in the medical and scientific community. Another point to consider was the difficulty in maintaining prostate tissues in organ cultures and the relative novelty of culturing prostate epithelial cells in monolayers. Failures of sex steroids to elicit a direct positive response on prostate cell divisionin vitro, as seenin vivo, were interpreted as resulting from inappropriate models or culture conditions. However, the increasing number of reports confirming the lack of mitogenic activity of sex steroidsin vitro, coupled with the powerful mitogenic activity of GFs displayed in other systems, the discovery of GF receptors (GF-Rs), and the elucidation of their signalling pathways showing sex steroid receptors as potential substrates of GF-activated protein kinases gradually led to an increased interest in the putative role of GFs in prostate physiopathology. Of utmost importance was the recognition that hormone refractiveness was responsible for PCa progression, and for the poor outcome of patients with advanced disease under endocrine therapies. This problem remains a major issue and it raises several key questions that need to be solved at the fundamental and clinical levels.
Collapse
|
19
|
Yang JC, Ok JH, Busby JE, Borowsky AD, Kung HJ, Evans CP. Aberrant activation of androgen receptor in a new neuropeptide-autocrine model of androgen-insensitive prostate cancer. Cancer Res 2009; 69:151-60. [PMID: 19117998 PMCID: PMC2626435 DOI: 10.1158/0008-5472.can-08-0442] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Treatment of advanced prostate cancer with androgen deprivation therapy inevitably renders the tumors castration-resistant and incurable. Under these conditions, neuroendocrine differentiation of prostate cancer (CaP) cells is often detected and neuropeptides released by these cells may facilitate the development of androgen independence. Exemplified by gastrin-releasing peptide (GRP), these neuropeptides transmit their signals through G protein-coupled receptors, which are often overexpressed in prostate cancer, and aberrantly activate androgen receptor (AR) in the absence of androgen. We developed an autocrine neuropeptide model by overexpressing GRP in LNCaP cells and the resultant cell line, LNCaP-GRP, exhibited androgen-independent growth with enhanced motility in vitro. When orthotopically implanted in castrated nude mice, LNCaP-GRP produced aggressive tumors, which express GRP, prostate-specific antigen, and nuclear-localized AR. Chromatin immunoprecipitation studies of LNCaP-GRP clones suggest that GRP activates and recruits AR to the cognate promoter in the absence of androgen. A Src family kinase (SFK) inhibitor, AZD0530, inhibits androgen-independent growth and migration of the GRP-expressing cell lines, and blocks the nuclear translocation of AR, indicating the involvement of SFK in the aberrant activation of AR and demonstrating the potential use of SFK inhibitor in the treatment of castration-resistant CaP. In vivo studies have shown that AZD0530 profoundly inhibits tumor metastasis in severe combined immunodeficient mice implanted with GRP-autocrine LNCaP cells. This xenograft model shows autocrine, neuropeptide- and Src kinase-mediated progression of androgen-independent CaP postcastration, and is potentially useful for testing novel therapeutic agents.
Collapse
Affiliation(s)
- Joy C Yang
- Department of Urology and Biological Chemistry, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
20
|
Dubuc C, Langlois R, Bénard F, Cauchon N, Klarskov K, Tone P, van Lier JE. Targeting gastrin-releasing peptide receptors of prostate cancer cells for photodynamic therapy with a phthalocyanine–bombesin conjugate. Bioorg Med Chem Lett 2008; 18:2424-7. [DOI: 10.1016/j.bmcl.2008.02.051] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 02/19/2008] [Accepted: 02/21/2008] [Indexed: 11/25/2022]
|
21
|
Salah Z, Maoz M, Pizov G, Bar-Shavit R. Transcriptional regulation of human protease-activated receptor 1: a role for the early growth response-1 protein in prostate cancer. Cancer Res 2007; 67:9835-43. [PMID: 17942914 DOI: 10.1158/0008-5472.can-07-1886] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcriptional regulation plays a central role in the molecular pathways underlying preferential cancer growth and metastasis. In the present study, we investigated the regulation of human protease-activated receptor 1 (hPar1) gene overexpression in the malignant androgen hormone-resistant phase. We found increased hPar1 RNA chain elongation and no change in message stability in cells with high levels of PAR1 expression, indicating that increased transcription is largely responsible for the overexpression of hPar1 in prostate tumor progression. Enforced expression of early growth response-1 (Egr-1) plasmid markedly enhanced luciferase activity driven by the hPar1 promoter. The neuroendocrine peptide bombesin significantly induced hPar1 expression and increased the ability of the cells to invade Matrigel, an effect abolished by expression of hPar1 small interfering RNA, showing the importance of hPAR1 in invasion. Bombesin also markedly enhanced Egr-1 binding to the hPar1 promoter in vivo and in vitro. These data suggest that bombesin enhances Egr-1 expression leading to increased hPar1 transcription, thereby increasing PAR1 expression and function. Immunohistostaining of prostate tissue biopsy specimens revealed a direct correlation between the degree of prostate cancer malignancy, PAR1 expression, and EGR-1 expression. Altogether, we show that transcriptional regulation of hPar1 in the aggressive hormone-resistant prostate cancer stage is controlled in part by the transcription factor Egr-1 and may play a central role in invasiveness, an important indicator of malignancy.
Collapse
Affiliation(s)
- Zaidoun Salah
- Department of Oncology, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | | | | | | |
Collapse
|
22
|
de Visser M, Bernard HF, Erion JL, Schmidt MA, Srinivasan A, Waser B, Reubi JC, Krenning EP, de Jong M. Novel 111In-labelled bombesin analogues for molecular imaging of prostate tumours. Eur J Nucl Med Mol Imaging 2007; 34:1228-38. [PMID: 17287960 DOI: 10.1007/s00259-006-0356-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 12/03/2006] [Indexed: 12/25/2022]
Abstract
PURPOSE It has been shown that some primary human tumours and their metastases, including prostate and breast tumours, overexpress gastrin-releasing peptide (GRP) receptors. Bombesin (BN) is a neuropeptide with a high affinity for these GRP receptors. We demonstrated successful scintigraphic visualisation of BN receptor-positive tumours in preclinical studies using the radiolabelled BN analogue [(111)In-DTPA-Pro(1),Tyr(4)]BN. However, the receptor affinity as well as the serum stability of this analogue leave room for improvement. Therefore new (111)In-labelled BN analogues were synthesised and evaluated in vitro and in vivo. METHODS AND RESULTS The receptor affinity of the new BN analogues was tested on human GRP receptor-expressing prostate tumour xenografts and rat colon sections. Analogues with high receptor affinity (low nM range) were selected for further evaluation. Incubation in vitro of GRP receptor-expressing rat CA20948 and human PC3 tumour cells with the (111)In-labelled analogues resulted in rapid receptor-mediated uptake and internalisation. The BN analogue with the best receptor affinity and in vitro internalisation characteristics, Cmp 3 ([(111)In-DTPA-ACMpip(5),Tha(6),betaAla(11),Tha(13),Nle(14)]BN(5-14)), was tested in vivo in biodistribution studies using rats bearing GRP receptor-expressing CA20948 tumours, and nude mice bearing human PC3 xenografts. Injection of (111)In-labelled Cmp 3 in these animals showed high, receptor-mediated uptake in receptor-positive organs and tumours which could be visualised using planar gamma camera and microSPECT/CT imaging. CONCLUSION With their enhanced receptor affinity and their rapid receptor-mediated internalisation in vitro and in vivo, the new BN analogues, and especially Cmp 3, are promising candidates for use in diagnostic molecular imaging and targeted radionuclide therapy of GRP receptor-expressing cancers.
