1
|
Suresh SB, Malireddi A, Abera M, Noor K, Ansar M, Boddeti S, Nath TS. Gut Microbiome and Its Role in Parkinson's Disease. Cureus 2024; 16:e73150. [PMID: 39651029 PMCID: PMC11624045 DOI: 10.7759/cureus.73150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Parkinson's disease (PD) afflicted more than 8.5 million people globally in 2019, as the prevalence of the condition more than doubled during the preceding 25 years. Both non-motor symptoms, such as mood disorders and cognitive impairment, and motor symptoms, such as tremors and rigidity, are indicative of this progressive neurodegenerative disease. Recent data indicates a significant role for the gut microbiome in PD pathogenesis and progression, emphasizing the microbiota-gut-brain axis. In compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement, this systematic review summarizes our current knowledge about the function of the gut microbiome in PD, highlighting recurrent microbial alterations and assessing microbiome-based treatment strategies. The review revealed several consistent patterns in the gut microbiota of PD patients, including reduced microbial diversity and specific taxonomic alterations, including a drop in Firmicutes abundance and an increase in Proteobacteria abundance. Functional changes in the gut microbiome, such as altered short-chain fatty acid (SCFA) production and tryptophan metabolism, were also noted. These microbial changes were observed even in early-stage and drug-naïve PD patients, suggesting they are not merely a consequence of disease progression or medication use. The review highlighted potential mechanisms linking gut microbiome alterations to PD, including increased intestinal permeability, neuroinflammation, and modulation of alpha-synuclein aggregation. Probiotics, prebiotics, and fecal microbiota transplantation are a few interventions that try to modify the gut microbiome and might be possible to halt the advancement of PD and enhance patients' quality of life with the condition. Future research should focus on establishing causality through large-scale longitudinal studies, standardizing microbiome analysis methods, and exploring personalized microbiome-based therapies.
Collapse
Affiliation(s)
- Suchith B Suresh
- Internal Medicine, Montefiore St. Luke's Cornwall, Newburgh, USA
| | | | - Mahlet Abera
- Internal Medicine, Saint Paul's Hospital Millennium Medical College, Addis Ababa, ETH
| | - Khutaija Noor
- Foundation of Clinical Research, Harvard Medical School, Boston, USA
- Neuropsychiatry, PsychCare Consultants Research, St. Louis, USA
- Internal Medicine, Shadan Institute of Medical Sciences, Hyderabad, IND
| | - Mehwish Ansar
- General Surgery, Wirral University Teaching Hospital, Wirral, GBR
| | - Sruthi Boddeti
- Internal Medicine, Tirumala Jyoti Hospital, Anakapalle, IND
| | | |
Collapse
|
2
|
Park KJ, Gao Y. Gut-brain axis and neurodegeneration: mechanisms and therapeutic potentials. Front Neurosci 2024; 18:1481390. [PMID: 39513042 PMCID: PMC11541110 DOI: 10.3389/fnins.2024.1481390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024] Open
Abstract
This paper reviews the effects of gut microbiota in regulating neurodegenerative diseases through controlling gut-brain axis. Specific microbial populations and their metabolites (short-chain fatty acids and tryptophan derivatives) regulate neuroinflammation, neurogenesis and neural barrier integrity. We then discuss ways by which these insights lead to possible interventions - probiotics, prebiotics, dietary modification, and fecal microbiota transplantation (FMT). We also describe what epidemiological and clinical studies have related certain microbiota profiles with the courses of neurodegenerative diseases and how these impact the establishment of microbiome-based diagnostics and individualized treatment options. We aim to guide microbial ecology research on this key link to neurodegenerative disorders and also to highlight collaborative approaches to manage neurological health by targeting microbiome-related factors.
Collapse
Affiliation(s)
| | - Yao Gao
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Fu Y, Gu Z, Cao H, Zuo C, Huang Y, Song Y, Jiang Y, Wang F. The role of the gut microbiota in neurodegenerative diseases targeting metabolism. Front Neurosci 2024; 18:1432659. [PMID: 39391755 PMCID: PMC11464490 DOI: 10.3389/fnins.2024.1432659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
In recent years, the incidence of neurodegenerative diseases (NDs) has gradually increased over the past decades due to the rapid aging of the global population. Traditional research has had difficulty explaining the relationship between its etiology and unhealthy lifestyle and diets. Emerging evidence had proved that the pathogenesis of neurodegenerative diseases may be related to changes of the gut microbiota's composition. Metabolism of gut microbiota has insidious and far-reaching effects on neurodegenerative diseases and provides new directions for disease intervention. Here, we delineated the basic relationship between gut microbiota and neurodegenerative diseases, highlighting the metabolism of gut microbiota in neurodegenerative diseases and also focusing on treatments for NDs based on gut microbiota. Our review may provide novel insights for neurodegeneration and approach a broadly applicable basis for the clinical therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yufeng Fu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongya Gu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Cao
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chengchao Zuo
- Department of Rehabilitation, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaqi Huang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Song
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongsheng Jiang
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Furong Wang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging (HUST), Ministry of Education, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Techaniyom P, Korsirikoon C, Rungruang T, Pakaprot N, Prombutara P, Mukda S, Kettawan AK, Kettawan A. Cold-pressed perilla seed oil: Investigating its protective influence on the gut-brain axis in mice with rotenone-induced Parkinson's disease. Food Sci Nutr 2024; 12:6259-6283. [PMID: 39554352 PMCID: PMC11561828 DOI: 10.1002/fsn3.4265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 11/19/2024] Open
Abstract
Perilla seed oil, derived from a regional plant native to northern Thailand, undergoes cold-pressing to analyze its bioactive components, notably alpha-linolenic acid (ALA). ALA, constituting approximately 61% of the oil, serves as a precursor for therapeutic omega-3 fatty acids, EPA and DHA, with neurodegenerative disease benefits and anti-inflammatory responses. This study administered different concentrations of perilla seed oil to male C57BL/6 mice, categorized as low dose (LP 5% w/w), middle dose (MP 10% w/w), and high dose (HP 20% w/w), along with a fish oil (FP 10% w/w) diet. An experimental group received soybean oil (5% w/w). Over 42 days, these diets were administered while inducing Parkinson's disease (PD) with rotenone injections. Mice on a high perilla seed oil dose exhibited decreased Cox-2 expression in the colon, suppressed Iba-1 microglia activation, reduced alpha-synuclein accumulation in the colon and hippocampus, prevented dopaminergic cell death in the substantia nigra, and improved motor and non-motor symptoms. Mice on a middle dose showed maintenance of diverse gut microbiota, with an increased abundance of short-chain fatty acid (SCFA)-producing bacteria (Bifidobacteria, Lactobacillus, and Faecalibacteria). A reduction in bacteria correlated with PD (Turicibacter, Ruminococcus, and Akkermansia) was observed. Results suggest the potential therapeutic efficacy of high perilla seed oil doses in mitigating both intestinal and neurological aspects linked to the gut-brain axis in PD.
Collapse
Affiliation(s)
- Peerapa Techaniyom
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of NutritionMahidol UniversityBangkokThailand
| | - Chawin Korsirikoon
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of NutritionMahidol UniversityBangkokThailand
| | - Thanaporn Rungruang
- Department of Anatomy, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Narawut Pakaprot
- Department of Physiology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Pinidphon Prombutara
- OMICS Sciences and Bioinformatics Center, Faculty of ScienceChulalongkorn UniversityBangkokThailand
- Mod Gut Co., Ltd.BangkokThailand
| | - Sujira Mukda
- Research Center for NeuroscienceInstitute of Molecular Biosciences, Mahidol UniversityNakhon PathomThailand
| | | | | |
Collapse
|
5
|
Kerstens R, Joyce P. The Gut Microbiome as a Catalyst and Emerging Therapeutic Target for Parkinson's Disease: A Comprehensive Update. Biomedicines 2024; 12:1738. [PMID: 39200203 PMCID: PMC11352163 DOI: 10.3390/biomedicines12081738] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Parkinson's Disease is the second most prevalent neurological disorder globally, and its cause is still largely unknown. Likewise, there is no cure, and existing treatments do little more than subdue symptoms before becoming ineffective. It is increasingly important to understand the factors contributing to Parkinson's Disease aetiology so that new and more effective pharmacotherapies can be established. In recent years, there has been an emergence of research linking gut dysbiosis to Parkinson's Disease via the gut-brain axis. Advancements in microbial profiling have led to characterisation of a Parkinson's-specific microbial signature, where novel treatments that leverage and correct gut dysbiosis are beginning to emerge for the safe and effective treatment of Parkinson's Disease. Preliminary clinical studies investigating microbiome-targeted therapeutics for Parkinson's Disease have revealed promising outcomes, and as such, the aim of this review is to provide a timely and comprehensive update of the most recent advances in this field. Faecal microbiota transplantation has emerged as a novel and potential frontrunner for microbial-based therapies due to their efficacy in alleviating Parkinson's Disease symptomology through modulation of the gut-brain axis. However, more rigorous clinical investigation, along with technological advancements in diagnostic and in vitro testing tools, are critically required to facilitate the widespread clinical translation of microbiome-targeting Parkinson's Disease therapeutics.
