1
|
Besedin D, Shah R, Brennan C, Panzeri E, Hao Van TT, Eri R. Food additives and their implication in inflammatory bowel disease and metabolic syndrome. Clin Nutr ESPEN 2024; 64:483-495. [PMID: 39522876 DOI: 10.1016/j.clnesp.2024.10.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Over the past half a century the Western diet (WD) has become saturated with food additives. During the same time, there has been an increase in Western diseases, such as inflammatory bowel disease (IBD) and metabolic syndrome (MetS). Emerging research has shown that food additives may be implicated in these diseases. However, critics have suggested that some of this research is problematic and may cause unnecessary fear amongst consumers. Here we review the emerging research concerning food additives and their implication in IBD and MetS, and criticisms thereof. To make the review more relevant to the WD, we only included common food additives, selected using supermarket data. Over a dozen common food additives from four categories were identified for their potential role in directly promoting these diseases. A consistent limitation of the research was the use of unrealistic human exposure conditions, such as high doses and modes of administration, as well as a lack of human trials. Another limitation was the absence of studies investigating the potential synergetic effect of consuming multiple food additives, as is common in the WD. Despite the limitations, there is some evidence that common food additives may be contributing to these additives, especially via their dysbiotic effect on the gut microbiota.
Collapse
Affiliation(s)
- Darislav Besedin
- School of Science, STEM College, RMIT University, Melbourne, Vic 3001, Australia.
| | - Rohan Shah
- School of Health and Biomedical Sciences, STEM College, RMIT University, Vic 3083, Australia; Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn Vic 3122, Australia.
| | - Charles Brennan
- School of Science, STEM College, RMIT University, Melbourne, Vic 3001, Australia.
| | | | - Thi Thu Hao Van
- School of Science, STEM College, RMIT University, Melbourne, Vic 3001, Australia.
| | - Rajaraman Eri
- School of Science, STEM College, RMIT University, Melbourne, Vic 3001, Australia.
| |
Collapse
|
2
|
Nie RZ, Luo HM, Chen JY, Sun LH, Wang ZB, Zhang ZP, Bao YR. Molecular insights into the interactions of theaflavin and epicatechin with different lipid bilayer membranes by molecular dynamics simulation. Chem Phys Lipids 2024; 262:105405. [PMID: 38795837 DOI: 10.1016/j.chemphyslip.2024.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
At present, consumers increasingly favored the natural food preservatives with fewer side-effects on health. The green tea catechins and black tea theaflavins attracted considerable interest, and their antibacterial effects were extensively reported in the literature. Epicatechin (EC), a green tea catechin without a gallate moiety, showed no bactericidal activity, whereas the theaflavin (TF), also lacking a gallate moiety, exhibited potent bactericidal activity, and the antibacterial effects of green tea catechins and black tea theaflavins were closely correlated with their abilities to disrupt the bacterial cell membrane. In our present study, the mechanisms of membrane interaction modes and behaviors of TF and EC were explored by molecular dynamics simulations. It was demonstrated that TF exhibited markedly stronger affinity for the POPG bilayer compared to EC. Additionally, the hydrophobic interactions of tropolone/catechol rings with the acyl chain part could significantly contribute to the penetration of TF into the POPG bilayer. It was also found that the resorcinol/pyran rings were the key functional groups in TF for forming hydrogen bonds with the POPG bilayer. We believed that the findings from our current study could offer useful insights to better understand the stronger antibacterial effects of TF compared to EC.
Collapse
Affiliation(s)
- Rong-Zu Nie
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Huo-Min Luo
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Jing-Yu Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Li-Heng Sun
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Zi-Bo Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Zhen-Ping Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Ya-Ru Bao
- Science and Technology Division, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Lu Y, Mo X, Zhu G, Huang Y, Wang Y, Yang Z, Gao L, Shen G, Wang Y, Zhao X. Ratiometric SERS quantification of SO 2 vapor based on Au@Ag-Au with Raman reporter as internal standard. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133763. [PMID: 38359757 DOI: 10.1016/j.jhazmat.2024.133763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Practical gas sensing application requires sensors to quantify target analytes with high sensitivity and reproducibility. However, conventional surface enhanced Raman scattering (SERS) sensor lacks reproducibility and quantification arising from variations of "hot spot" distribution and measurement conditions. Here, a ratio-dependent SERS sensor was developed for quantitative label-free gas sensing. Au@Ag-Au nanoparticles (NPs) were filtered onto anodic aluminum oxide (AAO) forming Au@Ag-Au@AAO SERS substrate. 4-MBA was encapsulated in the gap of Au@Ag-Au and served as the internal standard (IS) to calibrate SERS signal fluctuation for improved quantification ability. Combined with headspace sampling method, SO2 residue in traditional Chinese medicine (TCM) can be extracted and captured on the immediate vicinity of Au@Ag-Au surface. The intensity ratio I613 cm-1/I1078 cm-1 showed excellent linearity within the range of 0.5 mg/kg-500 mg/kg, demonstrating superior quantification performance for SO2 detection. Signals for concentration as low as 0.05 mg/kg of SO2 could be effectively collected, much lower than the strictest limit 10 mg/kg in Chinese Pharmacopoeia. Combined with a handheld Raman spectrometer, handy and quantitative TCM quality evaluation in aspect of SO2 residue was realized. This ratiometric SERS sensor functioned well in rapid on-site SO2 quantification, exhibiting excellent sensitivity and simple operability.
Collapse
Affiliation(s)
- Yu Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou 215163, China; Southeast University Shenzhen Research Institute, Shenzhen 518000, China
| | - Xiufang Mo
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou 215163, China; Southeast University Shenzhen Research Institute, Shenzhen 518000, China
| | - Geng Zhu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou 215163, China; Southeast University Shenzhen Research Institute, Shenzhen 518000, China
| | - Yan Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou 215163, China; Southeast University Shenzhen Research Institute, Shenzhen 518000, China
| | - Yingchao Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Zhenzhong Yang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liqiong Gao
- Hangzhou Institute for Food and Drug Control, Hangzhou 310022, China
| | - Guofang Shen
- Hangzhou Institute for Food and Drug Control, Hangzhou 310022, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China.
| | - Xiangwei Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou 215163, China; Southeast University Shenzhen Research Institute, Shenzhen 518000, China.
| |
Collapse
|
4
|
Saito J, Nakamura H, Akabane M, Yamatani A. Quantitative Investigation on Exposure to Potentially Harmful Excipients by Injection Drug Administration in Children Under 2 Years of Age and Analysis of Association with Adverse Events: A Single-Center, Retrospective Observational Study. Ther Innov Regul Sci 2024; 58:316-335. [PMID: 38055156 DOI: 10.1007/s43441-023-00596-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023]
Abstract
INTRODUCTION Potentially harmful excipients (PHEs) for children have been reported and the need for information collection has been advocated. However, studies on the actual occurrence of adverse events are limited. This study investigated the quantitative exposure of PHEs via injection and their association with adverse events in children under 2 years of age. MATERIALS AND METHODS As a single-center observational study, children aged 0-23 months received injectable drugs from April 1, 2018, to March 31, 2023 were included. Information on PHE exposure and adverse events after administration were extracted from medical records. Sodium benzoate, benzyl alcohol, ethanol, glycerol, lactose, polyethylene glycol paraben, polysorbate, propylene glycol, sorbitol, sucrose, sulfite, and thimerosal were selected as PHEs. RESULTS AND DISCUSSION 6265 cases, 333,694 prescriptions, and 368 drugs (264 ingredients) were analyzed. The median age was 0.63 years (interquartile range [IQR] 0.1-1.1). 72,133 prescriptions, 132 drugs and 99 ingredients contained PHE; 2,961 cases exposed to PHE and 1825 cases exceeding permitted daily exposure. The drug with the highest number of exposure cases was hydroxyzine, and the highest number of prescriptions was heparin (both drugs contain benzyl alcohol). In association between adverse events and PHE exposure, higher doses in cases of adverse event occurrence were found in benzyl alcohol, glycerol, polyethylene glycol, and polysorbate exposed cases. Among thimerosal-exposed cases, "developmental delay" was more frequent in exposed cases, but the causal relationship was unknown. Further investigation is needed to clarify the relationship between adverse events and PHE exposure. Additionally, more precise information on PDE for pediatrics including neonates is necessary.