Collapse
Affiliation(s)
- M de Visser
- Department of Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nelson EC, Cambio AJ, Yang JC, Lara PN, Evans CP. Biologic agents as adjunctive therapy for prostate cancer: a rationale for use with androgen deprivation. ACTA ACUST UNITED AC 2007; 4:82-94. [PMID: 17287869 DOI: 10.1038/ncpuro0700] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 11/15/2006] [Indexed: 12/26/2022]
Abstract
The prevalence of prostate cancer emphasizes the need for improved therapeutic options, particularly for metastatic disease. Current treatment includes medical or surgical castration, which initially induces apoptosis of prostate cancer cells, but ultimately an androgen-independent subpopulation emerges. In addition to a transient therapeutic effect, androgen-deprivation therapy (ADT) can initiate biochemical events that may contribute to the development of and progression to an androgen-independent state. This transition involves multiple signal transduction pathways that are accompanied by many biochemical changes resulting from ADT. These molecular events themselves are therapeutic targets and serve as a rationale for adjunctive treatment at the time of ADT.
Collapse
|
24
|
Oh WK, Tay MH, Huang J. Is there a role for platinum chemotherapy in the treatment of patients with hormone-refractory prostate cancer? Cancer 2007; 109:477-86. [PMID: 17186531 DOI: 10.1002/cncr.22439] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Docetaxel chemotherapy is the current standard of care for metastatic hormone-refractory prostate cancer (HRPC). Platinum chemotherapy drugs, such as cisplatin and carboplatin, have moderate single-agent activity in HRPC. Next-generation platinum drugs, including satraplatin and oxaliplatin, may have additional activity in the management of HRPC. Furthermore, neuroendocrine differentiation may play a role in disease progression, providing a rationale for platinum-based chemotherapy in the management of HRPC. The authors reviewed the MEDLINE database for reports related to platinum-based chemotherapy in patients with advanced prostate cancer and evaluated studies that reviewed the role of neuroendocrine differentiation in the progression of HRPC. Older studies from the 1970s and 1980s suggested a lack of activity of cisplatin and carboplatin; however, those studies were flawed at least in part by their methods of response assessment. More recent Phase II studies of carboplatin suggested a moderate level of clinical and palliative activity when it was used as a single agent. However, when carboplatin was combined with a taxane and estramustine, high response rates were observed in several recent clinical trials. In addition, a randomized trial suggested that satraplatin plus prednisone improved progression-free survival compared with prednisone alone. For patients who progressed after docetaxel, no standard options existed in the literature that was reviewed. Several preliminary reports suggested that carboplatin and oxaliplatin may have activity as second-line chemotherapy. Platinum chemotherapy drugs historically have been considered inactive in HRPC, although a review of the data suggested otherwise. Carboplatin, in particular, induced very high response rates when it was combined with estramustine and a taxane, but it also appeared to have activity in patients who progressed after docetaxel. Satraplatin plus prednisone is being investigated in a large Phase III trial as second-line chemotherapy for HRPC. Targeting neuroendocrine cells may provide a new therapeutic approach to HRPC.
Collapse
Affiliation(s)
- William K Oh
- Lank Center for Genitourinary Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
25
|
García Garayoa E, Rüegg D, Bläuenstein P, Zwimpfer M, Khan IU, Maes V, Blanc A, Beck-Sickinger AG, Tourwé DA, Schubiger PA. Chemical and biological characterization of new Re(CO)3/[99mTc](CO)3 bombesin analogues. Nucl Med Biol 2007; 34:17-28. [PMID: 17210458 DOI: 10.1016/j.nucmedbio.2006.10.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 06/26/2006] [Accepted: 10/17/2006] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Bombesin, a neuropeptide with potential for breast and prostate tumor targeting, is rapidly metabolized in vivo, and as a result, uptake in tumor xenografts in mice is poor. An improvement can be expected from the introduction of nonnatural amino acids and spacers. Leu13 was replaced by cyclohexylalanine and Met14 by norleucine. Two spacers, -betaAla-betaAla- and 3,6-dioxa-8-aminooctanoic acid, were inserted between the receptor-binding amino acid sequence (7-14) of bombesin (BBS) and the retroN(alpha)-carboxymethyl histidine chelator used for labeling with the [99mTc](CO)3 core and the rhenium (Re) congener. METHODS The biological characterization of the new compounds was performed both in vitro on prostate carcinoma PC-3 cells (binding affinity, internalization/externalization) and in vivo (biodistribution in nude mice with tumor xenografts). The stability was also investigated in human plasma. The Re analogues were prepared for chemical characterization. RESULTS The nonnatural amino acids led to markedly slower degradation in human plasma and PC-3 cell cultures. The receptor affinity of the new technetium 99m ([99mTc])-labeled BBS analogues was similar to the unmodified compound with Kd<1 nM. Uptake in the pancreas and in PC-3 tumor xenografts in nude mice was blocked by unlabeled BBS. The best target-to-nontarget uptake ratio was clearly due to the presence of the more polar spacer, -betaAla-betaAla-. CONCLUSIONS The different spacers did not have a significant effect on stability or receptor affinity but had a clear influence on the uptake in healthy organs and tumors. Uptake in the kidneys was lower than in the liver, which is likely to be due to the lipophilicity of the compounds. A specific, high uptake was also observed in the gastrin-releasing peptide receptor-rich pancreas. Thus, with the introduction of spacers the in vivo properties of the compounds can be improved while leaving the affinity unaffected.
Collapse
Affiliation(s)
- Elisa García Garayoa
- Paul Scherrer Institute, Centre for Radiopharmaceutical Science, CH-5232 Villigen PSI, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Desai SJ, Ma AH, Tepper CG, Chen HW, Kung HJ. Inappropriate Activation of the Androgen Receptor by Nonsteroids: Involvement of the Src Kinase Pathway and Its Therapeutic Implications. Cancer Res 2006; 66:10449-59. [PMID: 17079466 DOI: 10.1158/0008-5472.can-06-2582] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The inappropriate activation of androgen receptor (AR) by nonsteroids is considered a potential mechanism in the emergence of hormone-refractory prostate tumors, but little is known about the properties of these "pseudoactivated" AR. Here, we present the first comprehensive analysis closely examining the properties of AR activated by the neuropeptide bombesin that distinguish it from androgen-activated AR. We show that bombesin-activated AR (a) is required for bombesin-induced growth of LNCaP cells, (b) has a transcriptional profile overlapping with, but not identical to, androgen-activated AR, (c) activates prostate-specific antigen by preferentially binding to its proximal promoter, and (d) assembles a distinct coactivator complex. Significantly, we found that Src kinase is critical for bombesin-induced AR-mediated activity and is required for translocation and transactivation of AR. Additionally, we identify c-Myc, a Src target gene, to be activated by bombesin and a potential coactivator of AR-mediated activity specific to bombesin-induced signaling. Because Src kinase is often activated by other nonsteroids, such as other neuropeptides, growth factors, chemokines, and cytokines, our findings have general applicability and provide rationale for investigating the efficacy of the Src kinase pathway as a target for the prevention of relapsed prostate cancers.