Collapse
Affiliation(s)
| | - Paul Joyce
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| |
Collapse
|
6
|
Zhang X, Tang B, Guo J. Parkinson's disease and gut microbiota: from clinical to mechanistic and therapeutic studies. Transl Neurodegener 2023; 12:59. [PMID: 38098067 PMCID: PMC10722742 DOI: 10.1186/s40035-023-00392-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases. The typical symptomatology of PD includes motor symptoms; however, a range of nonmotor symptoms, such as intestinal issues, usually occur before the motor symptoms. Various microorganisms inhabiting the gastrointestinal tract can profoundly influence the physiopathology of the central nervous system through neurological, endocrine, and immune system pathways involved in the microbiota-gut-brain axis. In addition, extensive evidence suggests that the gut microbiota is strongly associated with PD. This review summarizes the latest findings on microbial changes in PD and their clinical relevance, describes the underlying mechanisms through which intestinal bacteria may mediate PD, and discusses the correlations between gut microbes and anti-PD drugs. In addition, this review outlines the status of research on microbial therapies for PD and the future directions of PD-gut microbiota research.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
7
|
Gupta R, Kumari S, Senapati A, Ambasta RK, Kumar P. New era of artificial intelligence and machine learning-based detection, diagnosis, and therapeutics in Parkinson's disease. Ageing Res Rev 2023; 90:102013. [PMID: 37429545 DOI: 10.1016/j.arr.2023.102013] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Parkinson's disease (PD) is characterized by the loss of neuronal cells, which leads to synaptic dysfunction and cognitive defects. Despite the advancements in treatment strategies, the management of PD is still a challenging event. Early prediction and diagnosis of PD are of utmost importance for effective management of PD. In addition, the classification of patients with PD as compared to normal healthy individuals also imposes drawbacks in the early diagnosis of PD. To address these challenges, artificial intelligence (AI) and machine learning (ML) models have been implicated in the diagnosis, prediction, and treatment of PD. Recent times have also demonstrated the implication of AI and ML models in the classification of PD based on neuroimaging methods, speech recording, gait abnormalities, and others. Herein, we have briefly discussed the role of AI and ML in the diagnosis, treatment, and identification of novel biomarkers in the progression of PD. We have also highlighted the role of AI and ML in PD management through altered lipidomics and gut-brain axis. We briefly explain the role of early PD detection through AI and ML algorithms based on speech recordings, handwriting patterns, gait abnormalities, and neuroimaging techniques. Further, the review discuss the potential role of the metaverse, the Internet of Things, and electronic health records in the effective management of PD to improve the quality of life. Lastly, we also focused on the implementation of AI and ML-algorithms in neurosurgical process and drug discovery.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, USA.
| | - Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, USA
| | | | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, USA.
| |
Collapse
|
8
|
Contarino MF, van Hilten JJ, Kuijper EJ. Targeting the Gut-Brain Axis with Fecal Microbiota Transplantation: Considerations on a Potential Novel Treatment for Parkinson's Disease. Mov Disord Clin Pract 2023; 10:S21-S25. [PMID: 37637989 PMCID: PMC10448131 DOI: 10.1002/mdc3.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/26/2022] [Accepted: 09/24/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Maria Fiorella Contarino
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
- Department of NeurologyHaga Teaching HospitalThe HagueThe Netherlands
| | | | - Ed J. Kuijper
- Department of Medical MicrobiologyLeiden University Medical CenterLeidenThe Netherlands
- Center for Infectious Disease ControlNational Institute for Public Health and the Environment (Rijksinstituut voor Volksgezondheid en Milieu)BilthovenThe Netherlands
| |
Collapse
|
9
|
Golchin A, Ranjbarvan P, Parviz S, Shokati A, Naderi R, Rasmi Y, Kiani S, Moradi F, Heidari F, Saltanatpour Z, Alizadeh A. The role of probiotics in tissue engineering and regenerative medicine. Regen Med 2023; 18:635-657. [PMID: 37492007 DOI: 10.2217/rme-2022-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) as an emerging field is a multidisciplinary science and combines basic sciences such as biomaterials science, biology, genetics and medical sciences to achieve functional TERM-based products to regenerate or replace damaged or diseased tissues or organs. Probiotics are useful microorganisms which have multiple effective functions on human health. They have some immunomodulatory and biocompatibility effects and improve wound healing. In this article, we describe the latest findings on probiotics and their pro-healing properties on various body systems that are useable in regenerative medicine. Therefore, this review presents a new perspective on the therapeutic potential of probiotics for TERM.
Collapse
Affiliation(s)
- Ali Golchin
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Parviz Ranjbarvan
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Shima Parviz
- Department of Tissue Engineering & Applied cell sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Amene Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Roya Naderi
- Neurophysiology Research center & Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Yousef Rasmi
- Cellular & Molecular Research Center & Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Samaneh Kiani
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, 48157-33971, Iran
| | - Faezeh Moradi
- Department of Tissue engineering, Medical Sciences Faculty, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - Fahimeh Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Zohreh Saltanatpour
- Pediatric Cell & Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
- Stem Cell & Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center & Department of Tissue Engineering & Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 35147-99422, Iran
| |
Collapse
|
10
|
Naufel MF, Truzzi GDM, Ferreira CM, Coelho FMS. The brain-gut-microbiota axis in the treatment of neurologic and psychiatric disorders. ARQUIVOS DE NEURO-PSIQUIATRIA 2023. [PMID: 37402401 PMCID: PMC10371417 DOI: 10.1055/s-0043-1767818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
The human gut microbiota is a complex ecosystem made of trillions of microorganisms. The composition can be affected by diet, metabolism, age, geography, stress, seasons, temperature, sleep, and medications. The increasing evidence about the existence of a close and bi-directional correlation between the gut microbiota and the brain indicates that intestinal imbalance may play a vital role in the development, function, and disorders of the central nervous system. The mechanisms of interaction between the gut-microbiota on neuronal activity are widely discussed. Several potential pathways are involved with the brain-gut-microbiota axis, including the vagus nerve, endocrine, immune, and biochemical pathways. Gut dysbiosis has been linked to neurological disorders in different ways that involve activation of the hypothalamic-pituitary-adrenal axis, imbalance in neurotransmitter release, systemic inflammation, and increase in the permeability of the intestinal and the blood-brain barrier. Mental and neurological diseases have become more prevalent during the coronavirus disease 2019pandemic and are an essential issue in public health globally. Understanding the importance of diagnosing, preventing, and treating dysbiosis is critical because gut microbial imbalance is a significant risk factor for these disorders. This review summarizes evidence demonstrating the influence of gut dysbiosis on mental and neurological disorders.
Collapse
Affiliation(s)
| | | | | | - Fernando Morgadinho Santos Coelho
- Universidade Federal de São Paulo, Departamento de Psicobiologia, São Paulo SP, Brazil
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil
| |
Collapse
|
11
|
Iordache MM, Belu AM, Vlad SE, Aivaz KA, Dumitru A, Tocia C, Dumitru E. Calprotectin, Biomarker of Depression in Patients with Inflammatory Bowel Disease? MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1240. [PMID: 37512053 PMCID: PMC10383955 DOI: 10.3390/medicina59071240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
Background and Objectives: Calprotectin is a marker for intestinal inflammation. Recent research suggests a link between inflammation and depression. This study assessed the association between the levels of calprotectin in patients from South-Eastern Europe and the severity of depression, anxiety, and quality of life. Materials and Methods: This cross-sectional study included 30 confirmed patients with Crohn's disease (CD) and ulcerative colitis (UC) who were assessed using clinical interviews for determining the severities of mental disorders (i.e., depression severity-PHQ-9, anxiety-GAD-7) and the quality of life (EQ-5D). Stool samples were collected from all participants for measuring their levels of calprotectin. Results: The level of calprotectin is correlated with PHQ-9 (ρ = 0.416, p = 0.022) and EQ-5D (ρ = -0.304, p = 0.033) but not with GAD 7 (ρ = 0.059, p = 0.379). Calprotectin levels in patients with mild, moderate, and moderately severe depression were significantly higher than in patients with minimal depression (198 µg/g vs. 66,9 µg/g, p = 0.04). Calprotectin level was corelated with the following depressive symptoms: autolytic ideation (ρ = 0.557, p = 0.001), fatigue (ρ = 0.514, p = 0.002), slow movement (ρ = 0.490, p = 0.003), and sleep disorders (ρ = 0.403, p = 0.014). Calprotectin was an independent predictor of depression with an odds ratio of 1.01 (95%: 1.002-1.03, p < 0.01). An ROC analysis showed that a level of calprotectin of 131 µg/g or higher has a sensitivity of 82%, a specificity of 61%, and an accuracy of 70% for predicting depression. In this study, no significant correlations were found between calprotectin level and anxiety. Conclusions: Calprotectin levels are associated with the severity of depression, and checking for a calprotectin level of 131 µg/g or higher may be a potential accessible screening test for depression in patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Miorita Melina Iordache
- Faculty of Medicine, Ovidius University of Constanta, 1 Universitatii Alley, 900470 Constanta, Romania
- Prof. Alexandru Obregia Psychiatry Hospital, 10 Berceni Str., 041914 Bucharest, Romania
| | - Anca Mihaela Belu
- Faculty of Medicine, Ovidius University of Constanta, 1 Universitatii Alley, 900470 Constanta, Romania
- "St. Apostol Andrew" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Sabina E Vlad
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanta, 900591 Constanta, Romania
| | - Kamer Ainur Aivaz
- Faculty of Economics, Ovidius University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania
| | - Andrei Dumitru
- Faculty of Medicine, Ovidius University of Constanta, 1 Universitatii Alley, 900470 Constanta, Romania
- "St. Apostol Andrew" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Cristina Tocia
- Faculty of Medicine, Ovidius University of Constanta, 1 Universitatii Alley, 900470 Constanta, Romania
- "St. Apostol Andrew" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Eugen Dumitru
- Faculty of Medicine, Ovidius University of Constanta, 1 Universitatii Alley, 900470 Constanta, Romania
- "St. Apostol Andrew" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanta, 900591 Constanta, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| |
Collapse
|
12
|
Tyler SE, Tyler LD. Pathways to healing: Plants with therapeutic potential for neurodegenerative diseases. IBRO Neurosci Rep 2023; 14:210-234. [PMID: 36880056 PMCID: PMC9984566 DOI: 10.1016/j.ibneur.2023.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Some of the greatest challenges in medicine are the neurodegenerative diseases (NDs), which remain without a cure and mostly progress to death. A companion study employed a toolkit methodology to document 2001 plant species with ethnomedicinal uses for alleviating pathologies relevant to NDs, focusing on its relevance to Alzheimer's disease (AD). This study aimed to find plants with therapeutic bioactivities for a range of NDs. 1339 of the 2001 plant species were found to have a bioactivity from the literature of therapeutic relevance to NDs such as Parkinson's disease, Huntington's disease, AD, motor neurone diseases, multiple sclerosis, prion diseases, Neimann-Pick disease, glaucoma, Friedreich's ataxia and Batten disease. 43 types of bioactivities were found, such as reducing protein misfolding, neuroinflammation, oxidative stress and cell death, and promoting neurogenesis, mitochondrial biogenesis, autophagy, longevity, and anti-microbial activity. Ethno-led plant selection was more effective than random selection of plant species. Our findings indicate that ethnomedicinal plants provide a large resource of ND therapeutic potential. The extensive range of bioactivities validate the usefulness of the toolkit methodology in the mining of this data. We found that a number of the documented plants are able to modulate molecular mechanisms underlying various key ND pathologies, revealing a promising and even profound capacity to halt and reverse the processes of neurodegeneration.