Collapse
Affiliation(s)
- Jumpei Saito
- Department of Pharmacy, National Center for Child Health and Development, 2-10-1, Okura, Setagayaku, Tokyo, 157-8535, Japan.
| | - Hidefumi Nakamura
- Department of Research and Development Supervision, National Center for Child Health and Development, 2-10-1, Okura, Setagayaku, Tokyo, 157-8535, Japan
| | - Miki Akabane
- Department of Pharmacy, National Center for Child Health and Development, 2-10-1, Okura, Setagayaku, Tokyo, 157-8535, Japan
| | - Akimasa Yamatani
- Department of Pharmacy, National Center for Child Health and Development, 2-10-1, Okura, Setagayaku, Tokyo, 157-8535, Japan
| |
Collapse
|
5
|
Biswas R, Ghosh D, Das S, Chatterjee S, Bhaduri SN, Bhaumik A, Biswas P. Copper Immobilized over 2D Hexagonal SBA-15 for Electrochemical and Colorimetric Sulfite Sensing. Inorg Chem 2023. [PMID: 37418702 DOI: 10.1021/acs.inorgchem.3c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Sulfite (SO32-) is considered a highly toxic anion for living organisms. Herein, we report the synthesis of copper immobilized over a 2D hexagonally ordered mesoporous silica material CuMS as an electrochemical and colorimetric dual-technique-based sensing platform for sulfite detection. The immobilization of copper on silica was achieved through the bis[3-(triethoxysilyl)propyl]tetrasulfide (TEPTS) ligand. Morphological and physical properties of the material were confirmed by several characterization techniques, including scanning electron microscopy, transmission electron microscopy, X-ray diffraction, N2 sorption, and X-ray photoelectron spectroscopy. The CuMS material retained mesoporosity with a narrow pore size distribution (D ≈ 5.4 nm) and a high Brunauer-Emmett-Teller surface area of 682 m2 g-1 after the immobilization of copper. The prepared catalyst shows promising electrocatalytic activity toward sulfite oxidation. A linear variation in the peak current was obtained for SO32- oxidation in the 0.2-15 mM range with a high sensitivity of 62.08 μA cm-2, under optimum experimental conditions. The limit of detection (LOD) was found to be 1.14 nM. CuMS also shows excellent activity toward colorimetric detection of sulfite anions with an LOD of 0.4 nM. The proposed sensor shows high selectivity toward the sulfite anion, even in the presence of common interferents. The detection of sulfite in white wine with excellent recovery demonstrates the practical applicability of this sensor.
Collapse
Affiliation(s)
- Rima Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711 103, India
| | - Debojit Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711 103, India
| | - Samarpita Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711 103, India
| | - Sauvik Chatterjee
- School of Material Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Samanka Narayan Bhaduri
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711 103, India
| | - Asim Bhaumik
- School of Material Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Papu Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711 103, India
| |
Collapse
|
6
|
Li Z, Huang J, Wang L, Li D, Chen Y, Xu Y, Li L, Xiao H, Luo Z. Novel insight into the role of sulfur dioxide in fruits and vegetables: Chemical interactions, biological activity, metabolism, applications, and safety. Crit Rev Food Sci Nutr 2023; 64:8741-8765. [PMID: 37128783 DOI: 10.1080/10408398.2023.2203737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sulfur dioxide (SO2) are a category of chemical compounds widely used as additives in food industry. So far, the use of SO2 in fruit and vegetable industry has been indispensable although its safety concerns have been controversial. This article comprehensively reviews the chemical interactions of SO2 with the components of fruit and vegetable products, elaborates its mechanism of antimicrobial, anti-browning, and antioxidation, discusses its roles in regulation of sulfur metabolism, reactive oxygen species (ROS)/redox, resistance induction, and quality maintenance in fruits and vegetables, summarizes the application technology of SO2 and its safety in human (absorption, metabolism, toxicity, regulation), and emphasizes the intrinsic metabolism of SO2 and its consequences for the postharvest physiology and safety of fresh fruits and vegetables. In order to fully understand the benefits and risks of SO2, more research is needed to evaluate the molecular mechanisms of SO2 metabolism in the cells and tissues of fruits and vegetables, and to uncover the interaction mechanisms between SO2 and the components of fruits and vegetables as well as the efficacy and safety of bound SO2. This review has important guiding significance for adjusting an applicable definition of maximum residue limit of SO2 in food.
Collapse
Affiliation(s)
- Zhenbiao Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jing Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Lei Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Dong Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yanpei Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou, China
| |
Collapse
|
7
|
Analysis of the US Safety Data for Edaravone (Radicava ®) From the Third Year After Launch. Drugs R D 2022; 22:205-211. [PMID: 35723868 PMCID: PMC9433633 DOI: 10.1007/s40268-022-00391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neuromuscular disease with no curative therapies. Edaravone (Radicava®) (Mitsubishi Tanabe Pharma Corporation, Tokyo, Japan), approved in the United States (US) for ALS in adults in 2017, was shown in a clinical trial to slow the rate of physical functional decline in ALS and is administered intravenously. The aim of this paper is to summarize the observed safety profile from real-world patient use during the first 3 years of edaravone availability in the US. Methods Edaravone usage data were collected, and adverse events (AEs) were identified from a postmarketing safety database from August 8, 2017 through August 7, 2020 (cutoff date). Results As of October 3, 2020, 5207 ALS patients had been treated with edaravone. As of August 7, 2020, the most commonly reported AEs included death (not specified), drug ineffective, disease progression, therapeutic response unexpected, fall, asthenia, fatigue, muscular weakness, gait disturbance, and dyspnea. The most commonly reported serious AEs (SAEs) included death (not specified), pneumonia, disease progression, ALS, fall, dyspnea, respiratory failure, device-related infection, hospitalization, and injection-site infection. There were 687 deaths, with 494 reported as death without specifying the cause. Deaths were most commonly attributed to ALS, disease progression, respiratory failure, or pneumonia. Review for administration-site reactions revealed 95 AEs, including 34 site infections, with 22 SAEs (all non-fatal). Five non-fatal SAEs of anaphylaxis were reported. Conclusion In the postmarketing reporting to date, no new safety signals were identified beyond those already known from the edaravone clinical trial program.
Collapse
|
8
|
Maiti BK. Cross‐talk Between (Hydrogen)Sulfite and Metalloproteins: Impact on Human Health. Chemistry 2022; 28:e202104342. [DOI: 10.1002/chem.202104342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 12/28/2022]
Affiliation(s)
- Biplab K Maiti
- Department of Chemistry National Institute of Technology Sikkim, Ravangla Campus Barfung Block, Ravangla Sub Division South Sikkim 737139 India
- Department of Chemistry Cluster University of Jammu Canal Road Jammu 180001
| |
Collapse
|
9
|
Zia Qureshi I, Ud Din N, Khadija G, Shahzadi A, Rafiq B, Afaqi H. Adverse physiologic effects of a common food additive potassium metabisulfite (E224) in laboratory rats. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Irfan Zia Qureshi
- Laboratory of Animal and Human Physiology, Department of Zoology Quaid‐i‐Azam University Islamabad Pakistan
| | - Nizam Ud Din
- Laboratory of Animal and Human Physiology, Department of Zoology Quaid‐i‐Azam University Islamabad Pakistan
| | - Ghulam Khadija
- Laboratory of Animal and Human Physiology, Department of Zoology Quaid‐i‐Azam University Islamabad Pakistan
| | - Aneeqa Shahzadi
- Laboratory of Animal and Human Physiology, Department of Zoology Quaid‐i‐Azam University Islamabad Pakistan
| | - Bakhtawer Rafiq
- Laboratory of Animal and Human Physiology, Department of Zoology Quaid‐i‐Azam University Islamabad Pakistan
| | - Hina Afaqi
- Laboratory of Animal and Human Physiology, Department of Zoology Quaid‐i‐Azam University Islamabad Pakistan
| |
Collapse
|
10
|
Wang ST, Ning HQ, Feng LH, Wang YY, Li YQ, Mo HZ. Oxidative phosphorylation system as the target of glycinin basic peptide against Aspergillus niger. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
11
|
Miraglia D, Castrica M, Esposto S, Roila R, Selvaggini R, Urbani S, Taticchi A, Sordini B, Veneziani G, Servili M. Quality Evaluation of Shrimp ( Parapenaeus longirostris) Treated with Phenolic Extract from Olive Vegetation Water during Shelf-Life, before and after Cooking. Foods 2021; 10:2116. [PMID: 34574226 PMCID: PMC8469345 DOI: 10.3390/foods10092116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/18/2023] Open
Abstract
The focus of this study was to assess the quality traits and sensory profile of cooked rose shrimps (Parapenaeus longirostris) treated with a phenolic extract, derived from olive vegetation water (PEOVW). To achieve the aim, four different groups of shrimps were analysed, specifically the control (CTRL) group, where the shrimps were soaked in tap water; sulphites (S) group with shrimps soaked in 0.5% sodium metabisulfite tap water solution, phenolic extract (PE) group where a tap water solution containing 2 g/L of phenols was used; and PE+S group where the shrimps were dipped in 0.25% sodium metabisulfite tap water solution containing 1 g/L of phenols. The groups were then stored at 2 °C and analysed on the day of packaging (D0), after 3 (D3), 6 (D6), and 8 (D8) days. On each group, microbiological parameters such as Enterobacteriaceae, mesophilic and psychrotrophic bacteria, and colorimetric indices were investigated on six (n = 6) shrimps before cooking, while the evolution of the phenolic content, antioxidant activity, and sensory analysis during the storage period were evaluated on cooked shrimps. Regarding colour coordinates, there were no noteworthy variations overtime nor between groups, while it is important to note that the microbiological results for the PE group showed at each time interval and for all the considered parameters, significantly lower values than the other groups (p < 0.05). This result is very interesting when considered further in correlation with the sensory analysis, where shrimps mainly in PE and secondarily in PE+S groups were shown to retain the freshness characteristics better than the other groups (α = 0.01), without giving the shrimps any particularly bitter and pungent sensations typical of the olive phenolic compounds. In conclusion, the results obtained in this study give PEOVW the potential to be valorised in the food sector and, above all, it could represent a sustainable solution to reduce the use of synthetic additives.