Collapse
Affiliation(s)
- Sonal J Desai
- Department of Biological Chemistry and Cancer Center, University of California at Davis, Sacramento, California 95817, USA
| | | | | | | | | |
Collapse
|
27
|
Nelson EC, Cambio AJ, Yang JC, Ok JH, Lara PN, Evans CP. Clinical implications of neuroendocrine differentiation in prostate cancer. Prostate Cancer Prostatic Dis 2006; 10:6-14. [PMID: 17075603 DOI: 10.1038/sj.pcan.4500922] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cellular signaling pathways of the prostate play a central role in the induction, maintenance, and progression of prostate cancer (CaP). Neuroendocrine (NE) cells demonstrate attributes that suggest they are an integral part of these signaling cascades. We summarize what is known regarding NE cells in CaP focusing on NE cellular transdifferentiation. This significant event in CaP progression appears to be accelerated by androgen deprivation (AD) treatment. We examine biochemical pathways that may impact NE differentiation in a chronological manner focusing on AD therapy (ADT) as a central event in inducing androgen-independent CaP. Our analysis is limited to the common adenocarcinoma pattern of CaP and excludes small-cell and carcinoid prostatic variants. In conclusion, we speculate on the future of treatment and research in this area.
Collapse
Affiliation(s)
- E C Nelson
- Department of Urology, Davis Medical Center, University of California at Davis, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
28
|
Wu C, Zhang L, Bourne PA, Reeder JE, di Sant'Agnese PA, Yao JL, Na Y, Huang J. Protein tyrosine phosphatase PTP1B is involved in neuroendocrine differentiation of prostate cancer. Prostate 2006; 66:1125-35. [PMID: 16652382 DOI: 10.1002/pros.20412] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Prostate cancer (PC) contains a minor component of neuroendocrine (NE) cells that may stimulate androgen-independent growth of the tumor. The mechanism of neuroendocrine differentiation remains unknown. METHODS The expression of PTP1B, a protein tyrosine phosphatase, was studied in LNCaP cells induced to show neuroendocrine phenotype by androgen withdrawal. Wild-type PTP1B and its dominant-negative mutant were transfected into LNCaP cells to study their effects on neuroendocrine differentiation. In vivo expression of PTP1B in human prostate cancer was studied by immunohistochemistry. RESULTS Androgen withdrawal of LNCaP cells led to increased expression of PTP1B with a corresponding increase in its tyrosine phosphatase activity. Overexpression of PTP1B in LNCaP cells led to neuroendocrine differentiation while expression of its dominant-negative mutant inhibited neuroendocrine differentiation. Immunohistochemical study showed that PTP1B was exclusively expressed in neuroendocrine cells of human prostate cancer tissue. CONCLUSION Our findings suggest that PTP1B plays an important role in neuroendocrine differentiation, and therefore, may possibly be involved in the progression of prostate cancer.
Collapse
Affiliation(s)
- Chengyu Wu
- Department of Pathology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Amorino GP, Deeble PD, Parsons SJ. Neurotensin stimulates mitogenesis of prostate cancer cells through a novel c-Src/Stat5b pathway. Oncogene 2006; 26:745-56. [PMID: 16862179 DOI: 10.1038/sj.onc.1209814] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuroendocrine (NE)-like cells are hypothesized to contribute to the progression of prostate cancer by producing factors that enhance the growth, survival or metastatic capabilities of surrounding tumor cells. Many of the factors known to be secreted by NE-like cells, such as neurotensin (NT), parathyroid hormone-related peptide, serotonin, bombesin, etc., are agonists for G-protein-coupled receptors, but the signaling pathways activated by these agonists in prostate tumor cells are not fully defined. Identification of such pathways could provide insights into novel methods of treating late-stage disease. Using conditioned culture medium (CM) from LNCaP-derived NE-like cells (as a source of these agonists) or NT (a prototypical component of CM) to treat PC3 cells, we found that the epidermal growth factor (EGF) receptor (EGFR) was transactivated and that such activation was required for maximal PC3 cell mitogenesis, as measured by 5-bromo-2'-deoxy-uridine incorporation or cell number. NT also induced a time-dependent increase in EGFR Tyr(845) phosphorylation and phosphorylation of c-Src and signal transducer and activator of transcription 5b (Stat5b) (a downstream effector of Tyr(845)), events that were blocked by specific inhibition of c-Src (which mediates Tyr(845) phosphorylation of EGFR) or of EGFR. Introduction of mutant forms of EGFR (Tyr(845)) or Stat5b in PC3 cells, or treatment with selective, catalytic inhibitors of EGFR, c-Src and matrix metalloproteinases (MMPs) resulted in the loss of NT-induced stimulation of DNA synthesis, relative to wild-type controls. These data indicate that the mitogenic effect of NT on prostate cancer cells requires transactivation of the EGFR by MMPs and a novel downstream pathway involving c-Src, phosphorylation of EGFR Tyr(845) and activation of Stat5b.
Collapse
Affiliation(s)
- G P Amorino
- Department of Radiation Oncology, Cancer Center, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | | | | |
Collapse
|
30
|
Xiao D, Chinnappan D, Pestell R, Albanese C, Weber HC. Bombesin regulates cyclin D1 expression through the early growth response protein Egr-1 in prostate cancer cells. Cancer Res 2005; 65:9934-42. [PMID: 16267018 DOI: 10.1158/0008-5472.can-05-1830] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Our previous studies indicate that the activation of mitogen-activated protein kinase (MAPK) pathway is involved in bombesin-induced cell proliferation in prostate cancer cells. Cyclin D1 is a critical regulator involved in cell cycle progression through the G1 phase into the S phase, thereby contributing to cell proliferation. Mostly, mitogen-stimulated expression of cyclin D1 is attributed to the extracellular signal-regulated kinase (ERK) activation. Here, we found that bombesin induced human cyclin D1 expression on both mRNA and protein levels in DU-145 prostate cancer cells. Mutational analyses showed that bombesin-enhanced cyclin D1 transcription required the binding of nuclear proteins to the -143 to -105 region of the human cyclin D1 promoter, which contains binding sites for transcription factors Sp-1 and early growth response protein (Egr-1). Do novo protein synthesis was requisite for bombesin-induced cyclin D1 expression. Further studies showed Egr-1 was induced upon bombesin stimulation. The induction of Egr-1 expression and its binding to the cyclin D1 promoter were essential for bombesin-enhanced cyclin D1 transcription. Inhibition of MAPK pathway with either the MEK1 inhibitor PD98059 or a dominant-negative Ras mutant, RasN17, abolished bombesin-induced cyclin D1 activation. Taken together, bombesin-induced cyclin D1 expression in prostate cancer cells is mediated by Egr-1 activation and the interaction of Egr-1 with the Egr-1/Sp1 motif of the cyclin D1 promoter through the activation of MAPK pathway. These findings represent a novel mechanism of bombesin-dependent stimulation of mitogenesis by regulating directly the cell cycle in prostate cancer.