Collapse
Key Words
- A-H, Alpers-Huttenlocher syndrome
- AD, Alzheimer’s disease
- ALS, Amyotrophic lateral sclerosis
- BBB, blood-brain barrier
- C. elegans,, Caenorhabditis elegans
- CJD, Creutzfeldt-Jakob disease
- CMT, Charcot–Marie–Tooth disease
- CS, Cockayne syndrome
- Ech A, Echinochrome A
- FDA, Food and Drug Administration
- FRDA, Friedreich’s ataxia
- FTD, Frontotemporal dementia
- HD, Huntington’s disease
- Hsp, Heat shock protein
- LSD, Lysosomal storage diseases
- MS, Multiple sclerosis
- MSA, Multiple system atrophy
- MSP, Multisystem proteinopathy
- Medicinal plant
- ND, neurodegenerative disease
- NPC, Neimann-Pick disease type C
- NSC, neural stem cells
- Neuro-inflammation
- Neurodegeneration
- Neurogenesis
- PC, pharmacological chaperone
- PD, Parkinson’s disease
- Protein misfolding
- SMA, Spinal muscular atrophy
- VD, Vascular dementia
- prion dis, prion diseases
- α-syn, alpha-synuclein
Collapse
Affiliation(s)
- Sheena E.B. Tyler
- John Ray Research Field Station, Cheshire, United Kingdom
- Corresponding author.
| | - Luke D.K. Tyler
- School of Natural Sciences, Bangor University, Gwynedd, United Kingdom
| |
Collapse
|
13
|
Ojha S, Patil N, Jain M, Kole C, Kaushik P. Probiotics for Neurodegenerative Diseases: A Systemic Review. Microorganisms 2023; 11:microorganisms11041083. [PMID: 37110506 PMCID: PMC10140855 DOI: 10.3390/microorganisms11041083] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Neurodegenerative disorders (ND) are a group of conditions that affect the neurons in the brain and spinal cord, leading to their degeneration and eventually causing the loss of function in the affected areas. These disorders can be caused by a range of factors, including genetics, environmental factors, and lifestyle choices. Major pathological signs of these diseases are protein misfolding, proteosomal dysfunction, aggregation, inadequate degradation, oxidative stress, free radical formation, mitochondrial dysfunctions, impaired bioenergetics, DNA damage, fragmentation of Golgi apparatus neurons, disruption of axonal transport, dysfunction of neurotrophins (NTFs), neuroinflammatory or neuroimmune processes, and neurohumoral symptoms. According to recent studies, defects or imbalances in gut microbiota can directly lead to neurological disorders through the gut-brain axis. Probiotics in ND are recommended to prevent cognitive dysfunction, which is a major symptom of these diseases. Many in vivo and clinical trials have revealed that probiotics (Lactobacillus acidophilus, Bifidobacterium bifidum, and Lactobacillus casei, etc.) are effective candidates against the progression of ND. It has been proven that the inflammatory process and oxidative stress can be modulated by modifying the gut microbiota with the help of probiotics. As a result, this study provides an overview of the available data, bacterial variety, gut-brain axis defects, and probiotics' mode of action in averting ND. A literature search on particular sites, including PubMed, Nature, and Springer Link, has identified articles that might be pertinent to this subject. The search contains the following few groups of terms: (1) Neurodegenerative disorders and Probiotics OR (2) Probiotics and Neurodegenerative disorders. The outcomes of this study aid in elucidating the relationship between the effects of probiotics on different neurodegenerative disorders. This systematic review will assist in discovering new treatments in the future, as probiotics are generally safe and cause mild side effects in some cases in the human body.
Collapse
Affiliation(s)
- Sandhya Ojha
- Cell & Developmental Biology Laboratory, Centre of Research for Development, Parul University, Vadodara 391760, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
| | - Nil Patil
- Cell & Developmental Biology Laboratory, Centre of Research for Development, Parul University, Vadodara 391760, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
| | - Mukul Jain
- Cell & Developmental Biology Laboratory, Centre of Research for Development, Parul University, Vadodara 391760, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
| | | | - Prashant Kaushik
- Instituto de Conservacióny Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
14
|
Wang Y, Pu Z, Zhang Y, Du Z, Guo Z, Bai Q. Exercise training has a protective effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice model with improved neural and intestinal pathology and modified intestinal flora. Behav Brain Res 2023; 439:114240. [PMID: 36455673 DOI: 10.1016/j.bbr.2022.114240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease with the exact etiology still unclear, but gut microbial disorders are thought to be related to the initiation and progression of it. Exercise training has a significant effect on the intestinal flora, so to investigate the promotion effect of exercise training on Parkinson's disease, we performed a rotarod walking training (5 times a week at 25 rpm for 20 min for 8 weeks) on a chronic mouse model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and observed the locomotor function of mice, function of dopaminergic neurons, intestinal mucosal barrier condition, intestinal inflammation and the structure and composition of intestinal flora. The results showed in these PD mice, exercise training improved their motility, increased the dopamine (DA) content in the striatum, along with promoted the gene expression of tyrosine hydroxylase and brain-derived neurotrophic factor in the striatum, which suggests this exercise training might protect striatal dopaminergic neurons from MPTP damage; the results also showed exercise training promoted recovery from ileal pathology, reduced the gene expression of intestinal inflammatory factors, and significantly altered the composition and structure of the intestinal flora in these mice.
Collapse
Affiliation(s)
- Yongjun Wang
- Chongqing Technology and Business University, No. 19 Xue Fu Road, Nanan District, Chongqing 401334, PR China.
| | - Zhengjia Pu
- School of Public Health, Chongqing Medical University, No. 61 Daxuecheng Middle Road, Shapingba District, Chongqing 401334, PR China.
| | - Yiran Zhang
- School of Public Health, Chongqing Medical University, No. 61 Daxuecheng Middle Road, Shapingba District, Chongqing 401334, PR China.
| | - Zhaohui Du
- Chongqing Technology and Business University, No. 19 Xue Fu Road, Nanan District, Chongqing 401334, PR China.
| | - Zeming Guo
- School of Public Health, Chongqing Medical University, No. 61 Daxuecheng Middle Road, Shapingba District, Chongqing 401334, PR China.
| | - Qunhua Bai
- School of Public Health, Chongqing Medical University, No. 61 Daxuecheng Middle Road, Shapingba District, Chongqing 401334, PR China.