Collapse
Affiliation(s)
- Dino Miraglia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (D.M.); (R.R.); (R.S.)
| | - Marta Castrica
- Department of Health, Animal Science and Food Safety “Carlo Cantoni”, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy;
| | - Sonia Esposto
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via San Costanzo s.n.c., 06126 Perugia, Italy; (S.U.); (A.T.); (B.S.); (G.V.); (M.S.)
| | - Rossana Roila
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (D.M.); (R.R.); (R.S.)
| | - Roberto Selvaggini
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (D.M.); (R.R.); (R.S.)
| | - Stefania Urbani
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via San Costanzo s.n.c., 06126 Perugia, Italy; (S.U.); (A.T.); (B.S.); (G.V.); (M.S.)
| | - Agnese Taticchi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via San Costanzo s.n.c., 06126 Perugia, Italy; (S.U.); (A.T.); (B.S.); (G.V.); (M.S.)
| | - Beatrice Sordini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via San Costanzo s.n.c., 06126 Perugia, Italy; (S.U.); (A.T.); (B.S.); (G.V.); (M.S.)
| | - Gianluca Veneziani
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via San Costanzo s.n.c., 06126 Perugia, Italy; (S.U.); (A.T.); (B.S.); (G.V.); (M.S.)
| | - Maurizio Servili
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via San Costanzo s.n.c., 06126 Perugia, Italy; (S.U.); (A.T.); (B.S.); (G.V.); (M.S.)
| |
Collapse
|
12
|
Oshimo M, Nakashima F, Kai K, Matsui H, Shibata T, Akagawa M. Sodium sulfite causes gastric mucosal cell death by inducing oxidative stress. Free Radic Res 2021; 55:731-743. [PMID: 34074194 DOI: 10.1080/10715762.2021.1937620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Sulfites are commonly used as a preservative and antioxidant additives in the food industry. Sulfites are absorbed by the gastrointestinal tract and distributed essentially to all body tissues. Although sulfites have been believed to be safe food additives, some studies have shown that they exhibit adverse effects in various tissues. In this study, we examined the cytotoxic effect of sodium sulfite (Na2SO3) against rat gastric mucosal cells (RGM1) and further investigated its underlying molecular mechanism. We demonstrated that exposure to Na2SO3 exerts significant cytotoxicity in RGM1 cells through induction of oxidative stress. Exposure of RGM1 cells to Na2SO3 caused a significant formation of protein carbonyls and 8-hydroxy-2'-deoxyguanosine, major oxidative stress markers, with a concomitant accumulation of carbonylated protein-related aggregates. Furthermore, we found that incubation of lysozyme with Na2SO3 evokes protein carbonylation and aggregation via the metal ion-catalyzed free radical formation derived from Na2SO3. Our results suggest that Na2SO3 might lead to gastric tissue injury via induction of oxidative stress by the formation of Na2SO3-related free radicals.
Collapse
Affiliation(s)
- Moeri Oshimo
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Fumie Nakashima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kenji Kai
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Hirofumi Matsui
- Division of Gastroenterology, Graduate School for Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Mitsugu Akagawa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
13
|
Larmené-Beld KHM, van Berkel S, Wijnsma R, Taxis K, Frijlink HW. Prefilled Cyclic Olefin Sterilized Syringes of Norepinephrine Injection Solution Do Not Need to Be Stabilized by Antioxidants. AAPS PharmSciTech 2020; 21:247. [PMID: 32862255 PMCID: PMC7456634 DOI: 10.1208/s12249-020-01784-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022] Open
Abstract
Norepinephrine is a potent α-sympathomimetic drug which plays an important role in the acute treatment of hypotension and shock. Commercially available norepinephrine solutions contain sodium metabisulfite (Na2S2O5) as an antioxidant. However, prefilled cyclic olefin polymer syringes are not compatible with sodium metabisulfite. The aim of this study was to develop a new formulation of 0.1-mg/mL norepinephrine solution without sodium metabisulfite which is chemically stable and sterile and can be stored in prefilled polymer syringes. Formulation studies were performed with 0.1-mg/mL norepinephrine solution with 0, 0.05, or 0.1% ascorbic acid added as antioxidant. The syringes were filled under nitrogen gassing, stored at 20 ± 5°C, and protected from daylight. Based on the formulation test results, the final formulation was defined and stability testing at 20 ± 5°C was performed measuring norepinephrine concentration, pH, clarity, color of the solution, subvisible particles, and sterility at time intervals up to 12 months. The norepinephrine concentrations at t = 22 weeks were 100.4%, 95.4%, and 92.2% for the formulations with no ascorbic acid and with 0.05% and 0.10% ascorbic acid, respectively. Three batches for the stability study were produced containing norepinephrine, sodium edetate, sodium chloride, and water for injections filled under nitrogen gassing and stored at 20 ± 5°C. Norepinephrine concentrations were respectively 98.8%, 98.6%, and 99.3% for batches 1, 2, and 3 at t = 12 months. It can be concluded that norepinephrine (0.1 mg/mL) solution without metabisulfite is stable for at least 12 months at room temperature when protected from daylight.
Collapse
Affiliation(s)
- Karin H M Larmené-Beld
- Department of Clinical Pharmacy, Isala, Dokter van Heesweg 2, 8025 AB, Zwolle, The Netherlands.
- Unit of PharmacoTherapy, -Epidemiology & PharmacoEconomics (PTE2), Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| | - Stefan van Berkel
- Department of Clinical Pharmacy, Isala, Dokter van Heesweg 2, 8025 AB, Zwolle, The Netherlands
| | - Rommert Wijnsma
- Department of Clinical Pharmacy, Isala, Dokter van Heesweg 2, 8025 AB, Zwolle, The Netherlands
| | - Katja Taxis
- Unit of PharmacoTherapy, -Epidemiology & PharmacoEconomics (PTE2), Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Ayuning Tyas A, Sonsa-ard T, Uraisin K, Nacapricha D, Saetear P. Simple Flow-Based System with an In-Line Membrane Gas-liquid Separation Unit and a Contactless Conductivity Detector for the Direct Determination of Sulfite in Clear and Turbid Food Samples. MEMBRANES 2020; 10:E104. [PMID: 32443480 PMCID: PMC7281478 DOI: 10.3390/membranes10050104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 11/17/2022]
Abstract
This study presents a simple flow-based system for the determination of the preservative agent sulfite in food and beverages. The standard method of conversion of sulfite ions into SO2 gas by acidification is employed to separate the sulfite from sample matrices. The sample is aspirated into a donor stream of sulfuric acid. A membrane gas-liquid separation unit, also called a 'gas-diffusion (GD)' unit, incorporating a polytetrafluoroethylene (PTFE) hydrophobic membrane allows the generated gas to diffuse into a stream of deionized water in the acceptor line. The dissolution of the SO2 gas leads to a change in the conductivity of water which is monitored by an in-line capacitively coupled contactless conductivity detector (C4D). The conductivity change is proportional to the concentration of sulfite in the sample. In this work, both clear (wine) and turbid (fruit juice and extracts of dried fruit) were selected to demonstrate the versatility of the developed method. The method can tolerate turbidity up to 60 Nephelometric Turbidity Units (NTUs). The linear range is 5-25 mg L-1 SO32- with precision < 2% RSD. The flow system employs a peristaltic pump for propelling all liquid lines. Quantitative results of sulfite were statistically comparable to those obtained from iodimetric titration for the wine samples.
Collapse
Affiliation(s)
| | | | | | | | - Phoonthawee Saetear
- Flow-Innovation Research for Science and Technology Laboratories (FIRST Labs), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (A.A.T.); (T.S.-a.); (K.U.); (D.N.)
| |
Collapse
|
15
|
Ozkan A, Parlak H, Agar A, Özsoy Ö, Tanriover G, Dilmac S, Turgut E, Yargicoglu P. The Effect of Sodium Metabisulphite on Apoptosis in the Experimental Model of Parkinson’s Disease. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401314666180503153444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The aim of this study was to investigate the mechanisms underlying possible
toxic effects of sulphite on neurodegeneration.
Methods:
Male Wistar rats were assigned to each of the four groups: Control (Control),
Sulphite-treated (Sulphite), 6-hydroxydopamine (6-OHDA)-injected (6-OHDA), and sulphite-treated
and 6-OHDA-injected (6-OHDA+Sulphite). Sodium metabisulphite was administered orally by
gavage at a dose of 100 mg/kg/day for 45 days. Experimental PD was created stereotactically via the
unilateral infusion of 6-OHDA into the medial forebrain bundle (MFB). Rotarod performances,
plasma S-sulfonate levels, caspase-3 activities, Bax and Bcl-2 levels, tyrosine hydroxylase (TH) and
cleaved caspase-3 double staining were investigated.
