1
|
Lorenzetti WR, Ibelli AMG, Peixoto JDO, Savoldi IR, Mores MAZ, de Souza Romano G, do Carmo KB, Ledur MC. The downregulation of genes encoding muscle proteins have a potential role in the development of scrotal hernia in pigs. Mol Biol Rep 2024; 51:822. [PMID: 39023774 DOI: 10.1007/s11033-024-09766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Testicular descent is a physiological process regulated by many factors. Eventually, disturbances in the embryological/fetal development path facilitate the occurrence of scrotal hernia, a congenital malformation characterized by the presence of intestinal portions within the scrotal sac due to the abnormal expansion of the inguinal ring. In pigs, some genes have been related to this anomaly, but the genetic mechanisms involved remain unclear. This study aimed to investigate the expression profile of a set of genes potentially involved with the manifestation of scrotal hernia in the inguinal ring tissue. METHODS AND RESULTS Tissue samples from the inguinal ring/canal of normal and scrotal hernia-affected male pigs with approximately 30 days of age were used. Relative expression analysis was performed using qPCR to confirm the expression profile of 17 candidate genes previously identified in an RNA-Seq study. Among them, the Myosin heavy chain 1 (MYH1), Desmin (DES), and Troponin 1 (TNNI1) genes were differentially expressed between groups and had reduced levels of expression in the affected animals. These genes encode proteins involved in the formation of muscle tissue, which seems to be important for increasing the resistance of the inguinal ring to the abdominal pressure, which is essential to avoid the occurrence of scrotal hernia. CONCLUSIONS The downregulation of muscular candidate genes in the inguinal tissue clarifies the genetic mechanisms involved with this anomaly in its primary site, providing useful information for developing strategies to control this malformation in pigs and other mammals.
Collapse
Affiliation(s)
- William Raphael Lorenzetti
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Rua Beloni Trombeta Zanin 680E, Chapecó, Santa Catarina, 89815-630, Brazil
| | - Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838, Guarapuava, Paraná, 85040-167, Brazil
- Embrapa Pecuária Sudeste, Rodovia Washington Luiz, Km 234, São Carlos, São Paulo, 13560-970, Brazil
| | - Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838, Guarapuava, Paraná, 85040-167, Brazil
| | - Igor Ricardo Savoldi
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Rua Beloni Trombeta Zanin 680E, Chapecó, Santa Catarina, 89815-630, Brazil
- Laudo laboratório Avícola, Rodovia BR-365, Morumbi, Uberlândia, Minas Gerais, 38407180, Brazil
| | - Marcos Antônio Zanella Mores
- Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil
| | | | - Kamilla Bleil do Carmo
- Universidade do Contestado, Concórdia, Santa Catarina, Brazil
- Instituto Federal Catarinense, Rodovia SC 283, km 17, Concórdia, Santa Catarina, 89703-720, Brazil
| | - Mônica Corrêa Ledur
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Rua Beloni Trombeta Zanin 680E, Chapecó, Santa Catarina, 89815-630, Brazil.
- Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil.
| |
Collapse
|
2
|
Chaosap C, Chaweewan K, Adeyemi KD, Phonkate N, Sitthigripong R. Meat Characteristics, Expression of Myosin Heavy Chain and Metabolism-Related Genes in Thai Native Pigs. Foods 2024; 13:1502. [PMID: 38790802 PMCID: PMC11120127 DOI: 10.3390/foods13101502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigated the meat quality, expression of myosin heavy chain (MyHC) and metabolism-related genes, ribonucleotides and fatty acids in Longissimus thoracis of Thai native pigs (TNPs) from different geographical regions (GR). Forty-one 9-10-month-old castrated TNPs (BW 60 kg), consisting of 18, 11 and 12 pigs from Northern (NT), Southern (ST) and Northeastern (NE) regions, respectively, were slaughtered. GR did not affect (p > 0.05) the expression of MyHC, phosphoglycerate mutase 1, cytosolic glycerol-3-phosphate dehydrogenase, triosephosphate isomerase 1 and adipocyte fatty acid binding protein genes. The trend of MyHC was MyHC IIx > MyHC IIb > MyHC IIa > MyHC I. The NT loin had higher (p < 0.05) glycogen, C18:2n6, C20:4n6 and cooking loss, lower inosine, inosine monophosphate and hypoxanthine and a shorter sarcomere length than the ST and NE loins. The ST loin had a lower (p < 0.05) a* compared to other loins. Principal component analysis established significant relationships between the TNP and specific meat quality traits. This finding suggests that GR affected the meat quality, ribonucleotides and selected fatty acids in TNPs. These results provide relevant information that can be used to optimize the use of Thai native pork.
Collapse
Affiliation(s)
- Chanporn Chaosap
- Department of Agricultural Education, Faculty of Industrial Education and Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Kamon Chaweewan
- Bureau of Animal Husbandry and Genetic Improvement, Department of Livestock Development, Muang District, Pathum Thani 12000, Thailand;
| | - Kazeem D. Adeyemi
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, Ilorin PMB 1515, Nigeria;
| | - Netanong Phonkate
- Department of Animal Technology and Fishery, Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (N.P.); (R.S.)
| | - Ronachai Sitthigripong
- Department of Animal Technology and Fishery, Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (N.P.); (R.S.)
| |
Collapse
|
3
|
Garrido N, Albuquerque A, Charneca R, Costa F, Marmelo C, Ramos A, Martin L, Martins JM. Transcriptomic Profiling of Subcutaneous Backfat in Castrated and Intact Alentejano Pigs Finished Outdoors with Commercial and Fiber-Rich Diets. Genes (Basel) 2023; 14:1722. [PMID: 37761862 PMCID: PMC10531178 DOI: 10.3390/genes14091722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
In this work, we studied the backfat transcriptome of surgically castrated (C), intact (I) and intact fed an experimental diet (IE) outdoor-reared male Alentejano (AL) pigs. The experimental diet was a high-fiber diet with locally produced legumes and by-products associated with a boar taint reduction effect. At slaughter (~160 kg), backfat samples were collected for total RNA sequencing. Intact pigs presented leaner carcasses, more total collagen, and more unsaturated intramuscular fat content than C animals. A total of 2726 differentially expressed genes (DEGs, |log2 FC|> 0.58, q < 0.05) were identified between C and I with overexpressed genes related to muscular activity (MYH1, ACTA1) or collagen metabolism (COL1A1, COL1A2) in I pigs. Between C and IE, 1639 DEGs of genes involved in lipidic metabolism (LEP, ME1, FABP4, ELOVL6) were overexpressed in C. Finally, only 28 DEGs were determined between I and IE. Clustering results indicated a drastic influence of the testis in the transcriptome of subcutaneous fat of AL pigs, while the diet had a marginal effect. Diet can reduce stress by increasing satiety in animals, and could have induced an increase of skatole degradation due to the higher expression of the CYP2A19 gene in the IE group.
Collapse
Affiliation(s)
- Nicolás Garrido
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3441-131 Santa Comba Dão, Portugal; (N.G.); (A.A.); (R.C.); (F.C.); (C.M.); (A.R.); (L.M.)
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - André Albuquerque
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3441-131 Santa Comba Dão, Portugal; (N.G.); (A.A.); (R.C.); (F.C.); (C.M.); (A.R.); (L.M.)
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Rui Charneca
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3441-131 Santa Comba Dão, Portugal; (N.G.); (A.A.); (R.C.); (F.C.); (C.M.); (A.R.); (L.M.)
- MED & CHANGE, Departamento de Zootecnia, ECT, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Filipa Costa
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3441-131 Santa Comba Dão, Portugal; (N.G.); (A.A.); (R.C.); (F.C.); (C.M.); (A.R.); (L.M.)
| | - Carla Marmelo
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3441-131 Santa Comba Dão, Portugal; (N.G.); (A.A.); (R.C.); (F.C.); (C.M.); (A.R.); (L.M.)
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Amélia Ramos
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3441-131 Santa Comba Dão, Portugal; (N.G.); (A.A.); (R.C.); (F.C.); (C.M.); (A.R.); (L.M.)
- Departamento de Ciências Agrárias e Tecnologias, Escola Superior Agrária de Coimbra, Bencanta, 3045-601 Coimbra, Portugal
| | - Luísa Martin
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3441-131 Santa Comba Dão, Portugal; (N.G.); (A.A.); (R.C.); (F.C.); (C.M.); (A.R.); (L.M.)
- Departamento de Ciências Agrárias e Tecnologias, Escola Superior Agrária de Coimbra, Bencanta, 3045-601 Coimbra, Portugal
| | - José Manuel Martins
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3441-131 Santa Comba Dão, Portugal; (N.G.); (A.A.); (R.C.); (F.C.); (C.M.); (A.R.); (L.M.)
