1
|
Ghobakhloo S, Khoshakhlagh AH, Mostafaii GR, Carlsen L. Biomonitoring of metals in the blood and urine of waste recyclers from exposure to airborne fine particulate matter (PM 2.5). JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2025; 23:2. [PMID: 39583880 PMCID: PMC11582262 DOI: 10.1007/s40201-024-00924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024]
Abstract
This is the first systematic investigation of occupational exposure to toxic metals among waste recyclers in municipal waste recycling facilities. Concentrations of heavy metals (HMs) in the blood and urine of exposed recyclers in different jobs were compared to control groups (administrative department), identifying possible work-related and socio-demographic exposure factors. The potential relationship between HMs levels in PM2.5 and HM concentrations in the blood and urine of recyclers was studied for ten elements. Mean concentrations of HMs of recyclers were significantly higher than for the control group. Over 50% of the waste recyclers had HM levels higher than the recommended limits. The study revealed that most of the waste recyclers engaged in a minimum of three tasks, posing a challenge in establishing a correlation between specific tasks and the levels of elements monitored through biomonitoring. Co levels in blood and Fe levels in the urine of waste recyclers have a significant relationship with the increase in daily working hours. Among the variables related to the participant's demographic information, the level of education and monthly income were significantly different compared to the control group. Also, a significant correlation was found between HM levels in PM2.5 personal exposure and recyclers' urine and blood. Management controls include workflow or, in other words, alternate relocation of workers exposed to severe risks. Engineering controls such as ventilation systems, applying appropriate personal protective equipment (PPE), and risk management methods are the implementation cases to reduce exposure. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40201-024-00924-y.
Collapse
Affiliation(s)
- Safiye Ghobakhloo
- Department of Environmental Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hossein Khoshakhlagh
- Department of Occupational Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Gholam Reza Mostafaii
- Department of Environmental Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | | |
Collapse
|
2
|
Cai L, Holm RH, Biddle DJ, Zhang CH, Talley D, Smith T, States JC. Wastewater-based epidemiology for comprehensive communitywide exposome surveillance: A gradient of metals exposure. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.26.23295844. [PMID: 37808726 PMCID: PMC10557802 DOI: 10.1101/2023.09.26.23295844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Community wastewater surveillance is an established means to measure health threats. Exposure to toxic metals as one of the key environmental contaminants has been attracting public health attention as exposure can be related to contamination across air, water, and soil as well as associated with individual factors. This research uses Jefferson County, Kentucky, as an urban exposome case study to analyze sub-county metal concentrations in wastewater as a possible indicator of community toxicant exposure risk, and to test the feasibility of using wastewater to identify potential community areas of elevated metals exposure. Variability in wastewater metal concentrations were observed across the county; 19 of the 26 sites had one or more metal results greater than one standard deviation above the mean and were designated areas of concern. Additionally, thirteen of the nineteen sites were of increased concern with levels greater than two standard deviations above the mean. This foundational research found variability in several instances between smaller nested upstream contributing neighborhood sewersheds when measured in the associated downstream treatment plant. Wastewater provides an opportunity to look at integrated toxicology to complement other toxicology data, looking at where people live and what toxicants need to be focused on to protect the health of people in that area.
Collapse
Affiliation(s)
- Lu Cai
- Department of Pediatrics, Pediatrics Research Institute, Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY
| | - Rochelle H. Holm
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd., Louisville, KY 40202, United States
| | - Donald J. Biddle
- Department of Geographic and Environmental Sciences, Center for Geographic Information Sciences, University of Louisville, Louisville, KY
| | - Charlie H. Zhang
- Department of Geographic and Environmental Sciences, Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY
| | - Daymond Talley
- Morris Forman Water Quality Treatment Center, Louisville, KY, USA
| | - Ted Smith
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd., Louisville, KY 40202, United States
| | - J. Christopher States
- Department of Pharmacology and Toxicology, Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY
| |
Collapse
|
3
|
Sočo E, Domoń A, Papciak D, Michel MM, Pająk D, Cieniek B, Azizi M. Characteristics of Adsorption/Desorption Process on Dolomite Adsorbent in the Copper(II) Removal from Aqueous Solutions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4648. [PMID: 37444961 DOI: 10.3390/ma16134648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
The removal of hazardous heavy metals that have been released into the environment due to industrial activities has become an important issue in recent years. The presented study concerned the removal of copper(II) ions from aqueous solutions using dolomites. Dolomite is a very attractive adsorbent due to its wide availability, low cost, good adsorption, and environmental compatibility. The paper describes the properties of D-I and D-II dolomites from two different open-cast mines in Poland. The properties of natural adsorbents were determined based on point of zero charges (PZC), elemental analysis of the adsorbent composition, FT-IR, XRD, and SEM spectra analysis. Depending on the initial concentration of the solution used, the adsorption efficiency of copper(II) ions was 58-80% for D-I and 80-97% for D-II. The adsorption mechanism in the case of D-II dolomite was mainly based on ion exchange, while chemisorption dominated the D-I dolomite surface. Considering the possibility of the regeneration and reuse of the adsorbent, dolomite D-II is a better material (the desorption efficiency of copper(II) ions was 58-80%). The adsorption behavior of dolomites has been described using six adsorption isotherms. The best fit was obtained for the Redlich-Peterson, Jovanović, and Langmuir isotherms, indicating that monolayer adsorption occurred. The maximum adsorption capacity for copper(II) was 378 mg/g of D-I and 308 mg/g of D-II.
Collapse
Affiliation(s)
- Eleonora Sočo
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland
| | - Andżelika Domoń
- Department of Water Purification and Protection, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, 35-959 Rzeszow, Poland
| | - Dorota Papciak
- Department of Water Purification and Protection, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, 35-959 Rzeszow, Poland
| | - Magdalena M Michel
- Institute of Environmental Engineering, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland
| | - Dariusz Pająk
- Department of Casting and Welding, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland
| | - Bogumił Cieniek
- Institute of Materials Engineering, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Mostafa Azizi
- Institute of Environmental Engineering, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland
| |
Collapse
|
4
|
Lv L, Liu B, Yu Y, Dong W, Gao L, He Y. Heavy metals in paired samples of hair and nails in China: occurrence, sources and health risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3171-3185. [PMID: 36167881 DOI: 10.1007/s10653-022-01400-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/13/2022] [Indexed: 06/01/2023]
Abstract
The occurrence of heavy metals including chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb) was investigated in paired samples of hair and nails collected from 121 volunteers in 16 cities, China. Results showed that the mean concentrations of Zn, Cu, As, Pb, Cr, Ni and Cd were 205, 18.0, 7.79, 6.18, 3.54, 2.02, 0.533 μg g-1 in hair and 103, 8.09, 0.760, 7.27, 6.07, 8.81, 0.485 μg g-1 in nails, respectively. The concentrations of Zn, Ni, Cr, Cd and Pb were positively correlated in paired samples of hair and nails, whereas a negative correlation was found for Cu and As between hair and nails. Higher concentrations of heavy metals were found in northern China than southern China. The multivariate analysis of variance revealed that dwelling environment was the dominant factor influencing the levels of Cd in hair (p < 0.05), while age was the dominant factor influencing the levels of Cr in nails (p < 0.05). Moreover, industrial pollution and smoking were also the important factors leading to the accumulation of heavy metals in human body. Principal component analysis (PCA) showed that industrial pollution and decoration material immersion were the main factors for the high concentrations of Cr and Ni in hair, accounting for 62.9% of the total variation; As in hair was dominantly related to groundwater pollution. The concentrations of heavy metals were within the recommended ranges in nails from this study. However, the mean levels of Cr, Ni and As in hair exceeded their recommended reference values, indicating potential health risks from heavy metals for residents in China.
Collapse
Affiliation(s)
- Linyang Lv
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China.
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Weihua Dong
- College of Geographical Sciences, Changchun Normal University, Changchun, 130032, China
| | - Lei Gao
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Yaowei He
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| |
Collapse
|
5
|
Martin Molinero GD, Boldrini GG, Pérez Chaca MV, Moyano MF, Armonelli Fiedler S, Giménez MS, Gómez NN, López PHH, Álvarez SM. A soybean based-diet prevents Cadmium access to rat cerebellum, maintaining trace elements homeostasis and avoiding morphological alterations. Biometals 2023; 36:67-96. [PMID: 36374356 DOI: 10.1007/s10534-022-00462-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022]
Abstract
Cadmium (Cd) is one of the most dangerous heavy metals that exists. A prolonged exposure to Cd causes toxic effects in a variety of tissues, including Central Nervous System (CNS), where it can penetrate the Blood Brain Barrier (BBB). Cd exposure has been linked to neurotoxicity and neurodegenerative diseases. Soy isoflavones have a strong antioxidant capacity, and they have been shown to have positive effects on cognitive function in females. However, the mechanisms underlying Cd neurotoxicity remain completely unresolved. The purpose of this study was to characterize the potential protective effect of a soy-based diet vs. a casein-based diet against Cd toxicity in rat cerebellum. Female Wistar rats were fed with casein (Cas) or soybean (So) as protein sources for 60 days. Simultaneously, half of the animals were administered either 15 ppm of Cadmium (CasCd and SoCd groups) in water or regular tap water as control (Cas and So groups). We analyzed Cd exposure effects on trace elements, oxidative stress, cell death markers, GFAP expression and the histoarchitecture of rat cerebellum. We found that Cd tissue content only augmented in the Cas intoxicated group. Zn, Cu, Mn and Se levels showed modifications among the different diets. Expression of Nrf-2 and the activities of CAT and GPx decreased in Cas and So intoxicated groups,while 3-NT expression increased only in the CasCd group. Morphometry analyses revealed alterations in the purkinje and granular cells morphology, decreased number of granular cells and reduced thickness of the granular layer in Cd-intoxicated rats, whereas no alterations were observed in animals under a So diet. In addition, mRNA expression of apoptotic markers BAX/Bcl-2 ratio and p53 expression increased only in the CasCd group, a finding confirmed by positive TUNEL staining in the cerebellum granule cell layer in the same group. Also, Cd intoxication elicited overexpression of GFAP by astrocytes, which was prevented by soy. White matter alterations were only subtle and characterized by intramyelinic edema in the CasCd group. Overall, these results unmask an irreversible toxic effect of a subchronic Cd intoxication on the cerebellum, and identify a protective role by a soy-based diet with potential as a therapeutic strategy for those individuals exposed to this dangerous environmental contaminant.