Results:
The rotarod test showed that the 6-OHDA-injected animals exhibited shorter time on the rod
mile compared to the control group; however, there was no difference between 6-OHDA and
6-OHDA+Sulphite groups. Plasma levels of S-sulfonate in Sulphite and 6-OHDA+ Sulphite groups
increased in contrast to their corresponding control groups. Caspase-3 enzyme activity increased in the
6-OHDA group whereas it did not in control. However, sulphite treatment did not affect these activity
levels. Anti-apoptotic protein Bcl-2 concentration decreased, but the concentration of pro-apoptotic
protein Bax increased in the 6-OHDA group compared to the control group. The expression of
caspase-3 increased, while the number of tyrosine hydroxylase (TH)-positive neurons decreased in
6-OHDA group as compared to the control groups. However, sulphite treatment had no effect on these
parameters.
Conclusion:
Sulphite is not a potentially aggravating factor for the activity of caspase-3 in a 6-
OHDA-induced experimental model of Parkinson’s disease.
Collapse
Affiliation(s)
- Ayse Ozkan
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Hande Parlak
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Aysel Agar
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Özlem Özsoy
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Gamze Tanriover
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Sayra Dilmac
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Eylem Turgut
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Piraye Yargicoglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
16
|
Hosnedlova B, Sochor J, Baron M, Bjørklund G, Kizek R. Application of nanotechnology based-biosensors in analysis of wine compounds and control of wine quality and safety: A critical review. Crit Rev Food Sci Nutr 2019; 60:3271-3289. [PMID: 31809581 DOI: 10.1080/10408398.2019.1682965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanotechnology is one of the most promising future technologies for the food industry. Some of its applications have already been introduced in analytical techniques and food packaging technologies. This review summarizes existing knowledge about the implementation of nanotechnology in wine laboratory procedures. The focus is mainly on recent advancements in the design and development of nanomaterial-based sensors for wine compounds analysis and assessing wine safety. Nanotechnological approaches could be useful in the wine production process, to simplify wine analysis methods, and to improve the quality and safety of the final product.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic.,CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic
| | - Jiri Sochor
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic
| | - Mojmir Baron
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Rene Kizek
- CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic.,Faculty of Pharmacy, Department of Human Pharmacology and Toxicology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
17
|
Ning HQ, Wang ZS, Li YQ, Tian WL, Sun GJ, Mo HZ. Effects of glycinin basic polypeptide on the textural and physicochemical properties of Scomberomorus niphonius surimi. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Valero E, Tronchoni J, Morales P, Gonzalez R. Autophagy is required for sulfur dioxide tolerance in Saccharomyces cerevisiae. Microb Biotechnol 2019; 13:599-604. [PMID: 31638329 PMCID: PMC7017813 DOI: 10.1111/1751-7915.13495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 01/17/2023] Open
Abstract
Sulfiting agents are among the most widely used preservatives in the food and beverages industries, including winemaking, and one of their main functions is inhibition of spoilage microorganisms. We have used a whole genome quantitative fitness analysis in order to improve our knowledge on yeast tolerance to sulfites. Apart from the contribution of sulfite efflux to tolerance, results point to vesicle‐mediated transport, autophagy and vacuolar activity as the main cellular functions required to survive sulfite challenges. The involvement of autophagic and vacuolar functions in sulfite tolerance was further confirmed by pairwise competition using a newly constructed atg2‐defective strain, as well as by showing induction of ATG8 expression by sulfite. Autophagy is required for the turnover of proteins and subcellular structures damaged by sulfite. In addition, the requirement for vacuolar functions might be related to its role in intracellular pH homeostasis. Finally, the involvement of the sulfite pump Ssu1 and the transcription factor Fzf1 in sulfite tolerance by Saccharomyces cerevisiae was confirmed; a result that validates the experimental approach used in this work. These findings have relevance for understanding sulfite toxicity and tolerance, as well as for the eventual design of strategies aiming to control yeast spoilage.
Collapse
Affiliation(s)
- Eva Valero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Jordi Tronchoni
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Logroño, Spain
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Logroño, Spain
| | - Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Logroño, Spain
| |
Collapse
|
19
|
Pobiega K, Kraśniewska K, Przybył JL, Bączek K, Żubernik J, Witrowa-Rajchert D, Gniewosz M. Growth Biocontrol of Foodborne Pathogens and Spoilage Microorganisms of Food by Polish Propolis Extracts. Molecules 2019; 24:E2965. [PMID: 31443325 PMCID: PMC6720850 DOI: 10.3390/molecules24162965] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/14/2022] Open
Abstract
Propolis is a natural mixture produced by bees from plant resin substances. This study focuses on the general characteristics of five samples of Polish extract propolis originating from agricultural areas. Chemical composition with high performance liquid chromatography‒diode array detector method, total content of flavonoids and polyphenols, and antioxidative activity were determined in the ethanol extracts of propolis (EEP) samples. Minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC) and time-kill curves were studied for foodborne pathogens and food spoilage microorganisms. In EEPs the predominant flavonoid compounds were pinocembrin, chrysin, pinobanksin, apigenin, and kaempferol and the predominant phenolic acids were p-coumaric acid, ferulic acid, and caffeic acid. A strong antioxidative action of propolis in vitro was observed (IC50 for DPPH radical was at the level of 0.9-2.1 µg/mL). EEPs had MIC values for bacteria in the range of 1-16 mg/mL, whereas MIC for fungi ranged from 2 to 32 mg/mL. Extract of propolis originating from southern Poland was distinguished by higher content of bioactive components, and stronger antioxidative and antimicrobial activity than EPPs from the remaining areas of Poland. The results indicate the possibility of applying ethanol extracts from Polish propolis to protect food against microbiological spoilage.
Collapse
Affiliation(s)
- Katarzyna Pobiega
- Division of Food Biotechnology and Microbiology, Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland.
| | - Karolina Kraśniewska
- Division of Food Biotechnology and Microbiology, Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Jarosław L Przybył
- Laboratory of New Herbal Products, Department of Vegetable and Medicinal Plants, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Katarzyna Bączek
- Laboratory of New Herbal Products, Department of Vegetable and Medicinal Plants, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Joanna Żubernik
- Department of Food Engineering and Process Management, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Małgorzata Gniewosz
- Division of Food Biotechnology and Microbiology, Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland.
| |
Collapse
|
20
|
Sae-leaw T, Benjakul S. Prevention of quality loss and melanosis of Pacific white shrimp by cashew leaf extracts. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.08.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Sae-leaw T, Benjakul S, Vongkamjan K. Retardation of melanosis and quality loss of pre-cooked Pacific white shrimp using epigallocatechin gallate with the aid of ultrasound. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.07.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Dean RK, Subedi R, Christiano P, Ghimire A. More than a drink: A rare anaphylactic reaction to sparkling water. Am J Emerg Med 2018; 36:170.e1-170.e2. [DOI: 10.1016/j.ajem.2017.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/07/2017] [Indexed: 11/16/2022] Open
|
23
|
Rolle SD, Devillers CH, Fournier S, Heintz O, Gibault H, Lucas D. A glassy carbon electrode modified by a triply-fused-like Co(ii) polyporphine and its ability for sulphite oxidation and detection. NEW J CHEM 2018. [DOI: 10.1039/c7nj04370h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An original Co(ii) porphyrin conductive polymer is electrosynthesized which efficiently catalyzes sulphite oxidation in water offering opportunities for sensor development.
Collapse
Affiliation(s)
- Sébastien D. Rolle
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB)
- CNRS UMR 6302
- Université de Bourgogne Franche-Comté
- Dijon 21078
- France
| | - Charles H. Devillers
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB)
- CNRS UMR 6302
- Université de Bourgogne Franche-Comté
- Dijon 21078
- France
| | - Sophie Fournier
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB)
- CNRS UMR 6302
- Université de Bourgogne Franche-Comté
- Dijon 21078
- France
| | - Olivier Heintz
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB)
- UMR CNRS 5209
- Université de Bourgogne Franche-Comté
- Dijon 21078
- France
| | - Hervé Gibault
- Institut Œnologique de Champagne (IOC)
- 7 rue Aristide Briand
- Nuits-Saint-Georges 21700
- France
| | - Dominique Lucas
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB)
- CNRS UMR 6302
- Université de Bourgogne Franche-Comté
- Dijon 21078
- France
| |
Collapse
|
24
|
Ercan S, Şahin P, Kencebay C, Derin N, Çelik Özenci Ç. Evaluation of mTOR signaling pathway proteins in rat gastric mucosa exposed to sulfite and ghrelin. TURKISH JOURNAL OF GASTROENTEROLOGY 2017; 29:94-100. [PMID: 29082888 DOI: 10.5152/tjg.2017.17294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND/AIMS Mammalian target of rapamycin (mTOR) signaling serves as a central regulator of cell growth, proliferation, and survival. In this study, we planned to evaluate the expressions of mTOR signaling constituents (p-p70S6K, p-mTOR, and p-Tuberin) in rat gastric mucosa and to compare the results in sulfite- and sulfite+ghrelin-exposed groups. MATERIALS AND METHODS Rats were divided into three groups: the control group (C), the sodium metabisulfite (Na2S2O5) (S) group, and sulfite+ghrelin (SG) group. Sodium metabisulfite at 100 mg/kg/day was administered via gavage, and ghrelin at 20 μg/kg/day was administered intraperitoneally for 35 days. We have used immunohistochemistry for mTOR signaling pathway components. RESULTS There were no significant differences for p-p70S6K and p-mTOR expression among the C, S, and SG groups. Tuberin expression was significantly increased in the S group compared to the C group. Furthermore, tuberin expression was found to be significantly decreased in the SG group. CONCLUSION This study is the first one in the literature that shows the expression of mTOR signaling proteins in gastric mucosa of rats exposed to sulfite and ghrelin. Furthermore, it demonstrates that ghrelin treatment reduces p-Tuberin expression induced by ingested sulfite.