| |
Collapse
|
15
|
Zhang Y, Xu S, Qian Y, Mo C, Ai P, Yang X, Xiao Q. Sodium butyrate ameliorates gut dysfunction and motor deficits in a mouse model of Parkinson's disease by regulating gut microbiota. Front Aging Neurosci 2023; 15:1099018. [PMID: 36761177 PMCID: PMC9905700 DOI: 10.3389/fnagi.2023.1099018] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Background A growing body of evidence showed that gut microbiota dysbiosis might be associated with the pathogenesis of Parkinson's disease (PD). Microbiota-targeted interventions could play a protective role in PD by regulating the gut microbiota-gut-brain axis. Sodium butyrate (NaB) could improve gut microbiota dysbiosis in PD and other neuropsychiatric disorders. However, the potential mechanism associated with the complex interaction between NaB and gut microbiota-gut-brain communication in PD needs further investigation. Methods C57BL/6 mice were subjected to a rotenone-induced PD model and were treated intragastrically with NaB for 4 weeks. The gut function and motor function were evaluated. The α-synuclein expression in colon and substantia nigra were detected by western blotting. Tyrosine hydroxylase (TH)-positive neurons in substantia nigra were measured by immunofluorescence. Moreover, gut microbiota composition was analyzed by 16S rRNA sequencing. Fecal short chain fatty acids (SCFAs) levels were determined by liquid chromatography tandem mass spectrometry (LC-MS). The levels of glucagon like peptide-1 (GLP-1) in tissues and serum were evaluated using enzyme-linked immunosorbent assay (ELISA). Results NaB ameliorated gut dysfunction and motor deficits in rotenone-induced mice. Meanwhile, NaB protected against rotenone-induced α-synuclein expression in colon and substantia nigra, and prevented the loss of TH-positive neurons. In addition, NaB could remodel gut microbiota composition, and regulate gut SCFAs metabolism, and restore GLP-1 levels in colon, serum, and substantia nigra in PD mice. Conclusion NaB could ameliorate gut dysfunction and motor deficits in rotenone-induced PD mice, and the mechanism might be associated with the regulation of gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoqing Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwei Qian
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengjun Mo
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Penghui Ai
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Qin Xiao, ; Xiaodong Yang,
| | - Qin Xiao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Qin Xiao, ; Xiaodong Yang,
| |
Collapse
|
16
|
Li J, Ni Y, Huang L, Yu X, Zhu J. Er-Bai-Tang decoction improved the movement disorders and neuronal injury in the Parkinson's disease model rats via decreasing p38 MAPK pathway and improving the composition of intestinal flora. Acta Cir Bras 2023; 37:e371104. [PMID: 36629531 PMCID: PMC9829241 DOI: 10.1590/acb371104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/23/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Our previous study showed that Er-Bai-Tang decoction (EBT) could effectively improve Parkinson's disease (PD) patients' quality of life, sleep, mood, and cognitive disorders, but the mechanism of EBT to treat PD was unclear. So, our study aimed to explore the mechanism of EBT to treat PD via p38 mitogen-activated protein kinases (MAPK) pathway and intestinal flora. METHODS In our study, the PD rat model was established by subcutaneously injecting 2 mg/kg/d rotenone solution, and 23.43 g/kgEBT was used to treat PD model rats. RESULTS Behavioral test showed that EBT could reverse the motor impairment in the PD model rats. Hematoxylin and eosin result showed that EBT could reduce the cell necrosis in the SNpc area of the PD model rats. Western blotting and real time-polymerase chain reaction showed that EBT could decrease the p38 MAPK expression in the SNpc area of the PD model rats. 16s rRNA sequencing analysis showed that EBT could improve the composition of intestinal flora in the PD model rats. Rikenellaceae at family level and Alistipes and Allobaculum at the genus level were the key species in the PD development and EBT treatment to PD. KEGG showed that EBT might change the iron uptake in PD rats. CONCLUSIONS EBT could improve the motor symptoms and neuronal injury in the PD model rat, and its mechanism may be related to decreasing p38 MAPK pathway and improving the composition of intestinal flora.
Collapse
Affiliation(s)
- Jinrong Li
- MS. Chongqing Traditional Chinese Medicine Hospital – Chongqing, China
| | - Yuehan Ni
- MS. Yuyao Traditional Chinese Medicine Hospital – Yuyao, China.,Corresponding author:
- (13 88) 4407199
| | - Li Huang
- St. Chongqing Traditional Chinese Medicine Hospital – Chongqing, China
| | - Xinyuan Yu
- PhD. Chongqing Traditional Chinese Medicine Hospital – Chongqing, China
| | - Jianwei Zhu
- MS. Chongqing Traditional Chinese Medicine Hospital – Chongqing, China
| |
Collapse
|
17
|
Yazar V, Dawson VL, Dawson TM, Kang SU. DNA Methylation Signature of Aging: Potential Impact on the Pathogenesis of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:145-164. [PMID: 36710687 PMCID: PMC10041453 DOI: 10.3233/jpd-223517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Regulation of gene expression by epigenetic modifications means lasting and heritable changes in the function of genes without alterations in the DNA sequence. Of all epigenetic mechanisms identified thus far, DNA methylation has been of particular interest in both aging and age-related disease research over the last decade given the consistency of site-specific DNA methylation changes during aging that can predict future health and lifespan. An increasing line of evidence has implied the dynamic nature of DNA (de)methylation events that occur throughout the lifespan has a role in the pathophysiology of aging and age-associated neurodegenerative conditions, including Parkinson's disease (PD). In this regard, PD methylome shows, to some extent, similar genome-wide changes observed in the methylome of healthy individuals of matching age. In this review, we start by providing a brief overview of studies outlining global patterns of DNA methylation, then its mechanisms and regulation, within the context of aging and PD. Considering diverging lines of evidence from different experimental and animal models of neurodegeneration and how they combine to shape our current understanding of tissue-specific changes in DNA methylome in health and disease, we report a high-level comparison of the genomic methylation landscapes of brain, with an emphasis on dopaminergic neurons in PD and in natural aging. We believe this will be particularly useful for systematically dissecting overlapping genome-wide alterations in DNA methylation during PD and healthy aging, and for improving our knowledge of PD-specific changes in methylation patterns independent of aging process.
Collapse
Affiliation(s)
- Volkan Yazar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Mahjoub Y, Martino D. Immunology and microbiome: Implications for motor systems. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:135-157. [PMID: 37562867 DOI: 10.1016/b978-0-323-98818-6.00001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Immune-inflammatory mechanisms seem to play a relevant role in neurodegenerative disorders affecting motor systems, particularly Parkinson's disease, where activity changes in inflammatory cells and evidence of neuroinflammation in experimental models and patients is available. Amyotrophic lateral sclerosis is also characterized by neuroinflammatory changes that involve primarily glial cells, both microglia and astrocytes, as well as systemic immune dysregulation associated with more rapid progression. Similarly, the exploration of gut dysbiosis in these two prototypical neurodegenerative motor disorders is advancing rapidly. Altered composition of gut microbial constituents and related metabolic and putative functional pathways is supporting a pathophysiological link that is currently explored in preclinical, germ-free animal models. Less compelling, but still intriguing, evidence suggests that motor neurodevelopmental disorders, e.g., Tourette syndrome, are associated with abnormal trajectories of maturation that include also immune system development. Microglia has a key role also in these disorders, and new therapeutic avenues aiming at its modulation are exciting prospects. Preclinical and clinical research on the role of gut dysbiosis in Tourette syndrome and related behavioral disorders is still in its infancy, but early findings support the rationale to delve deeper into its contribution to neural and immune maturation abnormalities in its spectrum.
Collapse
Affiliation(s)
- Yasamin Mahjoub
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Davide Martino
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
19
|
Inflammatory microbes and genes as potential biomarkers of Parkinson's disease. NPJ Biofilms Microbiomes 2022; 8:101. [PMID: 36564391 PMCID: PMC9789082 DOI: 10.1038/s41522-022-00367-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
As the second-largest neurodegenerative disease in the world, Parkinson's disease (PD) has brought a severe economic and medical burden to our society. Growing evidence in recent years suggests that the gut microbiome may influence PD, but the exact pathogenesis of PD remains unclear. In addition, the current diagnosis of PD could be inaccurate and expensive. In this study, the largest meta-analysis currently of the gut microbiome in PD was analyzed, including 2269 samples by 16S rRNA gene and 236 samples by shotgun metagenomics, aiming to reveal the connection between PD and gut microbiome and establish a model to predict PD. The results showed that the relative abundances of potential pro-inflammatory bacteria, genes and pathways were significantly increased in PD, while potential anti-inflammatory bacteria, genes and pathways were significantly decreased. These changes may lead to a decrease in potential anti-inflammatory substances (short-chain fatty acids) and an increase in potential pro-inflammatory substances (lipopolysaccharides, hydrogen sulfide and glutamate). Notably, the results of 16S rRNA gene and shotgun metagenomic analysis have consistently identified five decreased genera (Roseburia, Faecalibacterium, Blautia, Lachnospira, and Prevotella) and five increased genera (Streptococcus, Bifidobacterium, Lactobacillus, Akkermansia, and Desulfovibrio) in PD. Furthermore, random forest models performed well for PD prediction based on 11 genera (accuracy > 80%) or 6 genes (accuracy > 90%) related to inflammation. Finally, a possible mechanism was presented to explain the pathogenesis of inflammation leading to PD. Our results provided further insights into the prediction and treatment of PD based on inflammation.