Collapse
Affiliation(s)
- Glenda Daniela Martin Molinero
- Laboratory of Nutrition, Environment and Cell Metabolism, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, Argentina and IMIBIO-SL CONICET, San Luis, Argentina
- IMIBIO-SL CONICET, San Luis, Argentina
| | - Gabriel Giezi Boldrini
- Laboratory of Nutrition, Environment and Cell Metabolism, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, Argentina and IMIBIO-SL CONICET, San Luis, Argentina
- IMIBIO-SL CONICET, San Luis, Argentina
| | - María Verónica Pérez Chaca
- Laboratory of Morphophysiology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | - Mario Franco Moyano
- INQUISAL CONICET, Institute of Chemistry, Analytical Chemistry Area, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | - Samanta Armonelli Fiedler
- Departamento de Química Biológica "Dr Ranwel Caputto"-CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Sofía Giménez
- Laboratory of Nutrition, Environment and Cell Metabolism, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, Argentina and IMIBIO-SL CONICET, San Luis, Argentina
- IMIBIO-SL CONICET, San Luis, Argentina
| | - Nidia Noemí Gómez
- IMIBIO-SL CONICET, San Luis, Argentina
- Laboratory of Morphophysiology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | - Pablo Héctor Horacio López
- Departamento de Química Biológica "Dr Ranwel Caputto"-CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Silvina Mónica Álvarez
- Laboratory of Nutrition, Environment and Cell Metabolism, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, Argentina and IMIBIO-SL CONICET, San Luis, Argentina.
- IMIBIO-SL CONICET, San Luis, Argentina.
| |
Collapse
|
6
|
Pavlovich-Cristopulos G, Schiavo B, Romero FM, Hernández-Mendiola E, Angulo-Molina A, Meza-Figueroa D. Oral bioaccessibility of metal(oid)s in commercial zeolite used as a dietary supplement: Implications to human health risk. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Puig-Pijuan T, Souza LRQ, Pedrosa CDSG, Higa LM, Monteiro FL, Tanuri A, Valverde RHF, Einicker-Lamas M, Rehen SK. Copper regulation disturbance linked to oxidative stress and cell death during Zika virus infection in human astrocytes. J Cell Biochem 2022; 123:1997-2008. [PMID: 36063501 DOI: 10.1002/jcb.30323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022]
Abstract
The Zika virus (ZIKV) caused neurological abnormalities in more than 3500 Brazilian newborns between 2015 and 2020. Data have pointed to oxidative stress in astrocytes as well as to dysregulations in neural cell proliferation and cell cycle as important events accounting for the cell death and neurological complications observed in Congenital Zika Syndrome. Copper imbalance has been shown to induce similar alterations in other pathologies, and disturbances in copper homeostasis have already been described in viral infections. Here, we investigated copper homeostasis imbalance as a factor that could contribute to the cytotoxic effects of ZIKV infection in astrocytes. Human induced pluripotent stem cell-derived astrocytes were infected with ZIKV; changes in the gene expression of copper homeostasis proteins were analyzed. The effect of the administration of CuCl2 or a copper chelator on oxidative stress, cell viability and percentage of infection were also studied. ZIKV infection leads to a downregulation of one of the transporters mediating copper release, ATP7B protein. We also observed the activation of mechanisms that counteract high copper levels, including the synthesis of copper chaperones and the reduction of the copper importer protein CTR1. Finally, we show that chelator-mediated copper sequestration in ZIKV-infected astrocytes reduces the levels of reactive oxygen species and improves cell viability, but does not change the overall percentage of infected cells. In summary, our results show that copper homeostasis imbalance plays a role in the pathology of ZIKV in astrocytes, indicating that it may also be a factor accounting for the developmental abnormalities in the central nervous system following viral infection. Evaluating micronutrient levels and the use of copper chelators in pregnant women susceptible to ZIKV infection may be promising strategies to manage novel cases of congenital ZIKV syndrome.
Collapse
Affiliation(s)
- Teresa Puig-Pijuan
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,Laboratory of Biomembranes, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leticia R Q Souza
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | | | - Luiza M Higa
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio Luis Monteiro
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael H F Valverde
- Laboratory of Biomembranes, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Laboratory of Biomembranes, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stevens Kastrup Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
New Iron Metabolic Pathways and Chelation Targeting Strategies Affecting the Treatment of All Types and Stages of Cancer. Int J Mol Sci 2022; 23:ijms232213990. [PMID: 36430469 PMCID: PMC9696688 DOI: 10.3390/ijms232213990] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
There is new and increasing evidence from in vitro, in vivo and clinical studies implicating the pivotal role of iron and associated metabolic pathways in the initiation, progression and development of cancer and in cancer metastasis. New metabolic and toxicity mechanisms and pathways, as well as genomic, transcription and other factors, have been linked to cancer and many are related to iron. Accordingly, a number of new targets for iron chelators have been identified and characterized in new anticancer strategies, in addition to the classical restriction of/reduction in iron supply, the inhibition of transferrin iron delivery, the inhibition of ribonucleotide reductase in DNA synthesis and high antioxidant potential. The new targets include the removal of excess iron from iron-laden macrophages, which affects anticancer activity; the modulation of ferroptosis; ferritin iron removal and the control of hyperferritinemia; the inhibition of hypoxia related to the role of hypoxia-inducible factor (HIF); modulation of the function of new molecular species such as STEAP4 metalloreductase and the metastasis suppressor N-MYC downstream-regulated gene-1 (NDRG1); modulation of the metabolic pathways of oxidative stress damage affecting mitochondrial function, etc. Many of these new, but also previously known associated iron metabolic pathways appear to affect all stages of cancer, as well as metastasis and drug resistance. Iron-chelating drugs and especially deferiprone (L1), has been shown in many recent studies to fulfill the role of multi-target anticancer drug linked to the above and also other iron targets, and has been proposed for phase II trials in cancer patients. In contrast, lipophilic chelators and their iron complexes are proposed for the induction of ferroptosis in some refractory or recurring tumors in drug resistance and metastasis where effective treatments are absent. There is a need to readdress cancer therapy and include therapeutic strategies targeting multifactorial processes, including the application of multi-targeting drugs involving iron chelators and iron-chelator complexes. New therapeutic protocols including drug combinations with L1 and other chelating drugs could increase anticancer activity, decrease drug resistance and metastasis, improve treatments, reduce toxicity and increase overall survival in cancer patients.
Collapse
|
9
|
Lai X, Yuan Y, Liu M, Xiao Y, Ma L, Guo W, Fang Q, Yang H, Hou J, Yang L, Yang H, He MA, Guo H, Zhang X. Individual and joint associations of co-exposure to multiple plasma metals with telomere length among middle-aged and older Chinese in the Dongfeng-Tongji cohort. ENVIRONMENTAL RESEARCH 2022; 214:114031. [PMID: 35934145 DOI: 10.1016/j.envres.2022.114031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Studies on associations of metals with leucocyte telomere length (LTL) were mainly limited to several most common toxic metals and single-metal effect, but the impact of other common metals and especially the overall joint associations and interactions of metal mixture with LTL are largely unknown. We included 15 plasma metals and LTL among 4906 participants from Dongfeng-Tongji cohort. Multivariable linear regression was used to estimate associations of individual metals with LTL. We also applied Bayesian kernel machine regression (BKMR) and quantile g-computation regression (Q-g) to evaluate the overall association and interactions, and identified the major contributors as well as the potential modifications by major characteristics. Multivariable linear regression found vanadium, copper, arsenic, aluminum and nickel were negatively associated with LTL, and a 2-fold change was related to 1.9%-5.1% shorter LTL; while manganese and zinc showed 3.7% and 4.0% longer LTL (all P < 0.05) in multiple-metal models. BKMR confirmed above metals and revealed a linearly inverse joint association between 15 metals and LTL. Q-g regression further indicated each quantile increase in mixture was associated with 5.2% shorter LTL (95% CI: -8.1%, -2.3%). Furthermore, manganese counteracted against aluminum and vanadium respectively (Pint<0.05). In addition, associations of vanadium, aluminum and metal mixture with LTL were more prominent in overweight participants. Our results are among the first to provide a new comprehensive view of metal mixture exposure on LTL attrition in the general population, including identifying the major components, metals interactions and the overall effects.