Collapse
Affiliation(s)
- Sevim Ercan
- Department of Medical Services and Techniques, Akdeniz University Vocational School of Health Services, Antalya, Turkey
| | - Pınar Şahin
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Ceren Kencebay
- Department of Biophysics, Akdeniz University School of Medicine, Antalya, Turkey
| | - Narin Derin
- Department of Biophysics, Akdeniz University School of Medicine, Antalya, Turkey
| | - Çiler Çelik Özenci
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
25
|
Noorafshan A, Vafabin M, Karbalay-Doust S, Asadi-Golshan R. Efficacy of Curcumin in the Modulation of Anxiety Provoked by Sulfite, a Food Preservative, in Rats. Prev Nutr Food Sci 2017; 22:144-148. [PMID: 28702432 PMCID: PMC5503424 DOI: 10.3746/pnf.2017.22.2.144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/13/2017] [Indexed: 01/09/2023] Open
Abstract
Sulfites are used as food preservatives and excessive sulfite might disturb the body systems including the brain. Curcumin shows protective effects on the nervous system toxicity. The present study aimed to evaluate the protective role of curcumin in sulfite-induced anxiety in rats. Male rats were divided into five groups. The rats in groups I to V received distilled water (vehicle of sulfite, 1 mL/d), olive oil (vehicle of curcumin, 1 mL/d), curcumin (100 mg/kg/d), sulfite (25 mg/kg/d), and sulfite+curcumin, respectively, by daily gastric gavage for 8 weeks. At the end of 8 weeks the rats were tested in the elevated plus-maze for anxiety. The results showed that concomitant treatment of curcumin during sulfite consumption prevented the reduction of the time spent in the open arm and entrance to the open arm (the indexes of anxiety). Besides, an increase was found in motor activity of the rats in the sulfite+curcumin group compared to the sulfite-treated animals. Exposure of sulfite in rats can induce anxiety, and curcumin can act as an anti-anxiety agent.
Collapse
Affiliation(s)
- Ali Noorafshan
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran.,Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Masoud Vafabin
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran.,Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Reza Asadi-Golshan
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran.,Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| |
Collapse
|
26
|
Sae-Leaw T, Benjakul S, Simpson BK. Effect of catechin and its derivatives on inhibition of polyphenoloxidase and melanosis of Pacific white shrimp. Journal of Food Science and Technology 2017; 54:1098-1107. [PMID: 28416859 DOI: 10.1007/s13197-017-2556-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/09/2017] [Accepted: 02/17/2017] [Indexed: 11/29/2022]
Abstract
This study aimed to investigate the effect of tea catechin (C) and 4 of its derivatives on the Pacific white shrimp PPO inhibition and melanosis during refrigerated storage. Epigallocatechin gallate (EGCG) exhibited the highest inhibition towards PPO, followed by C. Inhibitory activity of all compounds tested was in a dose dependent manner (0.1-2.0 mM). Based on activity staining, EGCG most effectively inhibited PPO. For inhibition kinetic studies, C and epicatechin (EC) showed uncompetitive type, whereas epicatechin gallate (ECG), epigallocatechin (EGC) and EGCG exhibited mixed type inhibition. When whole shrimps were treated with EGCG solution at various concentrations (0.25-0.75%), those treated with 0.5 or 0.75% EGCG had lower melanosis scores throughout storage for 10 days at 4 °C, compared with the control and the 1.25% sodium metabisulfite treated samples (P < 0.05). Therefore, EGCG could be used as a potential inhibitor for melanosis in raw Pacific white shrimp during refrigerated storage.
Collapse
Affiliation(s)
- Thanasak Sae-Leaw
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112 Thailand
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112 Thailand
| | - Benjamin K Simpson
- Department of Food Science and Agricultural Chemistry, McGill University (Macdonald Campus), 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9 Canada
| |
Collapse
|
27
|
Iammarino M, Ientile AR, Di Taranto A. Sulphur dioxide in meat products: 3-year control results of an accredited Italian laboratory. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2017; 10:99-104. [DOI: 10.1080/19393210.2017.1280539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Marco Iammarino
- Chemistry Department, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Anna Rita Ientile
- Chemistry Department, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Aurelia Di Taranto
- Chemistry Department, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| |
Collapse
|
28
|
Final Report on the Safety Assessment of Sodium Sulfite, Potassium Sulfite, Ammonium Sulfite, Sodium Bisulfite, Ammonium Bisulfite, Sodium Metabisulfite and Potassium Metabisulfite. Int J Toxicol 2016. [DOI: 10.1080/10915810390239478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Sodium Sulfite, Ammonium Sulfite, Sodium Bisulfite, Potassium Bisulfite, Ammonium Bisulfite, Sodium Metabisulfite, and Potassium Metabisulfite are inorganic salts that function as reducing agents in cosmetic formulations. All except Sodium Metabisulfite also function as hair-waving/straightening agents. In addition, Sodium Sulfite, Potassium Sulfite, Sodium Bisulfite, and Sodium Metabisulfite function as antioxidants. Although Ammonium Sulfite is not in current use, the others are widely used in hair care products. Sulfites that enter mammals via ingestion, inhalation, or injection are metabolized by sulfite oxidase to sulfate. In oral-dose animal toxicity studies, hyperplastic changes in the gastric mucosa were the most common findings at high doses. Ammonium Sulfite aerosol had an acute LC50 of >400 mg/m3 in guinea pigs. A single exposure to low concentrations of a Sodium Sulfite fine aerosol produced dose-related changes in the lung capacity parameters of guinea pigs. A 3-day exposure of rats to a Sodium Sulfite fine aerosol produced mild pulmonary edema and irritation of the tracheal epithelium. Severe epithelial changes were observed in dogs exposed for 290 days to 1 mg/m3 of a Sodium Metabisulfite fine aerosol. These fine aerosols contained fine respirable particle sizes that are not found in cosmetic aerosols or pump sprays. None of the cosmetic product types, however, in which these ingredients are used are aerosolized. Sodium Bisulfite (tested at 38%) and Sodium Metabisulfite (undiluted) were not irritants to rabbits following occlusive exposures. Sodium Metabisulfite (tested at 50%) was irritating to guinea pigs following repeated exposure. In rats, Sodium Sulfite heptahydrate at large doses (up to 3.3 g/kg) produced fetal toxicity but not teratogenicity. Sodium Bisulfite, Sodium Metabisulfite, and Potassium Metabisulfite were not teratogenic for mice, rats, hamsters, or rabbits at doses up to 160 mg/kg. Generally, Sodium Sulfite, Sodium Metabisulfite, and Potassium Metabisulfite were negative in mutagenicity studies. Sodium Bisulfite produced both positive and negative results. Clinical oral and ocular-exposure studies reported no adverse effects. Sodium Sulfite was not irritating or sensitizing in clinical tests. These ingredients, however, may produce positive reactions in dermatologic patients under patch test. In evaluating the positive genotoxicity data found with Sodium Bisulfite, the equilibrium chemistry of sulfurous acid, sulfur dioxide, bisulfite, sulfite, and metabisulfite was considered. This information, however, suggests that some bisulfite may have been present in genotoxicity tests involving the other ingredients and vice versa. On that basis, the genotoxicity data did not give a clear, consistent picture. In cosmetics, however, the bisulfite form is used at very low concentrations (0.03% to 0.7%) in most products except wave sets. In wave sets, the pH ranges from 8 to 9 where the sulfite form would predominate. Skin penetration would be low due to the highly charged nature of these particles and any sulfite that did penetrate would be converted to sulfate by the enzyme sulfate oxidase. As used in cosmetics, therefore, these ingredients would not present a genotoxicity risk. The Cosmetic Ingredient Review Expert Panel concluded that Sodium Sulfite, Potassium Sulfite, Ammonium Sulfite, Sodium Bisulfite, Ammonium Bisulfite, Sodium Metabisulfite, and Potassium Metabisulfite are safe as used in cosmetic formulations.
