1
|
Kim DH, Kim JH, Jeon MT, Kim KS, Kim DG, Choi IS. The Role of TDP-43 in SARS-CoV-2-Related Neurodegenerative Changes. Viruses 2025; 17:724. [PMID: 40431734 PMCID: PMC12115527 DOI: 10.3390/v17050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 05/12/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been linked to long-term neurological effects with multifaceted complications of neurodegenerative diseases. Several studies have found that pathological changes in transactive response DNA-binding protein of 43 kDa (TDP-43) are involved in these cases. This review explores the causal interactions between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and TDP-43 from multiple perspectives. Some viral proteins of SARS-CoV-2 have been shown to induce pathological changes in TDP-43 through its cleavage, aggregation, and mislocalization. SARS-CoV-2 infection can cause liquid-liquid phase separation and stress granule formation, which accelerate the condensation of TDP-43, resulting in host RNA metabolism disruption. TDP-43 has been proposed to interact with SARS-CoV-2 RNA, though its role in viral replication remains to be fully elucidated. This interaction potentially facilitates viral replication, while viral-induced oxidative stress and protease activity accelerate TDP-43 pathology. Evidence from both clinical and experimental studies indicates that SARS-CoV-2 infection may contribute to long-term neurological sequelae, including amyotrophic lateral sclerosis-like and frontotemporal dementia-like features, as well as increased phosphorylated TDP-43 deposition in the central nervous system. Biomarker studies further support the link between TDP-43 dysregulation and neurological complications of long-term effects of COVID-19 (long COVID). In this review, we presented a novel integrative framework of TDP-43 pathology, bridging a gap between SARS-CoV-2 infection and mechanisms of neurodegeneration. These findings underscore the need for further research to clarify the TDP-43-related neurodegeneration underlying SARS-CoV-2 infection and to develop therapeutic strategies aimed at mitigating long-term neurological effects in patients with long COVID.
Collapse
Affiliation(s)
- Dong-Hwi Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (D.-H.K.); (J.-H.K.)
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jae-Hyeong Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (D.-H.K.); (J.-H.K.)
| | - Min-Tae Jeon
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; (M.-T.J.); (K.-S.K.)
| | - Kyu-Sung Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; (M.-T.J.); (K.-S.K.)
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung, Dalseong, Daegu 42988, Republic of Korea
| | - Do-Geun Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; (M.-T.J.); (K.-S.K.)
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung, Dalseong, Daegu 42988, Republic of Korea
| | - In-Soo Choi
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (D.-H.K.); (J.-H.K.)
- Konkuk University Zoonotic Diseases Research Center, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- KU Center for Animal Blood Medical Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Ignacio-Mejía I, Bandala C, González-Zamora JF, Chavez-Galan L, Buendia-Roldan I, Pérez-Torres K, Rodríguez-Díaz MZ, Pacheco-Tobón DX, Quintero-Fabián S, Vargas-Hernández MA, Carrasco-Vargas H, Falfán-Valencia R, Pérez-Rubio G, Hernández-Lara KA, Gómez-Manzo S, Ortega-Cuellar D, Ignacio-Mejía F, Cárdenas-Rodríguez N. Association of Vitamin D Supplementation with Glutathione Peroxidase (GPx) Activity, Interleukine-6 (IL-6) Levels, and Anxiety and Depression Scores in Patients with Post-COVID-19 Condition. Int J Mol Sci 2025; 26:4582. [PMID: 40429727 PMCID: PMC12110956 DOI: 10.3390/ijms26104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19) presents with various symptoms, and some patients develop post-COVID-19 condition (PCC). Vitamin D has shown therapeutic potential in COVID-19 and may offer benefits for PCC. The aim of this study was to evaluate the differences associated with two supplementation strategies (bolus and daily) on interleukin-6 (IL-6) levels, glutathione peroxidase (GPx) activity, and clinical outcomes in PCC patients, regardless of whether target 25 (OH) D levels reached the ideal range. We conducted a self-controlled study in which 54 participants with PCC were supplemented with vitamin D3 (n = 28 bolus and n = 26 daily) for 2 months. Blood samples were collected to measure IL-6 levels and GPx activity using spectrophotometric methods. The Hospital Anxiety and Depression Scale (HADS) was used to assess mental function. Both bolus and daily vitamin D supplementation were significantly associated with increased GPx activity and decreased IL-6 levels. Daily supplementation was additionally associated with a significant reduction in anxiety and depression scores. However, neither regimen was associated with improvements in cough, dyspnea, or fatigue. These findings suggest a potential association between vitamin D supplementation and improvements in antioxidant and neuropsychiatric parameters in PCC, possibly mediated by its immunomodulatory and antioxidant properties. Further placebo-controlled trials are warranted to determine whether these observed associations reflect causal relationships.
Collapse
Affiliation(s)
- Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea, Mexico City 11200, Mexico; (I.I.-M.); (S.Q.-F.)