Collapse
Affiliation(s)
- Xuefeng Lai
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Yu Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Miao Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Lin Ma
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qin Fang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Handong Yang
- Department of Cardiovascular Diseases, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Mei-An He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
10
|
Zabihihesari A, Parand S, Coulthard AB, Molnar A, Hilliker AJ, Rezai P. An in-vivo microfluidic assay reveals cardiac toxicity of heavy metals and the protective effect of metal responsive transcription factor (MTF-1) in Drosophila model. 3 Biotech 2022; 12:279. [PMID: 36275358 PMCID: PMC9478020 DOI: 10.1007/s13205-022-03336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022] Open
Abstract
Previous toxicity assessments of heavy metals on Drosophila are limited to investigating the survival, development rate, and climbing behaviour by oral administration while cardiac toxicity of these elements have not been investigated. We utilized a microfluidic device to inject known dosages of zinc (Zn) or cadmium (Cd) into the larvae's hemolymph to expose their heart directly and study their heart rate and arrhythmicity. The effect of heart-specific overexpression of metal responsive transcription factor (MTF-1) on different heartbeat parameters and survival of Drosophila larvae was investigated. The heart rate of wild-type larvae decreased by 24.8% or increased by 11.9%, 15 min after injection of 40 nL of 100 mM Zn or 10 mM Cd solution, respectively. The arrhythmicity index of wild-type larvae increased by 58.2% or 76.8%, after injection of Zn or Cd, respectively. MTF-1 heart overexpression ameliorated these effects completely. Moreover, it increased larvae's survival to pupal and adulthood stages and prolonged the longevity of flies injected with Zn and Cd. Our microfluidic-based cardiac toxicity assay illustrated that heart is an acute target of heavy metals toxicity, and MTF-1 overexpression in this tissue can ameliorate cardiac toxicity of Zn and Cd. The method can be used for cardiotoxicity assays with other pollutants in the future. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03336-7.
Collapse
Affiliation(s)
- Alireza Zabihihesari
- Department of Mechanical Engineering, York University, BRG 433B, 4700 Keele St, Toronto, ON M3J 1P3 Canada
| | - Shahrzad Parand
- Department of Psychology, Faculty of Health, York University, Toronto, ON Canada
| | | | | | | | - Pouya Rezai
- Department of Mechanical Engineering, York University, BRG 433B, 4700 Keele St, Toronto, ON M3J 1P3 Canada
| |
Collapse
|
11
|
Influence of zinc levels and Nrf2 expression in the clinical and pathological changes in patients with diabetic nephropathy. Nutr Diabetes 2022; 12:37. [PMID: 35933424 PMCID: PMC9357008 DOI: 10.1038/s41387-022-00212-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/14/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
Objective We investigated the correlation between zinc levels and Nrf2 expression and potential effects on the clinicopathology of patients with diabetic nephropathy (DN). Methods We selected 30 patients with DN, diagnosed via renal biopsy at our hospital from March 2018 to November 2019, and enrolled 30 healthy individuals from a medical examination center as the control group. Patients with DN were divided into normal-zinc and low-zinc groups. We detected the levels of zinc, copper, and Nrf2 mRNA in their serum, and collected the clinical and pathological data of DN patients. Results Serum zinc level and Nrf2 mRNA expression were significantly decreased in patients with DN compared to those of healthy people (P < 0.05). Of the 30 patients, 16 had low zinc (53.3%) and 14 had normal zinc levels (46.7%). There was no significant difference in the blood Nrf2 mRNA expression between the two groups (P > 0.05). However, the expression of Nrf2 in the kidney tissue of the low-zinc group was significantly lower compared to the normal-zinc group (P < 0.05). Diastolic blood pressure and copper levels were significantly higher in the low-zinc group (P < 0.05). In contrast, body mass index, red blood cell count, Hb level, and the ratio of zinc to copper were significantly lower in the low-zinc group (P < 0.05). The pathological classifications of the low-zinc group were more severe (P < 0.05). Conclusion Patients with DN were more likely to have zinc deficiency and lower expression of Nrf2. Additionally, DN patients with zinc deficiency were prone to have more severe clinical and pathological manifestations.
Collapse
|
12
|
Changes in Elements and Relationships among Elements in Intervertebral Disc Degeneration. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159042. [PMID: 35897416 PMCID: PMC9332279 DOI: 10.3390/ijerph19159042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022]
Abstract
Intervertebral disc degeneration (IVDD) is a complex and progressive process of disc aging. One of the most important causes of changes in the internal environment, leading to IVDD, can be changes in the concentration of individual metal elements. This study aimed to analyze the concentrations of copper, iron, manganese, lead, zinc, sodium, potassium, phosphorus, and calcium in the degenerated intervertebral discs of the lumbosacral spine, compared to healthy intervertebral discs. The study group (S) consisted of 113 Caucasian patients, qualified by a specialist surgeon for IVDD of the lumbosacral spine. The control group (C) consisted of 81 individuals. The biological material was obtained from Caucasian human cadavers during post-mortem examination. The concentrations of individual elements were assessed using inductively coupled plasma−optical emission spectroscopy (ICP-OES). Statistically significant differences in the concentrations of microelements, depending on the degree of pain intensity, were noted for only potassium (p < 0.05). Statistically significant differences in the concentrations of the assessed microelements, depending on the degree of radiological advancement of the lesions, were noted for copper and iron (p < 0.05). In the degenerated intervertebral discs, the strongest relationships were noted between the concentrations of zinc and lead (r = 0.67; p < 0.05), zinc and phosphorus (r = 0.74; p < 0.05), and zinc and calcium (r = 0.77; p < 0.05). It has been indicated that, above all, the concentrations of copper and iron depend on the advancement of radiological changes, according to the Pfirrmann scale; however, no influence on the pain intensity, depending on the concentration of the assessed elements, was found.
Collapse
|
13
|
Barea-Sepúlveda M, Espada-Bellido E, Ferreiro-González M, Bouziane H, López-Castillo JG, Palma M, F. Barbero G. Exposure to Essential and Toxic Elements via Consumption of Agaricaceae, Amanitaceae, Boletaceae, and Russulaceae Mushrooms from Southern Spain and Northern Morocco. J Fungi (Basel) 2022; 8:545. [PMID: 35628800 PMCID: PMC9145171 DOI: 10.3390/jof8050545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
The demand and interest in mushrooms, both cultivated and wild, has increased among consumers in recent years due to a better understanding of the benefits of this food. However, the ability of wild edible mushrooms to accumulate essential and toxic elements is well documented. In this study, a total of eight metallic elements and metalloids (chromium (Cr), arsenic (As), cadmium (Cd), mercury (Hg), lead (Pb), copper (Cu), zinc (Zn), and selenium (Se)) were determined by ICP-MS in five wild edible mushroom species (Agaricus silvicola, Amanita caesarea, Boletus aereus, Boletus edulis, and Russula cyanoxantha) collected in southern Spain and northern Morocco. Overall, Zn was found to be the predominant element among the studied species, followed by Cu and Se. The multivariate analysis suggested that considerable differences exist in the uptake of the essential and toxic elements determined, linked to species-intrinsic factors. Furthermore, the highest Estimated Daily Intake of Metals (EDIM) values obtained were observed for Zn. The Health Risk Index (HRI) assessment for all the mushroom species studied showed a Hg-related cause of concern due to the frequent consumption of around 300 g of fresh mushrooms per day during the mushrooming season.
Collapse
Affiliation(s)
- Marta Barea-Sepúlveda
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, 11510 Puerto Real, CA, Spain; (M.B.-S.); (M.F.-G.); (M.P.); (G.F.B.)
| | - Estrella Espada-Bellido
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, 11510 Puerto Real, CA, Spain; (M.B.-S.); (M.F.-G.); (M.P.); (G.F.B.)
| | - Marta Ferreiro-González
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, 11510 Puerto Real, CA, Spain; (M.B.-S.); (M.F.-G.); (M.P.); (G.F.B.)
| | - Hassan Bouziane
- Laboratory of Applied Botany, Department of Biology, Faculty of Sciences, University Abdelmalek Essaâdi, Mhannech II, Tetouan 2121, Morocco;
| | - José Gerardo López-Castillo
- Unidad de Protección de la Salud, Distrito Sanitario Granada-Metropolitano, Consejería de Salud y Familias, Junta de Andalucía, 18150 Gójar, GR, Spain;
| | - Miguel Palma
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, 11510 Puerto Real, CA, Spain; (M.B.-S.); (M.F.-G.); (M.P.); (G.F.B.)
| | - Gerardo F. Barbero
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, 11510 Puerto Real, CA, Spain; (M.B.-S.); (M.F.-G.); (M.P.); (G.F.B.)
| |
Collapse
|
14
|
Mitra S, Chakraborty AJ, Tareq AM, Emran TB, Nainu F, Khusro A, Idris AM, Khandaker MU, Osman H, Alhumaydhi FA, Simal-Gandara J. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:101865. [DOI: 10.1016/j.jksus.2022.101865] [Citation(s) in RCA: 394] [Impact Index Per Article: 131.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
15
|
Teodoro FS, Soares LC, Filgueiras JG, de Azevedo ER, Patiño-Agudelo ÁJ, Adarme OFH, da Silva LHM, Gurgel LVA. Batch and continuous adsorption of Cu(II) and Zn(II) ions from aqueous solution on bi-functionalized sugarcane-based biosorbent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26425-26448. [PMID: 34859352 DOI: 10.1007/s11356-021-17549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
A new one-pot synthesis method optimized by a 23 experimental design was developed to prepare a biosorbent, sugarcane bagasse cellulose succinate pyromellitate (SBSPy), for the removal of Cu(II) and Zn(II) from single-component aqueous solutions, in batch and continuous modes. The bi-functionalization of the biosorbent with ligands of different chemical structures increased its selectivity, improving its performance for removing pollutants from contaminated water. The succinate moiety favored Cu(II) adsorption, while the pyromellitate moiety favored Zn(II) adsorption. Sugarcane bagasse (SB) and SBSPy were characterized using several techniques. Analysis by 13C Multi-CP SS NMR and FTIR revealed the best order of addition of each anhydride that maximized the chemical modification of SB. The maximum adsorption capacities of SBSPy for Cu(II) and Zn(II), in batch mode, were 1.19 and 0.95 mmol g-1, respectively. Homogeneous surface diffusion, intraparticle diffusion, and Boyd models were used to determine the steps involved in the adsorption process. Isothermal titration calorimetry was used to assess changes in enthalpy of adsorption as a function of SBSPy surface coverage. Fixed-bed column adsorption of Cu(II) and Zn(II) was performed in three cycles, showing that SBSPy has potential to be used in water treatment. Breakthrough curves were well fitted by the Thomas and Bohart-Adams models.