Collapse
|
20
|
Bisaglia M. Mediterranean Diet and Parkinson's Disease. Int J Mol Sci 2022; 24:ijms24010042. [PMID: 36613486 PMCID: PMC9820428 DOI: 10.3390/ijms24010042] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder, diagnosed on the basis of typical motor disturbances, but also characterized by the presence of non-motor symptoms, such as rapid eye movement (REM)-sleep behavior disorders, olfactory impairment, and constipation, which are often prodromal to the onset of the disease. PD is often associated with the presence of oxidative brain injury and chronic neuroinflammation, with infiltration and accumulation of peripheral immune cells that have been found in affected brain regions of PD patients. Recently, the role of the gut-brain axis in the pathogenesis of PD is getting more and more attention, and several pieces of evidence indicate alterations in the gut microbiota of PD-affected patients. Diet exerts a central role in defining the microbiota composition and different dietetic patterns can result in a higher or lower abundance of specific bacteria that, in turn, can affect gut permeability and express anti- or pro-inflammatory metabolites. In the present review, the effects of the Mediterranean diet in modulating both PD onset and its progression will be considered with a special focus on the antioxidant and anti-inflammatory properties of this dietetic regimen as well as on its effects on the microbiota composition.
Collapse
Affiliation(s)
- Marco Bisaglia
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy;
- Study Center for Neurodegeneration (CESNE), 35100 Padova, Italy
| |
Collapse
|
21
|
Chronic Treatment with the Probiotics Lacticaseibacillus rhamnosus GG and Bifidobacterium lactis BB12 Attenuates Motor Impairment, Striatal Microglial Activation, and Dopaminergic Loss in Rats with 6-Hydroxydopamine-induced Hemiparkinsonism. Neuroscience 2022; 507:79-98. [PMID: 36370934 DOI: 10.1016/j.neuroscience.2022.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/05/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Gut dysbiosis is considered a risk factor for Parkinson's disease (PD), and chronic treatment with probiotics could prevent it. Here we report the assessment of a probiotic mixture [Lacticaseibacillus rhamnosus GG (LGG), and Bifidobacterium animalis lactis BB-12 (BB-12)] administered to male rats 2 weeks before and 3 weeks after injecting 6-hydroxydopamine (6-OHDA) into the right striatum, a model that mimics the early stages of PD. Before and after lesion, animals were subjected to behavioral tests: narrow beam, cylinder test, and apomorphine (APO)-induced rotations. Dopaminergic (DA) denervation and microglia recruitment were assessed with tyrosine hydroxylase (TH+) and ionized calcium-binding protein-1 adapter (Iba1+) immunostaining, respectively. Post 6-OHDA injury, rats treated with sunflower oil (probiotics vehicle) developed significant decrease in crossing speed and increases in contralateral paw slips (narrow beam), forepaw use asymmetry (cylinder), and APO-induced rotations. In striatum, 6-OHDA eliminated ≈2/3 of TH+ area and caused significant increase of Iba1+ microglia population. Retrograde axonal degeneration suppressed ≈2/5 of TH+ neurons in the substantia nigra pars compacta (SNpc). In hemiparkinsonian rats, probiotics treatment significantly improved the crossing speed, and also reduced paw slips (postlesion days 14 and 21), the loss of TH+ neurons in SNpc, and the loss of TH+ area and of Iba1+ microglia count in striatum, without affecting the proportion of microglia morphological phenotypes. Probiotics treatment did not attenuate forepaw use asymmetry nor APO-induced rotations. These results indicate that the mixture of probiotics LGG and BB-12 protects nigrostriatal DA neurons against 6-OHDA-induced damage, supporting their potential as preventive treatment of PD.
Collapse
|
22
|
Wei W, Wang S, Xu C, Zhou X, Lian X, He L, Li K. Gut microbiota, pathogenic proteins and neurodegenerative diseases. Front Microbiol 2022; 13:959856. [PMID: 36466655 PMCID: PMC9715766 DOI: 10.3389/fmicb.2022.959856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/07/2022] [Indexed: 12/20/2023] Open
Abstract
As the world's population ages, neurodegenerative diseases (NDs) have brought a great burden to the world. However, effective treatment measures have not been found to alleviate the occurrence and development of NDs. Abnormal accumulation of pathogenic proteins is an important cause of NDs. Therefore, effective inhibition of the accumulation of pathogenic proteins has become a priority. As the second brain of human, the gut plays an important role in regulate emotion and cognition functions. Recent studies have reported that the disturbance of gut microbiota (GM) is closely related to accumulation of pathogenic proteins in NDs. On the one hand, pathogenic proteins directly produced by GM are transmitted from the gut to the central center via vagus nerve. On the other hand, The harmful substances produced by GM enter the peripheral circulation through intestinal barrier and cause inflammation, or cross the blood-brain barrier into the central center to cause inflammation, and cytokines produced by the central center cause the production of pathogenic proteins. These pathogenic proteins can produced by the above two aspects can cause the activation of central microglia and further lead to NDs development. In addition, certain GM and metabolites have been shown to have neuroprotective effects. Therefore, modulating GM may be a potential clinical therapeutic approach for NDs. In this review, we summarized the possible mechanism of NDs caused by abnormal accumulation of pathogenic proteins mediated by GM to induce the activation of central microglia, cause central inflammation and explore the therapeutic potential of dietary therapy and fecal microbiota transplantation (FMT) in NDs.
Collapse
Affiliation(s)
- Wei Wei
- The Mental Hospital of Yunnan Province, Mental Health Center Affiliated to Kunming Medical University, Kunming, China
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Shixu Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Chongchong Xu
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Xuemei Zhou
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Xinqing Lian
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Lin He
- The Mental Hospital of Yunnan Province, Mental Health Center Affiliated to Kunming Medical University, Kunming, China
| | - Kuan Li
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
23
|
Liu Y, Liu X, Ye Q, Wang Y, Zhang J, Lin S, Wang G, Yang X, Zhang J, Chen S, Wu N. Fucosylated Chondroitin Sulfate against Parkinson's Disease through Inhibiting Inflammation Induced by Gut Dysbiosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13676-13691. [PMID: 36226922 DOI: 10.1021/acs.jafc.2c06429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Growing evidence for the importance of the gut-brain axis in Parkinson's disease (PD) has attracted researchers' interest in the possible application of microbiota-based treatment approaches. Using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model, we looked into the prospect of treating PD with fucosylated chondroitin sulfate obtained from sea cucumbers Isostichopus badionotus (fCS-Ib). We showed that giving fCS-Ib polysaccharide orally greatly reduced the motor deficits, dopamine depletion, and alpha-synuclein increase caused by MPTP in the substantia nigra (SN). It appears that the anti-PD action of fCS-Ib polysaccharide could be attained by squelching inflammation. Glial cell hyperactivation in SN and overproduction of proinflammatory substances in serum could both be suppressed by fCS-Ib polysaccharide injection. The bacterial DNA in fresh colonic feces was submitted to 16S rRNA and untargeted metabolic analyses to confirm the participation of the microbiota-gut-brain axis in the aforementioned interpretation. The findings showed that the MPTP treatment-induced decrease in norank_f_Muribaculaceae and the increase in Staphylococcus were reversed by the administration of fCS-Ib polysaccharide. The NF-κB signaling pathway was shown to be involved in the fCS-Ib polysaccharide-induced anti-inflammation. In conclusion, our research demonstrated for the first time how fCS-Ib polysaccharide combats PD by reducing inflammation caused by gut microbial dysbiosis.
Collapse
Affiliation(s)
- Yimeng Liu
- Key Laboratory of Regenerative Medicine of the Ministry of Education, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xuyu Liu
- Key Laboratory of Regenerative Medicine of the Ministry of Education, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Qiantao Ye
- Key Laboratory of Regenerative Medicine of the Ministry of Education, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yida Wang
- Key Laboratory of Regenerative Medicine of the Ministry of Education, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jiafu Zhang
- Key Laboratory of Regenerative Medicine of the Ministry of Education, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Song Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Guang Wang
- Key Laboratory of Regenerative Medicine of the Ministry of Education, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xuesong Yang
- Key Laboratory of Regenerative Medicine of the Ministry of Education, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jichun Zhang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Nian Wu
- Key Laboratory of Regenerative Medicine of the Ministry of Education, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
24
|
The Interplay between Gut Microbiota and Parkinson's Disease: Implications on Diagnosis and Treatment. Int J Mol Sci 2022; 23:ijms232012289. [PMID: 36293176 PMCID: PMC9603886 DOI: 10.3390/ijms232012289] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
The bidirectional interaction between the gut microbiota (GM) and the Central Nervous System, the so-called gut microbiota brain axis (GMBA), deeply affects brain function and has an important impact on the development of neurodegenerative diseases. In Parkinson’s disease (PD), gastrointestinal symptoms often precede the onset of motor and non-motor manifestations, and alterations in the GM composition accompany disease pathogenesis. Several studies have been conducted to unravel the role of dysbiosis and intestinal permeability in PD onset and progression, but the therapeutic and diagnostic applications of GM modifying approaches remain to be fully elucidated. After a brief introduction on the involvement of GMBA in the disease, we present evidence for GM alterations and leaky gut in PD patients. According to these data, we then review the potential of GM-based signatures to serve as disease biomarkers and we highlight the emerging role of probiotics, prebiotics, antibiotics, dietary interventions, and fecal microbiota transplantation as supportive therapeutic approaches in PD. Finally, we analyze the mutual influence between commonly prescribed PD medications and gut-microbiota, and we offer insights on the involvement also of nasal and oral microbiota in PD pathology, thus providing a comprehensive and up-to-date overview on the role of microbial features in disease diagnosis and treatment.