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Cindy Bandala
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | | | - Leslie Chavez-Galan
- Laboratorio de Inmunología Integrativa, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico;
| | - Ivette Buendia-Roldan
- Laboratorio de Investigación Traslacional en Envejecimiento y Enfermedades Fibróticas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (I.B.-R.); (K.P.-T.); (M.Z.R.-D.); (D.X.P.-T.)
| | - Karina Pérez-Torres
- Laboratorio de Investigación Traslacional en Envejecimiento y Enfermedades Fibróticas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (I.B.-R.); (K.P.-T.); (M.Z.R.-D.); (D.X.P.-T.)
| | - María Zobeida Rodríguez-Díaz
- Laboratorio de Investigación Traslacional en Envejecimiento y Enfermedades Fibróticas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (I.B.-R.); (K.P.-T.); (M.Z.R.-D.); (D.X.P.-T.)
| | - Denilson Xipe Pacheco-Tobón
- Laboratorio de Investigación Traslacional en Envejecimiento y Enfermedades Fibróticas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (I.B.-R.); (K.P.-T.); (M.Z.R.-D.); (D.X.P.-T.)
| | - Saray Quintero-Fabián
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea, Mexico City 11200, Mexico; (I.I.-M.); (S.Q.-F.)
| | - Marco Antonio Vargas-Hernández
- Subdirección de Investigación, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea, Mexico City 11200, Mexico;
| | - Humberto Carrasco-Vargas
- Dirección de la Escuela Militar de Medicina, Universidad del Ejército y Fuerza Aérea, Mexico City 11200, Mexico;
| | - Ramcés Falfán-Valencia
- Laboratorio de HLA, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (R.F.-V.)
| | - Gloria Pérez-Rubio
- Laboratorio de HLA, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (R.F.-V.)
| | - Kevin Alexis Hernández-Lara
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | | | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| |
Collapse
|
3
|
Manolopoulos A, Yao PJ, Kapogiannis D. Extracellular vesicles: translational research and applications in neurology. Nat Rev Neurol 2025; 21:265-282. [PMID: 40181198 DOI: 10.1038/s41582-025-01080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 04/05/2025]
Abstract
Over the past few decades, extensive basic, translational and clinical research has been devoted to deciphering the physiological and pathogenic roles of extracellular vesicles (EVs) in the nervous system. The presence of brain cell-derived EVs in the blood, carrying diverse cargoes, has enabled the development of predictive, diagnostic, prognostic, disease-monitoring and treatment-response biomarkers for various neurological disorders. In this Review, we consider how EV biomarkers can bring us closer to understanding the complex pathogenesis of neurological disorders such as Alzheimer disease, Parkinson disease, stroke, traumatic brain injury, amyotrophic lateral sclerosis and multiple sclerosis. We describe how translational research on EVs might unfold bidirectionally, proceeding from basic to clinical studies but also in the opposite direction, with biomarker findings in the clinic leading to novel hypotheses that can be tested in the laboratory. We demonstrate the potential value of EVs across all stages of the therapeutic development pipeline, from identifying therapeutic targets to the use of EVs as reporters in model systems and biomarkers in clinical research. Finally, we discuss how the cargo and physicochemical properties of naturally occurring and custom-engineered EVs can be leveraged as novel treatments and vehicles for drug delivery, potentially revolutionizing neurotherapeutics.
Collapse
Affiliation(s)
- Apostolos Manolopoulos
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Pamela J Yao
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
4
|
Bachiller S, Vitallé J, Camprubí-Ferrer L, García M, Gallego I, López-García M, Galvá MI, Cañizares J, Rivas-Jeremías I, Díaz-Mateos M, Gasca-Capote C, Moral-Turón C, Galán-Villamor L, Fontillón M, Sobrino S, Cisneros JM, López-Cortés LF, Deierborg T, Ruiz-Mateos E. SARS-CoV-2 post-acute sequelae linked to inflammation via extracellular vesicles. Front Immunol 2025; 16:1501666. [PMID: 40330474 PMCID: PMC12052859 DOI: 10.3389/fimmu.2025.1501666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
Background Despite the efficacy of SARS-CoV-2 vaccines in reducing mortality and severe cases of COVID-19, a proportion of survivors experience long-term symptoms, known as post-acute sequelae of SARS-CoV-2 infection (PASC). This study investigates the long-term immunological and neurodegenerative effects associated with extracellular vesicles (EVs) in COVID-19 survivors, 15 months after SARS-CoV-2 infection. Methods 13 Controls and 20 COVID-19 survivors, 15 months after SARS-CoV-2 infection, were recruited. Pro-inflammatory cytokines were analyzed in both plasma and EVs. A deep-immunophenotyping of monocytes, T-cells and dendritic cells (DCs) was performed, along with immunostainings of SARS-CoV-2 in the colon. Results Higher concentrations of pro-inflammatory cytokines and neurofilaments were found in EVs but not in plasma from COVID-19 survivors. Additionally, COVID-19 participants exhibited altered monocyte activation markers and elevated cytokine production upon lipopolysaccharide stimulation. Increased activation markers in CD4+ T-cells and decreased indoleamine 2,3-dioxygenase expression in DCs were observed in COVID-19 participants. Furthermore, the amount of plasmacytoid DCs expressing β7-integrin were higher in COVID-19, potentially associated with the viral persistence observed in the colon. Conclusions COVID-19 survivors exhibit long-term immune dysregulation and neurodegeneration, emphasizing the need for ongoing monitoring of PASC. The cargo of EVs can be a promising tool for early detection of virus-induced neurological disorders.