Collapse
Affiliation(s)
- Filipe Simões Teodoro
- Grupo de Físico-Química Orgânica, Departamento de Química, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, s/nº, Bauxita, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Liliane Catone Soares
- Grupo de Físico-Química Orgânica, Departamento de Química, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, s/nº, Bauxita, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Jefferson Gonçalves Filgueiras
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, São Paulo, 13566-590, Brazil
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista, s/n, Niterói, Janeiro, 24020-007, Brazil
| | - Eduardo Ribeiro de Azevedo
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, São Paulo, 13566-590, Brazil
| | - Álvaro Javier Patiño-Agudelo
- Grupo de Química Verde Coloidal e Macromolecular, Departamento de Química, Centro de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n°, Viçosa, Minas Gerais, 36570-000, Brazil
- Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes, 748, Cidade Universitária, São Paulo, 05508-000, Brazil
| | - Oscar Fernando Herrera Adarme
- Laboratório de Química Tecnológica e Ambiental, Departamento de Química, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, s/nº, Bauxita, Ouro Preto, Minas Gerais, 35450-000, Brazil
| | - Luis Henrique Mendes da Silva
- Grupo de Química Verde Coloidal e Macromolecular, Departamento de Química, Centro de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n°, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Leandro Vinícius Alves Gurgel
- Grupo de Físico-Química Orgânica, Departamento de Química, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, s/nº, Bauxita, Ouro Preto, Minas Gerais, 35400-000, Brazil.
| |
Collapse
|
16
|
Ghosh P, Bag S, Parveen S, Subramani E, Chaudhury K, Dasgupta S. Nanoencapsulation as a Promising Platform for the Delivery of the Morin-Cu(II) Complex: Antibacterial and Anticancer Potential. ACS OMEGA 2022; 7:7931-7944. [PMID: 35284762 PMCID: PMC8908519 DOI: 10.1021/acsomega.1c06956] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Nanoencapsulation has emerged as a promising approach for the effective delivery of poorly aqueous soluble compounds. The current study focuses on the preparation of human serum albumin (HSA)-based nanoparticles (NPs) and poly lactic-co-glycolic acid (PLGA)-based nanoparticles for effective delivery of the morin-Cu(II) complex. The NPs were analyzed based on different parameters such as particle size, surface charge, morphology, encapsulation efficiency, and in vitro release properties. The average particle sizes were found to be 214 ± 6 nm for Mor-Cu-HSA-NPs and 185 ± 7.5 nm for Mor-Cu-PLGA-NPs. The release of the morin-Cu(II) complex from both the NPs (Mor-Cu-HSA-NPs and Mor-Cu-PLGA-NPs) followed a biphasic behavior, which comprises an early burst release followed by a sustained and controlled release. The resulting NPs also exhibit free radical scavenging activity confirmed by a standard antioxidant assay. The antibacterial activities of the NPs were investigated using a disk diffusion technique, and it was observed that both the NPs showed better antibacterial activity than morin and the morin-Cu(II) complex. The anticancer activities of the prepared NPs were examined on MDA-MB-468 breast cancer cell lines using a cytotoxicity assay, and the mode of cell death was visualized using fluorescence microscopy. Our results revealed that NPs kill the cancer cells with greater efficiency than free morin and the morin-Cu(II) complex. Thus, both HSA-based NPs and PLGA-based NPs can act as promising delivery systems for the morin-Cu(II) complex and can be utilized for further biomedical applications.
Collapse
Affiliation(s)
- Pooja Ghosh
- Department
of Chemistry, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| | - Sudipta Bag
- Department
of Chemistry, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| | - Sultana Parveen
- Department
of Chemistry, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| | - Elavarasan Subramani
- School
of Medical Science and Technology, Indian
Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Koel Chaudhury
- School
of Medical Science and Technology, Indian
Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department
of Chemistry, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| |
Collapse
|
17
|
Wang B, Gao F, Qin N, Duan X, Li Y, Cao S. A comprehensive analysis on source-distribution-bioaccumulation-exposure risk of metal(loid)s in various vegetables in peri-urban areas of Shenzhen, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118613. [PMID: 34861329 DOI: 10.1016/j.envpol.2021.118613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
The health risk induced by metal(loid)s in crops are becoming increasingly serious. In this study, eight major vegetables and rhizosphere soils were collected in a peri-urban area with intense electronic information manufacturing activities. The source, distribution and bioaccumulation of six typical metal(loid)s in different vegetable species were analyzed, and exposure risk through vegetable ingestion was estimated. Results showed that vegetables and agricultural soils in the study area suffered from serious metal(loid)s pollution, especially for Cd and Pb. The bioaccumulation capacity differed greatly among individual metal(loid)s and vegetable categories. In general, the highest transfer factors (TF) for Cd, Pb, and As were found in leafy vegetables, while leguminous vegetables had the highest TF of Cu and Zn and root vegetables had the highest TF for Cr. Significant correlations were found between concentrations in vegetables and rhizosphere soils for most metal(loid)s, the exceptions being Pb and Zn. The enrichment of Pb, Cd, Cr and As was mainly attributed to electronic information manufacturing activities, while the enrichment of Zn, Cu and Cd was associated with the application of commercial fertilizers and pesticides. The health risk associated with vegetable intake decreased in the order of leafy > fruit > leguminous > root vegetables. Leafy vegetables were identified as the category with the highest risk, with the mean risk value of 1.26. Cd was the major risk element for leafy vegetables. The non-carcinogenic risks estimated for leguminous and root vegetables were under the acceptable level. In conclusion, special attention should be paid to the health risks of toxic metal(loid)s in leafy vegetables in peri-urban areas with intense electronic information manufacturing activities. In order to minimize health risk, it is necessary to identify low-risk crops based on a comprehensive consideration of the metal(loid)s' pollution characteristics, transfer factors and local people's consumption behaviors.
Collapse
Affiliation(s)
- Beibei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Fei Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Ning Qin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Yujie Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Suzhen Cao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
18
|
Functional role of crosslinking in alginate scaffold for drug delivery and tissue engineering: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
19
|
Barbara M, Mindikoglu AL. The role of zinc in the prevention and treatment of nonalcoholic fatty liver disease. Metabol Open 2021; 11:100105. [PMID: 34337376 PMCID: PMC8318982 DOI: 10.1016/j.metop.2021.100105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 01/18/2023] Open
Abstract
The zinc element is an essential nutrient for human health. Zinc is involved in the glucose, lipid, and protein metabolism and antioxidant processes in biological pathways. Zinc deficiency can lead to several chronic liver diseases. Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases where zinc deficiency plays a critical role in pathogenesis. Human and animal studies showed that both NAFLD risk factors (i.e., insulin resistance, diabetes mellitus, dyslipidemia, obesity, hypertension) and NAFLD itself are associated with decreased blood levels of zinc. Additionally, endoplasmic reticulum stress and inflammation due to unfolded protein response, inadequate dietary zinc intake, and decreased zinc absorption from the gastrointestinal tract can result in zinc deficiency leading to NAFLD. Herein, we reviewed the mechanistic links between zinc deficiency and NAFLD development and the role of zinc in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Mary Barbara
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, USA
| | - Ayse L. Mindikoglu
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
20
|
Camarinho R, Garcia PV, Choi H, Rodrigues AS. Pulmonary oxidative stress and apoptosis in mice chronically exposed to hydrothermal volcanic emissions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35709-35716. [PMID: 33675493 DOI: 10.1007/s11356-021-13043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Recent studies have shown that exposure to hydrothermal emissions has a negative impact on the respiratory system. Still, volcanogenic air pollution studies are still outnumbered when compared to anthropogenic studies which can result in an unknown risk to the human populations living near volcanically active areas. This study was carried out in São Miguel Island, with noneruptive volcanically active environments, such as the Furnas volcano caldera. Its noneruptive volcanism presents itself as hydrothermal emissions, mainly by the release of nearly 1000 T d-1 of CO2 along with H2S, and the radioactive gas radon; metals [e.g., mercury (Hg), cadmium (Cd), copper (Cu), and zinc (Zn)] and particulate matter are also released in a daily basis. We test the hypothesis whether chronic exposure to hydrothermal emissions causes pulmonary oxidative stress, using Mus musculus as a surrogate species. Mus musculus was live-captured in two villages with hydrothermal emissions and one village without any type of volcanic activity. The level of pulmonary oxidative stress was immunohistochemically assessed by using an OxyIHCTM Oxidative stress detection kit, and the detection of terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) was used to evaluate apoptosis in lung tissues. Mice chronically exposed to hydrothermal emissions presented increased levels of oxidative stress and amount of apoptotic cells. We demonstrate, for the first time, the high oxidative stress potential in the lungs of mice chronically exposed to hydrothermal emissions. This study highlights the usefulness of M. musculus as a bioindicator species and enforces the necessity of regularly biomonitor the inhabitants of hydrothermal areas to prevent respiratory pathologies.
Collapse
Affiliation(s)
- Ricardo Camarinho
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Rua da Mãe de Deus, Apartado 1422, 9501-801, Ponta Delgada, Açores, Portugal.