- MED & CHANGE, Departamento de Zootecnia, ECT, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
4
|
Di Luca A, Ianni A, Bennato F, Martino C, Henry M, Meleady P, Martino G. Comparative Proteomics Analysis of Pig Muscle Exudate through Label-Free Liquid Chromatography-Mass Spectrometry. Animals (Basel) 2023; 13:ani13091460. [PMID: 37174497 PMCID: PMC10177093 DOI: 10.3390/ani13091460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Capital-driven animal husbandry systems undertaken in the last century led to the abandoning of many pig breeds that were not profitable. These local pig breeds and their respective production systems have great potential as they are able to respond to the high criteria and needs of modern society concerning some environmental aspects, animal-welfare, healthiness, etc. This is the case of the black pigs of Italy. The Apulo-Calabrese is a breed of black pig, known by many other names such as Nero d'Abruzzo. In order to further understand the biological differences between different types of porcine genetics (Nero d'Abruzzo and commercial-hybrid) we used a label-free LC-MS strategy and Western-blot to characterize the proteomes of muscle-exudate collected from these pigs. This proteomics approach identified 1669 proteins of which 100 changed significantly in abundance between breeds. Bioinformatics functional analysis indicated that differentially expressed proteins were involved in several biological processes related to energy-metabolism and response to oxidative stress, suggesting that these functions might distinguish between these pigs. Fatty-acid synthase, catalase and glutathione-peroxidase, involved in enzymatic activity were found to be more represented in samples obtained from the Nero d'Abruzzo. This biological information can potentially provide new biological factors that could determine the different production performances of these pigs, distinguished by their different genetic backgrounds.
Collapse
Affiliation(s)
- Alessio Di Luca
- Department of Bioscience and Technology for Food Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy
| | - Andrea Ianni
- Department of Bioscience and Technology for Food Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy
| | - Francesca Bennato
- Department of Bioscience and Technology for Food Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy
| | - Camillo Martino
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Dublin, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Dublin, Ireland
- School of Biotechnology, Dublin City University, Dublin 9, Dublin, Ireland
| | - Giuseppe Martino
- Department of Bioscience and Technology for Food Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
5
|
Overview of omics applications in elucidating the underlying mechanisms of biochemical and biological factors associated with meat safety and nutrition. J Proteomics 2023; 276:104840. [PMID: 36758853 DOI: 10.1016/j.jprot.2023.104840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
Over the years, significant technological discoveries have facilitated the improvement of meat-related research. Recent studies of complex and interactive factors contributing to variations in meat safety are increasingly focused on data-driven omics approaches such as proteomics. This review highlighted omics advances in elucidating the biochemical and biological actions on meat safety. Also, the impacts of the nutritional characteristics of meat and meat products on human health are emphasized. Future perspectives should explore multi-omics and in situ investigations to elucidate the implications in microbiological studies, including nutritional and health-related assessments. Also, creating meat safety assessment and prediction models based on biomarkers of meat safety traits will help to mitigate application constraints, thereby evaluating meat quality more accurately. This could provide a scientific basis for increasing the meat industry's profitability and producing high-quality meat and meat products for consumers. SIGNIFICANCE OF THE REVIEW: This review highlighted omics advances in elucidating underlying mechanisms of biochemical and biological factors associated with meat safety. Also, the impacts of meat proteins on human health are emphasized. Future perspectives should explore multi-omics and in situ investigations to elucidate the implications in microbiological studies, including nutritional and health-related assessments. Also, creating meat safety assessment and prediction models based on biomarkers of meat safety traits will help to mitigate application constraints, thereby evaluating meat quality more accurately. This could provide a scientific basis for increasing the meat industry's profitability and producing high-quality meat and meat products for consumers.
Collapse
|
6
|
Maheswarappa NB, Banerjee R, Muthukumar M. Antioxidant and angiotensin-I-converting enzyme (ACE-I) inhibitory activities of protein hydrolysates derived from water buffalo ( Bubalus bubalis) liver. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:36-43. [PMID: 36618041 PMCID: PMC9813329 DOI: 10.1007/s13197-022-05571-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/12/2022] [Accepted: 08/07/2022] [Indexed: 11/05/2022]
Abstract
In the current study, we attempted to use ginger as a novel and natural source of protease in comparison with other commercially available enzymes to extract and characterize antioxidant and antihypertensive hydrolysates from water buffalo liver, a protein rich offal. Hydrolysis of protein extracts from buffalo liver using proteinase-K, pronase-E and ginger protease significantly increased the %degree of hydrolysis (18.5-55%) and generated low-molecular weight peptides evident from SDS-PAGE. Enzyme treated hydrolysates exhibited higher (p < 0.05) DPPH radical scavenging activity (43.7-82.4%) and angiotensin-I-converting enzyme (ACE-I) inhibitory activity (46.9-50.1%) relative to control. Mass spectrometric analysis (MALDI-TOF MS) of selected gel-filtered fractions identified few important peptides derived from nuclear ribonucleoprotein, pyruvate kinase and phosphoglycerate kinase that possess strong antioxidant activity. Present findings indicate the efficacy of partially purified ginger as a novel source of protease in generating protein hydrolysates from water buffalo liver with significant antioxidant and antihypertensive activity in vitro. We successfully demonstrated the recovery of functional bioactive peptides from water buffalo liver which presents a potential opportunity for the meat industries to economically use this important byproduct.
Collapse
Affiliation(s)
| | - Rituparna Banerjee
- ICAR-National Research Centre on Meat, Chengicherla, Hyderabad, Telangana 500092 India
| | - M. Muthukumar
- ICAR-National Research Centre on Meat, Chengicherla, Hyderabad, Telangana 500092 India
| |
Collapse
|
7
|
Gutiérrez-Peña R, García-Infante M, Delgado-Pertíñez M, Guzmán JL, Zarazaga LÁ, Simal S, Horcada A. Organoleptic and Nutritional Traits of Lambs from Spanish Mediterranean Islands Raised under a Traditional Production System. Foods 2022; 11:1312. [PMID: 35564035 PMCID: PMC9100916 DOI: 10.3390/foods11091312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Our aim was to characterize the organoleptic and nutritional properties of meat from suckling (one-month-old) and light (around three-months-old) lambs in local breeds on the Spanish Mediterranean islands, using meat from male lambs of the Mallorquina and Roja Mallorquina breeds. The lambs were kept with their mother at all times under an extensive management system and fed on mother's milk until naturally weaned. In the Mallorquina breed, suckling lambs (n = 20) were slaughtered after weaning and the light lambs were bred using natural pasture (n = 20) or concentrate (n = 20), and the Roja Mallorquina light lambs were fed pasture and concentrate (n = 20). The pH, colour, texture, water-holding capacity, fatty acids, volatile compounds and sensorial attributes of the meat were analyzed. No differences in meat colour or texture were observed. The highest levels of non-desirable fatty acids were observed in lambs raised using concentrate. Light lambs showed a higher aldehydes content than suckling lambs. High notes of lactic acid and milk flavour were detected. Regardless of access to pasture or concentrate, continued access to mother's milk during rearing influences the sensorial meat traits of these lambs, so we consider this type of management an optimal way of obtaining the traditional 'Mediterranean lamb meat'.
Collapse
Affiliation(s)
- Rosario Gutiérrez-Peña
- Department of Agronomy, School of Agricultural Engineering, University of Seville, Ctra. Utrera km 1, 41013 Seville, Spain; (R.G.-P.); (M.G.-I.); (M.D.-P.)
| | - Manuel García-Infante
- Department of Agronomy, School of Agricultural Engineering, University of Seville, Ctra. Utrera km 1, 41013 Seville, Spain; (R.G.-P.); (M.G.-I.); (M.D.-P.)
| | - Manuel Delgado-Pertíñez
- Department of Agronomy, School of Agricultural Engineering, University of Seville, Ctra. Utrera km 1, 41013 Seville, Spain; (R.G.-P.); (M.G.-I.); (M.D.-P.)
| | - José Luis Guzmán
- Department of Agroforestry Sciences, School of Engineering, University of Huelva, Ctra. Huelva-Palos de la Frontera, s/n, 21819 Huelva, Spain; (J.L.G.); (L.Á.Z.)
| | - Luis Ángel Zarazaga
- Department of Agroforestry Sciences, School of Engineering, University of Huelva, Ctra. Huelva-Palos de la Frontera, s/n, 21819 Huelva, Spain; (J.L.G.); (L.Á.Z.)
| | - Susana Simal
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa, km. 7.5, 07122 Palma de Mallorca, Spain;
| | - Alberto Horcada
- Department of Agronomy, School of Agricultural Engineering, University of Seville, Ctra. Utrera km 1, 41013 Seville, Spain; (R.G.-P.); (M.G.-I.); (M.D.-P.)
| |
Collapse
|
8
|
Zhou H, Liao Y, Chen D, Yu B. Effects of breeds and dietary nutrient levels on expression patterns of paired box genes and myogenic regulatory factors in pigs. Arch Anim Nutr 2022; 75:474-488. [PMID: 35227137 DOI: 10.1080/1745039x.2021.2006542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Two experiments were conducted to investigate the effects of different breeds and dietary nutrient levels on expressions of paired box (Pax) genes and myogenic regulatory factors (MRFs) in pigs. Thirty Large White (LW) barrows and thirty Chenghua (CH, a native breed of China) barrows were performed in experiment 1. Results exhibited that in the CH pigs the abundances of Pax3 at 105 and 220 d of age, Mrf4 at 63 d of age, Myf5 and Mrf4 at 220 d of age were higher than those in the LW pigs (p < 0.05). Meanwhile, the expressions of MyHC-І and ІІa in the CH pigs were upregulated, and the abundance of MyHC-ІІb were downregulated compared with those in the LW pigs at 105 and 220 d of age (p < 0.05). Moreover, the meat quality of the CH pigs was better than in the LW pigs (p < 0.05). In experiment 2, sixty LW pigs were randomly assigned to two dietary treatments meeting their nutrient requirements (NRC) or a diet with moderately reduced digestible energy, crude protein and Lys level by 560 kJ/kg, 1.48% and 0.34%, respectively (LOW diet). The results showed that the reduced dietary nutrient level increased (p < 0.05) the expressions of MyoG and Mrf4 at 105 d of age, Pax3, Myf5, and Mrf4 at 220 d of age, and upregulated (p < 0.05) the abundance of MyHC-ІІa at 105 and 220 d of age in LW pigs. In addition, a decrease in dietary nutrient level improved the meat quality in LW pigs (p < 0.05). Collectively, the expressions of Pax genes and MRFs were markedly different between the CH and LW pigs. The CH pigs exhibited higher expression levels of Pax3, Myf5, Mrf4, MyHC-І and ІІa, which may improved the meat quality. A decrease in dietary nutrient level upregulated the abundances Pax3, Mrf4, Myf5, MyoG, and MyHC-ІІa, and might enhance the meat quality in the LW pigs.
