1
|
Wood MJ, Bull JC, Kanagachandran K, Butt TM. Development and laboratory validation of a plant-derived repellent blend, effective against Aedes aegypti [Diptera: Culicidae], Anopheles gambiae [Diptera: Culicidae] and Culex quinquefasciatus [Diptera: Culicidae]. PLoS One 2024; 19:e0299144. [PMID: 38512948 PMCID: PMC10956804 DOI: 10.1371/journal.pone.0299144] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024] Open
Abstract
Mosquitoes of the genera Aedes, Anopheles and Culex vector a wide range of pathogens seriously affecting humans and livestock on a global scale. Over-reliance on insecticides and repellents has driven research into alternative, naturally-derived compounds to fulfil the same objectives. Steam distilled extracts of four plants with strong, yet attractive, volatile profiles were initially assessed for repellency in a dual-port olfactometer using Aedes aegypti as the model species. Picea sitchensis was found to be the most repellent, proving comparable to leading products when applied at 100% (p = 1.000). Key components of conifer-derived volatile profiles were then screened via electroantennography before those components eliciting an electrophysiological response were assayed individually in the olfactometer; according to WHO protocol. The most promising 5 were selected for reductive analyses to produce an optimised semiochemical blend. This combination, and a further two variations of the blend, were then progressed to a multi-species analysis using the BG-test whereby bite-attempt frequency on hands was assessed under different repellent treatments; assays were compared between Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus. Efficacy was found against all three species, although it was found that Ae. aegypti was the most susceptible to the repellent, with An. gambiae being the least. Here, a novel, naturally-derived blend is presented with weak spatial repellency, as confirmed in laboratory assays. Further work will be required to assess the full extent of the potential of the products, both in terms of field application and species screening; however, the success of the products developed demonstrate that plant metabolites have great capacity for use in the repellent sector; both to improve upon known compounds and to reduce the usage of toxic products currently on the market.
Collapse
Affiliation(s)
- Martyn J. Wood
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - James C. Bull
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | | | - Tariq M. Butt
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| |
Collapse
|
2
|
Sadiq MU, Shah A, Haleem A, Shah SM, Shah I. Eucalyptus globulus Mediated Green Synthesis of Environmentally Benign Metal Based Nanostructures: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2019. [PMID: 37446535 DOI: 10.3390/nano13132019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
The progress in nanotechnology has effectively tackled and overcome numerous global issues, including climate change, environmental contamination, and various lethal diseases. The nanostructures being a vital part of nanotechnology have been synthesized employing different physicochemical methods. However, these methods are expensive, polluting, eco-unfriendly, and produce toxic byproducts. Green chemistry having exceptional attributes, such as cost-effectiveness, non-toxicity, higher stability, environment friendliness, ability to control size and shape, and superior performance, has emerged as a promising alternative to address the drawbacks of conventional approaches. Plant extracts are recognized as the best option for the biosynthesis of nanoparticles due to adherence to the environmentally benign route and sustainability agenda 2030 of the United Nations. In recent decades, phytosynthesized nanoparticles have gained much attention for different scientific applications. Eucalyptus globulus (blue gum) is an evergreen plant belonging to the family Myrtaceae, which is the targeted point of this review article. Herein, we mainly focus on the fabrication of nanoparticles, such as zinc oxide, copper oxide, iron oxide, lanthanum oxide, titanium dioxide, magnesium oxide, lead oxide, nickel oxide, gold, silver, and zirconium oxide, by utilizing Eucalyptus globulus extract and its essential oils. This review article aims to provide an overview of the synthesis, characterization results, and biomedical applications of nanoparticles synthesized using Eucalyptus globulus. The present study will be a better contribution to the readers and the students of environmental research.
Collapse
Affiliation(s)
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Abdul Haleem
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Syed Mujtaba Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Iltaf Shah
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
3
|
Čmiková N, Galovičová L, Schwarzová M, Vukic MD, Vukovic NL, Kowalczewski PŁ, Bakay L, Kluz MI, Puchalski C, Kačániová M. Chemical Composition and Biological Activities of Eucalyptus globulus Essential Oil. PLANTS (BASEL, SWITZERLAND) 2023; 12:1076. [PMID: 36903935 PMCID: PMC10004840 DOI: 10.3390/plants12051076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Eucalyptus globulus essential oil (EGEO) is considered as a potential source of bioactive compounds with significant biological activity. The aim of this study was to analyze the chemical composition of EGEO, in vitro and in situ antimicrobial activity, antibiofilm activity, antioxidant activity, and insecticidal activity. The chemical composition was identified using gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The main components of EGEO were 1,8-cineole (63.1%), p-cimene (7.7%), a-pinene (7.3%), and a-limonene (6.9%). Up to 99.2% of monoterpenes were present. The antioxidant potential of essential oil and results indicate that 10 μL of this sample can neutralize 55.44 ± 0.99% of ABTS•+, which is equivalent to 3.22 ± 0.01 TEAC. Antimicrobial activity was determined via two methods: disk diffusion and minimum inhibitory concentration. The best antimicrobial activity was shown against C. albicans (14.00 ± 1.00 mm) and microscopic fungi (11.00 ± 0.00 mm-12.33 ± 0.58 mm). The minimum inhibitory concentration showed the best results against C. tropicalis (MIC 50 2.93 µL/mL, MIC 90 3.17 µL/mL). The antibiofilm activity of EGEO against biofilm-forming P. flourescens was also confirmed in this study. The antimicrobial activity in situ, i.e., in the vapor phase, was significantly stronger than in the contact application. Insecticidal activity was also tested and at concentrations of 100%, 50%, and 25%; the EGEO killed 100% of O. lavaterae individuals. EGEO was comprehensively investigated in this study and information regarding the biological activities and chemical composition of the essential oil of Eucalyptus globulus was expanded.