- IVAR - Instituto de Vulcanologia e Avaliação de Riscos, University of the Azores, 9501-801, Ponta Delgada, Portugal.
| | - Patrícia Ventura Garcia
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Rua da Mãe de Deus, Apartado 1422, 9501-801, Ponta Delgada, Açores, Portugal
- CE3C - cE3c, Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group, University of the Azores, 9501-801, Ponta Delgada, Azores, Portugal
| | - Hyunok Choi
- College of Health, Lehigh University, STEPS Building, Room 264, 1 West Packer Avenue, Bethlehem, PA, 18015-3001, USA
| | - Armindo Santos Rodrigues
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Rua da Mãe de Deus, Apartado 1422, 9501-801, Ponta Delgada, Açores, Portugal
- IVAR - Instituto de Vulcanologia e Avaliação de Riscos, University of the Azores, 9501-801, Ponta Delgada, Portugal
| |
Collapse
|
21
|
Zhang H, Man Q, Song P, Li S, Liu X, Wang L, Li Y, Hu Y, Yang L. Association of whole blood copper, magnesium and zinc levels with metabolic syndrome components in 6-12-year-old rural Chinese children: 2010-2012 China National Nutrition and Health Survey. Nutr Metab (Lond) 2021; 18:67. [PMID: 34176509 PMCID: PMC8237488 DOI: 10.1186/s12986-021-00593-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is significantly associated with the risk of cardiovascular disease and its prevalence is showing a trend of getting younger. Previous studies on the relationship between elements and MetS were mostly reported in adults with single element analysis, while reports in children with combined effects of multiple elements were very limited. The aim of this study is to investigate the association between whole blood Cu, Mg and Zn in both single and combined effects and MetS components in rural Chinese children aged 6-12 years based on the data from 2010-2012 China National Nutrition and Health Survey. METHODS A total of 911 children (51.2% male, 48.7% female) aged 6-12 years were included. Basic characteristics and MetS component parameters were collected and determined by trained stuffs. Elements were detected by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Multivariate logistic regression analysis was performed to examine the independent relationship between elements and MetS components. RESULTS In single metal analysis, copper was positively associated with elevated waist (OR = 2.00, 1.18-3.28) and all of the metals were associated with elevated TG. And the comprehensive analysis of multiple elements were mostly consistent with the results of single element analysis (low Cu + high Zn with elevated TG (OR = 2.21, 1.18-4.13), high Cu + low Mg with elevated TG (OR = 0.40, 0.16-0.95), high Cu + high Mg with elevated waist (OR = 2.03, 1.26-3.27)), except the combination of Zn and Mg (high Zn + low Mg with reduced HDL-C (OR = 0.47, 0.28-0.77)). CONCLUSIONS Our study suggested Cu, Zn and Mg in children are indeed associated with metabolic syndrome components, whether in single element or multi-element combined analysis. The results will be confirmed through additional cohort research.
Collapse
Affiliation(s)
- Huidi Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, Beijing, People's Republic of China
| | - Qingqing Man
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, Beijing, People's Republic of China
| | - Pengkun Song
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, Beijing, People's Republic of China
| | - Siran Li
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, Beijing, People's Republic of China
| | - Xiaobing Liu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, Beijing, People's Republic of China
| | - Lijuan Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, Beijing, People's Republic of China
| | - Yuqian Li
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, Beijing, People's Republic of China
| | - Yichun Hu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, Beijing, People's Republic of China
| | - Lichen Yang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, Beijing, People's Republic of China.
| |
Collapse
|
22
|
Abdin AY, Jacob C, Kästner L. The Enigmatic Metallothioneins: A Case of Upward-Looking Research. Int J Mol Sci 2021; 22:5984. [PMID: 34206018 PMCID: PMC8198881 DOI: 10.3390/ijms22115984] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
In the mid-1950s, Bert Lester Vallee and his colleague Marvin Margoshes discovered a molecule referred to today as metallothionein (MT). Meanwhile, MTs have been shown to be common in many biological organisms. Despite their prevalence, however, it remains unclear to date what exactly MTs do and how they contribute to the biological function of an organism or organ. We investigate why biochemical research has not yet been able to pinpoint the function(s) of MTs. We shall systematically examine both the discovery of and recent research on Dr. Vallee's beloved family of MT proteins utilizing tools from philosophy of science. Our analysis highlights that Vallee's initial work exhibited features prototypical of a developing research tradition: it was upward-looking, exploratory, and utilized mere interactions. Since the 1960s, MT research has increasingly become intervention- and hypothesis-based while it remained largely upward-looking in character. Whilst there is no reason to think that upward-looking research cannot successfully yield structure-function mappings, it has not yet been successful in the case of MTs. Thus, we suggest it might be time to change track and consider other research strategies looking into the evolution of MTs. Recent studies in mollusks render research in this direction worthy of pursuit.
Collapse
Affiliation(s)
- Ahmad Yaman Abdin
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany; (A.Y.A.); (C.J.)
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181–UCCS–Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany; (A.Y.A.); (C.J.)
| | - Lena Kästner
- Institute of Philosophy, Saarland University, D-66123 Saarbruecken, Germany
| |
Collapse
|
23
|
Costa BP, Nassr MT, Diz FM, Fernandes KHA, Antunes GL, Grun LK, Barbé-Tuana FM, Nunes FB, Branchini G, de Oliveira JR. Methoxyeugenol regulates the p53/p21 pathway and suppresses human endometrial cancer cell proliferation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113645. [PMID: 33271245 DOI: 10.1016/j.jep.2020.113645] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plant-derived compounds are a reservoir of natural chemicals and can act as drug precursors or prototypes and pharmacological probes. Methoxyeugenol is a natural compound found in plant extracts, such as nutmeg (Myristica fragrans), and it presents anthelmintic, antimicrobial, anti-inflammatory activities. Recently, interest in the anticancer activity of plant extracts is increasing and the therapeutic activity of methoxyeugenol against cancer has not yet been explored. AIM OF THE STUDY The present study aimed to evaluate the cancer-suppressive role and the molecular signaling pathways of methoxyeugenol in human endometrial cancer (Ishikawa) cell line. MATERIALS AND METHODS Proliferation, viability, and cell toxicity were assessed by direct counting, MTT assay, and LDH enzyme release assay, respectively. Antiproliferative effect were evaluated by nuclear morphological changes along with the cellular mechanisms of apoptosis and senescence by flow cytometry. The underlying molecular and cellular mechanisms were investigated by RT-qPCR, reactive oxygen species (ROS) levels, mitochondrial dysfunction, and proliferative capacity. RESULTS AND CONCLUSIONS Methoxyeugenol treatment significantly inhibited the proliferation and viability of Ishikawa cells. Probably triggered by the higher ROS levels and mitochondrial dysfunction, the gene expression of p53 and p21 increased and the gene expression of CDK4/6 decreased in response to the methoxyeugenol treatment. The rise in nuclear size and acidic vesicular organelles corroborate with the initial senescence-inducing signals in Ishikawa cells treated with methoxyeugenol. The antiproliferative effect was not related to cytotoxicity and proved to effectively reduce the proliferative capacity of endometrial cancer cells even after treatment withdrawal. These results demonstrated that methoxyeugenol has a promising anticancer effect against endometrial cancer by rising ROS levels, triggering mitochondrial instability, and modulating cell signaling pathways leading to an inhibition of cell proliferation.
Collapse
Affiliation(s)
- Bruna Pasqualotto Costa
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Marcella Tornquist Nassr
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernando Mendonça Diz
- Programa de Pós-Graduação em Engenharia e Tecnologia de Materiais, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Krist Helen Antunes Fernandes
- Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Géssica Luana Antunes
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas Kich Grun
- Programa de Pós-graduação em Pediatria e Saúde da Criança, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Florencia María Barbé-Tuana
- Laboratório de Imunobiologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Bordignon Nunes
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil; Laboratório de Biofísica Celular, Molecular e Computacional, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Gisele Branchini
- Laboratório de Biofísica Celular, Molecular e Computacional, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
24
|
New Heteroleptic 3D Metal Complexes: Synthesis, Antimicrobial and Solubilization Parameters. Molecules 2020; 25:molecules25184252. [PMID: 32947958 PMCID: PMC7570477 DOI: 10.3390/molecules25184252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022] Open
Abstract
The microbial resistance to current antibiotics is increasing day by day, which in turn accelerating the development of new effective drugs. Several studies have proved the high antimicrobial potential of the interaction of several organic ligands with a variety of metal ions. In the present study, a conventional method has been adopted in the synthesis of twelve new heteroleptic complexes of cobalt (II), nickel (II), copper (II) and zinc (II) using three aldimines, namely, (HL1 ((E)-2-((4-chloro-2-hydroxybenzylidene)amino)-3,4-dimethyl-5-phenylcyclopent-2-en-1-one), HL2 ((Z)-3-((4-chlorobenzylidene)amino)-4-hydroxy-5-nitrobenzenesulfonic acid) HL3 (2,2'-((1,2-phenylenebis(azaneylylidene))bis(methaneylylidene))diphenol)) as primary ligands, while phenyl glycine was the secondary ligand. The synthesized compounds were characterized by UV-vis, IR and multinuclear (1H and 13C) NMR spectroscopy, elemental analysis, and electrical conductance. The IR study revealed the coordination of the aldimine derivatives with the -OH and N atom of imine moiety. In contrary to this, the phenyl glycine coordinated to the metal ions via oxygen of carboxylate and nitrogen of the amino group. The spectroscopic analysis unveiled the tetrahedral geometry of the synthesized metal (II) complexes, except for ligand HL3 which exhibited octahedral geometry. The synthesized compounds generally showed antibacterial activity for all microbes, except Ni (II) complexes lacking sensitivity. Furthermore, to access the bioavailability, the synthesized complexes were screened for their solubilization in the micellar media of sodium lauryl sulphate. The metal complex-surfactant interaction was revealed by UV-vis spectroscopy and electrical conductivity measurements.