Collapse
Affiliation(s)
- Hua Zhou
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yuxue Liao
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Hou X, Wang L, Zhao F, Liu X, Gao H, Shi L, Yan H, Wang L, Zhang L. Genome-Wide Expression Profiling of mRNAs, lncRNAs and circRNAs in Skeletal Muscle of Two Different Pig Breeds. Animals (Basel) 2021; 11:ani11113169. [PMID: 34827901 PMCID: PMC8614396 DOI: 10.3390/ani11113169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Variation exists in muscle-related traits, such as muscle growth and meat quality, between obese and lean pigs. In this study, the transcriptome profiles of skeletal muscle between Beijing Blackand Yorkshire pigs were characterized to explore the molecular mechanism underlying skeletal muscle-relatedtraits. Gene Ontology (GO) and KEGG pathway enrichment analyses showed that differentially expressed mRNAs, lncRNAs, and circRNAs involved in skeletal muscle development and fatty acid metabolism played a key role in the determination of muscle-related traits between different pig breeds. These results provide candidate genes responsible for muscle phenotypic variation and are valuable for pig breeding. Abstract RNA-Seq technology is widely used to analyze global changes in the transcriptome and investigate the influence on relevant phenotypic traits. Beijing Black pigs show differences in growth rate and meat quality compared to western pig breeds. However, the molecular mechanisms responsible for such phenotypic differences remain unknown. In this study, longissimus dorsi muscles from Beijing Black and Yorkshire pigs were used to construct RNA libraries and perform RNA-seq. Significantly different expressions were observed in 1051 mRNAs, 322 lncRNAs, and 82 circRNAs. GO and KEGG pathway annotation showed that differentially expressed mRNAs participated in skeletal muscle development and fatty acid metabolism, which determined the muscle-related traits. To explore the regulatory role of lncRNAs, the cis and trans-target genes were predicted and these lncRNAswere involved in the biological processes related to skeletal muscle development and fatty acid metabolismvia their target genes. CircRNAs play a ceRNA role by binding to miRNAs. Therefore, the potential miRNAs of differentially expressed circRNAs were predicted and interaction networks among circRNAs, miRNAs, and key regulatory mRNAs were constructed to illustrate the function of circRNAs underlying skeletal muscle development and fatty acid metabolism. This study provides new clues for elucidating muscle phenotypic variation in pigs.
Collapse
|
10
|
Ribeiro DM, Martins CF, Kuleš J, Horvatić A, Guillemin N, Freire JPB, Eckersall PD, Almeida AM, Prates JAM. Influence of dietary Spirulina inclusion and lysozyme supplementation on the longissimus lumborum muscle proteome of newly weaned piglets. J Proteomics 2021; 244:104274. [PMID: 34023516 DOI: 10.1016/j.jprot.2021.104274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/22/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022]
Abstract
Arthrospira platensis (Spirulina) is a microalga with a high content of crude protein. It has a recalcitrant cell wall that limits the accessibility of the animal endogenous enzymes to its intracellular nutrients. Enzymatic supplementation aiming to degrade cell walls could benefit microalgae digestibility. The objective of this study was to evaluate the impact of dietary Spirulina and lysozyme supplementation over the muscle proteome of piglets during the post-weaning stage. Thirty piglets were randomly distributed among three diets: control (no microalga), SP (10% Spirulina) and SP + L (10% Spirulina +0.01% lysozyme). After 4 weeks, they were sacrificed and samples of the longissimus lumborum muscle were taken. The muscle proteome was analysed using a Tandem Mass Tag (TMT)-based quantitative approach. A total of 832 proteins were identified. Three comparisons were computed: SP vs Ctrl, SP + L vs Ctrl and SP + L vs SP. They had ten, four and twelve differentially abundant proteins. Glycogen metabolism and nutrient reserves utilization are increased in the SP piglets. Structural muscle protein synthesis increased, causing higher energy requirements in SP + L piglets. Our results demonstrate the usefulness of proteomics to disclose the effect of dietary microalgae, whilst unveiling putative mechanisms derived from lysozyme supplementation. Data available via ProteomeXchange with identifier PXD024083. SIGNIFICANCE: Spirulina, a microalga, is an alternative to conventional crops which could enhance the environmental sustainability of animal production. Due to its recalcitrant cell wall, its use requires additional measures to prevent anti-nutritional effects on the feeding of piglets in the post-weaning period, during which they endure post-weaning stress. One of such measures could be CAZyme supplementation to help degrade the cell wall during digestion. Muscle proteomics provides insightful data on the effect of dietary microalgae and enzyme activity on piglet metabolism.
Collapse
Affiliation(s)
- David M Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Cátia F Martins
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal; CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Josipa Kuleš
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Anita Horvatić
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Nicolas Guillemin
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - João P B Freire
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - P David Eckersall
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - André M Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal.
| | - José A M Prates
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| |
Collapse
|
11
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Non-thermal processing has an impact on the digestibility of the muscle proteins. Crit Rev Food Sci Nutr 2021; 62:7773-7800. [PMID: 33939555 DOI: 10.1080/10408398.2021.1918629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Muscle proteins undergo several processes before being ready in a final consumable form. All these processes affect the digestibility of muscle proteins and subsequent release of amino acids and peptides during digestion in the human gut. The present review examines the effects of different processing techniques, such as curing, drying, ripening, comminution, aging, and marination on the digestibility of muscle proteins. The review also examines how the source of muscle proteins alters the gastrointestinal protein digestion. Processing techniques affect the structural and functional properties of muscle proteins and can affect their digestibility negatively or positively depending on the processing conditions. Some of these techniques, such as aging and mincing, can induce favorable changes in muscle proteins, such as partial unfolding or exposure of cleavage sites, and increase susceptibility to hydrolysis by digestive enzymes whereas others, such as drying and marination, can induce unfavorable changes, such as severe cross-linking, protein aggregation, oxidation induced changes or increased disulfide (S-S) bond content, thereby decreasing proteolysis. The underlying mechanisms have been discussed in detail and the conclusions drawn in the light of existing knowledge provide information with potential industrial importance.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, India
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | | | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, India
| | - Hina F Bhat
- Division of Biotechnology, SKUAST of Kashmir, Srinagar, India
| |
Collapse
|
12
|
Chen C, Zhu J, Ren H, Deng Y, Zhang X, Liu Y, Cui Q, Hu X, Zuo J, Chen B, Zhang X, Wu M, Peng Y. Growth performance, carcass characteristics, meat quality and chemical composition of the Shaziling pig and its crossbreeds. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Transcriptome analysis of differential gene expression in the longissimus dorsi muscle from Debao and landrace pigs based on RNA-sequencing. Biosci Rep 2020; 39:221218. [PMID: 31755521 PMCID: PMC6893171 DOI: 10.1042/bsr20192144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
RNA-seq analysis was used to identify differentially expressed genes (DEGs) at the genetic level in the longissimus dorsi muscle from two pigs to investigate the genetic mechanisms underlying the difference in meat quality between Debao pigs and Landrace pigs. Then, these DEGs underwent functional annotation, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and protein–protein interaction (PPI) analyses. Finally, the expression levels of specific DEGs were assessed using qRT-PCR. The reference genome showed gene dosage detection of all samples which showed that the total reference genome comprised 22342 coding genes, including 14743 known and 190 unknown genes. For detection of the Debao pig genome, we obtained 14168 genes, including 13994 known and 174 unknown genes. For detection of the Landrace pig genome, we obtained 14404 genes, including 14223 known and 181 unknown genes. GO analysis and KEGG signaling pathway analysis show that DEGs are significantly related to metabolic regulation, amino acid metabolism, muscular tissue, muscle structure development etc. We identified key genes in these processes, such as FOS, EGR2, and IL6, by PPI network analysis. qRT-PCR confirmed the differential expression of six selected DEGs in both pig breeds. In conclusion, the present study revealed key genes and related signaling pathways that influence the difference in pork quality between these breeds and could provide a theoretical basis for improving pork quality in future genetic thremmatology.
Collapse
|
14
|
Nasirifar E, Rezvannejad E, Maleki M, Sami M. The impact of differential expression of the pectoral muscle proteome in two groups of Japanese quail with different growth rates on meat quality. Br Poult Sci 2020; 62:38-45. [PMID: 32902318 DOI: 10.1080/00071668.2020.1812526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
1. In this study, the proteomics method was applied to genetically evaluate the performance and carcase characteristics of Japanese quail and their molecular mechanisms, and to further determine and analyse the meat quality and muscle proteins. 2. Ten Japanese quail were selected from among 400 quail from the seventh generation of a population. Various traits were recorded and multivariate analysis was applied using Wombat software. 3. Differential expression of pectoral muscle proteins was performed, whereby nine spots were selected (P < 0.05) for determination. All proteins from the quail group with the highest breeding value showed significantly greater relative intensity, except for serum albumin. 4. The results showed that an increase in growth rate can cause disturbances in most organs and their metabolism, although the increase in the expression of some proteins indicated that the bird's body tends to adapt to special conditions. 5. The allocation of genetic resources is likely to maintain the balance between most organs, which does not overlap. However, most evidence shows that meat quality has been reduced, but to a limited extent, by selection for growth.