Collapse
|
25
|
Fisette A, Sergi D, Breton-Morin A, Descôteaux S, Martinoli MG. New Insights on the Role of Bioactive Food Derivatives in Neurodegeneration and Neuroprotection. Curr Pharm Des 2022; 28:3068-3081. [PMID: 36121075 DOI: 10.2174/1381612828666220919085742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/30/2022] [Indexed: 01/28/2023]
Abstract
Over the last three decades, neurodegenerative diseases have received increasing attention due to their frequency in the aging population and the social and economic burdens they are posing. In parallel, an era's worth of research in neuroscience has shaped our current appreciation of the complex relationship between nutrition and the central nervous system. Particular branches of nutrition continue to galvanize neuroscientists, in particular the diverse roles that bioactive food derivatives play on health and disease. Bioactive food derivatives are nowadays recognized to directly impact brain homeostasis, specifically with respect to their actions on cellular mechanisms of oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis and autophagy. However, ambiguities still exist regarding the significance of the influence of bioactive food derivatives on human health. In turn, gut microbiota dysbiosis is emerging as a novel player in the pathogenesis of neurodegenerative diseases. Currently, several routes of communication exist between the gut and the brain, where molecules are either released in the bloodstream or directly transported to the CNS. As such, bioactive food derivatives can modulate the complex ecosystem of the gut-brain axis, thus, targeting this communication network holds promises as a neuroprotective tool. This review aims at addressing one of the emerging aspects of neuroscience, particularly the interplay between food bioactive derivatives and neurodegeneration. We will specifically address the role that polyphenols and omega-3 fatty acids play in preventing neurodegenerative diseases and how dietary intervention complements available pharmacological approaches.
Collapse
Affiliation(s)
- Alexandre Fisette
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Domenico Sergi
- Department of Translational Medicine, University di Ferrara, Ferrara, Italy
| | - Alyssa Breton-Morin
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Savanah Descôteaux
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Maria-Grazia Martinoli
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada.,Department of Psychiatry and Neuroscience, U. Laval and CHU Research Center, Québec, Canada
| |
Collapse
|
26
|
Onaolapo AY, Ojo FO, Olofinnade AT, Falade J, Lawal IA, Onaolapo OJ. Microbiome-Based Therapies in Parkinson's Disease: Can Tuning the Microbiota Become a Viable Therapeutic Strategy? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-126136. [PMID: 36056826 DOI: 10.2174/1871527321666220903114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/20/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Progressive neurodegenerative disorders such as Parkinson's disease (PD) have continued to baffle medical science, despite strides in the understanding of their pathology. The inability of currently available therapies to halt disease progression is a testament to an incomplete understanding of pathways crucial to disease initiation, progression and management. Science has continued to link the activities and equilibrium of the gut microbiome to the health and proper functioning of brain neurons. They also continue to stir interest in the potential applications of technologies that may shift the balance of the gut microbiome towards achieving a favourable outcome in PD management. There have been suggestions that an improved understanding of the roles of the gut microbiota is likely to lead to the emergence of an era where their manipulation becomes a recognized strategy for PD management. This review examines the current state of our journey in the quest to understand how the gut microbiota can influence several aspects of PD. We highlight the relationship between the gut microbiome/microbiota and PD pathogenesis, as well as preclinical and clinical evidence evaluating the effect of postbiotics, probiotics and prebiotics in PD management. This is with a view to ascertaining if we are at the threshold of discovering the application of a usable tool in our quest for disease modifying therapies in PD.
Collapse
Affiliation(s)
- Adejoke Y Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Folusho O Ojo
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Anthony T Olofinnade
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, College of Medicine, Lagos State University, Lagos State
| | - Joshua Falade
- Department of Mental Health, Afe-Babalola University Ado-Ekiti Ekiti State Nigeria
| | - Ismail A Lawal
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Anatomy, Faculty of Health Sciences. Alhikmah University Ilorin, Kwara State, Nigeria
| | - Olakunle J Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
27
|
Liang J, Li T, Zhao J, Wang C, Sun H. Current understanding of the human microbiome in glioma. Front Oncol 2022; 12:781741. [PMID: 36003766 PMCID: PMC9393498 DOI: 10.3389/fonc.2022.781741] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
There is mounting evidence that the human microbiome is highly associated with a wide variety of central nervous system diseases. However, the link between the human microbiome and glioma is rarely noticed. The exact mechanism of microbiota to affect glioma remains unclear. Recent studies have demonstrated that the microbiome may affect the development, progress, and therapy of gliomas, including the direct impacts of the intratumoral microbiome and its metabolites, and the indirect effects of the gut microbiome and its metabolites. Glioma-related microbiome (gut microbiome and intratumoral microbiome) is associated with both tumor microenvironment and tumor immune microenvironment, which ultimately influence tumorigenesis, progression, and responses to treatment. In this review, we briefly summarize current knowledge regarding the role of the glioma-related microbiome, focusing on its gut microbiome fraction and a brief description of the intratumoral microbiome, and put forward the prospects in which microbiome can be applied in the future and some challenges still need to be solved.
Collapse
Affiliation(s)
- Jianhao Liang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiajia Zhao
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng Wang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine, Clinical Biobank Center, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
- *Correspondence: Haitao Sun,
| |
Collapse
|
28
|
Chen Y, Rudolph S, Longo BN, Pace F, Roh T, Condruti R, Gee M, Watnick P, Kaplan DL. Bioengineered 3D Tissue Model of Intestine Epithelium with Oxygen Gradients to Sustain Human Gut Microbiome. Adv Healthc Mater 2022; 11:e2200447. [PMID: 35686484 PMCID: PMC9388577 DOI: 10.1002/adhm.202200447] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/25/2022] [Indexed: 01/24/2023]
Abstract
The human gut microbiome is crucial to hosting physiology and health. Therefore, stable in vitro coculture of primary human intestinal cells with a microbiome community is essential for understanding intestinal disease progression and revealing novel therapeutic targets. Here, a three-dimensional scaffold system is presented to regenerate an in vitro human intestinal epithelium that recapitulates many functional characteristics of the native small intestines. The epithelium, derived from human intestinal enteroids, contains mature intestinal epithelial cells and possesses selectively permeable barrier functions. Importantly, by properly positioning the scaffolds cultured under normal atmospheric conditions, two physiologically relevant oxygen gradients, a proximal-to-distal oxygen gradient along the gastrointestinal (GI) tract, and a radial oxygen gradient across the epithelium, are distinguished in the tissues when the lumens are faced up and down in cultures, respectively. Furthermore, the presence of the low oxygen gradients supported the coculture of intestinal epithelium along with a complex living commensal gut microbiome (including obligate anaerobes) to simulate temporal microbiome dynamics in the native human gut. This unique silk scaffold platform may enable the exploration of microbiota-related mechanisms of disease pathogenesis and host-pathogen dynamics in infectious diseases including the potential to explore the human microbiome-gut-brain axis and potential novel microbiome-based therapeutics.
Collapse
Affiliation(s)
- Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA, 02155, USA,To whom correspondence may be addressed. ;
| | - Sara Rudolph
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Brooke N. Longo
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Fernanda Pace
- Division of Infectious Diseases, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA,Department of Pediatrics, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Terrence Roh
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Rebecca Condruti
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Michelle Gee
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Paula Watnick
- Division of Infectious Diseases, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA,Department of Pediatrics, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA, 02155, USA,Division of Infectious Diseases, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA,To whom correspondence may be addressed. ;
| |
Collapse
|
29
|
Therapeutic Benefits and Dietary Restrictions of Fiber Intake: A State of the Art Review. Nutrients 2022; 14:nu14132641. [PMID: 35807822 PMCID: PMC9268622 DOI: 10.3390/nu14132641] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Throughout history, malnutrition and deficiency diseases have been a problem for our planet’s population. A balanced diet significantly influences everyone’s health, and fiber intake appears to play a more important role than previously thought. The natural dietary fibers are a category of carbohydrates in the constitution of plants that are not completely digested in the human intestine. High-fiber foods, such as fruits, vegetables and whole grains, have consistently been highly beneficial to health and effectively reduced the risk of disease. Although the mode of action of dietary fiber in the consumer body is not fully understood, nutritionists and health professionals unanimously recognize the therapeutic benefits. This paper presents the fiber consumption in different countries, the metabolism of fiber and the range of health benefits associated with fiber intake. In addition, the influence of fiber intake on the intestinal microbiome, metabolic diseases (obesity and diabetes), neurological aspects, cardiovascular diseases, autoimmune diseases and cancer prevention are discussed. Finally, dietary restrictions and excess fiber are addressed, which can cause episodes of diarrhea and dehydration and increase the likelihood of bloating and flatulence or even bowel obstruction. However, extensive studies are needed regarding the composition and required amount of fiber in relation to the metabolism of saprotrophic microorganisms from the enteral level and the benefits of the various pathologies with which they can be correlated.