Collapse
|
25
|
Peng J, Yang Y, Zhao P, Qiu S, Jia F, Wang J, Liang X, Chaudhry AS, Xu P, Yan W, Xu Z, Wang K. Cu2+ reduces hemolytic activity of the antimicrobial peptide HMPI and enhances its trypsin resistance. Acta Biochim Biophys Sin (Shanghai) 2020; 52:603-611. [PMID: 32369105 DOI: 10.1093/abbs/gmaa043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 11/12/2022] Open
Abstract
Nowadays, drug-resistant microbes are becoming a serious clinical problem threatening people's health and life. Antimicrobial peptides (AMPs) are believed to be potential alternatives of conventional antibiotics to combat the threat of drug-resistant microbes. However, the susceptibility of AMPs toward proteases is one of the major problems limiting their clinical use. In the present study, we reported the effect of Cu2+ on the bioactivity of AMP HMPI. We found that the addition of Cu2+ could improve the protease resistance of AMP HMPI without affecting its bioactivity. Notably, after the binding of Cu2+ with HMPI, the hemolytic activity of HMPI was greatly decreased. In addition, our results also demonstrated that the addition of Cu2+ increased the production of reactive oxygen species in the fungal cells, which may be a supplement for the antifungal activity of HMPI. In conclusion, the introduction of Cu2+ may provide an inorganic strategy to improve the stability and decrease the hemolytic activity of AMP HMPI, while maintaining its antifungal activity.
Collapse
Affiliation(s)
- Jinxiu Peng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yang Yang
- State Key Laboratory of State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ping Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shuai Qiu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fengjing Jia
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiayi Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaolei Liang
- Key Laboratory for Gynecologic Oncology of Gansu Province, Department of Gynecology, the First Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Ahmed Shabbir Chaudhry
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Peihan Xu
- The First Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Wenjin Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
26
|
Wang S, Nie P, Lu X, Li C, Dong X, Yang F, Luo P, Li B. Nrf2 participates in the anti-apoptotic role of zinc in Type 2 diabetic nephropathy through Wnt/β-catenin signaling pathway. J Nutr Biochem 2020; 84:108451. [PMID: 32795642 DOI: 10.1016/j.jnutbio.2020.108451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/11/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Zinc (Zn), as an essential trace element, has been approved to serve many roles in diabetic studies. Also Zn deficiency will aggravate renal damage in diabetes through suppression of nuclear factor-erythroid 2-related factor 2 (Nrf2) expression and function. The purpose of this study was to illustrate the role of Zn in renal apoptosis in diabetes and whether Nrf2 participated in the process. Type 2 diabetes mice model was induced by a single dose of streptozotocin (STZ) injection after high-fat diet (HFD) feeding for 3 months, then the mice were given diets supplemented with different concentrations of Zn (control, 30 ppm; low-concentration, 0.85 ppm). After 12-week treatment, morphology and associated protein expressions were examined. The results showed that low Zn diet significantly aggravated the level of renal apoptosis during diabetes, performed as the upregulation of caspase-3 expression. In addition, either low Zn diet or diabetes or both dramatically decreased the expression of Nrf2 and P-AKT in kidney. Moreover, the expression of β-catenin in kidney was increased markedly in diabetic groups. Mechanistic study applying human renal tubular epithelial cells (HK11) confirmed the role of Nrf2, as silencing Nrf2 expression abolished Zn supplementation protection against high sugar + high fat + low Zn-induced apoptosis and downregulation of β-catenin expression. All these results suggest that Nrf2 plays a key role in Zn protection against Type 2 diabetes induced renal apoptosis, which might be through Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Songyan Wang
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China; Department of Nephropathy, Jilin Province People's Hospital, 1183 Gongnong Road, Changchun 130021, China.
| | - Ping Nie
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Xiaodan Lu
- Diagnostics Medical Center, Jilin Province People's Hospital, 1183 Gongnong Road, Changchun 130021, China.
| | - Chunguang Li
- Department of Surgery, Changchun Traditional Chinese Medicine Hospital, 1913 Taibei Street, Changchun 130000, China.
| | - Xiaoming Dong
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Fan Yang
- Department of Nephropathy, Jilin Province People's Hospital, 1183 Gongnong Road, Changchun 130021, China.
| | - Ping Luo
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Bing Li
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| |
Collapse
|
27
|
Yoshida K, Gi M, Fujioka M, Teramoto I, Wanibuchi H. Long-term administration of excess zinc impairs learning and memory in aged mice. J Toxicol Sci 2020; 44:681-691. [PMID: 31588059 DOI: 10.2131/jts.44.681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Zinc (Zn) is an essential element, but excess amounts are known to cause neurotoxic effects. The risk of excessive Zn intake is increased by supplementing food intake with dietary supplements. Ageing affects many cellular processes that predispose individuals to neurodegeneration. Indeed, the prevalence of senile dementia such as Alzheimer's disease, Parkinson's disease, and vascular-type dementia increases with age. As such, we investigated the effects of long-term exposure to excess Zn on learning and memory in aged mice. ICR-JCL female mice (aged 26 weeks) were administered 0, 200, or 500 ppm Zn as zinc chloride in drinking water for 30 weeks. After 30-week administration, aged female animals were subjected to Y-maze, novel object recognition, and step-through passive avoidance tests. Chronic exposure to Zn did not inhibit learning and memory in the Y-maze test, but dose-dependently inhibited learning and memory in novel object recognition and step-through passive avoidance tests. These results indicate the potential for chronic Zn exposure to dose-dependently inhibit both long-term and novel object recognition memory. Results of microarray analysis revealed significant changes in gene expression of transthyretin and many olfactory receptors in the hippocampus of Zn-treated mice.
Collapse
Affiliation(s)
- Kaoru Yoshida
- Department of Food Science and Nutrition, Doshisha Women's College of Liberal Arts
| | - Min Gi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine.,Current address: Department of Environmental Risk Assessment, Osaka City University Graduate School of Medicine
| | - Masaki Fujioka
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine
| | - Isao Teramoto
- Department of Parasitology, Osaka City University Graduate School of Medicine
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine
| |
Collapse
|
28
|
Kim JH, Jang HJ, Cho WY, Yeon SJ, Lee CH. In vitro antioxidant actions of sulfur-containing amino acids. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.12.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
29
|
Trace elements analysis in hair strand of cooks chronically exposed to indoor air pollution in restaurants of Lhasa, Tibet: preliminary results. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
30
|
Malik A, Lin YF, Pratihar S, Angel LA, Hase WL. Direct Dynamics Simulations of Fragmentation of a Zn(II)-2Cys-2His Oligopeptide. Comparison with Mass Spectrometry Collision-Induced Dissociation. J Phys Chem A 2019; 123:6868-6885. [DOI: 10.1021/acs.jpca.9b05218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Abdul Malik
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061 United States
| | - Yu-Fu Lin
- Department of Chemistry Texas A&M University—Commerce, 2600 South Neal Street, Commerce, Texas 75428, United States
| | - Subha Pratihar
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061 United States
| | - Laurence A. Angel
- Department of Chemistry Texas A&M University—Commerce, 2600 South Neal Street, Commerce, Texas 75428, United States
| | - William L. Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061 United States
| |
Collapse
|
31
|
Chen M, Gao Y, Bian X, Feng J, Ma W, Zhu L. Predicting the survival of zebrafish larvae exposed to fluctuating pulses of lead and cadmium. CHEMOSPHERE 2019; 223:599-607. [PMID: 30798055 DOI: 10.1016/j.chemosphere.2019.02.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Aquatic organisms are often exposed to time-varied concentrations of contaminants due to pulsed inputs in natural water. Traditional toxicology experiments are usually carried out in a constant exposure pattern, which is inconsistent with the actual environment. In this study, a refined toxicokinetic-toxicodynamic (TK-TD) model was used to study the toxic effects of Pb and Cd on zebrafish larvae under three pulse exposures with 2, 4, and 6 h, respectively. The parameter sensitivity analysis showed that JM, max had the greatest impact on the output of the model. Cd or Pb pulse exposure resulted in less death than constant exposure at the same time-weighted average (TWA) concentrations. Survival fraction in larvae under 6 h interval between two pulses of Pb or Cd was larger than that under 2 h and 4 h interval. Toxicity under constant exposure of Cd or Pb was greater than that under 2, 4, and 6 h interval pulse exposure because the cumulative Cd or Pb concentration in the body under constant exposure was greater than that under pulse exposure. The results also showed that the stochastic death (SD) model was more suitable than the individual tolerance (IT) model for predicting the survival fraction of larvae under pulse exposure to Pb and Cd, which was indicated by higher R2 (0.670-0.940) in SD model than that (0.588-0.861) in IT model. Our model provides approaches for laboratory toxicity testing and modeling approaches for addressing the toxicity of heavy metal pulsed exposure.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yongfei Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Xiaoxue Bian
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Weiqi Ma
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
32
|
Zhang F, Xu J. The response of larvae Brachymystax lenok during continuous and single pulses exposure to copper, zinc, lead and cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:153-159. [PMID: 30195207 DOI: 10.1016/j.ecoenv.2018.08.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
The continuous and single pulses exposure of Cu, Zn, Pb and Cd on larvae Brachymystax lenok were tested in this study. The first-order kinetics was employed to obtain better comprehension on the time-toxicity relationship of tested heavy metals in continuous exposure test. For difference in time-varying exposure or recovery, 50% lethal time-averaged concentration (TAC) was used to assess the pulsed toxicity, which took both time and concentration into consideration in exposure and post-exposure period. TAC assessment to the single pulses and the regression analysis of first-order kinetic to continuous exposures demonstrated that Cu and Zn showed greater toxicity than Pb and Cd, indicating a slower uptake and/or depuration effect for zinc or copper. Furthermore, the results showed that recovery effect of larvae to all four metals was found in 24 h exposure followed by 72 h in fresh water, while for 72 h exposure and 24 h non-exposure the delayed lethal phenomenon occurred.