Collapse
Affiliation(s)
- E Nasirifar
- Department of Animal Science, Science and Research Branch, Isamic Azad University , Tehran, Iran
| | - E Rezvannejad
- Department of Biotechnology, Institute Science and High Technology and Environmental Science, Graduate University of Advanced Technology , Kerman, Iran
| | - M Maleki
- Department of Biotechnology, Institute Science and High Technology and Environmental Science, Graduate University of Advanced Technology , Kerman, Iran
| | - M Sami
- Department of Food Science and Technology, Food Security Research Center, Isfahan University of Medical Sciences , Isfahan, Iran
| |
Collapse
|
15
|
Comprehensive Analysis of Differentially Expressed mRNA, lncRNA and circRNA and Their ceRNA Networks in the Longissimus Dorsi Muscle of Two Different Pig Breeds. Int J Mol Sci 2019; 20:ijms20051107. [PMID: 30836719 PMCID: PMC6429497 DOI: 10.3390/ijms20051107] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/22/2022] Open
Abstract
Circular RNA (circRNA) and long non-coding RNA (lncRNA) are known to participate in adipogenesis and myogenic differentiation, but their impact on porcine muscle traits is not well understood. We compared their expressional profiles in the longissimus dorsi muscle of Chinese Huainan pigs (HN, the fat type) and Western commercial Duroc×(Landrace×Yorkshire) (DLY, the thin type) pigs, and 854 mRNAs, 233 lncRNAs, and 66 circRNAs (p < 0.05 and |log₂FoldChange|>1) were found to be differentially expressed. The differentially expressed mRNA and circRNA parental genes were enriched in the Wnt signaling pathway (adipogenesis), the transition between fast and slow fibers (myogenic differentiation), and alanine, aspartate and glutamate metabolism (pork flavor). The potential lncRNAs/circRNAs-miRNAs-mRNAs regulatory networks shared MYOD1, PPARD, miR-423-5p and miR-874, which were associated with skeletal muscle muscular proliferation, differentiation/regeneration and adipogenesis. Taken together, these differentially expressed non-coding RNAs may be involved in the molecular basis of muscle traits, acting as the competing endogenous RNA (ceRNA) for miRNAs.
Collapse
|
16
|
Zhu H, Yang H, Zhao W, Su Y, Tian Y. Associations of the expression levels of genes involved in CFL2b and MyHC isoform type changes in longissimus dorsi muscle of HeBao and Large White pigs ( Sus scrofa) during postnatal growth. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2016-0058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to compare the patterns of postnatal transformation of myosin heavy chain (MyHC) isoform types in the longissimus dorsi (LD) muscle between HeBao (HB) and Large White (LW) pigs, and assess the association of porcine cofilin2b (CFL2b) mRNA abundance with changes of myofiber type composition. The four MyHC isoforms (MyHC-1, -2a, -2b, and -2x) of the LD muscle were assessed for mRNA levels in 28 HB and 28 LW pigs by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The associations of CFL2b mRNA expression and myofiber type (MyHC-1, -2a, -2b, and -2x) changes were analyzed by RT-qPCR. Although the mRNA expression patterns of MyHCs were different between the two breeds, they had similar expression levels. During postnatal growth, relative CFL2b abundance was gradually increased, with dramatic changes observed after 90 d between the two breeds (P < 0.01). Further analysis revealed significant positive correlations of CFL2b gene expression with MyHC-1/slow (HB: r = 0.871), MyHC-2b [LW: r = 0.881 (P < 0.01)], and MyHC-2x (HB: r = 0.795, LW: r = 0.814), and a significant negative correlation with MyHC-1/slow [r = −0.938 (P < 0.01)] in LW. No significant associations of CFL2b expression with MyHC-2a (HB: r = −0. 195, r = −0.697) and MyHC-2b (HB: r = 0.493) were found. Our findings suggested that HB pigs had different muscle development mechanisms in the LD muscle compared with LW, and the CFL2b expression difference could affect the levels of myofiber types which could account for meat quality differences. HB pigs possessed less glycolytic, with more oxidative metabolism and better meat quality traits compared with LW pigs at different growth stages.
Collapse
Affiliation(s)
- Hongyan Zhu
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, People’s Republic of China
- Key Laboratory of Quality and Safety Engineering of Animal Products of Liaoning Province, Jinzhou 121001, People’s Republic of China
| | - Huixin Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, People’s Republic of China
| | - Wei Zhao
- College of Basic Medicine Science, Jinzhou Medical University, Jinzhou 121001, People’s Republic of China
| | - Yuhong Su
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, People’s Republic of China
- Key Laboratory of Quality and Safety Engineering of Animal Products of Liaoning Province, Jinzhou 121001, People’s Republic of China
| | - Yumin Tian
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, People’s Republic of China
- Key Laboratory of Quality and Safety Engineering of Animal Products of Liaoning Province, Jinzhou 121001, People’s Republic of China
| |
Collapse
|
17
|
Wang L, Chao Z, Wang Y. Identification of Two Novel Single Nucleotide Polymorphisms in the Promoter Region of the Pig AMP Deaminase 1 Gene Associated with Carcass Traits. DNA Cell Biol 2018; 37:896-902. [PMID: 30234378 DOI: 10.1089/dna.2018.4293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The AMP deaminase 1 (AMPD1) gene plays an important role in purine nucleotide interconversion and energy metabolism. In this study, two novel single nucleotide polymorphisms (SNPs) (g.-626 G > A and g.-566 A>G) were detected in the proximal promoter region of the AMPD1 gene. The Chinese indigenous pig breeds (Meishan and Tongcheng) had higher frequencies of the G and A alleles than Western meat-type breeds (Landrace and Large White) at the g.-626 G > A and g.-566 A>G loci. The transcriptional activity of the AMPD1 promoter carrying the haplotype H1 (A-626G-566) was significantly (p < 0.05) higher than that of the haplotype H2 (G-626A-566). In addition, pigs with the haplotype combination H1H1 had significantly (p < 0.05) higher mRNA expression levels of the AMPD1 gene than those with haplotype combinations H1H2 and H2H2 in two different skeletal muscles. Association analyses revealed that the pigs with the haplotype combination H1H1 had significantly higher lean meat percentage values but lower average backfat thickness (ABT, cm), buttock fat thickness (cm), and thorax-waist fat thickness (cm) values than the pigs with the haplotype combinations H1H2 and H2H2. These findings demonstrate that the two novel SNPs in the promoter region of the AMPD1 gene have significant associations with pig fat deposition traits.
Collapse
Affiliation(s)
- Linjie Wang
- 1 Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, P.R. China
| | - Zhe Chao
- 2 Institute of Animal Science and Veterinary Medicine , Hainan Academy of Agricultural Sciences, Haikou, P.R. China
| | - Yan Wang
- 1 Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, P.R. China
| |
Collapse
|
18
|
Cai K, Shao W, Chen X, Campbell YL, Nair MN, Suman SP, Beach CM, Guyton MC, Schilling MW. Meat quality traits and proteome profile of woody broiler breast (pectoralis major) meat. Poult Sci 2018; 97:337-346. [PMID: 29053841 DOI: 10.3382/ps/pex284] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 09/07/2017] [Indexed: 01/03/2023] Open
Abstract
Woody breast meat has recently become prevalent in the broiler industry in both the United States and European Union. Recent publications have described the meat quality characteristics of woody breast meat as having hardened areas and pale ridge-like bulges at both the caudal and cranial regions of the breast. The present study investigated the meat quality (pH, color, cooking loss, and shear force) and protein quality characteristics (protein and salt-soluble protein content) in woody breast meat as compared to normal breast meat. In addition, the differences in the muscle proteome profiles of woody and normal breast meat were characterized. Results indicated that woody breast meat had a greater average pH (P < 0.0001) and cooking loss (P = 0.001) than normal breast meat, but woody breast meat did not differ in shear force (P > 0.05) in comparison to normal breast meat samples. The L*, a*, and b* values of woody breast fillets were greater than normal breast fillets (P < 0.0001 to L*; P = 0.002 to a*; P = 0.016 to b*). The woody breast meat had more fat (P < 0.0001) and moisture (P < 0.021) and less protein (P < 0.0001) and salt-soluble protein (P < 0.0001) when compared with normal breast fillets. Whole muscle proteome analysis indicated 8 proteins that were differentially expressed (P < 0.05) between normal and woody breast meat samples. The differences in muscle proteome between normal and woody breast meat indicated an increased oxidative stress in woody breast meat when compared to normal meat. In addition, the abundance of some glycolytic enzymes, which are critical to the regeneration of adenosine triphosphate (ATP) in postmortem muscles, was lower in woody breast meat than in normal breast meat. Proteomic differences provide additional information on the biochemical pathways and genetic variations that lead to woody breast meat. Further research should be conducted to elucidate the genetic and nutritional contributions to the proliferation of woody breast meat in the United States.