Collapse
Affiliation(s)
- Sara Bachiller
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Joana Vitallé
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Manuel García
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Isabel Gallego
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | | | | | | | - Inmaculada Rivas-Jeremías
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | | | - Carmen Gasca-Capote
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Cristina Moral-Turón
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | | | - María Fontillón
- Service of Pathological Anatomy, Virgen del Rocío University Hospital, Seville, Spain
| | - Salvador Sobrino
- Digestive Service, Virgen del Rocío University Hospital, Seville, Spain
| | - José Miguel Cisneros
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Luis Fernando López-Cortés
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Ezequiel Ruiz-Mateos
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| |
Collapse
|
5
|
Shariati M, Gill KL, Peddle M, Cao Y, Xie F, Han X, Lei N, Prowse R, Shan D, Fang L, Huang V, Ding A, Wang P(P. Long COVID and Associated Factors Among Chinese Residents Aged 16 Years and Older in Canada: A Cross-Sectional Online Study. Biomedicines 2025; 13:953. [PMID: 40299550 PMCID: PMC12024693 DOI: 10.3390/biomedicines13040953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/05/2025] [Accepted: 04/08/2025] [Indexed: 05/01/2025] Open
Abstract
As the COVID-19 pandemic evolved, long COVID emerged as a significant threat to public health, characterized by one or more persistent symptoms impacting organ systems beyond 12 weeks of infection. Informative research has been derived from assessments of long COVID among the Chinese populace. However, none of these studies considered the COVID-19 experience of Chinese residents in Canada. Objectives: We aimed to fill this literature gap by delineating the long COVID experience, prevalence, and associated factors among a sample of Chinese residing in Canada during the pandemic. Methods: The present study employed a cross-sectional online survey questionnaire distributed to a sample of Canadian Chinese using a convenience sampling procedure from 22 December 2022 to 15 February 2023. Respondents were probed for sociodemographic background and health-, COVID-, and vaccine-related characteristics. Logistic LASSO regression was used for model building, and multivariate logistic regression was used to identify factors associated with developing long COVID. Results: Among 491 eligible participants, 63 (12.83%) reported experiencing long COVID with a mean duration of 5.31 (95% CI: 4.06-6.57) months and major symptoms including difficulty concentrating (21.67%), pain/discomfort (15.00%), as well as anxiety/depression (8.33%). Our final model identified significant associations between long COVID and two or more COVID-19 infections (OR = 23.725, 95% CI: 5.098-110.398, p < 0.0001), very severe/severe symptoms (OR = 3.177, 95% CI: 1.160-8.702, p = 0.0246), over-the-counter medicine (OR = 2.473, 95% CI: 1.035-5.909, p = 0.0416), and traditional Chinese medicine (OR = 8.259, 95% CI: 3.016-22.620, p < 0.0001). Further, we identified a significant protective effect of very good/good health status (OR = 0.247, 95% CI: 0.112-0.544, p = 0.0005). Conclusions: Long COVID effected a notable proportion of Canadian Chinese for a prolonged period during the COVID-19 pandemic. Our findings underscore the importance of preexisting health status and reinfection prevention when managing long COVID. Moreover, our work indicates an association between using over-the-counter medicine or traditional Chinese medicine and long COVID experience among Canadian Chinese.
Collapse
Affiliation(s)
- Matin Shariati
- Division of Population Health and Applied Health Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John’s, NL A1B 3V6, Canada; (M.S.); (K.L.G.); (M.P.); (N.L.); (R.P.); (D.S.); (L.F.)
| | - Kieran Luke Gill
- Division of Population Health and Applied Health Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John’s, NL A1B 3V6, Canada; (M.S.); (K.L.G.); (M.P.); (N.L.); (R.P.); (D.S.); (L.F.)
- Centre for New Immigrant Well-Being (CNIW), 96 Scarsdale Road, Toronto, ON M3B 2R7, Canada; (Y.C.); (F.X.); (X.H.); (V.H.); (A.D.)
| | - Mark Peddle
- Division of Population Health and Applied Health Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John’s, NL A1B 3V6, Canada; (M.S.); (K.L.G.); (M.P.); (N.L.); (R.P.); (D.S.); (L.F.)
| | - Ying Cao
- Centre for New Immigrant Well-Being (CNIW), 96 Scarsdale Road, Toronto, ON M3B 2R7, Canada; (Y.C.); (F.X.); (X.H.); (V.H.); (A.D.)
| | - Fangli Xie
- Centre for New Immigrant Well-Being (CNIW), 96 Scarsdale Road, Toronto, ON M3B 2R7, Canada; (Y.C.); (F.X.); (X.H.); (V.H.); (A.D.)
| | - Xiao Han
- Centre for New Immigrant Well-Being (CNIW), 96 Scarsdale Road, Toronto, ON M3B 2R7, Canada; (Y.C.); (F.X.); (X.H.); (V.H.); (A.D.)
| | - Nan Lei
- Division of Population Health and Applied Health Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John’s, NL A1B 3V6, Canada; (M.S.); (K.L.G.); (M.P.); (N.L.); (R.P.); (D.S.); (L.F.)