Collapse
Affiliation(s)
- Fengyi Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Jingbo Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
33
|
Wang H, Han R. Zinc as a modulator of membrane stability parameters during prostate cancer. MINERVA BIOTECNOL 2018. [DOI: 10.23736/s1120-4826.18.02427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Sarker M, Izadifar M, Schreyer D, Chen X. Influence of ionic crosslinkers (Ca2+/Ba2+/Zn2+) on the mechanical and biological properties of 3D Bioplotted Hydrogel Scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1126-1154. [DOI: 10.1080/09205063.2018.1433420] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Md. Sarker
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Mohammad Izadifar
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - David Schreyer
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
35
|
Ge H, Riss PJ, Mirabello V, Calatayud DG, Flower SE, Arrowsmith RL, Fryer TD, Hong Y, Sawiak S, Jacobs RM, Botchway SW, Tyrrell RM, James TD, Fossey JS, Dilworth JR, Aigbirhio FI, Pascu SI. Behavior of Supramolecular Assemblies of Radiometal-Filled and Fluorescent Carbon Nanocapsules In Vitro and In Vivo. Chem 2017. [DOI: 10.1016/j.chempr.2017.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Boudreault F, Pinilla-Vera M, Englert JA, Kho AT, Isabelle C, Arciniegas AJ, Barragan-Bradford D, Quintana C, Amador-Munoz D, Guan J, Choi KM, Sholl L, Hurwitz S, Tschumperlin DJ, Baron RM. Zinc deficiency primes the lung for ventilator-induced injury. JCI Insight 2017; 2:86507. [PMID: 28570269 DOI: 10.1172/jci.insight.86507] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/25/2017] [Indexed: 01/13/2023] Open
Abstract
Mechanical ventilation is necessary to support patients with acute lung injury, but also exacerbates injury through mechanical stress-activated signaling pathways. We show that stretch applied to cultured human cells, and to mouse lungs in vivo, induces robust expression of metallothionein, a potent antioxidant and cytoprotective molecule critical for cellular zinc homeostasis. Furthermore, genetic deficiency of murine metallothionein genes exacerbated lung injury caused by high tidal volume mechanical ventilation, identifying an adaptive role for these genes in limiting lung injury. Stretch induction of metallothionein required zinc and the zinc-binding transcription factor MTF1. We further show that mouse dietary zinc deficiency potentiates ventilator-induced lung injury, and that plasma zinc levels are significantly reduced in human patients who go on to develop acute respiratory distress syndrome (ARDS) compared with healthy and non-ARDS intensive care unit (ICU) controls, as well as with other ICU patients without ARDS. Taken together, our findings identify a potentially novel adaptive response of the lung to stretch and a critical role for zinc in defining the lung's tolerance for mechanical ventilation. These results demonstrate that failure of stretch-adaptive responses play an important role in exacerbating mechanical ventilator-induced lung injury, and identify zinc and metallothionein as targets for lung-protective interventions in patients requiring mechanical ventilation.
Collapse
Affiliation(s)
- Francis Boudreault
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Miguel Pinilla-Vera
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua A Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
| | - Alvin T Kho
- Boston Children's Hospital Informatics Program, Boston, Massachusetts, USA
| | - Colleen Isabelle
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Antonio J Arciniegas
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diana Barragan-Bradford
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carolina Quintana
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diana Amador-Munoz
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jiazhen Guan
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kyoung Moo Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Shelley Hurwitz
- Center for Clinical Investigation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Rebecca M Baron
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Electrochemical and optical study of metallothionein interactions with prion proteins. J Pharm Biomed Anal 2017; 140:355-361. [DOI: 10.1016/j.jpba.2017.03.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/13/2017] [Accepted: 03/20/2017] [Indexed: 01/23/2023]
|
38
|
Zhang H, Yan C, Yang Z, Zhang W, Niu Y, Li X, Qin L, Su Q. Alterations of serum trace elements in patients with type 2 diabetes. J Trace Elem Med Biol 2017; 40:91-96. [PMID: 28159227 DOI: 10.1016/j.jtemb.2016.12.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/31/2016] [Accepted: 12/31/2016] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The aim of the present study is to investigate the association of trace elements and the risk of type 2 diabetes mellitus. DESIGN AND METHODS The 1837 participants (637 men and 1200 women) aged 40-70 were from a cross-sectional community-based study performed in downtown Shanghai. All the participants without diabetes mellitus history underwent a 75-g OGTT. The participants with diabetes mellitus took 100g steamed bread as the substitute. The fasting and OGTT 2h or postprandial 2h venous blood samples were collected. Blood glucose levels, fasting serum insulin concentrations, lipid profiles, HbA1C and 19 trace elements including magnesium, copper, zinc and selenium and so on were assayed. RESULTS Of all the 1837 studied subjects, 510 subjects had diabetes mellitus (191 male, 319 female). Serum magnesium levels were decreased statistically (p<0.05), but serum copper, zinc and selenium levels were significantly increased in subjects with diabetes mellitus compared to non-diabetic subjects (p<0.01 for copper, p<0.001 for zinc and selenium). Logistic regression analysis showed that serum magnesium was negatively associated with diabetes (p<0.05) and serum copper, zinc, and selenium were all positively associated with diabetes (p<0.05 for copper, p<0.001 for both zinc and selenium). Correlation analysis showed a remarkable correlation between blood glucose, HbA1C and serum magnesium, copper, zinc, and selenium (p<0.01 for zinc, p<0.001 for copper, zinc and selenium). CONCLUSIONS Serum magnesium levels are decreased and serum copper, zinc and selenium levels are elevated in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Endocrinology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chonghuai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Yang
- Department of Endocrinology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Zhang
- Department of Endocrinology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Niu
- Department of Endocrinology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyong Li
- Department of Endocrinology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Qin
- Department of Endocrinology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
39
|
Gangopadhyay M, Jana A, Rajesh Y, Bera M, Biswas S, Chowdhury N, Zhao Y, Mandal M, Singh NDP. Organic Nanoparticle-Based Fluorescent Chemosensor for Selective Switching ON and OFF of Photodynamic Therapy (PDT). ChemistrySelect 2016. [DOI: 10.1002/slct.201601380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Moumita Gangopadhyay
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 West Bengal India
| | - Avijit Jana
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences, Nanyang; Technological University; 21 Nanyang Link Singapore 637371
| | - Y. Rajesh
- School of Medical Science and Technology; Indian Institute of Technology; Kharagpur India
| | - Manoranjan Bera
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 West Bengal India
| | - Sandipan Biswas
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 West Bengal India
| | - Nilanjana Chowdhury
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 West Bengal India
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences, Nanyang; Technological University; 21 Nanyang Link Singapore 637371
| | - Mahitosh Mandal
- School of Medical Science and Technology; Indian Institute of Technology; Kharagpur India
| | - N. D. Pradeep Singh
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 West Bengal India
| |
Collapse
|
40
|
Basu A, Sohn YS, Alyan M, Nechushtai R, Domb AJ, Goldblum A. Discovering Novel and Diverse Iron-Chelators in Silico. J Chem Inf Model 2016; 56:2476-2485. [PMID: 28024407 DOI: 10.1021/acs.jcim.6b00450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Specific iron chelation is a validated strategy in anticancer drug discovery. However, only a few chemical classes (4-5 categories) have been reported to date. We discovered in silico five new structurally diverse iron-chelators by screening through models based on previously known chelators. To encompass a larger chemical space and propose newer scaffolds, we used our iterative stochastic elimination (ISE) algorithm for model building and subsequent virtual screening (VS). The ISE models were developed by training a data set of 130 reported iron-chelators. The developed models are statistically significant with area under the receiver operating curve greater than 0.9. The models were used to screen the Enamine chemical database of ∼1.8 million molecules. The top ranked 650 molecules were reduced to 50 diverse structures, and a few others were eliminated due to the presence of reactive groups. Finally, 34 molecules were purchased and tested in vitro. Five compounds were identified with significant iron-chelation activity in Cal-G assay. Intracellular iron-chelation study revealed one compound as equivalent in potency to the iron chelating "gold standards" deferoxamine and deferiprone. The amount of discovered positives (5 out of 34) is expected by the realistic enrichment factor of the model.