Collapse
|
29
|
Grings M, Moura AP, Parmeggiani B, Motta MM, Boldrini RM, August PM, Matté C, Wyse ATS, Wajner M, Leipnitz G. Higher susceptibility of cerebral cortex and striatum to sulfite neurotoxicity in sulfite oxidase-deficient rats. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2063-2074. [PMID: 27523630 DOI: 10.1016/j.bbadis.2016.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/27/2016] [Accepted: 08/09/2016] [Indexed: 12/22/2022]
Abstract
Patients affected by sulfite oxidase (SO) deficiency present severe seizures early in infancy and progressive neurological damage, as well as tissue accumulation of sulfite, thiosulfate and S-sulfocysteine. Since the pathomechanisms involved in the neuropathology of SO deficiency are still poorly established, we evaluated the effects of sulfite on redox homeostasis and bioenergetics in cerebral cortex, striatum, cerebellum and hippocampus of rats with chemically induced SO deficiency. The deficiency was induced in 21-day-old rats by adding 200ppm of tungsten, a molybdenum competitor, in their drinking water for 9weeks. Sulfite (70mg/kg/day) was also administered through the drinking water from the third week of tungsten supplementation until the end of the treatment. Sulfite decreased reduced glutathione concentrations and the activities of glutathione reductase and glutathione S-transferase (GST) in cerebral cortex and of GST in cerebellum of SO-deficient rats. Moreover, sulfite increased the activities of complexes II and II-III in striatum and of complex II in hippocampus, but reduced the activity of complex IV in striatum of SO-deficient rats. Sulfite also decreased the mitochondrial membrane potential in cerebral cortex and striatum, whereas it had no effect on mitochondrial mass in any encephalic tissue evaluated. Finally, sulfite inhibited the activities of malate and glutamate dehydrogenase in cerebral cortex of SO-deficient rats. Taken together, our findings indicate that cerebral cortex and striatum are more vulnerable to sulfite-induced toxicity than cerebellum and hippocampus. It is presumed that these pathomechanisms may contribute to the pathophysiology of neurological damage found in patients affected by SO deficiency.
Collapse
Affiliation(s)
- Mateus Grings
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alana Pimentel Moura
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Belisa Parmeggiani
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcela Moreira Motta
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Mello Boldrini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pauline Maciel August
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiane Matté
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil.
| |
Collapse
|
30
|
Dalefield RR, Mueller U. Gastric mucosal irritation following oral exposure to sodium metabisulphite: A reproducible effect? Regul Toxicol Pharmacol 2016; 80:277-82. [PMID: 27401986 DOI: 10.1016/j.yrtph.2016.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 11/17/2022]
Abstract
Sulphiting agents, such as sodium metabisulphite (SM), are used in food as bleaching agents and to prevent browning reactions. A 1972 repeat dose study in rats found that dietary sulphites caused irritation of the stomach with inflammation, hyperplasia and bleeding. We conducted a 7-day dietary study in rats to confirm that stomach lesions were the most sensitive toxicological endpoint. Rat feed was prepared daily with 0%, 0.25%, 0.5%, 1% or 4% (w/w) SM. Parameters included clinical signs, feed and water intake, bodyweight gain, haematology, serum protein chemistry, necropsy findings and gastrointestinal histopathology. There were no treatment-related clinical signs or gastrointestinal lesions. Mean bodyweight gain was markedly decreased in the 4% (w/w) SM group although feed consumption was marginally depressed. Slightly lower mean values for RBC, Hb, Hct, total WBC and lymphocyte count were observed in the 4% SM group with no evidence of compensatory haematopoiesis. The gastric lesions in rats observed in a 1972 study of dietary SM for 10-56 days could not be replicated. These findings create uncertainty around the most relevant toxicological endpoint to establish a suitable health based guidance value, which can only be overcome if a robust long-term dietary study is undertaken.
Collapse
Affiliation(s)
- Rosalind R Dalefield
- Food Standards Australia New Zealand, Level 3, 154 Featherston Street, Wellington, 6011, New Zealand.
| | - Utz Mueller
- Food Standards Australia New Zealand, Boeing House, 55 Blackall St., Barton, ACT, 2600, Australia.
| |
Collapse
|
31
|
Chirumbolo S, Bjørklund G. Commentary: Sulfur Dioxide Contributes to the Cardiac and Mitochondrial Dysfunction in Rats. Front Cardiovasc Med 2016; 3:15. [PMID: 27302073 PMCID: PMC4880594 DOI: 10.3389/fcvm.2016.00015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/13/2016] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM) , Mo i Rana , Norway
| |
Collapse
|
32
|
Scientific Opinion on the re‐evaluation of sulfur dioxide (E 220), sodium sulfite (E 221), sodium bisulfite (E 222), sodium metabisulfite (E 223), potassium metabisulfite (E 224), calcium sulfite (E 226), calcium bisulfite (E 227) and potassium bisulfite (E 228) as food additives. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
33
|
Kim YH, Kim JM, Lee JS, Gang SR, Lim HS, Kim M, Lee OH. Development and validation of an analytical method for the determination of 4-hexylresorcinol in food. Food Chem 2016. [DOI: 10.1016/j.foodchem.2015.06.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Altunay N, Gürkan R. Preconcentration of sulfite from food and beverage matrices by ultrasonic assisted-cloud point extraction prior to its indirect determination by flame atomic absorption spectrometry. RSC Adv 2016. [DOI: 10.1039/c5ra26554a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The additives used in foods and beverages may be harmful to human health.
Collapse
Affiliation(s)
- Nail Altunay
- Cumhuriyet University
- Faculty of Sciences
- Department of Chemistry
- Sivas
- Turkey
| | - Ramazan Gürkan
- Cumhuriyet University
- Faculty of Sciences
- Department of Chemistry
- Sivas
- Turkey
| |
Collapse
|
35
|
Mishanina TV, Libiad M, Banerjee R. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat Chem Biol 2015; 11:457-64. [PMID: 26083070 DOI: 10.1038/nchembio.1834] [Citation(s) in RCA: 444] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/24/2015] [Indexed: 12/11/2022]
Abstract
The chemical species involved in H2S signaling remain elusive despite the profound and pleiotropic physiological effects elicited by this molecule. The dominant candidate mechanism for sulfide signaling is persulfidation of target proteins. However, the relatively poor reactivity of H2S toward oxidized thiols, such as disulfides, the low concentration of disulfides in the reducing milieu of the cell and the low steady-state concentration of H2S raise questions about the plausibility of persulfide formation via reaction between an oxidized thiol and a sulfide anion or a reduced thiol and oxidized hydrogen disulfide. In contrast, sulfide oxidation pathways, considered to be primarily mechanisms for disposing of excess sulfide, generate a series of reactive sulfur species, including persulfides, polysulfides and thiosulfate, that could modify target proteins. We posit that sulfide oxidation pathways mediate sulfide signaling and that sulfurtransferases ensure target specificity.
Collapse
Affiliation(s)
- Tatiana V Mishanina
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Marouane Libiad
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
36
|
Zhang Q, Bai Y, Yang Z, Tian J, Meng Z. The molecular mechanisms of sodium metabisulfite on the expression of K ATP and L-Ca2+ channels in rat hearts. Regul Toxicol Pharmacol 2015; 72:440-6. [PMID: 26015265 DOI: 10.1016/j.yrtph.2015.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 03/13/2015] [Accepted: 05/19/2015] [Indexed: 11/18/2022]
Abstract
Sodium metabisulfite (SMB) is used as an antioxidant and antimicrobial agent in a variety of drugs and foods. However, there are few reported studies about its side effects. This study is to investigate the SMB effects on the expression of ATP-sensitive K(+) (KATP) and L-type calcium (L-Ca(2+)) channels in rat hearts. The results show that the mRNA and protein levels of the KATP channel subunits Kir6.2 and SUR2A were increased by SMB; on the contrary, SMB at 520 mg/kg significantly decreased the expression of the L-Ca(2+) channel subunits Cav1.2 and Cav1.3. This suggests that SMB can activate the expression of KATP channel by increasing the mRNA and protein levels of Kir6.2 and SUR2A, while it inhibits the expression of L-Ca(2+) channels by decreasing the mRNA and protein levels of Cav1.2 and Cav1.3 in rat hearts. Therefore, the molecular mechanism of the SMB effect on rat hearts might be related to the increased expression of KATP channels and the decreased expression of L-Ca(2+) channels.