- Centre for New Immigrant Well-Being (CNIW), 96 Scarsdale Road, Toronto, ON M3B 2R7, Canada; (Y.C.); (F.X.); (X.H.); (V.H.); (A.D.)
| | - Rachel Prowse
- Division of Population Health and Applied Health Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John’s, NL A1B 3V6, Canada; (M.S.); (K.L.G.); (M.P.); (N.L.); (R.P.); (D.S.); (L.F.)
| | - Desai Shan
- Division of Population Health and Applied Health Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John’s, NL A1B 3V6, Canada; (M.S.); (K.L.G.); (M.P.); (N.L.); (R.P.); (D.S.); (L.F.)
| | - Lisa Fang
- Division of Population Health and Applied Health Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John’s, NL A1B 3V6, Canada; (M.S.); (K.L.G.); (M.P.); (N.L.); (R.P.); (D.S.); (L.F.)
- Centre for New Immigrant Well-Being (CNIW), 96 Scarsdale Road, Toronto, ON M3B 2R7, Canada; (Y.C.); (F.X.); (X.H.); (V.H.); (A.D.)
| | - Vita Huang
- Centre for New Immigrant Well-Being (CNIW), 96 Scarsdale Road, Toronto, ON M3B 2R7, Canada; (Y.C.); (F.X.); (X.H.); (V.H.); (A.D.)
| | - Arianna Ding
- Centre for New Immigrant Well-Being (CNIW), 96 Scarsdale Road, Toronto, ON M3B 2R7, Canada; (Y.C.); (F.X.); (X.H.); (V.H.); (A.D.)
| | - Peizhong (Peter) Wang
- Division of Population Health and Applied Health Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John’s, NL A1B 3V6, Canada; (M.S.); (K.L.G.); (M.P.); (N.L.); (R.P.); (D.S.); (L.F.)
- Centre for New Immigrant Well-Being (CNIW), 96 Scarsdale Road, Toronto, ON M3B 2R7, Canada; (Y.C.); (F.X.); (X.H.); (V.H.); (A.D.)
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, Room 534, Toronto, ON M5T 3M7, Canada
| |
Collapse
|
6
|
Mink S, Wilhelm F, Cadamuro J, Reimann P, Fraunberger P. Anti-SARS-CoV-2 Antibodies in Long-COVID-Markers of Protection or Elevated Risk? A Systematic Review. Rev Med Virol 2025; 35:e70027. [PMID: 39993991 DOI: 10.1002/rmv.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
Long-COVID affects a significant number of COVID-19 survivors, profoundly impacting daily life and work. Although research suggests a potential link between antibody levels and long-COVID risk, findings remain inconclusive. Understanding antibody dynamics could support the identification of patients at risk, improve long-COVID diagnosis, and guide protective strategies such as vaccination. Despite growing evidence, no systematic review has yet evaluated the current literature on this topic. We therefore aimed to synthesise and evaluate existing evidence on the association between anti-SARS-CoV-2 antibody titres and long-COVID, with the goal of clarifying their potential role in predicting long-COVID risk, guiding patient management, and informing future research directions. Studies published in PubMed/Medline databases between January 2020 and October 2024 were included without language restrictions. Studies on body fluids other than serum/blood were excluded. Study selection and quality assessment was conducted independently by two researchers. After screening 949 studies, 58 studies encompassing 53,739 individuals, and 7812 long-COVID patients, were included. Evidence was highly heterogenous but most studies reported an association between anti-SARS-CoV-2-spike antibodies and long-COVID, although the nature of the association appeared to be dependent on time from acute infection. Low anti-SARS-CoV-2-spike antibodies during acute COVID-19 were associated with increased risk of long-COVID. The association between low anti-SARS-CoV-2-spike antibodies during acute COVID-19 and long-COVID suggests that maintaining sufficiently high antibody levels may be protective. However, the current evidence level is low and further studies with sufficient power are required to confirm this association and to potentially determine protective cutoffs.