Collapse
Affiliation(s)
- K Cai
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009 PRA
| | - W Shao
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State 39762
| | - X Chen
- Department of Poultry Science, Mississippi State University, Mississippi State 39762
| | - Y L Campbell
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State 39762
| | - M N Nair
- Department of Animal and Food Sciences, University of Kentucky, Lexington 40546
| | - S P Suman
- Department of Animal and Food Sciences, University of Kentucky, Lexington 40546
| | - C M Beach
- Proteomics Core Facility, University of Kentucky, Lexington 40506
| | - M C Guyton
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State 39762
| | - M W Schilling
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State 39762
| |
Collapse
|
19
|
Zou X, Zhou G, Yu X, Bai Y, Wang C, Xu X, Dai C, Li C. In vitro protein digestion of pork cuts differ with muscle type. Food Res Int 2018; 106:344-353. [DOI: 10.1016/j.foodres.2017.12.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/25/2017] [Accepted: 12/26/2017] [Indexed: 01/02/2023]
|
20
|
Xu X, Mishra B, Qin N, Sun X, Zhang S, Yang J, Xu R. Differential Transcriptome Analysis of Early Postnatal Developing Longissimus Dorsi Muscle from Two Pig Breeds Characterized in Divergent Myofiber Traits and Fatness. Anim Biotechnol 2018; 30:63-74. [PMID: 29471750 DOI: 10.1080/10495398.2018.1437045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Meat quality traits (MQTs) are very important in the porcine industry, which are mainly determined by skeletal muscle fiber composition, extra-muscular and/or intramuscular fat content. To identify the differentially expressed candidate genes affecting the meat quality traits, first we compared the MQTs and skeletal muscle fiber characteristics in the longissimus dorsi muscle (LDM) of the Northeast Min pig (NM) and the Changbaishan wild boar (CW) with their body weight approaching 90 kg. The significant divergences in the skeletal muscle fiber phenotypes and fatness traits between the two porcine breeds established an ideal model system for further identifying potential key functional genes that dominated MQTs. Further, a transcriptome profile analysis was performed using the Illumina sequencing method in early postnatal developing LDM from the two breeds at the ages of 42 days. Comparative analysis between these two cDNA libraries showed that there were 17,653 and 22,049 unambiguous tag-mapped sense transcripts detected from NM and CW, respectively. 4522 differentially expressed genes (DEGs) were revealed between the two tissue samples, of them, 4176 genes were found as having been upregulated and 346 genes were identified as having been downregulated in the NM library. By pathway enrichment analysis, a set of significantly enriched pathways were identified for the DEGs, which are potentially involved in myofiber development, differentiation and growth, lipogenesis and lipolysis in porcine skeletal muscle. The expression levels of 30 out of the DEGs were validated by real-time quantitative reverse transcriptase PCR (qRT-PCR) and the observed result was consistent noticeably with the Illumina transcriptome profiles. The findings from this study can contribute to future investigations of skeletal muscle growth and development mechanism and to establishing molecular approaches to improve meat quality traits in pig breeding.
Collapse
Affiliation(s)
- Xiaoxing Xu
- a Department of Human Nutrition, Food, and Animal Sciences , University of Hawaii at Manoa , Honolulu , HI , USA
| | - Birendra Mishra
- a Department of Human Nutrition, Food, and Animal Sciences , University of Hawaii at Manoa , Honolulu , HI , USA
| | - Ning Qin
- b College of Animal Science and Technology , Jilin Agricultural University , Changchun , China
| | - Xue Sun
- b College of Animal Science and Technology , Jilin Agricultural University , Changchun , China
| | - Shumin Zhang
- c Institute of Pig Science , Academy of Agricultural Sciences of Jilin Province , Gongzhuling , China
| | - Jinzeng Yang
- a Department of Human Nutrition, Food, and Animal Sciences , University of Hawaii at Manoa , Honolulu , HI , USA
| | - Rifu Xu
- b College of Animal Science and Technology , Jilin Agricultural University , Changchun , China
| |
Collapse
|
21
|
|
22
|
The study of protein biomarkers to understand the biochemical processes underlying beef color development in young bulls. Meat Sci 2017; 134:18-27. [DOI: 10.1016/j.meatsci.2017.07.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/06/2017] [Accepted: 07/17/2017] [Indexed: 01/05/2023]
|
23
|
He D, Zou T, Gai X, Ma J, Li M, Huang Z, Chen D. MicroRNA expression profiles differ between primary myofiber of lean and obese pig breeds. PLoS One 2017; 12:e0181897. [PMID: 28759650 PMCID: PMC5536276 DOI: 10.1371/journal.pone.0181897] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding small miRNAs ~22 nucleotides in length and play a vital role in muscle development by binding to messenger RNAs (mRNAs). Large White (LW, a lean type pig) and Meishan pigs (MS, a Chinese indigenous obese breed) have significant postnatal phenotype differences in growth rate, muscle mass and meat quality, and these differences are programmed during prenatal muscle development. Little research shed light directly on the miRNA transcriptome difference in prenatal muscles between these two distinct pig breeds. Myofiber phenotypes of LW and MS were measured at developmental stages of 35, 55 and 90 days post-conception (dpc), which revealed that the myogenesis process is more intense in MS than in LW at 35 dpc. To investigate the role of miRNAs involved in regulating muscle development at earlier stages of myogenesis and decipher the miRNAs transcriptome difference between LW and MS, here, the miRNAomes of longissimus dorsi muscle collected at 35 dpc from female LW and MS were analyzed by deep sequencing. Overall, 1147 unique miRNAs comprising 434 known miRNAs, 239 conserved miRNAs and 474 candidate miRNAs were identified. Expression analysis of the 10 most abundant miRNAs in every library indicated that functional miRNAome may be a small amount and tend to be greater expressed. These sets of miRNA may play house keeping roles that were involved in myogenesis. A total of 87 miRNAs were significantly differentially expressed between LW and MS (reads > 1000, P < 0.05). Gene ontology (GO) and KEGG pathway enrichment analysis revealed that the differentially expressed miRNAs (DE miRNAs) were associated mainly with muscle contraction, WNT, mTOR, and MAPK signaling pathways. Some myogenesis related miRNAs (miR-133, miR-1, miR-206 and miR-148a) are highly abundant in MS, while other miRNAs (let-7 family, miR-214, miR-181) highly expressed in LW. In addition, the expression patterns of miRNAs (miR-1, -133, -206) at three prenatal stages (35, 55 and 90 dpc) were determined using qRT-PCR. Notably, ssc-miR-133 was significantly more highly expressed in LW pigs skeletal muscle at all prenatal stages compared with its expression in LW pigs skeletal muscle. Taken together, the main functional miRNAs during muscle development are different between lean and obese pig breeds. The present study adds new information to existing data on porcine miRNAs and will be helpful to investigate the dominant (main functional) muscle-related miRNAs sets in different pig breeds.
Collapse
Affiliation(s)
- Dongting He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chendu, Sichuan, People's Republic of China
| | - Tiande Zou
- Institute of Animal Nutrition, Sichuan Agricultural University, Chendu, Sichuan, People's Republic of China
| | - Xiangrong Gai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, People's Republic of China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chendu, Sichuan, People's Republic of China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chendu, Sichuan, People's Republic of China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chendu, Sichuan, People's Republic of China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chendu, Sichuan, People's Republic of China
| |
Collapse
|
24
|
Simonetti A, Gambacorta E, Perna A. Antioxidative and antihypertensive activities of pig meat before and after cooking and in vitro gastrointestinal digestion: Comparison between Italian autochthonous pig Suino Nero Lucano and a modern crossbred pig. Food Chem 2016; 212:590-5. [DOI: 10.1016/j.foodchem.2016.06.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/17/2016] [Accepted: 06/11/2016] [Indexed: 12/28/2022]
|
25
|
Przybylski W, Kaczor D, Żelechowska E, Jaworska D, Kajak-Siemaszko K, Boruszewska K, Jankiewicz U. Sarcoplasmic Protein Profile from Drip Loss in Relation to Pork Quality. J Food Sci 2016; 81:C2320-C2326. [DOI: 10.1111/1750-3841.13424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 07/02/2016] [Accepted: 07/19/2016] [Indexed: 11/25/2022]
Affiliation(s)
- Wiesław Przybylski
- Dept. of Food Gastronomy and Food Hygiene, Faculty of Human Nutrition and Consumer Sciences; Warsaw Univ. of Life Sciences - SGGW; Nowoursynowska 159C St. 02-776 Warsaw Poland
| | - Damian Kaczor
- Dept. of Food Gastronomy and Food Hygiene, Faculty of Human Nutrition and Consumer Sciences; Warsaw Univ. of Life Sciences - SGGW; Nowoursynowska 159C St. 02-776 Warsaw Poland
| | - Elżbieta Żelechowska
- Dept. of Food Gastronomy and Food Hygiene, Faculty of Human Nutrition and Consumer Sciences; Warsaw Univ. of Life Sciences - SGGW; Nowoursynowska 159C St. 02-776 Warsaw Poland
| | - Danuta Jaworska
- Dept. of Food Gastronomy and Food Hygiene, Faculty of Human Nutrition and Consumer Sciences; Warsaw Univ. of Life Sciences - SGGW; Nowoursynowska 159C St. 02-776 Warsaw Poland
| | - Katarzyna Kajak-Siemaszko
- Dept. of Food Gastronomy and Food Hygiene, Faculty of Human Nutrition and Consumer Sciences; Warsaw Univ. of Life Sciences - SGGW; Nowoursynowska 159C St. 02-776 Warsaw Poland
| | - Kinga Boruszewska
- Dept. of Food Gastronomy and Food Hygiene, Faculty of Human Nutrition and Consumer Sciences; Warsaw Univ. of Life Sciences - SGGW; Nowoursynowska 159C St. 02-776 Warsaw Poland
| | - Urszula Jankiewicz
- Dept. of Biochemistry, Faculty of Agriculture and Biology; Warsaw Univ. of Life Sciences - SGGW; Nowoursynowska 159C St. 02-776 Warsaw Poland
| |
Collapse
|
26
|
Review on proteomics for food authentication. J Proteomics 2016; 147:212-225. [PMID: 27389853 DOI: 10.1016/j.jprot.2016.06.033] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 12/24/2022]
Abstract
UNLABELLED Consumers have the right to know what is in the food they are eating. Accordingly, European and global food regulations require that the provenance of the food can be guaranteed from farm to fork. Many different instrumental techniques have been proposed for food authentication. Although traditional methods are still being used, new approaches such as genomics, proteomics, and metabolomics are helping to complement existing methodologies for verifying the claims made about certain food products. During the last decade, proteomics (the large-scale analysis of proteins in a particular biological system at a particular time) has been applied to different research areas within food technology. Since proteins can be used as markers for many properties of a food, even indicating processes to which the food has been subjected, they can provide further evidence of the foods labeling claim. This review is a comprehensive and updated overview of the applications, drawbacks, advantages, and challenges of proteomics for food authentication in the assessment of the foods compliance with labeling regulations and policies. SIGNIFICANCE This review paper provides a comprehensive and critical overview of the application of proteomics approaches to determine the authenticity of several food products updating the performances and current limitations of the applied techniques in both laboratory and industrial environments.