Collapse
|
30
|
Zhu M, Liu X, Ye Y, Yan X, Cheng Y, Zhao L, Chen F, Ling Z. Gut Microbiota: A Novel Therapeutic Target for Parkinson's Disease. Front Immunol 2022; 13:937555. [PMID: 35812394 PMCID: PMC9263276 DOI: 10.3389/fimmu.2022.937555] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by motor dysfunction. Growing evidence has demonstrated that gut dysbiosis is involved in the occurrence, development and progression of PD. Numerous clinical trials have identified the characteristics of the changed gut microbiota profiles, and preclinical studies in PD animal models have indicated that gut dysbiosis can influence the progression and onset of PD via increasing intestinal permeability, aggravating neuroinflammation, aggregating abnormal levels of α-synuclein fibrils, increasing oxidative stress, and decreasing neurotransmitter production. The gut microbiota can be considered promising diagnostic and therapeutic targets for PD, which can be regulated by probiotics, psychobiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, diet modifications, and Chinese medicine. This review summarizes the recent studies in PD-associated gut microbiota profiles and functions, the potential roles, and mechanisms of gut microbiota in PD, and gut microbiota-targeted interventions for PD. Deciphering the underlying roles and mechanisms of the PD-associated gut microbiota will help interpret the pathogenesis of PD from new perspectives and elucidate novel therapeutic strategies for PD.
Collapse
Affiliation(s)
- Manlian Zhu
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiru Ye
- Department of Respiratory Medicine, Lishui Central Hospital, Lishui, China
| | - Xiumei Yan
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, China
| | - Yiwen Cheng
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Longyou Zhao
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, China
| | - Feng Chen
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zongxin Ling
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Peng H, Yu S, Zhang Y, Yin Y, Zhou J. Intestinal Dopamine Receptor D2 is Required for Neuroprotection Against 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Dopaminergic Neurodegeneration. Neurosci Bull 2022; 38:871-886. [PMID: 35399136 PMCID: PMC9352842 DOI: 10.1007/s12264-022-00848-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/26/2021] [Indexed: 02/07/2023] Open
Abstract
A wealth of evidence has suggested that gastrointestinal dysfunction is associated with the onset and progression of Parkinson's disease (PD). However, the mechanisms underlying these links remain to be defined. Here, we investigated the impact of deregulation of intestinal dopamine D2 receptor (DRD2) signaling in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration. Dopamine/dopamine signaling in the mouse colon decreased with ageing. Selective ablation of Drd2, but not Drd4, in the intestinal epithelium, caused a more severe loss of dopaminergic neurons in the substantia nigra following MPTP challenge, and this was accompanied by a reduced abundance of succinate-producing Alleoprevotella in the gut microbiota. Administration of succinate markedly attenuated dopaminergic neuronal loss in MPTP-treated mice by elevating the mitochondrial membrane potential. This study suggests that intestinal epithelial DRD2 activity and succinate from the gut microbiome contribute to the maintenance of nigral DA neuron survival. These findings provide a potential strategy targeting neuroinflammation-related neurological disorders such as PD.
Collapse
|
32
|
Sorboni SG, Moghaddam HS, Jafarzadeh-Esfehani R, Soleimanpour S. A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clin Microbiol Rev 2022; 35:e0033820. [PMID: 34985325 PMCID: PMC8729913 DOI: 10.1128/cmr.00338-20] [Citation(s) in RCA: 248] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human body is full of an extensive number of commensal microbes, consisting of bacteria, viruses, and fungi, collectively termed the human microbiome. The initial acquisition of microbiota occurs from both the external and maternal environments, and the vast majority of them colonize the gastrointestinal tract (GIT). These microbial communities play a central role in the maturation and development of the immune system, the central nervous system, and the GIT system and are also responsible for essential metabolic pathways. Various factors, including host genetic predisposition, environmental factors, lifestyle, diet, antibiotic or nonantibiotic drug use, etc., affect the composition of the gut microbiota. Recent publications have highlighted that an imbalance in the gut microflora, known as dysbiosis, is associated with the onset and progression of neurological disorders. Moreover, characterization of the microbiome-host cross talk pathways provides insight into novel therapeutic strategies. Novel preclinical and clinical research on interventions related to the gut microbiome for treating neurological conditions, including autism spectrum disorders, Parkinson's disease, schizophrenia, multiple sclerosis, Alzheimer's disease, epilepsy, and stroke, hold significant promise. This review aims to present a comprehensive overview of the potential involvement of the human gut microbiome in the pathogenesis of neurological disorders, with a particular emphasis on the potential of microbe-based therapies and/or diagnostic microbial biomarkers. This review also discusses the potential health benefits of the administration of probiotics, prebiotics, postbiotics, and synbiotics and fecal microbiota transplantation in neurological disorders.
Collapse
Affiliation(s)
| | | | - Reza Jafarzadeh-Esfehani
- Blood Borne Infectious Research Center, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Centre, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Vijiaratnam N, Foltynie T. Disease modifying therapies III: Novel targets. Neuropharmacology 2021; 201:108839. [PMID: 34656651 DOI: 10.1016/j.neuropharm.2021.108839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Despite significant research advances, treatment of Parkinson's disease (PD) remains confined to symptomatic therapies. Approaches aiming to halt or reverse disease progression remain an important but unmet goal. A growing understanding of disease pathogenesis and the identification of novel pathways contributing to initiation of neurodegeneration and subsequent progression has highlighted a range of potential novel targets for intervention that may influence the rate of progression of the disease process. Exploiting techniques to stratify patients according to these targets alongside using them as biomarkers to measure target engagement will likely improve patient selection and preliminary outcome measurements in clinical trials. In this review, we summarize a number of PD-related mechanisms that have recently gained interest such as neuroinflammation, lysosomal dysfunction and insulin resistance, while also exploring the potential for targeting peripheral interfaces such as the gastrointestinal tract and its ecosystem to achieve disease modification. We explore the rationale for these approaches based on preclinical studies, while also highlighting the status of relevant clinical trials as well as the promising role biomarkers may play in current and future studies.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| |
Collapse
|
34
|
Dang G, Wu W, Zhang H, Everaert N. A new paradigm for a new simple chemical: butyrate & immune regulation. Food Funct 2021; 12:12181-12193. [PMID: 34752597 DOI: 10.1039/d1fo02116h] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Short-chain fatty acids (SCFAs) play an important role in the host system. Among SCFAs, butyrate has received particular attention for its large effect on host immunity, particularly in supplying energy to enterocytes and producing immune cells. Butyrate enters the cells through the Solute Carrier Family 5 Member 8 (SLC5A8) transporters, then works as a histone deacetylase inhibitor (HDAC) that inhibits the activation of Nuclear factor-κB (NF-κB), which down-regulates the expression of IL-1β, IL-6, TNF-α. Meanwhile, butyrate acts as a ligand to activate G protein-coupled receptors GPR41, GPR43, and GPR109, promoting the expression of anti-inflammatory factors. Besides, it inhibits the proinflammatory factors. Further, it can also suppress the expression of chemokines and reduce inflammation to maintain host homeostasis. This paper reviews the research progress highlighting the potential function of butyrate as a factor impacting intestinal health, obesity and brain disorders.
Collapse
Affiliation(s)
- Guoqi Dang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, Gembloux, Belgium
| | - Weida Wu
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, Gembloux, Belgium
| |
Collapse
|
35
|
Layunta E, Buey B, Mesonero JE, Latorre E. Crosstalk Between Intestinal Serotonergic System and Pattern Recognition Receptors on the Microbiota-Gut-Brain Axis. Front Endocrinol (Lausanne) 2021; 12:748254. [PMID: 34819919 PMCID: PMC8607755 DOI: 10.3389/fendo.2021.748254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Disruption of the microbiota-gut-brain axis results in a wide range of pathologies that are affected, from the brain to the intestine. Gut hormones released by enteroendocrine cells to the gastrointestinal (GI) tract are important signaling molecules within this axis. In the search for the language that allows microbiota to communicate with the gut and the brain, serotonin seems to be the most important mediator. In recent years, serotonin has emerged as a key neurotransmitter in the gut-brain axis because it largely contributes to both GI and brain physiology. In addition, intestinal microbiota are crucial in serotonin signaling, which gives more relevance to the role of the serotonin as an important mediator in microbiota-host interactions. Despite the numerous investigations focused on the gut-brain axis and the pathologies associated, little is known regarding how serotonin can mediate in the microbiota-gut-brain axis. In this review, we will mainly discuss serotonergic system modulation by microbiota as a pathway of communication between intestinal microbes and the body on the microbiota-gut-brain axis, and we explore novel therapeutic approaches for GI diseases and mental disorders.
Collapse
Affiliation(s)
- Elena Layunta
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Berta Buey
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain
| | - Jose Emilio Mesonero
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza–CITA), Zaragoza, Spain
| | - Eva Latorre
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza–CITA), Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
36
|
Moustafa SA, Mohamed S, Dawood A, Azar J, Elmorsy E, Rizk NAM, Salama M. Gut brain axis: an insight into microbiota role in Parkinson's disease. Metab Brain Dis 2021; 36:1545-1557. [PMID: 34370175 DOI: 10.1007/s11011-021-00808-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is one of the most common progressive neurodegenerative diseases. It is characterized neuropathologically by the presence of alpha-synuclein containing Lewy Bodies in the substantia nigra of the brain with loss of dopaminergic neurons in the pars compacta of the substantia nigra. The presence of alpha-synuclein aggregates in the substantia nigra and the enteric nervous system (ENS) drew attention to the possibility of a correlation between the gut microbiota and Parkinson's disease. The gut-brain axis is a two-way communication system, which explains how through the vagus nerve, the gut microbiota can affect the central nervous system (CNS), including brain functions related to the ENS, as well as how CNS can alter various gut secretions and immune responses. As a result, this dysbiosis or alteration in gut microbiota can be an early sign of PD with reported changes in short chain fatty acids, bile acids, and lipids. This gave rise to the use of probiotics and faecal microbiota transplantation as alternative approaches to improve the symptoms of patients with PD. The aim of this review is to discuss investigations that have been done to explore the gastrointestinal involvement in Parkinson's disease, the effect of dysbiosis, and potential therapeutic strategies for PD.