Collapse
Affiliation(s)
- Sylvia Mink
- Central Medical Laboratories, Feldkirch, Austria
- Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | | | - Janne Cadamuro
- Department of Laboratory Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Patrick Reimann
- Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
- Department of Internal Medicine, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Peter Fraunberger
- Central Medical Laboratories, Feldkirch, Austria
- Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| |
Collapse
|
7
|
Jahantigh HR, Elsharkawy A, Guglani A, Arora K, Patterson LD, Kumar M. Neurobiological Alterations Induced by SARS-CoV-2: Insights from Variant-Specific Host Gene Expression Patterns in hACE2-Expressing Mice. Viruses 2025; 17:329. [PMID: 40143258 PMCID: PMC11946589 DOI: 10.3390/v17030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Since the onset of the COVID-19 pandemic, various severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants have emerged. Although the primary site of SARS-CoV-2 infection is the lungs, it can also affect the brain and induce neurological symptoms. However, the specific effects of different variants on the brain remain unclear. In this study, a whole-transcriptome analysis was conducted using the brain tissues of K18-hACE2 mice infected with the ancestral B.1 (Wuhan) variant and with major SARS-CoV-2 variants of concern, including B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta) and B.1.529 (Omicron). After sequencing, differential gene expression, gene ontology (GO) and genome pathway enrichment analyses were performed. An Immune Cell Abundance Identifier (ImmuCellAI) was used to identify the abundance of different cell populations. Additionally, RT-qPCR was used to validate the RNA-seq data. The viral load and hierarchical clustering analyses divided the samples into two different clusters with notable differences in gene expression at day 6 post-infection for all variants compared to the control group. GO and the Kyoto Encyclopedia of genes and genomes enrichment analyses revealed similar patterns of pathway enrichment for different variants. ImmuCellAI revealed the changes in immune cell populations, including the decrease in CD4+ T and B cell proportions and the increase in CD8+ T and dendritic cell proportions. A co-expression network analysis revealed that some genes, such as STAT1, interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α), were dysregulated in all variants. A RT-qPCR analysis for IL-6, CXCL10 and IRF7 further validated the RNA-seq analysis. In conclusion, this study provides, for the first time, an extensive transcriptome analysis of a K18-hACE2 mouse brain after infection with major SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Hamid Reza Jahantigh
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (H.R.J.); (A.E.); (A.G.); (K.A.); (L.D.P.)
| | - Amany Elsharkawy
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (H.R.J.); (A.E.); (A.G.); (K.A.); (L.D.P.)
- Center of Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Anchala Guglani
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (H.R.J.); (A.E.); (A.G.); (K.A.); (L.D.P.)
| | - Komal Arora
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (H.R.J.); (A.E.); (A.G.); (K.A.); (L.D.P.)
| | - Lila D. Patterson
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (H.R.J.); (A.E.); (A.G.); (K.A.); (L.D.P.)
| | - Mukesh Kumar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (H.R.J.); (A.E.); (A.G.); (K.A.); (L.D.P.)
- Center of Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
8
|
Guedj E, Cionca A, Péron JA, Ayubcha C, Assal F, Horowitz T, Alavi A. Long Coronavirus Disease and the Brain: Molecular Neuroimaging Insights into Neurologic and Psychiatric Sequelae. PET Clin 2025; 20:39-55. [PMID: 39482218 DOI: 10.1016/j.cpet.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has led to a variety of health challenges, with "long COVID" emerging as a widespread and debilitating post-acute syndrome among a considerable number of infected patients. This PET review synthesizes current evidence of the neurologic and psychiatric sequelae of COVID. This review also explores the pathophysiological mechanisms of these results, including astrocyte dysfunction and glutamate dysregulation, as well as the multimodal comparison to MR imaging findings. The findings underscore the potential for long-term brain injury. Additionally, the authors discuss the role of advanced imaging multimodal techniques in diagnosing, monitoring, and guiding treatment strategies for long COVID.
Collapse
Affiliation(s)
- Eric Guedj
- Biophysics and Nuclear Medicine, Aix Marseille University, Marseille, France; APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, Marseille, France; Nuclear Medicine Department, CERIMED, Marseille, France.
| | - Alexandre Cionca
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julie A Péron
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology, University of Geneva, Geneva, Switzerland; Neurology Division, Geneva University Hospitals, Geneva, Switzerland
| | - Cyrus Ayubcha
- Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Frédéric Assal
- Neurology Division, Geneva University Hospitals, Geneva, Switzerland; Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tatiana Horowitz
- Biophysics and Nuclear Medicine, Aix Marseille University, Marseille, France; APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, Marseille, France; Nuclear Medicine Department, CERIMED, Marseille, France
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Dieter RS, Kempaiah P, Dieter EG, Alcazar A, Tafur A, Gerotziafas G, Gonzalez Ochoa A, Abdesselem S, Biller J, Kipshidze N, Vandreden P, Guerrini M, Dieter RA, Durvasula R, Singh M, Fareed J. Cardiovascular Symposium on Perspectives in Long COVID. Clin Appl Thromb Hemost 2025; 31:10760296251319963. [PMID: 39943820 PMCID: PMC11822813 DOI: 10.1177/10760296251319963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Significant progress has been made in treating Coronavirus disease (COVID) - an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). An ominous turn in the pandemic is the evolving public health crisis emanating from persistent SARS-CoV-2 infection and its associated long-term impact. Long COVID or post-COVID syndrome describes protean symptoms that persist at least 3 months after the onset of acute illness and last for at least 2 months in individuals with a history of confirmed SARS-CoV-2 infection. Long COVID has become a public health concern. Millions of infected individuals are now facing chronic multi-organ failures, including neuropsychiatric, cardiovascular, pulmonary, and kidney complications. In general, the cause of long COVID syndrome is unclear but factors such as prolonged activation of immune responses, and viral persistence triggering transcription dysregulation of genes associated with normal thrombotic disease may play a role in cardiovascular complications. Although inflammatory biomarkers are reported in other disorders, it remains unclear whether similar biomarkers are associated with cardiovascular manifestations following COVID. Medications such as sulodexide directed at glycocalyx and coagulation have demonstrated benefits for long COVID in smaller studies. Here, we describe the outcomes of the symposium on the underlying cardiovascular mechanisms of the long COVID.