Collapse
|
27
|
Anthony TG. Mechanisms of protein balance in skeletal muscle. Domest Anim Endocrinol 2016; 56 Suppl:S23-32. [PMID: 27345321 PMCID: PMC4926040 DOI: 10.1016/j.domaniend.2016.02.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/23/2016] [Accepted: 02/29/2016] [Indexed: 01/07/2023]
Abstract
Increased global demand for adequate protein nutrition against a backdrop of climate change and concern for animal agriculture sustainability necessitates new and more efficient approaches to livestock growth and production. Anabolic growth is achieved when rates of new synthesis exceed turnover, producing a positive net protein balance. Conversely, deterioration or atrophy of lean mass is a consequence of a net negative protein balance. During early life and periods of growth, muscle mass is driven by increases in protein synthesis at the level of mRNA translation. Throughout life, muscle mass is further influenced by degradative processes such as autophagy and the ubiquitin proteasome pathway. Multiple signal transduction networks guide and coordinate these processes alongside quality control mechanisms to maintain protein homeostasis (proteostasis). Genetics, hormones, and environmental stimuli each influence proteostasis control, altering capacity and/or efficiency of muscle growth. An overview of recent findings and current methods to assess muscle protein balance and proteostasis is presented. Current efforts to identify novel control points have the potential through selective breeding design or development of hormetic strategies to better promote growth and health span during environmental stress.
Collapse
Affiliation(s)
- T G Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
28
|
Yang H, Xu XL, Ma HM, Jiang J. Integrative analysis of transcriptomics and proteomics of skeletal muscles of the Chinese indigenous Shaziling pig compared with the Yorkshire breed. BMC Genet 2016; 17:80. [PMID: 27296698 PMCID: PMC4906580 DOI: 10.1186/s12863-016-0389-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 06/02/2016] [Indexed: 11/08/2022] Open
Abstract
Background The Shaziling pig (Sus scrofa) is a well-known indigenous breed in China. One of its main advantages over European breeds is its high meat quality. However, little genetic information is available for the Shaziling pig. To screen for differentially expressed genes and proteins that might be responsible for the meat quality, the longissimus dorsi muscles from Shaziling and Yorkshire pig breeds were investigated using an integrative analysis of transcriptomics and proteomics, involving high-throughput sequencing, the two-dimensional gel electrophoresis, and mass spectrometry. Results Sequencing produced 79,320 unigenes by de novo assembly, and 488 differentially expressed genes in the longissimus dorsi muscle of Shaziling pig compared with the Yorkshire breed were identified. Gene Ontology term enrichment of biological functions and Kyoto Encyclopedia of Genes and Genomes analysis showed that the gene products were mainly involved in metabolism, protein binding, and regulation of skeletal muscle development. At the protein level, 23 differentially expressed proteins were identified, which were potentially associated with fatty acid metabolism, the glycolytic pathway, and skeletal muscle growth. Eight differentially expressed genes were confirmed by real-time PCR. These results give an insight into the mechanisms underlying the formation of skeletal muscle in the Shaziling pig. Conclusions Certain differentially expressed genes and proteins are involved in fatty acid metabolism, intramuscular fat deposition, and skeletal muscle growth in the Shaziling pig. These results provide candidate genes for improving meat quality and will promote further transcriptomic research in Shaziling pigs. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0389-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hu Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, People's Republic of China.,College of Life Science and Resource Environment, Yichun University, Yichun, 336000, People's Republic of China
| | - Xing-Li Xu
- College of Life Science and Resource Environment, Yichun University, Yichun, 336000, People's Republic of China
| | - Hai-Ming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| | - Jun Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| |
Collapse
|
29
|
Identification of genes showing differential expression profile associated with growth rate in skeletal muscle tissue of Landrace weanling pig. J Genet 2016; 95:341-7. [DOI: 10.1007/s12041-016-0643-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Liu Y, Li F, Kong X, Tan B, Li Y, Duan Y, Blachier F, Hu CAA, Yin Y. Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages. PLoS One 2015; 10:e0138277. [PMID: 26394157 PMCID: PMC4578863 DOI: 10.1371/journal.pone.0138277] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/27/2015] [Indexed: 01/23/2023] Open
Abstract
Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and physiological stage, we examined the effect of dietary protein concentration, pig genotype, and physiological stages on amino acid (AA) pools, protein deposition, and related signaling pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48 pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese conventional diet)- or higher/NRC (National Research Council)-protein diet. Diets were fed from 5 weeks of age to respective market weights of each genotype. Samples of biceps femoris muscle (BFM, type I) and longissimus dorsi muscle (LDM, type II) were collected at nursery, growing, and finishing phases according to the physiological stage of each genotype, to determine the AA concentrations, mRNA levels for growth-related genes in muscles, and protein abundances of mechanistic target of rapamycin (mTOR) signaling pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs increased (P<0.05) gradually with increasing age. Bama mini-pigs had generally higher (P<0.05) muscle concentrations of flavor-related AA, including Met, Phe, Tyr, Pro, and Ser, compared with Landrace pigs. The mRNA levels for myogenic determining factor, myogenin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were higher (P<0.05) than those of Landrace pigs, while total and phosphorylated protein levels for protein kinase B, mTOR, and p70 ribosomal protein S6 kinases (p70S6K), and ratios of p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower (P<0.05). There was a significant pig genotype-dependent effect of dietary protein on the levels for mTOR and p70S6K. When compared with the higher protein-NRC diet, the lower protein-GB diet increased (P<0.05) the levels for mTOR and p70S6K in Bama mini-pigs, but repressed (P<0.05) the level for p70S6K in Landrace pigs. The higher protein-NRC diet increased ratio of p-mTOR/mTOR in Landrace pigs. These findings indicated that the dynamic consequences of AA profile and protein deposition in muscle tissues are the concerted effort of distinctive genotype, nutrient status, age, and muscle type. Our results provide valuable information for animal feeding strategy.
Collapse
Affiliation(s)
- Yingying Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan Animal Science and Veterinary Medicine Research Institute, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengna Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, Hunan, China
- * E-mail: (XK); (YY)
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yinghui Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yehui Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - François Blachier
- INRA, CNRH-IdF, AgroParisTech, UMR 914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Chien-An A. Hu
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, United States of America
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, Hunan, China
- School of Biology, Hunan Normal Univesity, Hunan, Changsha City, 410018, China
- Changsha Lvye Biotechnology Limited Company, Guangdong Hinapharm Group and WangDa Academician Workstation, Hunan, Changsha City, 41019, P. R. China
- * E-mail: (XK); (YY)
| |
Collapse
|
31
|
Wang Y, Zhao Y, Li J, Liu H, Ernst CW, Liu X, Liu G, Xi Y, Lei M. Evaluation of housekeeping genes for normalizing real-time quantitative PCR assays in pig skeletal muscle at multiple developmental stages. Gene 2015; 565:235-41. [PMID: 25865298 DOI: 10.1016/j.gene.2015.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 03/04/2015] [Accepted: 04/07/2015] [Indexed: 01/16/2023]
Abstract
Quantitative PCR (qPCR) requires a constantly expressed housekeeping gene as an internal control, the expression of which is similar in different biological samples. In the present study, we evaluated the applicability and compared the consistency of the gene expression of 16 reference genes, i.e., 10 common and 6 candidate genes, through qPCR assays in pig skeletal muscles at multiple developmental stages. The stability of these 16 potential reference genes was investigated using the geNorm and NormFinder methods. Our results indicated that DRAP1 and RNF7 were the most appropriate combination to normalize gene expression in the Yorkshire samples, the combination of DRAP1 and WSB2 were appropriate in the Tongcheng samples, H3F3A and DRAP1 in prenatal periods, DRAP1 and RNF7 in postnatal periods, and the combination of DRAP1 and WSB2 was most suitable for accurate normalization in whole samples. This result provides a strong basis for similar studies in pigs that explore the molecular mechanisms underlying skeletal muscle development.