Collapse
Affiliation(s)
- Arijit Basu
- School of Pharmacy, Institute for Drug Research, Hebrew University of Jerusalem , Jerusalem, 91120, Israel
| | - Yang-Sung Sohn
- Department of Plant and Environmental Sciences, the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem , Givat Ram, Jerusalem, 91904, Israel
| | - Mohamed Alyan
- School of Pharmacy, Institute for Drug Research, Hebrew University of Jerusalem , Jerusalem, 91120, Israel
| | - Rachel Nechushtai
- Department of Plant and Environmental Sciences, the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem , Givat Ram, Jerusalem, 91904, Israel
| | - Abraham J Domb
- School of Pharmacy, Institute for Drug Research, Hebrew University of Jerusalem , Jerusalem, 91120, Israel
| | - Amiram Goldblum
- School of Pharmacy, Institute for Drug Research, Hebrew University of Jerusalem , Jerusalem, 91120, Israel
| |
Collapse
|
41
|
Awasthi AK, Zeng X, Li J. Response to "Letter to the editor re: Awasthi et al., 2016 (Environ Sci Pollut Res 23(12): 11509-11532)". ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25512-25514. [PMID: 27796977 DOI: 10.1007/s11356-016-7765-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Abhishek Kumar Awasthi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Rm. 805, Sino-Italian Environment and Energy Efficient Building, Beijing, 100084, China
| | - Xianlai Zeng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Rm. 805, Sino-Italian Environment and Energy Efficient Building, Beijing, 100084, China.
| | - Jinhui Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Rm. 805, Sino-Italian Environment and Energy Efficient Building, Beijing, 100084, China.
| |
Collapse
|
42
|
El-Gharbawy RM, Emara AM, Abu-Risha SES. Zinc oxide nanoparticles and a standard antidiabetic drug restore the function and structure of beta cells in Type-2 diabetes. Biomed Pharmacother 2016; 84:810-820. [DOI: 10.1016/j.biopha.2016.09.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/08/2016] [Accepted: 09/18/2016] [Indexed: 10/20/2022] Open
|
43
|
He MJ, Wei SQ, Sun YX, Yang T, Li Q, Wang DX. Levels of five metals in male hair from urban and rural areas of Chongqing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22163-22171. [PMID: 27544528 DOI: 10.1007/s11356-016-7448-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
Heavy metals were measured by flame atomic absorption in male hair from residents in urban and rural areas in Chongqing. The median values of the Cd, Cu, Ni, Pb and Zn were 2.90, 23.9, 9.31, 39.3 and 203 μg/g in urban areas and 0.84, 13.4, 5.56, 14.5 and 169 μg/g in rural area, respectively. The levels of Cd, Ni and Pb both in urban and rural areas lie at the high end of the worldwide figures. The differences in heavy metal distribution pattern indicated that there were more sources of Cd and Pb in urban areas. The levels of Cd were increasing along with the growth of age except for the aged people in urban areas, and no significant relationship was observed between the levels of the heavy metal and the age. It is noticed that the hair of smokers exhibited more heavy metal levels than that of non-smokers both in urban and rural areas. In addition, the hair metal levels of the smokers and non-smokers in urban areas were significantly higher than those in rural area, respectively. Significant pairwise correlations (p < 0.01) were observed among Cd, Cu, Ni and Pb in rural area and only between Cu and Ni and between Pb and Ni in urban areas, indicating the elements in these two areas might originate from different sources. The elevated levels of Cd, Pb and Ni implied that the residents both in urban and rural areas might be at high risk of toxic metal exposure, especially for the children.
Collapse
Affiliation(s)
- Ming-Jing He
- College of Resources and Environment Science, Southwest University, Chongqing, 400716, China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China
| | - Shi-Qiang Wei
- College of Resources and Environment Science, Southwest University, Chongqing, 400716, China.
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, 400716, China.
- Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China.
| | - Yu-Xin Sun
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Ting Yang
- College of Resources and Environment Science, Southwest University, Chongqing, 400716, China
| | - Qi Li
- College of Resources and Environment Science, Southwest University, Chongqing, 400716, China
| | - Deng-Xiang Wang
- College of Resources and Environment Science, Southwest University, Chongqing, 400716, China
| |
Collapse
|
44
|
Abstract
The Trial to Assess Chelation Therapy (TACT) was a randomized double-blind placebo-controlled trial enrolling patients age ≥50 years with prior myocardial infarction. TACT used a 2 × 2 factorial design to study ethylene diamine tetraacetic acid (EDTA) chelation and high-dose vitamin supplementation. Chelation provided a modest but significant reduction in cardiovascular endpoints. The benefit was stronger and significant among participants with diabetes but absent in those without diabetes. Mechanisms by which chelation might reduce cardiovascular risk in persons with diabetes include the effects of EDTA chelation on transition and toxic metals. Transition metals, particularly copper and iron, play important roles in oxidative stress pathways. Toxic metals, in particular cadmium and lead, are toxic for the cardiovascular system. This review discusses the epidemiologic evidence and animal and human studies supporting the role of these metals in the development of diabetes and ischemic heart disease and potential ways by which EDTA chelation could confer cardiovascular benefit.
Collapse
|
45
|
Awasthi AK, Zeng X, Li J. Relationship between e-waste recycling and human health risk in India: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:11509-32. [PMID: 26880523 DOI: 10.1007/s11356-016-6085-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/08/2016] [Indexed: 05/07/2023]
Abstract
Informal recycling of waste (including e-waste) is an emerging source of environmental pollution in India. Polychlorinated biphenyls (PCBs), polychlorinated diphenyl ethers (PBDEs), and heavy metals, among other substances, are a major health concern for workers engaged in waste disposal and processing, and for residents living near these facilities, and are also a detriment to the natural environment. The main objective of this review article was to evaluate the status of these impacts. The review found that, huge quantity of e-waste/waste generated, only a small amount is treated formally; the remainder is processed through the informal sector. We also evaluated the exposure pathways, both direct and indirect, and the human body load markers (e.g., serum, blood, breast milk, urine, and hair), and assessed the evidence for the association between these markers and e-waste exposure. Our results indicated that the open dumping and informal e-waste recycling systems should be replaced by the best available technology and environmental practices, with proper monitoring and regular awareness programs for workers and residents. Further and more detailed investigation in this area is also recommended.
Collapse
Affiliation(s)
- Abhishek Kumar Awasthi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Rm. 805, Sino-Italian Environment and Energy Efficient Building, Beijing, 100084, China
| | - Xianlai Zeng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Rm. 805, Sino-Italian Environment and Energy Efficient Building, Beijing, 100084, China
| | - Jinhui Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Rm. 805, Sino-Italian Environment and Energy Efficient Building, Beijing, 100084, China.
| |
Collapse
|
46
|
Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:727-48. [PMID: 26844773 DOI: 10.1016/j.bbamcr.2016.01.026] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/29/2016] [Indexed: 12/12/2022]
Abstract
Essential metals, such as iron and copper, play a critical role in a plethora of cellular processes including cell growth and proliferation. However, concomitantly, excess of these metal ions in the body can have deleterious effects due to their ability to generate cytotoxic reactive oxygen species (ROS). Thus, the human body has evolved a very well-orchestrated metabolic system that keeps tight control on the levels of these metal ions. Considering their very high proliferation rate, cancer cells require a high abundance of these metals compared to their normal counterparts. Interestingly, new anti-cancer agents that take advantage of the sensitivity of cancer cells to metal sequestration and their susceptibility to ROS have been developed. These ligands can avidly bind metal ions to form redox active metal complexes, which lead to generation of cytotoxic ROS. Furthermore, these agents also act as potent metastasis suppressors due to their ability to up-regulate the metastasis suppressor gene, N-myc downstream regulated gene 1. This review discusses the importance of iron and copper in the metabolism and progression of cancer, how they can be exploited to target tumors and the clinical translation of novel anti-cancer chemotherapeutics.
Collapse
|
47
|
|
48
|
Paúrová M, Havlíčková J, Pospíšilová A, Vetrík M, Císařová I, Stephan H, Pietzsch HJ, Hrubý M, Hermann P, Kotek J. Bifunctional Cyclam-Based Ligands with Phosphorus Acid Pendant Moieties for Radiocopper Separation: Thermodynamic and Kinetic Studies. Chemistry 2015; 21:4671-87. [DOI: 10.1002/chem.201405777] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 11/08/2022]
|
49
|
Fen YW, Yunus WMM, Talib ZA, Yusof NA. Development of surface plasmon resonance sensor for determining zinc ion using novel active nanolayers as probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 134:48-52. [PMID: 25004894 DOI: 10.1016/j.saa.2014.06.081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/28/2014] [Accepted: 06/01/2014] [Indexed: 06/03/2023]
Abstract
In this study, novel active nanolayers in combination with surface plasmon resonance (SPR) system for zinc ion (Zn(2+)) detection has been developed. The gold surface used for the SPR system was modified with the novel developed active nanolayers, i.e. chitosan and chitosan-tetrabutyl thiuram disulfide (chitosan-TBTDS). Both chitosan and chitosan-TBTDS active layers were fabricated on the gold surface by spin coating technique. The system was used to monitor SPR signal for Zn(2+) in aqueous media with and without sensitivity enhancement by TBTDS. For both active nanolayers, the shift of resonance angle is directly proportional to the concentration of Zn(2+) in aqueous media. The higher shift of resonance angle was obtained for chitosan-TBTDS active nanolayer due to a specific binding of TBTDS with Zn(2+). The chitosan-TBTDS active nanolayer enhanced the sensitivity of detection down to 0.1 mg/l and also induced a selective detection towards Zn(2+).
Collapse
Affiliation(s)
- Yap Wing Fen
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.
| | - W Mahmood Mat Yunus
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Zainal Abidin Talib
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nor Azah Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
50
|
Wang XM, Chen S, Fan RQ, Zhang FQ, Yang YL. Facile luminescent tuning of ZnII/HgII complexes based on flexible, semi-rigid and rigid polydentate Schiff bases from blue to green to red: structural, photophysics, electrochemistry and theoretical calculations studies. Dalton Trans 2015; 44:8107-25. [DOI: 10.1039/c5dt00057b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photophysical properties of ZnII/HgII Schiff base complexes could be tuned by changing the ligand structures.
Collapse
Affiliation(s)
- Xin-Ming Wang
- Department of Chemistry
- Harbin Institute of Technology
- Harbin 150001
- P. R. of China
| | - Shuo Chen
- Department of Chemistry
- Harbin Institute of Technology
- Harbin 150001
- P. R. of China
| | - Rui-Qing Fan
- Department of Chemistry
- Harbin Institute of Technology
- Harbin 150001
- P. R. of China
| | - Fu-Qiang Zhang
- Department of Chemistry
- Shangqiu Normal University
- Shangqiu 476000
- P. R. of China
| | - Yu-Lin Yang
- Department of Chemistry
- Harbin Institute of Technology
- Harbin 150001
- P. R. of China
| |
Collapse
|