Collapse
Affiliation(s)
- Dongmei Xiao
- Section of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts 02118-2518, USA
| | | | | | | | | |
Collapse
|
31
|
Stangelberger A, Schally AV, Letsch M, Szepeshazi K, Nagy A, Halmos G, Kanashiro CA, Corey E, Vessella R. Targeted chemotherapy with cytotoxic bombesin analogue AN-215 inhibits growth of experimental human prostate cancers. Int J Cancer 2005; 118:222-9. [PMID: 16003723 DOI: 10.1002/ijc.21292] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We developed a powerful cytotoxic analogue of bombesin AN-215, in which the bombesin (BN)-like carrier peptide is conjugated to 2-pyrrolino doxorubicin (AN-201). Human prostate cancers express high levels of receptors for BN/gastrin releasing peptide (GRP) that can be used for targeted chemotherapy. The effects of targeted chemotherapy with cytotoxic BN analogue AN-215 were evaluated in nude mice bearing subcutaneous xenografts of DU-145, LuCaP-35, MDA-PCa-2b and intraosseous implants of C4-2 human prostate cancers. Intraosseous growth of C4-2 tumors was monitored by serum PSA. BN/GRP receptors were evaluated by 125I-[Tyr4]BN binding assays and RT-PCR. The effects of AN-215 on apoptosis and cell proliferation were followed by histology, and the expression of Bcl-2 and Bax protein was determined by Western blot analysis. Targeted analog AN-215 significantly inhibited growth of subcutaneously implanted DU-145, LuCaP-35 and MDA-PCa-2b prostate cancers by 81% to 91% compared to controls, while cytotoxic radical AN-201 was less effective and more toxic. Serum PSA levels of mice bearing intraosseous C4-2 prostate tumors were significantly reduced. In LuCaP-35 tumors administration of BN antagonist RC-3095 prior to AN-215 blocked the receptors for BN/GRP and inhibited the effects of AN-215. High affinity receptors for BN/GRP and their m-RNA were detected on membranes of all 4 tumor models. Therapy with AN-215, but not with AN-201, decreased the ratio of Bcl-2/Bax in DU-145 and the expression of antiapoptotic Bcl-2 in LuCaP-35 tumors. The presence of BN/GRP receptors on primary and metastatic prostate cancers makes possible targeted chemotherapy with AN-215 for the treatment of this malignancy.
Collapse
Affiliation(s)
- Anton Stangelberger
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lacoste J, Aprikian AG, Chevalier S. Focal adhesion kinase is required for bombesin-induced prostate cancer cell motility. Mol Cell Endocrinol 2005; 235:51-61. [PMID: 15866427 DOI: 10.1016/j.mce.2004.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Accepted: 06/28/2004] [Indexed: 11/29/2022]
Abstract
Clinical evidence links neuroendocrine differentiation (NED) to prostate cancer progression. In the prostate carcinoma PC-3 cell model, the action of the gastrin releasing peptide (GRP) analog, bombesin (BN), on the activation of focal adhesion kinase (FAK) and invasiveness suggests that this kinase might favor metastasis. Given that components of the FAK signalling pathway are also up regulated in prostate cancer, the aim of the present investigation was to test if FAK function is required for BN-induced motility in PC-3 cells. In wound assays designed to investigate the fate of FAK in cells undergoing BN-induced motility, it was observed that BN treatment resulted in relocalization of FAK in focal contacts concomitantly with its tyrosine phosphorylation on residue 397 (FAK [pY(397)]) and with the formation of actin lamellipodia. Moreover, BN-induced cell motility was significantly reduced in the presence of FAK inhibitors (either anti-FAK [pY(397)] antibody or FRNK, the FAK-related non-kinase). Altogether, these observations point towards a critical role for FAK in the action of BN on PC-3 cell motility.
Collapse
Affiliation(s)
- Judith Lacoste
- Urologic Oncology Research Group, Urology Division, Departmentof Surgery, McGill University Health Center (MUHC) Research Institute, Montreal, QC, Canada H3G 1A4
| | | | | |
Collapse
|
33
|
Smith CJ, Volkert WA, Hoffman TJ. Gastrin releasing peptide (GRP) receptor targeted radiopharmaceuticals: a concise update. Nucl Med Biol 2004; 30:861-8. [PMID: 14698790 DOI: 10.1016/s0969-8051(03)00116-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The gastrin releasing peptide (GRP) receptor is becoming an increasingly attractive target for development of new radiolabeled peptides with diagnostic and therapeutic potential. The attractiveness of the GRP receptor as a target is based upon the functional expression of GRP receptors in several tumors of neuroendocrine origin including prostate, breast, and small cell lung cancer. This concise review outlines some of the efforts currently underway to develop new GRP receptor specific radiopharmaceuticals by employing a variety of radiometal chelation systems.
Collapse
Affiliation(s)
- C J Smith
- Radiopharmaceutical Sciences Institute, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
34
|
Madarame J, Higashiyama S, Kiyota H, Madachi A, Toki F, Shimomura T, Tani N, Oishi Y, Matsuura N. Transactivation of epidermal growth factor receptor after heparin-binding epidermal growth factor-like growth factor shedding in the migration of prostate cancer cells promoted by bombesin. Prostate 2003; 57:187-95. [PMID: 14518027 DOI: 10.1002/pros.10295] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND A pathway consisting of bombesin, G-protein coupling receptors (GPCRs), metalloproteases, pro-heparin-binding epidermal growth factor (proHB-EGF), and epidermal growth factor receptor (EGFR) has been reported in prostate cancer cells. The occurrence of HB-EGF shedding from proHB-EGF in this pathway, however, has not been proven directly. In addition, it is still unclear how much this pathway contributes to the migration of prostate cancer cells. In this study, we tried to directly elucidate HB-EGF shedding in this pathway and to determine its contribution to the migration of prostate cancer cells. METHODS RT-PCR and indirect immunofluorescence staining for HB-EGF and its receptors, such as EGFR and HER4/erbB4, were performed on PC-3 cells. The influences of bombesin, anti-EGFR neutralizing monoclonal antibody, HB-EGF, and HB-EGF shedding inhibitor on the migration of PC-3 cells were studied by means of in vitro wound assays. The amount of HB-EGF shed from PC-3 cells with alkaline phosphatase-tagged HB-EGF in the presence of bombesin was determined by measuring AP activity. Immunoprecipitations and phosphotyrosine Western blotting were performed to detect EGFR transactivated by bombesin. RESULTS PC-3 expressed HB-EGF and EGFR, but not HER4/erbB4. PC-3 migrated in the presence of bombesin, but its migration was partly inhibited by the neutralizing antibody against EGFR. PC-3 also migrated in the presence of HB-EGF, but HB-EGF shedding inhibitor partly inhibited this phenomenon. HB-EGF was shed from PC-3 cells in the presence of bombesin, and this shedding was inhibited by HB-EGF shedding inhibitor. In addition, the EGFR on PC-3 was activated in the presence of bombesin and inactivated in the presence of HB-EGF shedding inhibitor. CONCLUSIONS These results indicated that HB-EGF shedding and the following transactivation of EGFR occurs in this pathway and that this pathway partly contributes to the migration of prostate cancer cells.