Collapse
Affiliation(s)
- Quanxi Zhang
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| | - Yunlong Bai
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Zhenhua Yang
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Jingjing Tian
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Ziqiang Meng
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
37
|
Mahmoud AAT, Hassan GM, Hassan AMS, Abdel Latif AKM, Ramadan MF. Demonstrating adverse effects of a common food additive (sodium sulfite) on biochemical, cytological and histopathological parameters in tissues of albino Wister rats. Eur J Integr Med 2015. [DOI: 10.1016/j.eujim.2015.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Ercan S, Kencebay C, Basaranlar G, Ozcan F, Derin N, Aslan M. Induction of omega 6 inflammatory pathway by sodium metabisulfite in rat liver and its attenuation by ghrelin. Lipids Health Dis 2015; 14:7. [PMID: 25889219 PMCID: PMC4335696 DOI: 10.1186/s12944-015-0008-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/05/2015] [Indexed: 12/13/2022] Open
Abstract
Background Sodium metabisulfite is commonly used as preservative in foods but can oxidize to sulfite radicals initiating molecular oxidation. Ghrelin is a peptide hormone primarily produced in the stomach and has anti-inflammatory effects in many organs. This study aimed to assess endogenous omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) in rat peripheral organs following sodium metabisulfite treatment and determine the possible effect of ghrelin on changes in n-6 inflammatory pathway. Methods Male Wistar rats included in the study were allowed free access to standard rat chow. Sodium metabisulfite was given by gastric gavage and ghrelin was administered intraperitoneally for 5 weeks. Levels of arachidonic acid (AA, C20:4n-6), dihomo-gamma-linolenic acid (DGLA, C20:3n-6), eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3) in liver, heart and kidney tissues were determined by an optimized multiple reaction monitoring (MRM) method using ultra fast-liquid chromatography (UFLC) coupled with tandem mass spectrometry (MS/MS). Cyclooxygenase (COX) and prostaglandin E2 (PGE2) were measured in tissue samples to evaluate changes in n-6 inflammatory pathway. Results Omega-6 PUFA levels, AA/DHA and AA/EPA ratio were significantly increased in liver tissue following sodium metabisulfite treatment compared to controls. No significant change was observed in heart and kidney PUFA levels. Tissue activity of COX and PGE2 levels were also significantly increased in liver tissue of sodium metabisulfite treated rats compared to controls. Ghrelin treatment decreased n-6 PUFA levels and reduced COX and PGE2 levels in liver tissue of sodium metabisulfite treated rats. Conclusion Current results suggest that ghrelin exerts anti-inflammatory action through modulation of n-6 PUFA levels in hepatic tissue.
Collapse
Affiliation(s)
- Sevim Ercan
- Akdeniz University, Vocational School of Health Services, Antalya, 07070, Turkey.
| | - Ceren Kencebay
- Akdeniz University, Medical School, Department of Biophysics, Antalya, 07070, Turkey.
| | - Goksun Basaranlar
- Akdeniz University, Medical School, Department of Biophysics, Antalya, 07070, Turkey.
| | - Filiz Ozcan
- Akdeniz University, Medical School, Department of Medical Biochemistry, Antalya, 07070, Turkey.
| | - Narin Derin
- Akdeniz University, Medical School, Department of Biophysics, Antalya, 07070, Turkey.
| | - Mutay Aslan
- Akdeniz University, Medical School, Department of Medical Biochemistry, Antalya, 07070, Turkey.
| |
Collapse
|
39
|
Ercan S, Kencebay C, Basaranlar G, Derin N, Aslan M. Induction of xanthine oxidase activity, endoplasmic reticulum stress and caspase activation by sodium metabisulfite in rat liver and their attenuation by Ghrelin. Food Chem Toxicol 2015; 76:27-32. [DOI: 10.1016/j.fct.2014.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 11/23/2014] [Accepted: 11/26/2014] [Indexed: 11/28/2022]
|
40
|
Scientific Opinion on the evaluation of allergenic foods and food ingredients for labelling purposes. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3894] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
41
|
Ozsoy O, Aras S, Ozkan A, Parlak H, Aslan M, Yargicoglu P, Agar A. The effect of ingested sulfite on visual evoked potentials, lipid peroxidation, and antioxidant status of brain in normal and sulfite oxidase-deficient aged rats. Toxicol Ind Health 2014; 32:1197-207. [PMID: 25342669 DOI: 10.1177/0748233714552688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sulfite, commonly used as a preservative in foods, beverages, and pharmaceuticals, is a very reactive and potentially toxic molecule which is detoxified by sulfite oxidase (SOX). Changes induced by aging may be exacerbated by exogenous chemicals like sulfite. The aim of this study was to investigate the effects of ingested sulfite on visual evoked potentials (VEPs) and brain antioxidant statuses by measuring superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities. Brain lipid oxidation status was also determined via thiobarbituric acid reactive substances (TBARS) in normal- and SOX-deficient aged rats. Rats do not mimic the sulfite responses seen in humans because of their relatively high SOX activity level. Therefore this study used SOX-deficient rats since they are more appropriate models for studying sulfite toxicity. Forty male Wistar rats aged 24 months were randomly assigned to four groups: control (C), sulfite (S), SOX-deficient (D) and SOX-deficient + sulfite (DS). SOX deficiency was established by feeding rats with low molybdenum (Mo) diet and adding 200 ppm tungsten (W) to their drinking water. Sulfite in the form of sodium metabisulfite (25 mg kg(-1) day(-1)) was given by gavage. Treatment continued for 6 weeks. At the end of the experimental period, flash VEPs were recorded. Hepatic SOX activity was measured to confirm SOX deficiency. SOX-deficient rats had an approximately 10-fold decrease in hepatic SOX activity compared with the normal rats. The activity of SOX in deficient rats was thus in the range of humans. There was no significant difference between control and treated groups in either latence or amplitude of VEP components. Brain SOD, CAT, and GPx activities and brain TBARS levels were similar in all experimental groups compared with the control group. Our results indicate that exogenous administration of sulfite does not affect VEP components and the antioxidant/oxidant status of aged rat brains.
Collapse
Affiliation(s)
- Ozlem Ozsoy
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Sinem Aras
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ayse Ozkan
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Hande Parlak
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Mutay Aslan
- Department of Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Piraye Yargicoglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Aysel Agar
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
42
|
Wang L, Xu L. Cyclic voltammetric determination of free and total sulfite in muscle foods using an acetylferrocene-carbon black-poly(vinyl butyral) modified glassy carbon electrode. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10248-10253. [PMID: 25275883 DOI: 10.1021/jf503339v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A novel method for the selective extraction of free (pH 8.4) and total sulfite (pH 11.0) from muscle foods and the following determination by a voltammetric sensor was reported. The proposed method was based on the eletrocatalytic oxidation of sulfite at modified glassy carbon electrode (GCE) fabricated by immobilizing 9 μg of acetylferrocene on the surface of GCE along with 35 μg of carbon black to improve the electron transfer within poly(vinyl butyral) membrane matrix. The external standard calibration curve was linear in the range of 0.03-4.0 mmol L(-1) with a detection limit of 15 μmol L(-1). This method had been applied to the determination of free and total sulfite in shrimp muscle fortified samples and compared with an ion chromatography method. The proposed electrode and analysis methods were proven to be sensitive, accurate, and rapid and exhibited very good reproducibility and stability under the used conditions.
Collapse
Affiliation(s)
- Li Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University , No. 18, Xuezheng Str., Xiasha University Town, Hangzhou 310018, China
| | | |
Collapse
|
43
|
Abstract
For centuries, food additives have been used for flavouring, colouring and extension of the useful shelf life of food, as well as the promotion of food safety. During the last 20 years, the studies implicating the additives contained in foods and medicine as a causative factor of allergic reactions have been proliferated considerably. In this review, we aimed to overview all of the food additives which were approved to consume in EU and find out how common and serious allergic reactions come into existence following the consuming of food additives.
Collapse
Affiliation(s)
- Fatih Gultekin
- Medical Biochemistry Department, Medical Faculty, Suleyman Demirel University, Cunur, Isparta, Turkey.
| | | |
Collapse
|
44
|
Ban GY, Kim MA, Yoo HS, Ye YM, Park HS. Letter to the editor. Two major phenotypes of sulfite hypersensitivity: asthma and urticaria. Yonsei Med J 2014; 55:542-4. [PMID: 24532531 PMCID: PMC3936650 DOI: 10.3349/ymj.2014.55.2.542] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Ga-Young Ban
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 443-380, Korea.
| | | | | | | | | |
Collapse
|
45
|
Noorafshan A, Rashidiani-Rashidabadi A, Karbalay-Doust S, Poostpasand A, Abdollahifar MA, Asadi-Golshan R. Curcumin can prevent the changes in cerebellar structure and function induced by sodium metabisulfite in rat. Exp Neurobiol 2014; 22:258-67. [PMID: 24465141 PMCID: PMC3897687 DOI: 10.5607/en.2013.22.4.258] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 01/11/2023] Open
Abstract
Sulfites are used as anti-microbial and anti-oxidant agents in the food and pharmaceutical industries. Curcumin, a flavonoid, is an Asian spice that shows neuroprotective activities. The current study aimed to stereologically assess the rats' cerebellar cortex and rotarod performance following sulfite exposure and determine the possible neuroprotective potential of curcumin. The rats were divided into five groups: distilled water, olive oil, curcumin (100 mg/kg/day), sodium metabisulfite (25 mg/kg/day), and sodium metabisulfite+curcumin. At 56 days after treatment, rotarod performance was tested, and then the cerebellum was removed for stereological analysis. The study results revealed 31%, 36%, 19% and 24% decrease in the total volume of the cerebellum, cortex, the total number of the Purkinje cells and length of the nerve fibers in the cortex per Purkinje, respectively in the sodium metabisulfite-treated rats compared to the distilled water group (p<0.01). The pre-trained animals on the rotarod apparatus were tested first on the fixed speed rotarod protocol followed by the accelerating rotarod protocol two days later. The results showed a significant decrease in the latency to fall in both test in sulfite-treated rats. The sulfite effects on the structural parameters and rotarod performance were significantly protected by the concomitant curcumin treatment (p<0.001). Sulfite can induce structural and functional changes in the rats' cerebellum and concomitant curcumin prescription plays a neuroprotective role.