Collapse
Affiliation(s)
- Yueying Wang
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong (Central China) Agricultural University, Wuhan, Hubei, PR China
| | - Yuqiang Zhao
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong (Central China) Agricultural University, Wuhan, Hubei, PR China
| | - Ji Li
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong (Central China) Agricultural University, Wuhan, Hubei, PR China
| | - Huijing Liu
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong (Central China) Agricultural University, Wuhan, Hubei, PR China
| | - Catherine W Ernst
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Xiaoran Liu
- China Education Ministry's Key Laboratory in Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Guorong Liu
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong (Central China) Agricultural University, Wuhan, Hubei, PR China
| | - Yu Xi
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong (Central China) Agricultural University, Wuhan, Hubei, PR China
| | - Minggang Lei
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong (Central China) Agricultural University, Wuhan, Hubei, PR China.
| |
Collapse
|
32
|
Guo Y, Jin L, Wang F, He M, Liu R, Li M, Shuai S. Dynamic changes in genes related to glucose uptake and utilization during pig skeletal and cardiac muscle development. Biosci Biotechnol Biochem 2014; 78:1159-66. [PMID: 25229851 DOI: 10.1080/09168451.2014.915725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Skeletal and cardiac muscle have important roles in glucose uptake and utilization. However, changes in expression of protein coding genes and miRNAs that participate in glucose metabolism during development are not fully understood. In this study, we investigated the expression of genes related to glucose metabolism during muscle development. We found an age-dependent increase in gene expression in cardiac muscle, with enrichment in heart development- and energy-related metabolic processes. A subset of genes that were up-regulated until 30 or 180 days postnatally, and then down-regulated in psoas major muscle was significantly enriched in mitochondrial oxidative-related processes, while genes that up-regulated in longissimus doris muscle was significantly enriched in glycolysis-related processes. Meanwhile, expression of energy-related microRNAs decreased with increasing age. In addition, we investigated the correlation between microRNAs and mRNAs in three muscle types across different stages of development and found many potential microRNA-mRNA pairs involved in regulating glucose metabolism.
Collapse
Affiliation(s)
- Yanqin Guo
- a Institute of Animal Genetics and Breeding, College of Animal Science and Technology , Sichuan Agricultural University , Ya'an , P.R. China
| | | | | | | | | | | | | |
Collapse
|
33
|
Shishkin SS, Kovalev LI, Kovaleva MA, Ivanov AV, Eremina LS, Sadykhov EG. The application of proteomic technologies for the analysis of muscle proteins of farm animals used in the meat industry (Review). APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683814050093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Identification and characterization of a differentially expressed protein (CAPZB) in skeletal muscle between Meishan and Large White pigs. Gene 2014; 544:107-13. [PMID: 24792893 DOI: 10.1016/j.gene.2014.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/08/2014] [Accepted: 05/01/2014] [Indexed: 11/22/2022]
Abstract
Actin capping protein beta (CAPZB) protein was identified with considerable differences in the longissimus dorsi muscle between Large White and Meishan pigs using proteomics approach. However, in pigs, the information on CAPZB is very limited. In this study, we cloned and characterized the porcine actin capping protein beta (CAPZB) gene. In addition, we present two novel porcine CAPZB splice variants CAPZB1 and CAPZB2. CAPZB1 was expressed in all twenty tissues. However, CAPZB2 was predominantly expressed in the skeletal muscle and heart. In addition, the two isoforms had different expression profiles during the skeletal muscle development and between breeds. Moreover, the SNP T394G was identified in the coding region of the CAPZB gene, which was significantly associated with the carcass traits including the LFW, CFW, SFT and LEA. Data presented in our study suggests that the CAPZB gene may be a candidate gene of meat production trait and provides useful information for further studies on its roles in porcine skeletal muscle.
Collapse
|
35
|
Gobert M, Sayd T, Gatellier P, Santé-Lhoutellier V. Application to proteomics to understand and modify meat quality. Meat Sci 2014; 98:539-43. [PMID: 25041652 DOI: 10.1016/j.meatsci.2014.06.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
The use of proteomics in the field of meat science has gained in robustness and accuracy. This is consistent with the genomic and bioinformatic tools. Its application to sensorial and technological meat quality traits is discussed as well as the emergence of sanitary and nutritional issue which will grow in a next future.
Collapse
Affiliation(s)
- M Gobert
- INRA QuaPA, F 63122 saint Genès Champanelle, France
| | - T Sayd
- INRA QuaPA, F 63122 saint Genès Champanelle, France
| | - P Gatellier
- INRA QuaPA, F 63122 saint Genès Champanelle, France
| | | |
Collapse
|
36
|
Montowska M, Rao W, Alexander MR, Tucker GA, Barrett DA. Tryptic digestion coupled with ambient desorption electrospray ionization and liquid extraction surface analysis mass spectrometry enabling identification of skeletal muscle proteins in mixtures and distinguishing between beef, pork, horse, chicken, and turkey meat. Anal Chem 2014; 86:4479-87. [PMID: 24673366 DOI: 10.1021/ac5003432] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The use of ambient desorption electrospray ionization mass spectrometry (DESI-MS) and liquid extraction surface analysis mass spectrometry (LESA-MS) is explored for the first time to analyze skeletal muscle proteins obtained from a mixture of standard proteins and raw meat. Single proteins and mixtures of up to five proteins (myoglobin, troponin C, actin, bovine serum albumin (BSA), tropomyosin) were deposited onto a polymer surface, followed by in situ tryptic digestion and comparative analysis using DESI-MS and LESA-MS using tandem electrospray MS. Peptide peaks specific to individual proteins were readily distinguishable with good signal-to-noise ratio in the five-component mixture. LESA-MS gave a more stable analysis and greater sensitivity compared with DESI-MS. Meat tryptic digests were subjected to peptidomics analysis by DESI-MS and LESA-MS. Bovine, horse, pig, chicken, and turkey muscle digests were clearly discriminated using multivariate data analysis (MVA) of the peptidomic data sets. The most abundant skeletal muscle proteins were identified and correctly classified according to the species following MS/MS analysis. The study shows, for the first time, that ambient ionization techniques such as DESI-MS and LESA-MS have great potential for species-specific analysis and differentiation of skeletal muscle proteins by direct surface desorption.
Collapse
Affiliation(s)
- Magdalena Montowska
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham , University Park, Nottingham NG7 2RD, United Kingdom
| | | | | | | | | |
Collapse
|
37
|
Paredi G, Sentandreu MA, Mozzarelli A, Fadda S, Hollung K, de Almeida AM. Muscle and meat: New horizons and applications for proteomics on a farm to fork perspective. J Proteomics 2013; 88:58-82. [DOI: 10.1016/j.jprot.2013.01.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/31/2013] [Indexed: 11/16/2022]
|
38
|
Xu H, Xu Y, Liang X, Wang Y, Jin F, Liu D, Ma Y, Yuan H, Song X, Zeng W. Porcine skeletal muscle differentially expressed gene ATP5B: molecular characterization, expression patterns, and association analysis with meat quality traits. Mamm Genome 2013; 24:142-50. [PMID: 23420545 DOI: 10.1007/s00335-013-9446-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 12/27/2012] [Indexed: 10/27/2022]
Abstract
The 2-DE/MS-based proteomics approach was used to investigate the differences of porcine skeletal muscle, and ATP5B was identified as one differential expression protein. In the present study, ATP5B gene was further cloned by RT-PCR, the sequence was analyzed using the bioinformatics method, and the mRNA expression was detected by qRT-PCR. Sequence analysis showed that the porcine ATP5B gene contains an ORF encoding 528-amino-acid residues with 49 and 166 nucleotides in the 5' and 3' UTRs, respectively. The mRNA of ATP5B was widely expressed in all 14 tissues tested, but especially highly expressed in parorchis and fat. The expression pattern of ATP5B was similar in Large White and Meishan breeds, showing that the expression was upregulated by 3 days after birth and downregulated during postnatal development of skeletal muscle. Comparing the two breeds, the mRNA abundance of ATP5B in Large White was more highly expressed than in Meishan at all developmental stages (P < 0.05). Moreover, a synonymous mutation, G75A in exon 8, was identified and association analysis with the traits of meat quality showed that it was significantly associated with the RLF, FMP, IFR, IMF, and IMW (P < 0.05). These results suggested that ATP5B probably plays a key role in porcine skeletal muscle development and may provide further insight into the molecular mechanisms responsible for breed-specific differences in meat quality.