Collapse
Affiliation(s)
- Jun Madarame
- Department of Pathology, School of Allied Health Sciences, Faculty of Medicine, Osaka University, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Xiao D, Qu X, Weber HC. Activation of extracellular signal-regulated kinase mediates bombesin-induced mitogenic responses in prostate cancer cells. Cell Signal 2003; 15:945-53. [PMID: 12873708 DOI: 10.1016/s0898-6568(03)00059-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bombesin and its mammalian homologue gastrin-releasing peptide have been shown to be highly expressed and secreted by neuroendocrine cells in prostate cancer, and are thought to be related to the carcinogenesis and progression of this disease. We found, in this study, bombesin specifically induced mitogen-activated protein (MAP) kinase activation as shown by increased extracellular regulated kinase (ERK) phosphorylation and epidermal growth factor (EGF) receptor transactivation in prostate cancer cells, which express functional gastrin-releasing peptide receptor. The transactivation of EGF receptor was required for bombesin-induced ERK phosphorylation. Furthermore, non-receptor tyrosine kinase Src and cellular Ca2+ were shown to be involved in bombesin-induced EGF receptor transactivation and ERK phosphorylation. Inhibition of either EGF receptor transactivation or ERK activation blocked bombesin-induced DNA synthesis in these cells. Taken together, these data suggest bombesin may act as a mitogen in prostate cancer by activating MAP kinase pathway via EGFR transactivation.
Collapse
Affiliation(s)
- Dongmei Xiao
- Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, 650 Albany Street, EBRC, Room 515, Boston, MA 02118, USA
| | | | | |
Collapse
|
36
|
Waters CM, MacKinnon AC, Cummings J, Tufail-Hanif U, Jodrell D, Haslett C, Sethi T. Increased gastrin-releasing peptide (GRP) receptor expression in tumour cells confers sensitivity to [Arg6,D-Trp7,9,NmePhe8]-substance P (6-11)-induced growth inhibition. Br J Cancer 2003; 88:1808-16. [PMID: 12771999 PMCID: PMC2377129 DOI: 10.1038/sj.bjc.6600957] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[Arg(6),D-Trp(7,9),N(me)Phe(8)]-substance P (6-11) (SP-G) is a novel anticancer agent that has recently completed phase I clinical trials. SP-G inhibits mitogenic neuropeptide signal transduction and small cell lung cancer (SCLC) cell growth in vitro and in vivo. Using the SCLC cell line series GLC14, 16 and 19, derived from a single patient during the clinical course of their disease and the development of chemoresistance, it is shown that there was an increase in responsiveness to neuropeptides. This was paralleled by an increased sensitivity to SP-G. In a selected panel of tumour cell lines (SCLC, non-SCLC, ovarian, colorectal and pancreatic), the expression of the mitogenic neuropeptide receptors for vasopressin, gastrin-releasing peptide (GRP), bradykinin and gastrin was examined, and their sensitivity to SP-G tested in vitro and in vivo. The tumour cell lines displayed a range of sensitivity to SP-G (IC(50) values from 10.5 to 119 microM). The expression of the GRP receptor measured by reverse transcriptase-polymerase chain reaction, correlated significantly with growth inhibition by SP-G. Moreover, introduction of the GRP receptor into rat-1A fibroblasts markedly increased their sensitivity to SP-G. The measurement of receptor expression from biopsy samples by polymerase chain reaction could provide a suitable diagnostic test to predict efficacy to SP-G clinically. This strategy would be of potential benefit in neuropeptide receptor-expressing tumours in addition to SCLC, and in tumours that are relatively resistant to conventional chemotherapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Bradykinin/metabolism
- Calcium/metabolism
- Carcinoma, Small Cell/drug therapy
- Carcinoma, Small Cell/metabolism
- Carcinoma, Small Cell/pathology
- Cell Division/drug effects
- DNA, Neoplasm/metabolism
- Drug Resistance, Neoplasm
- Drug Screening Assays, Antitumor
- Female
- Fibroblasts/metabolism
- Gastrin-Releasing Peptide/pharmacology
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Nude
- Peptide Fragments/therapeutic use
- Rats
- Receptors, Bombesin/metabolism
- Receptors, Neuropeptide/metabolism
- Substance P/analogs & derivatives
- Substance P/antagonists & inhibitors
- Substance P/therapeutic use
- Transplantation, Heterologous
- Tumor Cells, Cultured
- Vasopressins/metabolism
Collapse
Affiliation(s)
- C M Waters
- Lung Inflammatory Group, Centre for Inflammation Research, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - A C MacKinnon
- Lung Inflammatory Group, Centre for Inflammation Research, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - J Cummings
- Cancer Research UK, Medical Oncology Unit, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - U Tufail-Hanif
- Lung Inflammatory Group, Centre for Inflammation Research, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - D Jodrell
- Cancer Research UK, Medical Oncology Unit, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - C Haslett
- Lung Inflammatory Group, Centre for Inflammation Research, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - T Sethi
- Lung Inflammatory Group, Centre for Inflammation Research, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Lung Inflammatory Group, Centre for Inflammation Research, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK. E-mail:
| |
Collapse
|
37
|
Biologic relevance of mammalian bombesin-like peptides and their receptors in human malignancies. ACTA ACUST UNITED AC 2003. [DOI: 10.1097/00060793-200302000-00010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Xiao D, Qu X, Weber HC. GRP receptor-mediated immediate early gene expression and transcription factor Elk-1 activation in prostate cancer cells. REGULATORY PEPTIDES 2002; 109:141-8. [PMID: 12409226 DOI: 10.1016/s0167-0115(02)00197-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bombesin (BN) and its mammalian homologue gastrin-releasing peptide (GRP) have been shown to play an important role in human cancer as autocrine and paracrine growth factors. Prostatic neuroendocrine cells are thought to secrete these regulatory peptides and they may therefore interact with their specific, aberrantly expressed GRP receptor (GRP-R) in prostate cancer. In this study, we investigated the effect of BN on immediate early gene expression in two androgen-independent prostate cancer cell lines DU-145 and PC-3 with functional GRP receptor. We found that BN induced c-fos mRNA expression in both cell lines in a time-dependent manner. In contrast, c-jun mRNA was only modestly induced in DU-145 cells but not at all in PC-3 cells. On the protein level, we detected BN-induced stimulation of the c-fos gene product but not of c-jun protein. Sustained increase of the c-myc gene product was detectable in PC-3 but not in DU-145 cells. Concurrently, we demonstrated BN-dependent activation of the transcription factor Elk-1 and significant increase of cell proliferation in both prostate cancer cell lines. Taken together, these data suggest that BN acts as a mitogen in prostate cancer and this might be associated with the activation of the transcription factor Elk-1 and the immediate early gene c-fos.
Collapse
Affiliation(s)
- Dongmei Xiao
- Section of Gastroenterology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
39
|
Rumpold H, Heinrich E, Untergasser G, Hermann M, Pfister G, Plas E, Berger P. Neuroendocrine differentiation of human prostatic primary epithelial cells in vitro. Prostate 2002; 53:101-8. [PMID: 12242724 DOI: 10.1002/pros.10129] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Dispersed prostatic neuroendocrine cells are involved in growth regulation of the prostate and are considered to play a role in the pathogenesis of prostate carcinoma and benign prostatic hyperplasia (BPH). They are meant either to be derived from the neural crest during embryogenesis or by direct differentiation of the cells from locally present precursor cells. METHODS An in vitro model was developed for human prostatic epithelial and neuroendocrine cell differentiation. Minced explants from radical prostatectomies were seeded on collagen I-coated plates. RESULTS The majority of outgrowing cells were basal cells, positive for cytokeratin markers K 5/14 and CD 44, as determined by confocal laser scanning microscopy. A small fraction of interdispersed single cells expressing c-kit, which is found on pluripotent precursors, was identified by immunofluorescence. From these basal cells, in vitro differentiation of cells with neuroendocrine morphology could be achieved within 3 days. These were at rest, i.e., non-bromodeoxyuridine incorporating cells and characteristically coexpressed K 5/14, K 18, and the neuroendocrine marker chromogranin A. Luminal cells staining for K 8 or 18 were not observed. CONCLUSION Neuroendocrine differentiation of adult prostatic cells was achieved in vitro, favoring the hypothesis that neuroendocrine cells are derived from peripheral precursor cells. The acceleration of this differentiation pathway may be the reason for the increased presence of neuroendocrine cells in areas of epithelial hyperplasia in BPH.