Collapse
Affiliation(s)
- Robert S. Dieter
- Loyola University Stritch School of Medicine, Maywood, USA
- VA Hines, IL, USA
| | - Prakasha Kempaiah
- Loyola University Stritch School of Medicine, Maywood, USA
- Loyola University Chicago, Maywood, IL, USA
| | | | | | - Alfonso Tafur
- Endeavor Health, University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Grigoris Gerotziafas
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team “Cancer, Vessels, Biology and Therapeutics” (CaVITE), Group “Cancer – Angiogenesis – Thrombosis”, University Institute of Cancerology (UIC), Saint Antoine University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
- Thrombosis and Haemostasis Center, Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | - Jose Biller
- Loyola University Stritch School of Medicine, Maywood, USA
| | | | - Patrick Vandreden
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team “Cancer, Vessels, Biology and Therapeutics” (CaVITE), Group “Cancer – Angiogenesis – Thrombosis”, University Institute of Cancerology (UIC), Saint Antoine University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
- Department of Clinical Research, Diagnostica Stago, Gennevilliers, France
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche G-Ronzoni – NMR Center, Milano, Italy
| | | | | | - Meharvan Singh
- Loyola University Stritch School of Medicine, Maywood, USA
- Loyola University Chicago, Maywood, IL, USA
| | - Jawed Fareed
- Loyola University Stritch School of Medicine, Maywood, USA
- Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
10
|
Bolotova EV, Zabolotskaya TY, Dudnikova AV, Frolova TI, Tarina ED. [The effectiveness of Cytoflavin in the medical rehabilitation of elderly and senile patients]. TERAPEVT ARKH 2024; 96:1063-1068. [PMID: 39731767 DOI: 10.26442/00403660.2024.11.203034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Indexed: 12/30/2024]
Abstract
AIM Study the effectiveness of Cytoflavin in the medical rehabilitation of elderly and senile patients after pneumonia associated with a new coronavirus infection (COVID-19) at the outpatient stage. MATERIALS AND METHODS A prospective observational randomized study involving 66 patients (45 women and 21 men, average age 66.5±5.1 years) undergoing outpatient medical rehabilitation after pneumonia associated with COVID-19, divided into 2 groups, comparable in age and gender. A standardized comprehensive rehabilitation program was conducted in both groups. Patients of the main group were additionally prescribed Cytoflavin according to the standard regimen. Testing was carried out on scales reflecting the physical condition, degree of asthenization, psycho-emotional and cognitive status (Borg scale, 6-minute walk test, SHAS-scale, Multidimensional Fatigue Inventory, Mini-mental State Examination, Hospital Anxiety and Depression Scale) upon admission to outpatient treatment and upon discharge. RESULTS Against the background of Cytoflavin therapy, positive dynamics was observed in patients of the main group in the form of a decrease in the values of SHAS-scale (86.5 [7.3] vs 56.3 [7.2]; p=0.00001), Multidimensional Fatigue Inventory (68.6 [14.7] vs 43.6 [12.8]; p=0.025); improvements in TSH (383.3 m [48.2] vs 550 m [32.5]; p=0.0248) and the Borg scale 4.5 [1.32] vs 2.2 [0.52]; p=0.038); the severity of cognitive impairment on the Mini-Mental State Examination decreased (26.05 [1.3] vs 28.47 [0.86]; p=0.0001); the emotional background improved - a decrease in the level of anxiety (10.7 [1.25] vs 5.6 [0.81]; p=0.0001) and depression (11.8 [1.48] vs 7.0 [1.24]; p=0.0001). CONCLUSION The standard course of Cytoflavin therapy in the medical rehabilitation of elderly and senile patients after pneumonia associated with COVID-19 significantly reduces the severity of cognitive impairment, fatigue and depressive disorders, improves indicators of the emotional and volitional sphere, increases exercise tolerance.