Collapse
Affiliation(s)
- Haixia Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Montowska M, Pospiech E. Species-specific expression of various proteins in meat tissue: Proteomic analysis of raw and cooked meat and meat products made from beef, pork and selected poultry species. Food Chem 2013. [DOI: 10.1016/j.foodchem.2012.09.072] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
D'Alessandro A, Zolla L. Meat science: From proteomics to integrated omics towards system biology. J Proteomics 2013; 78:558-77. [DOI: 10.1016/j.jprot.2012.10.023] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 12/16/2022]
|
41
|
Comparison of the longissimus muscle proteome between obese and lean pigs at 180 days. Mamm Genome 2012; 24:72-9. [DOI: 10.1007/s00335-012-9440-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/12/2012] [Indexed: 12/28/2022]
|
42
|
Fainberg HP, Bodley K, Bacardit J, Li D, Wessely F, Mongan NP, Symonds ME, Clarke L, Mostyn A. Reduced neonatal mortality in Meishan piglets: a role for hepatic fatty acids? PLoS One 2012; 7:e49101. [PMID: 23155453 PMCID: PMC3498330 DOI: 10.1371/journal.pone.0049101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/04/2012] [Indexed: 12/30/2022] Open
Abstract
The Meishan pig breed exhibits increased prolificacy and reduced neonatal mortality compared to commercial breeds, such as the Large White, prompting breeders to introduce the Meishan genotype into commercial herds. Commercial piglets are highly susceptible to hypoglycemia, hypothermia, and death, potentially due to limited lipid stores and/or delayed hepatic metabolic ability. We therefore hypothesized that variation in hepatic development and lipid metabolism could contribute to the differences in neonatal mortality between breeds. Liver samples were obtained from piglets of each breed on days 0, 7, and 21 of postnatal age and subjected to molecular and biochemical analysis. At birth, both breeds exhibited similar hepatic glycogen contents, despite Meishan piglets having significantly lower body weight. The livers from newborn Meishan piglets exhibited increased C18∶1n9C and C20∶1n9 but lower C18∶0, C20∶4n6, and C22∶6n3 fatty acid content. Furthermore, by using an unsupervised machine learning approach, we detected an interaction between C18∶1n9C and glycogen content in newborn Meishan piglets. Bioinformatic analysis could identify unique age-based clusters from the lipid profiles in Meishan piglets that were not apparent in the commercial offspring. Examination of the fatty acid signature during the neonatal period provides novel insights into the body composition of Meishan piglets that may facilitate liver responses that prevent hypoglycaemia and reduce offspring mortality.
Collapse
Affiliation(s)
- Hernan P. Fainberg
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Katherine Bodley
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Jaume Bacardit
- School of Computer Science, University of Nottingham, Nottingham, United Kingdom
| | - Dongfang Li
- School of Biosciences, University of Nottingham, Leicestershire, United Kingdom
| | - Frank Wessely
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Nigel P. Mongan
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Michael E. Symonds
- Early Life Nutrition Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Lynne Clarke
- Department of Agricultural Sciences, Imperial College Wye, Wye, Kent, United Kingdom
| | - Alison Mostyn
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Myosin light chain isoforms retain their species-specific electrophoretic mobility after processing, which enables differentiation between six species: 2DE analysis of minced meat and meat products made from beef, pork and poultry. Proteomics 2012; 12:2879-89. [DOI: 10.1002/pmic.201200043] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
de Almeida AM, Bendixen E. Pig proteomics: A review of a species in the crossroad between biomedical and food sciences. J Proteomics 2012; 75:4296-314. [DOI: 10.1016/j.jprot.2012.04.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/04/2012] [Accepted: 04/08/2012] [Indexed: 11/29/2022]
|
45
|
Montowska M, Pospiech E. Is Authentication of Regional and Traditional Food Made of Meat Possible? Crit Rev Food Sci Nutr 2012; 52:475-87. [DOI: 10.1080/10408398.2010.501408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
46
|
De Liu X, Jayasena DD, Jung Y, Jung S, Kang BS, Heo KN, Lee JH, Jo C. Differential Proteome Analysis of Breast and Thigh Muscles between Korean Native Chickens and Commercial Broilers. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2012; 25:895-902. [PMID: 25049642 PMCID: PMC4093099 DOI: 10.5713/ajas.2011.11374] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/02/2012] [Accepted: 01/11/2012] [Indexed: 11/27/2022]
Abstract
The Korean native chickens (Woorimotdak™, KNC) and commercial broilers (Ross, CB) show obvious differences in meat flavor after cooking. To understand the contribution of protein and peptide for meat flavor, 2-dimensional (2-D) gel electrophoresis and matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry was performed. A total of 16 protein spots were differentially expressed in the breast and thigh meat between the two breeds. A total of seven protein spots were represented by different levels between KNC and CB for breast meat. Among them three protein spots (TU39149, TU40162 and TU39598) showed increases in their expressions in KNC while other four protein spots (BU40125, BU40119, BU40029 and BU39904) showed increases in CB. All nine protein spots that were represented by different levels between KNC and CB for thigh meat showed increases in their expression in KNC. Phosphoglucomutase 1 (PGM 1), myosin heavy chain (MyHC), heat shock protein B1 (HSP27), cytochrome c reductase (Enzyme Q), Glyoxylase 1, DNA methyltransferase 3B (DNA MTase 3) were identified as the main protein spots by MALDI-TOF mass spectrometry. These results can provide valuable basic information for understanding the molecular mechanism responsible for breed specific differences in meat quality, especially the meat flavour.
Collapse
Affiliation(s)
| | - Dinesh D. Jayasena
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, 305-764,
Korea
| | - Yeonkuk Jung
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, 305-764,
Korea
| | - Samooel Jung
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, 305-764,
Korea
| | - Bo Seok Kang
- Department of Poultry Science, National Institute of Animal Science, RDA, Sunghwan, 331-801,
Korea
| | - Kang Nyeong Heo
- Department of Poultry Science, National Institute of Animal Science, RDA, Sunghwan, 331-801,
Korea
| | - Jun Heon Lee
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, 305-764,
Korea
| | - Cheorun Jo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, 305-764,
Korea
| |
Collapse
|
47
|
Luo W, Cheng D, Chen S, Wang L, Li Y, Ma X, Song X, Liu X, Li W, Liang J, Yan H, Zhao K, Wang C, Wang L, Zhang L. Genome-wide association analysis of meat quality traits in a porcine Large White × Minzhu intercross population. Int J Biol Sci 2012; 8:580-95. [PMID: 22532790 PMCID: PMC3334672 DOI: 10.7150/ijbs.3614] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 03/19/2012] [Indexed: 01/27/2023] Open
Abstract
Pork quality is an economically important trait and one of the main selection criteria for breeding in the swine industry. In this genome-wide association study (GWAS), 455 pigs from a porcine Large White × Minzhu intercross population were genotyped using the Illumina PorcineSNP60K Beadchip, and phenotyped for intramuscular fat content (IMF), marbling, moisture, color L*, color a*, color b* and color score in the longissimus muscle (LM). Association tests between each trait and the SNPs were performed via the Genome Wide Rapid Association using the Mixed Model and Regression-Genomic Control (GRAMMAR-GC) approach. From the Ensembl porcine database, SNP annotation was implemented using Sus scrofa Build 9. A total of 45 SNPs showed significant association with one or multiple meat quality traits. Of the 45 SNPs, 36 were located on SSC12. These significantly associated SNPs aligned to or were in close approximation to previously reported quantitative trait loci (QTL) and some were located within introns of previously reported candidate genes. Two haplotype blocks ASGA0100525-ASGA0055225-ALGA0067099-MARC0004712-DIAS0000861, and ASGA0085522-H3GA0056170 were detected in the significant region. The first block contained the genes MYH1, MYH2 and MYH4. A SNP (ASGA0094812) within an intron of the USP43 gene was significantly associated with five meat quality traits. The present results effectively narrowed down the associated regions compared to previous QTL studies and revealed haplotypes and candidate genes on SSC12 for meat quality traits in pigs.
Collapse
Affiliation(s)
- Weizhen Luo
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Xu Y, Qian H, Feng X, Xiong Y, Lei M, Ren Z, Zuo B, Xu D, Ma Y, Yuan H. Differential proteome and transcriptome analysis of porcine skeletal muscle during development. J Proteomics 2012; 75:2093-108. [DOI: 10.1016/j.jprot.2012.01.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 01/04/2012] [Accepted: 01/08/2012] [Indexed: 11/26/2022]
|
49
|
Technological and sensory pork quality in relation to muscle and drip loss protein profiles. Eur Food Res Technol 2012. [DOI: 10.1007/s00217-012-1705-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
[Polymorphism in coding region of pig PRDX6 gene and its genetic effects analysis]. YI CHUAN = HEREDITAS 2011; 33:743-8. [PMID: 22049688 DOI: 10.3724/sp.j.1005.2011.00743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PRDX6, a member of antioxidant protein superfamily, plays an important role in oxidative stress, catabolism of lipids and phospholipid lipisomes. Therefore, we used PRDX6 as an important candidate gene for meat quality according to its physiological and biochemical function. Partial coding sequence of porcine PRDX6 was isolated and two potenial SNPs, one at 417 bp (C/T) and the other at 423 bp (A/G), were found in the fourth exon by comparison of the obtained sequence from different pig breeds. In order to explore the relationship between PRDX6 polymorphism and meat quality, genetic variation and trait association of these two SNPs were separately performed in 6 purebred pig population and 247 F2 "Large White x Meishan" resource population by pyrosequencing. The results showed that allele C was predominant in western pig breeds, while allele T was predominant in Chinese indigenous breeds at 417 bp (C/T). This SNP was significantly associated with the intramuscular fat and water moisture (P < 0.05). The A/G mutation at 423 bp was significantly associated with drip water rate, water holding capacity, intramuscular fat, and water moisture (P < 0.05). Allele A was predominant in western pig breeds, while allele G was predominant in Chinese indigenous breeds. These two SNPs were likely to be important markers affecting meat quality traits (especially the muscle tenderness).
Collapse
|