Collapse
Affiliation(s)
- Holger Rumpold
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
40
|
Chevalier S, Defoy I, Lacoste J, Hamel L, Guy L, Bégin LR, Aprikian AG. Vascular endothelial growth factor and signaling in the prostate: more than angiogenesis. Mol Cell Endocrinol 2002; 189:169-79. [PMID: 12039075 DOI: 10.1016/s0303-7207(01)00728-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In cloning tyrosine kinase genes in dog prostate cells, a fragment of the vascular endothelial growth factor (VEGF) receptor 1 or Flt-1 was sequenced. To test for a functional protein, Flt-1 antibodies were used to probe immunoprecipitated tyrosine phosphorylated proteins. Western blotting revealed a major 170-180 kDa band and a few bands below 116 kDa in dog prostate and human prostatic carcinoma PC-3 cells, with higher levels in PC-3. Similar results were obtained with human placental membranes used as a source of Flt-1. That the major Flt-1 tyrosine phosphorylated protein was likely VEGF-R1 and part of VEGF signaling pathways was shown by enhanced level of only this protein when PC-3 cells were exposed to VEGF. Accordingly specific cell surface receptor complexes, displaced by VEGF but not EGF and compatible with Flt-1 in size, were revealed by chemical cross-linking after 125I-VEGF binding. Similarly to the prostatic neuroproduct, gastrin-releasing peptide/bombesin, VEGF directly triggered the tyrosine phosphorylation of focal adhesion kinase and stimulated PC-3 cell motility. The titration of prostate tissue sections with VEGF-A antibodies revealed a confined staining in chromogranin A and/or serotonin positive neuroendocrine (NE) cells, including in primary tumors and lymph node metastases. Given that NE differentiation is associated with advanced disease, that NE cells are a significant source of VEGF in prostatic tumors, and that VEGF directly act on prostate cancer cells in vitro, VEGF-A may be more than angiogenic in prostate cancer and hence favor progression by affecting tumor cells.
Collapse
Affiliation(s)
- S Chevalier
- Urologic Oncology Research Group, Department of Surgery, Urology Division, Research Institute, McGill University Health Center, 1650 Cedar Avenue, Quebec, H3G IA4, Montreal, Canada.
| | | | | | | | | | | | | |
Collapse
|
41
|
Salido M, Vilches J, López A, Roomans GM. Neuropeptides bombesin and calcitonin inhibit apoptosis-related elemental changes in prostate carcinoma cell lines. Cancer 2002; 94:368-77. [PMID: 11900223 DOI: 10.1002/cncr.10227] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Etoposide-induced apoptosis in prostate carcinoma cells is associated with changes in the elemental content of the cells. The authors previously reported that calcitonin and bombesin inhibited etoposide-induced apoptosis in these cells. In the current study, the authors investigated whether these neuropeptides block the etoposide-induced changes in elemental content. METHODS Cells from the PC-3 and Du 145 prostate carcinoma cell lines were grown either on solid substrates or on thin plastic films on titanium electron microscopy grids, and they were exposed to etoposide for 48 hours in the absence or presence of calcitonin and bombesin. After the exposure, the cells were frozen and freeze dried, and their elemental content was analyzed by energy-dispersive X-ray microanalysis in both in the scanning electron microscope and the scanning transmission electron microscope. RESULTS Etoposide treatment consistently induced an increase in the cellular Na concentration and a decrease in the cellular K concentration, resulting in a marked increase of the Na/K ratio and also an increase in the phosphorus:sulphur (P/S) ratio. Both bombesin and calcitonin inhibited the etoposide-induced changes in the cellular Na/K ratio, and calcitonin, but not bombesin, inhibited the changes in the P/S ratio. No significant elemental changes were found with bombesin or calcitonin alone. CONCLUSIONS The neuropeptides bombesin and calcitonin, which inhibited etoposide-induced apoptosis, also inhibited the etoposide-induced elemental changes in prostate carcinoma cells. This important fact strengthens the link between apoptosis and changes in the intracellular elemental content. This correlation provides an objective basis for the study of neuropeptide target points and may be helpful for alternative therapeutic protocols using neuropeptide inhibitors in the treatment of patients with advanced prostatic carcinoma.
Collapse
Affiliation(s)
- Mercedes Salido
- Department of Medical Cell Biology, University of Uppsala, Sweden.
| | | | | | | |
Collapse
|
42
|
Lee LF, Guan J, Qiu Y, Kung HJ. Neuropeptide-induced androgen independence in prostate cancer cells: roles of nonreceptor tyrosine kinases Etk/Bmx, Src, and focal adhesion kinase. Mol Cell Biol 2001; 21:8385-97. [PMID: 11713275 PMCID: PMC100003 DOI: 10.1128/mcb.21.24.8385-8397.2001] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bombesin/gastrin-releasing peptide (GRP) family of neuropeptides has been implicated in various in vitro and in vivo models of human malignancies including prostate cancers. It was previously shown that bombesin and/or neurotensin (NT) acts as a survival and migratory factor(s) for androgen-independent prostate cancers. However, a role in the transition from an androgen-dependent to -refractory state has not been addressed. In this study, we investigate the biological effects and signal pathways of bombesin and NT on LNCaP, a prostate cancer cell line which requires androgen for growth. We show that both neurotrophic factors can induce LNCaP growth in the absence of androgen. Concurrent transactivation of reporter genes driven by the prostate-specific antigen promoter or a promoter carrying an androgen-responsive element (ARE) indicate that growth stimulation is accompanied by androgen receptor (AR) activation. Furthermore, neurotrophic factor-induced gene activation was also present in PC3 cells transfected with the AR but not in the parental line which lacks the AR. Given that bombesin does not directly bind to the AR and is known to engage a G-protein-coupled receptor, we investigated downstream signaling events that could possibly interact with the AR pathway. We found that three nonreceptor tyrosine kinases, focal adhesion kinase (FAK), Src, and Etk/BMX play important parts in this process. Etk/Bmx activation requires FAK and Src and is critical for neurotrophic factor-induced growth, as LNCaP cells transfected with a dominant-negative Etk/BMX fail to respond to bombesin. Etk's activation requires FAK, Src, but not phosphatidylinositol 3-kinase. Likewise, bombesin-induced AR activation is inhibited by the dominant-negative mutant of either Src or FAK. Thus, in addition to defining a new G-protein pathway, this report makes the following points regarding prostate cancer. (i) Neurotrophic factors can activate the AR, thus circumventing the normal growth inhibition caused by androgen ablation. (ii) Tyrosine kinases are involved in neurotrophic factor-mediated AR activation and, as such, may serve as targets of future therapeutics, to be used in conjunction with current antihormone and antineuropeptide therapies.