Collapse
Affiliation(s)
- Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Lucia Galovičová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Marianna Schwarzová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Milena D. Vukic
- Department of Chemistry, Faculty of Science, University of Kragujevac, P.O. Box 12, 34000 Kragujevac, Serbia
| | - Nenad L. Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, P.O. Box 12, 34000 Kragujevac, Serbia
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland
| | - Ladislav Bakay
- Institute of Landscape Architecture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Maciej Ireneusz Kluz
- Department of Bioenergetics and Food Analysis, Institute of Food Technology and Nutrition, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Czeslaw Puchalski
- Department of Bioenergetics and Food Analysis, Institute of Food Technology and Nutrition, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Bioenergetics and Food Analysis, Institute of Food Technology and Nutrition, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| |
Collapse
|
4
|
Preparation, Optimization, and Investigation of Naringenin-Loaded Microemulsion for Topical Application. IRANIAN BIOMEDICAL JOURNAL 2022; 26:366-73. [PMID: 36403103 PMCID: PMC9763875 DOI: 10.52547/ibj.3722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Flavonoids are a large group of phenolic compounds possessing anti-inflammatory and antioxidant effects. NAR is a flavonoid with various pharmacological properties. Using pharmaceutical compounds on skin is one of the routes of administration to achieve local and systemic effects. The aim of this study was to develop a topical formulation of NAR by the preparation of a NAR ME, which was further tested its skin permeability in rats. Methods Eight 0.5% NAR MEs were prepared by mixing appropriate amounts of surfactant (Tween 80 and Labrasol), cosurfactant (Capryol 90) and the oil phase (oleic acid-Transcutol P in a ratio of 1:10). The drug was dissolved in the oil phase. The physicochemical properties of MEs such as droplet size, viscosity, release, and skin permeability were assessed using Franz Cells diffusion. Results Based on the results, the droplet size of MEs ranged between 5.07 and 35.15 nm, and their viscosity was 164-291 cps. Independent factors exhibited a strong relationship with both permeability and drop size. The permeability findings revealed that the diffusion coefficient of NAR by the ME carrier increased compared to the drug saturation solution. Conclusion The most validated results were obtained for Jss and particle size. Optimal formulations containing MEs with Jss and particle sizes varying between minimum and maximum amounts are suitable for topical formulations of NAR.
Collapse
|
5
|
Antifungal and antimycotoxic activities of 3 essential oils against 3 mycotoxinogenic fungi. Arch Microbiol 2022; 204:504. [PMID: 35852627 DOI: 10.1007/s00203-022-03115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/11/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
Abstract
Fungal toxins can have various adverse health effects, including carcinogenic, teratogenic or hepatotoxic impacts. In addition, fungal alteration has also a negative impact on agricultural plant production. The use of chemical fungicides to control mycotoxin contamination is increasingly controversial and regulated. More environmentally friendly methods are therefore being explored. Essential oils, as compounds extracted from plants, are liquids whose specific aromatic compounds give each essential oil its own unique characteristics. Due to their rich chemical composition, essential oils (EOs) have many interesting properties, including antifungal activities. The objective of the present study was to analyze volatile chemical composition of EOs (Cymbopogon schoenanthus, Cymbopogon nardus and Eucalyptus camaldulensis) by GC/MS and to investigate their effects on the growth, sporulation and mycotoxin production of Aspergillus flavus, Aspergillus carbonarius and Fusarium verticillioides (aflatoxin B1, ochratoxin A and fumonisin B1, respectively). In addition, EOs influence on aflatoxin B1 (AFB1) and fumonisin B1 (FB1) biosynthesis pathways was explored using real-time qRT-PCR. The results obtained in vitro, by direct contact with the EOs and by diffusion of their volatile compounds, showed that the essential oils had inhibitory effects on the growth and the production of mycotoxins of the 3 fungal strains and modified the expression of some toxin synthesis genes. We conclude that the recorded effects were dependent on the combined effects of the EOs type, the fungal strains and the doses studied.
Collapse
|