Collapse
Affiliation(s)
- Ali Noorafshan
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran. ; Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran
| | - Ali Rashidiani-Rashidabadi
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran. ; Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran
| | - Aghdas Poostpasand
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran
| | - Mohammad-Amin Abdollahifar
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran
| | - Reza Asadi-Golshan
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran
| |
Collapse
|
46
|
Noorafshan A, Asadi-Golshan R, Monjezi S, Karbalay-Doust S. Sodium metabisulphite, a preservative agent, decreases the heart capillary volume and length, and curcumin, the main component of Curcuma longa, cannot protect it. Folia Biol (Praha) 2014; 60:275-80. [PMID: 25629268 DOI: 10.14712/fb2014060060275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Sodium metabisulphite is used as an antioxidant agent in many pharmaceutical formulations. It is extensively used as a food preservative and disinfectant. It has been demonstrated that sulphite exposure can affect some organs. Curcumin, the main element of Curcuma longa, has been identified to have multiple protective properties. The present study extends the earlier works to quantitative evaluation of the effects of sulphite and curcumin on the heart structure using stereological methods. In this study, 28 rats were randomly divided into four experimental groups. The rats in groups I to IV received distilled water (group I), sodium metabisulphite (25 mg/ kg/day) (group II), curcumin (100 mg/kg/day) (group III), and sodium metabisulphite+curcumin (group IV), respectively, for 8 weeks. The left ventricle was subjected to stereological methods to estimate the quantitative parameters of the myocardium. A 20 % decrease was observed in the total volume of ventricular tissue in the sulphite-treated animals compared to the distilled water treatment (P < 0.02). Also, the volume and length of the capillaries were reduced by 43 % on average in the sulphite-treated rats in comparison to the distilled water-treated animals (P < 0.02). However, no significant change was seen in the mean and total volume of the myocardium and the cavity and diameter of the capillaries after sulphite ingestion. Treatment with curcumin did not protect the animals against the structural changes of the ventricle. Sulphite, as a preservative food agent, reduced the length and volume of the ventricular capillaries and curcumin could not protect them.
Collapse
Affiliation(s)
- A Noorafshan
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - R Asadi-Golshan
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S Monjezi
- Department of Basic Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - S Karbalay-Doust
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
47
|
Ranguelova K, Rice AB, Lardinois OM, Triquigneaux M, Steinckwich N, Deterding LJ, Garantziotis S, Mason RP. Sulfite-mediated oxidation of myeloperoxidase to a free radical: immuno-spin trapping detection in human neutrophils. Free Radic Biol Med 2013; 60:98-106. [PMID: 23376232 PMCID: PMC3654059 DOI: 10.1016/j.freeradbiomed.2013.01.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 11/20/2022]
Abstract
Previous studies focused on catalyzed oxidation of (bi)sulfite, leading to the formation of the reactive sulfur trioxide ((•)SO3(-)), peroxymonosulfate ((-)O3SOO(•)), and sulfate (SO4(•-)) anion radicals, which can damage target proteins and oxidize them to protein radicals. It is known that these very reactive sulfur- and oxygen-centered radicals can be formed by oxidation of (bi)sulfite by peroxidases. Myeloperoxidase (MPO), an abundant heme protein secreted from activated neutrophils that play a central role in host defense mechanisms, allergic reactions, and asthma, is a likely candidate for initiating the respiratory damage caused by sulfur dioxide. The objective of this study was to examine the oxidative damage caused by (bi)sulfite-derived free radicals in human neutrophils through formation of protein radicals. We used immuno-spin trapping and confocal microscopy to study the protein oxidations driven by sulfite-derived radicals. We found that the presence of sulfite can cause MPO-catalyzed oxidation of MPO to a protein radical in phorbol 12-myristate 13-acetate-activated human neutrophils. We trapped the MPO-derived radicals in situ using the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide and detected them immunologically as nitrone adducts in cells. Our present study demonstrates that myeloperoxidase initiates (bi)sulfite oxidation leading to MPO radical damage, possibly leading to (bi)sulfite-exacerbated allergic reactions.
Collapse
Affiliation(s)
- Kalina Ranguelova
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Annette B. Rice
- Clinical Research Unit, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Olivier M. Lardinois
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mathilde Triquigneaux
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Natacha Steinckwich
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Leesa J. Deterding
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Stavros Garantziotis
- Clinical Research Unit, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Ronald P. Mason
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
- Address correspondence to: Ronald P. Mason, Ph.D., National Institute of Environmental Health Sciences, National Institutes of Health, MD F0-02, P.O. Box 12233, Research Triangle Park, NC 27709. ; Fax: +1 919 541 1043
| |
Collapse
|
48
|
Noorafshan A, Asadi-Golshan R, Karbalay-Doust S, Abdollahifar MA, Rashidiani-Rashidabadi A. Curcumin, the main part of turmeric, prevents learning and memory changes induced by sodium metabisulfite, a preservative agent, in rats. Exp Neurobiol 2013; 22:23-30. [PMID: 23585719 PMCID: PMC3620455 DOI: 10.5607/en.2013.22.1.23] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 01/07/2023] Open
Abstract
Sodium metabisulfite is used as a disinfectant, antioxidant, and preservative agent in the food, beverage, and drug industries. Neurons are highly sensitive to sulfite toxicity. Curcumin is the main part of turmeric and has neuroprotective effects on a variety of nervous system damages. The present study aimed to investigate the possible protective role of curcumin in learning and memory after exposure to sulfite in rats. The rats were divided into five groups receiving distilled water (solvent of the sulfite), olive oil (solvent of the curcumin), sodium metabisulfite (25 mg/kg/day), curcumin (100 mg/kg/day), and sulfite + curcumin. All the animals received daily gavages for 8 weeks. At the end of the 8(th) week, learning and memory were assessed in a partially-baited eight arm radial maze. The animals treated with sulfite showed fewer correct choices and more reference and working memory errors during the learning phase, at the end of the learning phase, and during the retention testing (p<0.001). The study results demonstrated that sulfite-exposure was associated with impaired learning and memory in rats. Adding curcumin to the rat nutrition plays a protective role in learning and memory after exposure to sulfite.
Collapse
Affiliation(s)
- Ali Noorafshan
- Histomorphometry and Stereology Research Centre, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. ; Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | |
Collapse
|
49
|
Ercan S, Basaranlar G, Gungor NE, Kencebay C, Sahin P, Celik-Ozenci C, Derin N. Ghrelin inhibits sodium metabisulfite induced oxidative stress and apoptosis in rat gastric mucosa. Food Chem Toxicol 2013; 56:154-61. [PMID: 23439480 DOI: 10.1016/j.fct.2013.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/05/2013] [Accepted: 02/06/2013] [Indexed: 12/19/2022]
Abstract
This study aimed to investigate the effect of ghrelin administration on sulfite induced oxidative and apoptotic changes in rat gastric mucosa. Forty male albino Wistar rats were randomized into control (C), sodium metabisulfite (Na2S2O5) treated (S), ghrelin treated (G) and, Na2S2O5+ghrelin treated (SG) groups. Sodium metabisulfite (100 mg/kg/day) was given by gastric gavage and, ghrelin (20 μg/kg/day) was given intraperitoneally for 5 weeks. Plasma-S-sulfonate level was increased in S and SG groups. Na2S2O5 administration significantly elevated total oxidant status (TOS) levels while depleting total antioxidant status (TAS) levels in gastric mucosa. Ghrelin significantly decreased gastric TOS levels in the SG group compared with the S group. Additionally, TAS levels were found to be higher in SG group in reference to S group. Na2S2O5 administration also markedly increased the number of apoptotic cells, cleaved caspase-3 and PAR expression (PARP activity indicator) and, decreased Ki67 expression (cell proliferation index) in gastric mucosal cells. Ghrelin treatment decreased the number apoptotic cells, cytochrome C release, PAR and, caspase-3 expressions while increasing Ki67 expression in gastric mucosa exposed to Na2S2O5. In conclusion, we suggest that ghrelin treatment might ameliorate ingested-Na2S2O5 induced gastric mucosal injury stemming from apoptosis and oxidative stress in rats.
Collapse
Affiliation(s)
- Sevim Ercan
- Akdeniz University, Vocational School of Health Services, Antalya 07070, Turkey.
| | | | | | | | | | | | | |
Collapse
|
50
|
Kencebay C, Derin N, Ozsoy O, Kipmen-Korgun D, Tanriover G, Ozturk N, Basaranlar G, Yargicoglu-Akkiraz P, Sozen B, Agar A. Merit of quinacrine in the decrease of ingested sulfite-induced toxic action in rat brain. Food Chem Toxicol 2013; 52:129-36. [DOI: 10.1016/j.fct.2012.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
|