Collapse
Affiliation(s)
- L F Lee
- Department of Biological Chemistry and Cancer Center, University of California at Davis, 4645 2nd Ave., Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
43
|
Burghardt B, Wenger C, Barabás K, Rácz G, Oláh A, Flautner L, Coy DH, Gress TM, Varga G. GRP-receptor-mediated signal transduction, gene expression and DNA synthesis in the human pancreatic adenocarcinoma cell line HPAF. Peptides 2001; 22:1119-28. [PMID: 11445243 DOI: 10.1016/s0196-9781(01)00433-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bombesin-like peptides have been implicated as growth factors in various human cancers. Human adenocarcinoma cell lines (Capan-1, Capan-2, MiaPaCa-2 and HPAF) were tested to determine whether they express the gastrin-releasing peptide-preferring bombesin receptor (GRPR) and neuromedin B-preferring bombesin receptor (NMBR). Using RT-PCR the highest level of GRP receptor mRNA was found in HPAF cells. NMB receptor mRNA expression moderate in all cell lines investigated. We therefore selected the HPAF cell line to investigate whether bombesin treatment affects intracellular Ca(2+) ([Ca(2+)](i)), cAMP level, DNA synthesis as a measure of cell proliferation, and expression of three transcription factors: c-fos, c-myc and high mobility group protein IY (HMG-I(Y)).Bombesin administration led to an immediate increase in free intracellular Ca(2+) concentration ([Ca(2+)](i)) but did not change cAMP levels. The peptide also enhanced [(3)H]thymidine incorporation in HPAF cells (but not in the other cell lines), an effect that was concentration dependent, reaching 36 +/- 5% stimulation over control values at 24 h with an EC(50) of 2.27 x 10(-12) M. Furthermore, bombesin stimulated c-fos, c-myc and HMG-I(Y) expression in a time-dependent manner: the c-fos mRNA level increased dramatically in the first 30 min of exposure, then returned to basal level within 2 h, while the c-myc and HMG-I(Y) mRNA levels peaked at 2 h and 4h, respectively. All actions of bombesin were blocked by BME (D-Phe(6)-bombesin-(6-13)-methylester), a selective GRP receptor antagonist, but not by the NMB receptor antagonist BIM-23127 (D-Nal-cyclo[Cys-Tyr-D-Trp-Orn-Val-Cys]-Nal-NH(2)). We conclude that HPAF cells express mRNA for GRP receptors and that functional receptors are present in the cell membrane. The occupation of these receptors leads to a sequence of intracellular events involving rapid mobilization of intracellular Ca(2+), expression of c-fos, c-myc and HMG-I(Y) mRNA, and stimulation of cell proliferation. Conversely, although NMB receptor mRNA can be detected, its actual translation to functional receptors does not reach a detectable level.
Collapse
Affiliation(s)
- B Burghardt
- Institute of Experimental Medicine, Hung. Acad. Sci. H-1450, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Autocrine and paracrine signaling leading to stimulation of tumor cell growth is a common theme in human cancers. In addition to polypeptide growth factors such as EGF family members which signal through receptor tyrosine kinases, accumulating evidence supports the autocrine and paracrine involvement of specific neuropeptides with defined physiologic actions as neurotransmitters and gut hormones in lung, gastric, colorectal, pancreatic and prostatic cancers. These neuropeptides, including gastrin-releasing peptide, neuromedin B, neurotensin, gastrin, cholecystokinin and arginine vasopressin bind seven transmembrane-spanning receptors that couple to heterotrimeric G proteins. Studies with human small cell lung cancer (SCLC) cells support a requirement for balanced signaling through G(q) and G(12/13) proteins leading to intracellular Ca2+ mobilization, PKC activation and regulation of the ERK and JNK MAP kinase pathways. While specific neuropeptide antagonists offer promise for interrupting the single neuropeptide autocrine systems operating in pancreatic and prostatic cancers, SCLC is exemplified by multiple, redundant neuropeptide autocrine systems such that tumor growth cannot be inhibited with a single specific antagonist. However, a novel class of neuropeptide derivatives based on the substance P sequence have been defined that exhibit broad specificity for neuropeptide receptors and induce apoptosis in SCLC by functioning as biased agonists that stimulate discordant signal transduction. Thus, interruption of autocrine and paracrine neuropeptide signaling with specific antagonists or broad-spectrum biased agonists offer promising new therapeutic approaches to the treatment of human cancers.
Collapse
Affiliation(s)
- L E Heasley
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado, CO 80262, USA
| |
Collapse
|
45
|
Plonowski A, Nagy A, Schally AV, Sun B, Groot K, Halmos G. In vivo inhibition of PC-3 human androgen-independent prostate cancer by a targeted cytotoxic bombesin analogue, AN-215. Int J Cancer 2000; 88:652-7. [PMID: 11058885 DOI: 10.1002/1097-0215(20001115)88:4<652::aid-ijc21>3.0.co;2-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effectiveness of chemotherapy targeted to bombesin (BN) receptors was evaluated in nude mice bearing PC-3 human androgen-independent prostate cancers. Cytotoxic BN analogue AN-215, consisting of 2-pyrrolinodoxorubicin (AN-201) linked to BN-like carrier peptide RC-3094, was injected i.v. at 150 nmol/kg on days 1, 11 and 21. After treatment with AN-215, tumor volume was 69% (p < 0.01) smaller than that in controls and tumor doubling time was extended from 8.5 +/- 0.7 days to 20.3 +/- 3.5 days (p < 0.05). Cytotoxic radical AN-201, carrier RC-3094 and their unconjugated mixture administered at the same dosage were ineffective. The mortality rate was 12.5% in the AN-201 group and 16.7% in the group treated with the mixture, but no deaths occurred in mice receiving AN-215. Because the ester bond linking AN-201 to the carrier molecule is hydrolyzed much faster in mouse serum than in human serum, in the second experiment we investigated the tolerance to AN-215 and its effect in nude mice bearing PC-3 tumors after pharmacological inhibition of serum carboxylesterases. Two applications of AN-201 at 200 nmol/kg were lethal, whereas no mortality was observed after 4 injections of AN-215 at the same dose. Administration of 200 nmol/kg AN-215 on days 1, 7, 17 and 26 again produced 69% tumor inhibition. BN receptors on membranes of PC-3 tumors were detected by (125)I-[Tyr(4)]BN binding, and expression of mRNA for BRS-3 and GRP-R subtypes was also found. AN-215 showed a high affinity to PC-3 tumors, displacing the radioligand at an IC(50) of 12.95 +/- 0.35 nM. Because BN receptors are present on primary and metastatic prostate cancer, targeted chemotherapy with AN-215 might benefit patients with advanced prostatic carcinoma who relapsed androgen ablation.
Collapse
Affiliation(s)
- A Plonowski
- Endocrine, Polypeptide and Cancer Institute, Veterans Administration Medical Center, New Orleans, LA 70146, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
The use of peptide analogs in the therapy of prostate cancer is reviewed. The preferred primary treatment of advanced androgen-dependent prostate cancer is presently based on the use of depot preparations of LH-RH agonists. This treatment is likewise recommended in patients with rising PSA levels after surgery or radiotherapy. LH-RH agonists with or without antiandrogens can be also utilized prior to or following various local treatments in patients with clinically localized prostate cancer and at high risk for disease recurrence. LH-RH antagonists like Cetrorelix are in clinical trials. However, most patients with advanced prostatic carcinoma treated by any modality of androgen deprivation eventually relapse. Treatment of relapsed androgen-independent prostate cancer remains a major challenge, but new therapeutic modalities are being developed based on antagonists of growth hormone-releasing hormone (GH-RH) and bombesin, which inhibit growth factors or their receptors. Another approach consists of cytotoxic analogs of LH-RH, bombesin, and somatostatin containing doxorubicin or 2-pyrrolinodoxorubicin, which can be targeted to receptors for these peptides found in prostate cancers and their metastases. These cytotoxic analogs inhibit growth of experimental androgen-dependent or -independent prostate cancers and reduce the incidence of metastases. A rational therapy with peptide analogs could be selected on the basis of receptors present in biopsy samples. The approaches based on peptide analogs should result in a more effective treatment for prostate cancer.