Collapse
Affiliation(s)
| | - T Y Zabolotskaya
- Kuban State Medical University
- Scientific Research Institute - Ochapovsky Regional Clinic Hospital
| | | | | | - E D Tarina
- Scientific Research Institute - Ochapovsky Regional Clinic Hospital
| |
Collapse
|
11
|
Almulla AF, Thipakorn Y, Zhou B, Vojdani A, Maes M. Immune activation and immune-associated neurotoxicity in Long-COVID: A systematic review and meta-analysis of 103 studies comprising 58 cytokines/chemokines/growth factors. Brain Behav Immun 2024; 122:75-94. [PMID: 39127088 DOI: 10.1016/j.bbi.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Multiple studies have shown that Long COVID (LC) disease is associated with heightened immune activation, as evidenced by elevated levels of inflammatory mediators. However, there is no comprehensive meta-analysis focusing on activation of the immune inflammatory response system (IRS) and the compensatory immunoregulatory system (CIRS) along with other immune phenotypes in LC patients. OBJECTIVES This meta-analysis is designed to explore the IRS and CIRS profiles in LC patients, the individual cytokines, chemokines, growth factors, along with C-reactive protein (CRP) and immune-associated neurotoxicity. METHODS To gather relevant studies for our research, we conducted a thorough search using databases such as PubMed, Google Scholar, and SciFinder, covering all available literature up to July 5th, 2024. RESULTS The current meta-analysis encompassed 103 studies that examined multiple immune profiles, C-reactive protein, and 58 cytokines/chemokines/growth factors in 5502 LC patients versus 5962 normal controls (NC). LC patients showed significant increases in IRS/CIRS ratio (standardized mean difference (SMD: 0.156, confidence interval (CI): 0.062;0.250), IRS (SMD: 0.338, CI: 0.236;0.440), M1 macrophage (SMD: 0.371, CI: 0.263;0.480), T helper (Th)1 (SMD: 0.316, CI: 0.185;0.446), Th17 (SMD: 0.439, CI: 0.302;0.577) and immune-associated neurotoxicity (SMD: 0.384, CI: 0.271;0.497). In addition, CRP and 21 different cytokines displayed significantly elevated levels in LC patients compared to NC. CONCLUSION LC disease is characterized by IRS activation and increased immune-associated neurotoxicity.
Collapse
Affiliation(s)
- Abbas F Almulla
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yanin Thipakorn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Bo Zhou
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Aristo Vojdani
- Immunosciences Lab, Inc., Los Angeles, CA 90035, USA; Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA
| | - Michael Maes
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Fitness and Biopsychological Technology Research Unit, Faculty of Medicine. Chulalongkorn University, Bangkok 10330, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria; Strategic Research and Innovation Program for the Development of MU - PLOVDIV-(SRIPD-MUP), European Union - NextGenerationEU; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea.
| |
Collapse
|
12
|
Peluso MJ, Deeks SG. Mechanisms of long COVID and the path toward therapeutics. Cell 2024; 187:5500-5529. [PMID: 39326415 PMCID: PMC11455603 DOI: 10.1016/j.cell.2024.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/28/2024]
Abstract
Long COVID, a type of post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (PASC) defined by medically unexplained symptoms following infection with SARS-CoV-2, is a newly recognized infection-associated chronic condition that causes disability in some people. Substantial progress has been made in defining its epidemiology, biology, and pathophysiology. However, there is no cure for the tens of millions of people believed to be experiencing long COVID, and industry engagement in developing therapeutics has been limited. Here, we review the current state of knowledge regarding the biology and pathophysiology of long COVID, focusing on how the proposed mechanisms explain the physiology of the syndrome and how they provide a rationale for the implementation of a broad experimental medicine and clinical trials agenda. Progress toward preventing and curing long COVID and other infection-associated chronic conditions will require deep and sustained investment by funders and industry.
Collapse
Affiliation(s)
- Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Gutman EG, Salvio AL, Fernandes RA, Duarte LA, Raposo-Vedovi JV, Alcaraz HF, Teixeira MA, Passos GF, de Medeiros KQM, Hammerle MB, Pires KL, Vasconcelos CCF, Leon LAA, Figueiredo CP, Alves-Leon SV. Long COVID: plasma levels of neurofilament light chain in mild COVID-19 patients with neurocognitive symptoms. Mol Psychiatry 2024; 29:3106-3116. [PMID: 38678084 PMCID: PMC11449780 DOI: 10.1038/s41380-024-02554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024]
Abstract
It is well known the potential of severe acute respiratory coronavirus type 2 (SARS-CoV-2) infection to induce post-acute sequelae, a condition called Long COVID. This syndrome includes several symptoms, but the central nervous system (CNS) main one is neurocognitive dysfunction. Recently it has been demonstrated the relevance of plasma levels of neurofilament light chain (pNfL), as a biomarker of early involvement of the CNS in COVID-19. The aim of this study was to investigate the relationship between pNfL in patients with post-acute neurocognitive symptoms and the potential of NfL as a prognostic biomarker in these cases. A group of 63 long COVID patients ranging from 18 to 59 years-old were evaluated, submitted to a neurocognitive battery assessment, and subdivided in different groups, according to results. Plasma samples were collected during the long COVID assessment and used for measurement of pNfL with the Single molecule array (SIMOA) assays. Levels of pNfL were significantly higher in long COVID patients with neurocognitive symptoms when compared to HC (p = 0.0031). Long COVID patients with cognitive impairment and fatigue symptoms presented higher pNfL levels when compared to long COVID patients without these symptoms, individually and combined (p = 0.0263, p = 0.0480, and 0.0142, respectively). Correlation analysis showed that levels of cognitive lost and exacerbation of fatigue in the neurocognitive evaluation had a significative correlation with higher pNfL levels (p = 0.0219 and 0.0255, respectively). Previous reports suggested that pNfL levels are related with higher risk of severity and predict lethality of COVID-19. Our findings demonstrate that SARS-CoV-2 infection seems to have a long-term impact on the brain, even in patients who presented mild acute disease. NfL measurements might be useful to identify CNS involvement in long COVID associated with neurocognitive symptoms and to identify who will need continuous monitoring and treatment support.