Collapse
Affiliation(s)
- Sara Ayman Moustafa
- Institute of Global Health and Human Ecology (IGHHE) Graduate Program, The American University in Cairo, New Cairo, 11835, Egypt
| | - Shrouk Mohamed
- Nanotechnology Graduate Program, The American University in Cairo, New Cairo, 11835, Egypt
| | - Abdelhameed Dawood
- Biotechnology Graduate Program, The American University in Cairo, New Cairo, 11835, Egypt
| | - Jihan Azar
- Institute of Global Health and Human Ecology (IGHHE) Graduate Program, The American University in Cairo, New Cairo, 11835, Egypt
| | - Ekramy Elmorsy
- Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Pathology Department, Faculty of Medicine, Northern Border University-ARAR, North Region, Arar, Saudi Arabia
| | - Noura A M Rizk
- Molecular, Genetic and Population Health Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Mohamed Salama
- Institute of Global Health and Human Ecology (IGHHE) Graduate Program, The American University in Cairo, New Cairo, 11835, Egypt.
- Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
37
|
Jena R, Jain R, Muralidharan S, Yanamala VL, Zubair Z, Kantamaneni K, Jalla K, Renzu M, Alfonso M. Role of Gastrointestinal Dysbiosis and Fecal Transplantation in Parkinson's Disease. Cureus 2021; 13:e19035. [PMID: 34853754 PMCID: PMC8608042 DOI: 10.7759/cureus.19035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/25/2021] [Indexed: 12/02/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases with a high rate of morbidity. It is associated with dopaminergic neuron loss and is fairly common in the elderly population. Recently, there has been a growing interest in the role of the gut microbiome in the pathogenesis of PD and thus studies addressing the methods to modulate the microbiota are becoming increasingly popular. Fecal microbiota transplant (FMT) is one of these methods and is effective in certain intestinal and extraintestinal conditions. This review aims to talk about gastrointestinal dysbiosis and how the reconstruction of this microbiome via FMT could potentially be used as a treatment modality in the future. We went through various studies and collected data relevant to our topic from the previous five years. The studies selected include reviews, observational studies, animal studies, case reports, and some grey literature. We concluded that although it has great potential as a therapeutic modality in the future, it is limited by several factors such as variability among the results of most clinical studies and the lack of large sample sizes. Therefore, there is a need for high-quality clinical trials with larger sample sizes to gather enough clinical evidence so that FMT can qualify as a widely recommended therapeutic measure.
Collapse
Affiliation(s)
- Rahul Jena
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ruchi Jain
- Diagnostic Radiology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Suchitra Muralidharan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Zainab Zubair
- General Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ketan Kantamaneni
- Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Surgery, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Gannavaram, IND
| | - Krishi Jalla
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mahvish Renzu
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Michael Alfonso
- School of Medicine, Universidad del Rosario, Bogota, COL
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
38
|
Pyrroloquinoline-Quinone Is More Than an Antioxidant: A Vitamin-like Accessory Factor Important in Health and Disease Prevention. Biomolecules 2021; 11:biom11101441. [PMID: 34680074 PMCID: PMC8533503 DOI: 10.3390/biom11101441] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Pyrroloquinoline quinone (PQQ) is associated with biological processes such as mitochondriogenesis, reproduction, growth, and aging. In addition, PQQ attenuates clinically relevant dysfunctions (e.g., those associated with ischemia, inflammation and lipotoxicity). PQQ is novel among biofactors that are not currently accepted as vitamins or conditional vitamins. For example, the absence of PQQ in diets produces a response like a vitamin-related deficiency with recovery upon PQQ repletion in a dose-dependent manner. Moreover, potential health benefits, such as improved metabolic flexibility and immuno-and neuroprotection, are associated with PQQ supplementation. Here, we address PQQ's role as an enzymatic cofactor or accessory factor and highlight mechanisms underlying PQQ's actions. We review both large scale and targeted datasets demonstrating that a neonatal or perinatal PQQ deficiency reduces mitochondria content and mitochondrial-related gene expression. Data are reviewed that suggest PQQ's modulation of lactate acid and perhaps other dehydrogenases enhance NAD+-dependent sirtuin activity, along with the sirtuin targets, such as PGC-1α, NRF-1, NRF-2 and TFAM; thus, mediating mitochondrial functions. Taken together, current observations suggest vitamin-like PQQ has strong potential as a potent therapeutic nutraceutical.
Collapse
|
39
|
The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res 2021; 172:105840. [PMID: 34450312 DOI: 10.1016/j.phrs.2021.105840] [Citation(s) in RCA: 377] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that the gut microbiota play a crucial role in the bidirectional communication between the gut and the brain suggesting that the gut microbes may shape neural development, modulate neurotransmission and affect behavior, and thereby contribute to the pathogenesis and/or progression of many neurodevelopmental, neuropsychiatric, and neurological conditions. This review summarizes recent data on the role of microbiota-gut-brain axis in the pathophysiology of neuropsychiatric and neurological disorders including depression, anxiety, schizophrenia, autism spectrum disorders, Parkinson's disease, migraine, and epilepsy. Also, the involvement of microbiota in gut disorders co-existing with neuropsychiatric conditions is highlighted. We discuss data from both in vivo preclinical experiments and clinical reports including: (1) studies in germ-free animals, (2) studies exploring the gut microbiota composition in animal models of diseases or in humans, (3) studies evaluating the effects of probiotic, prebiotic or antibiotic treatment as well as (4) the effects of fecal microbiota transplantation.
Collapse
|
40
|
Parkinson's Disease: A Prionopathy? Int J Mol Sci 2021; 22:ijms22158022. [PMID: 34360787 PMCID: PMC8347681 DOI: 10.3390/ijms22158022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022] Open
Abstract
The principal pathogenic event in Parkinson's disease is characterized by the conformational change of α-synuclein, which form pathological aggregates of misfolded proteins, and then accumulate in intraneuronal inclusions causing dopaminergic neuronal loss in specific brain regions. Over the last few years, a revolutionary theory has correlated Parkinson's disease and other neurological disorders with a shared mechanism, which determines α-synuclein aggregates and progresses in the host in a prion-like manner. In this review, the main characteristics shared between α-synuclein and prion protein are compared and the cofactors that influence the remodeling of native protein structures and pathogenetic mechanisms underlying neurodegeneration are discussed.
Collapse
|
41
|
Segal A, Zlotnik Y, Moyal-Atias K, Abuhasira R, Ifergane G. Fecal microbiota transplant as a potential treatment for Parkinson's disease - A case series. Clin Neurol Neurosurg 2021; 207:106791. [PMID: 34237681 DOI: 10.1016/j.clineuro.2021.106791] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE We aimed to determine whether fecal microbiota transplant (FMT) is safe and possibly efficacious in treating constipation, motor, and non-motor symptoms in Parkinson's disease (PD) patients. METHODS Patients with PD, constipation and an indication for screening colonoscopy were treated with FMT. The study was conducted from December 2017 to November 2019, and clinical outcomes assessing motor, non-motor and constipation symptoms were compared at baseline (week 0) and at 2, 4, 8, 12, 16, 20, and 24 weeks after the FMT. RESULTS Six patients (3 men, age range 47-73, median age 52) were treated with FMT. Four weeks following the FMT, motor, non-motor and constipation scores were improved in 5 of 6 patients. At week 24, compared to before the FMT, the changes in motor scores ranged from - 13-7 points, in non-motor scores from - 2 to - 45 points, and in constipation scores from - 12-1 point. One patient had a serious adverse event requiring admission for observation only, and no adverse events were observed in all other patients. CONCLUSIONS In this preliminary uncontrolled case series of 6 PD patients, a treatment with donor FMT infused via colonoscopy, was safe and resulted in improvement of PD motor and non-motor symptoms, including constipation, at 6 months. Further research is needed to assess longer-term maintenance of efficacy and safety, including in large scale randomized controlled trials. TRIAL REGISTRATION ClinicalTrials.gov - NCT03876327.
Collapse
Affiliation(s)
- Arik Segal
- Department of Gastroenterology, Soroka University Medical Center, Ben Gurion University, Faculty of Health Sciences, Ben Gurion University, Beer Sheva 8410501, Israel.
| | - Yair Zlotnik
- Department of Neurology, Soroka University Medical Center, Ben Gurion University, Faculty of Health Sciences, Ben Gurion University, Beer Sheva 8410501, Israel.
| | - Keren Moyal-Atias
- Department of Gastroenterology, Soroka University Medical Center, Ben Gurion University, Faculty of Health Sciences, Ben Gurion University, Beer Sheva 8410501, Israel
| | - Ran Abuhasira
- Clinical Research Center, Soroka University Medical Center, Ben Gurion University, Faculty of Health Sciences, Ben Gurion University, Beer Sheva 8410501, Israel.
| | - Gal Ifergane
- Department of Neurology, Soroka University Medical Center, Ben Gurion University, Faculty of Health Sciences, Ben Gurion University, Beer Sheva 8410501, Israel
| |
Collapse
|