Collapse
Affiliation(s)
- A V Schally
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, New Orleans, Louisiana 70112-1262, USA
| | | | | | | | | | | |
Collapse
|
47
|
Nelson JB, Carducci MA. Small bioactive peptides and cell surface peptidases in androgen-independent prostate cancer. Cancer Invest 2000; 18:87-96. [PMID: 10701371 DOI: 10.3109/07357900009023066] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- J B Nelson
- University of Pittsburgh, Department of Urology, Pennsylvania, USA
| | | |
Collapse
|
48
|
Sun B, Halmos G, Schally AV, Wang X, Martinez M. Presence of receptors for bombesin/gastrin-releasing peptide and mRNA for three receptor subtypes in human prostate cancers. Prostate 2000; 42:295-303. [PMID: 10679759 DOI: 10.1002/(sici)1097-0045(20000301)42:4<295::aid-pros7>3.0.co;2-b] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Bombesin-like peptides can function as autocrine or paracrine growth factors and stimulate the growth of some cancer cells, including human prostate cancer. Three bombesin receptor subtypes, termed gastrin-releasing peptide receptor (GRPR), neuromedin B receptor (NMBR), and bombesin receptor subtype 3 (BRS-3), have been identified in rodents and humans. METHODS We investigated the presence and characteristics of the functional receptors for bombesin/GRP in human prostate adenocarcinoma specimens by radio-receptor assay and the mRNA expression of the three bombesin receptor subtypes by RT-PCR. RESULTS Of the 80 specimens of primary prostate cancer examined by receptor binding assays, 50 ( approximately 63%) showed high-affinity, low-capacity binding sites for bombesin/GRP, and 12 of these 50 receptor-positive specimens also showed a second binding site. Of the 22 prostate cancer specimens analyzed by RT-PCR, 20 (91%) expressed GRPR mRNA, 3 (14%) showed NMBR mRNA, and 2 ( approximately 9%) revealed BRS-3 mRNA. No correlation was observed between receptor expression and patients' age or pathological data. CONCLUSIONS The detection of a wide distribution of bombesin/GRP receptors in human prostate carcinomas supports the view that they may be involved in modulation of tumor progression and suggests that approaches based on binding of bombesin receptor antagonists or new targeted cytotoxic bombesin analogs to prostate cancers could be considered for the therapy.
Collapse
Affiliation(s)
- B Sun
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
49
|
Jongsma J, Oomen MH, Noordzij MA, Romijn JC, van Der Kwast TH, Schröder FH, van Steenbrugge GJ. Androgen-independent growth is induced by neuropeptides in human prostate cancer cell lines. Prostate 2000; 42:34-44. [PMID: 10579797 DOI: 10.1002/(sici)1097-0045(20000101)42:1<34::aid-pros5>3.0.co;2-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Androgen-independent growth leads to progressive prostate cancer after androgen-ablation therapy. This may be caused by altered specificity of the androgen receptor (AR), by ligand-independent stimulation of the AR, or by paracrine growth modulation by neuropeptides secreted by neuroendocrine (NE) cells. METHODS We established and characterized the androgen-independent FGC-DCC from the androgen-dependent LNCaP fast growing colony (FGC) cell line. The androgen-independent DU-145, FGC-DCC, and PC-3, and the androgen-dependent LNCaP and PC-346C cell lines were used to study growth modulation of gastrin-releasing peptide (GRP), calcitonin (CT), serotonin (5-HT), and vasoactive intestinal peptide (VIP) by (3)H-thymidine incorporation. Specificity of the growth-modulating effects was tested with the anti-GRP monoclonal antibody 2A11 and induction of cAMP by neuropeptides. RESULTS Androgen-independent growth stimulation by neuropeptides was shown in DU-145 and PC-346C. 2A11 inhibited GRP-induced (3)H-thymidine incorporation in DU-145 and PC-346C and inhibited proliferation of the FGC-DCC and PC-3 cell lines. With some exceptions, cAMP induction paralleled growth stimulation. Dideoxyadenosine (DDA) inhibited the GRP-induced growth effect in DU-145 and PC-346C, whereas oxadiazoloquinoxaline-1-one (ODQ) had no effect on (3)H-thymidine incorporation. None of the neuropeptides stimulated growth of LNCaP, FGC-DCC, or PC-3. CONCLUSIONS GRP-induced growth of DU-145 and PC-346C was specific and cAMP-mediated. Androgen-independent growth of FGC-DCC cells was mainly due to an induction of Bcl-2 expression and possibly through the activation of an autocrine and NE-like pathway, as has been shown also for the PC-3 cell line. Growth induction of non-NE cells by neuropeptides could be a possible role for NE cells in clinical prostate cancer.
Collapse
Affiliation(s)
- J Jongsma
- Department of Experimental Urology, Erasmus University, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
50
|
Hellmich MR, Ives KL, Udupi V, Soloff MS, Greeley GH, Christensen BN, Townsend CM. Multiple protein kinase pathways are involved in gastrin-releasing peptide receptor-regulated secretion. J Biol Chem 1999; 274:23901-9. [PMID: 10446156 DOI: 10.1074/jbc.274.34.23901] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gastrin-releasing peptide (GRP) and its amphibian homolog, bombesin, are potent secretogogues in mammals. We determined the roles of intracellular free Ca(2+) ([Ca(2+)](i)), protein kinase C (PKC), and mitogen-activated protein kinases (MAPK) in GRP receptor (GRP-R)-regulated secretion. Bombesin induced either [Ca(2+)](i) oscillations or a biphasic elevation in [Ca(2+)](i). The biphasic response was associated with peptide secretion. Receptor-activated secretion was blocked by removal of extracellular Ca(2+), by chelation of [Ca(2+)](i), and by treatment with inhibitors of phospholipase C, conventional PKC isozymes, and MAPK kinase (MEK). Agonist-induced increases in [Ca(2+)](i) were also inhibited by dominant negative MEK-1 and the MEK inhibitor, PD89059, but not by an inhibitor of PKC. Direct activation of PKC by a phorbol ester activated MAPK and stimulated peptide secretion without a concomitant increase in [Ca(2+)](i). Inhibition of MEK blocked both bombesin- and phorbol 12-myristate 13-acetate-induced secretion. GRP-R-regulated secretion is initiated by an increase in [Ca(2+)](i); however, elevated [Ca(2+)](i) is insufficient to stimulate secretion in the absence of activation of PKC and the downstream MEK/MAPK pathways. We demonstrated that the activity of MEK is important for maintaining elevated [Ca(2+)](i) levels induced by GRP-R activation, suggesting that MEK may affect receptor-regulated secretion by modulating the activity of Ca(2+)-sensitive PKC.
Collapse
Affiliation(s)
- M R Hellmich
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | | | | | | | | | | | |
Collapse
|