Collapse
Affiliation(s)
- Elisa Gouvea Gutman
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil
- Clinical Medicine post-graduation program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andreza Lemos Salvio
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil
| | - Renan Amphilophio Fernandes
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil
| | - Larissa Araujo Duarte
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil
- Clinical Medicine post-graduation program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jessica Vasques Raposo-Vedovi
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil
| | - Helena França Alcaraz
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil
| | - Milene Ataíde Teixeira
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil
| | | | | | - Mariana Beiral Hammerle
- Division of Neurology, Gaffrée and Guinle University Hospital, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Karina Lebeis Pires
- Division of Neurology, Gaffrée and Guinle University Hospital, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Soniza Vieira Alves-Leon
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil.
- Department of Neurology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
14
|
Furman S, Green K, Lane TE. COVID-19 and the impact on Alzheimer's disease pathology. J Neurochem 2024; 168:3415-3429. [PMID: 37850241 PMCID: PMC11024062 DOI: 10.1111/jnc.15985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has rapidly escalated into a global pandemic that primarily affects older and immunocompromised individuals due to underlying clinical conditions and suppressed immune responses. Furthermore, COVID-19 patients exhibit a spectrum of neurological symptoms, indicating that COVID-19 can affect the brain in a variety of manners. Many studies, past and recent, suggest a connection between viral infections and an increased risk of neurodegeneration, raising concerns about the neurological effects of COVID-19 and the possibility that it may contribute to Alzheimer's disease (AD) onset or worsen already existing AD pathology through inflammatory processes given that both COVID-19 and AD share pathological features and risk factors. This leads us to question whether COVID-19 is a risk factor for AD and how these two conditions might influence each other. Considering the extensive reach of the COVID-19 pandemic and the devastating impact of the ongoing AD pandemic, their combined effects could have significant public health consequences worldwide.
Collapse
Affiliation(s)
- Susana Furman
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
| | - Kim Green
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
| | - Thomas E. Lane
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine 92697, USA
- Center for Virus Research, University of California, Irvine 92697, USA
| |
Collapse
|
15
|
Hristova M, Massaldjieva R, Chervenkov L, Atanassova P. Cognitive functions in a 29-year-old male with post-COVID syndrome and long-term psoriasis - a case study. Folia Med (Plovdiv) 2024; 66:587-591. [PMID: 39257263 DOI: 10.3897/folmed.66.e124311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/19/2024] [Indexed: 09/12/2024] Open
Abstract
Post-acute COVID syndrome (PACS), or long COVID, is a newly defined condition emerging as a widespread post-pandemic diagnosis with prevalent neuro-psychiatric symptoms and possible neuroinflammation-associated pathogenetic mechanisms.
Collapse
|
16
|
Fanelli M, Petrone V, Chirico R, Radu CM, Minutolo A, Matteucci C. Flow cytometry for extracellular vesicle characterization in COVID-19 and post-acute sequelae of SARS-CoV-2 infection. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:417-437. [PMID: 39697632 PMCID: PMC11648478 DOI: 10.20517/evcna.2024.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 12/20/2024]
Abstract
Infection with SARS-CoV-2, the virus responsible for COVID-19 diseases, can impact different tissues and induce significant cellular alterations. The production of extracellular vesicles (EVs), which are physiologically involved in cell communication, is also altered during COVID-19, along with the dysfunction of cytoplasmic organelles. Since circulating EVs reflect the state of their cells of origin, they represent valuable tools for monitoring pathological conditions. Despite challenges in detecting EVs due to their size and specific cellular compartment origin using different methodologies, flow cytometry has proven to be an effective method for assessing the role of EVs in COVID-19. This review summarizes the involvement of plasmatic EVs in COVID-19 patients and individuals with Long COVID (LC) affected by post-acute sequelae of SARS-CoV-2 infection (PASC), highlighting their dual role in exerting both pro- and antiviral effects. We also emphasize how flow cytometry, with its multiparametric approach, can be employed to characterize circulating EVs, particularly in infectious diseases such as COVID-19, and suggest their potential role in chronic impairments during post-infection.
Collapse
Affiliation(s)
- Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Rossella Chirico
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Claudia Maria Radu
- Department of Medicine - DIMED, Thrombotic and Hemorrhagic Diseases Unit, University of Padua, Padua 35128 Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
- Authors contributed equally
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
- Authors contributed equally
| |
Collapse
|
17
|
De Lorenzo R, Loré NI, Finardi A, Mandelli A, Calesella F, Palladini M, Cirillo DM, Tresoldi C, Ciceri F, Rovere-Querini P, Manfredi AA, Mazza MG, Benedetti F, Furlan R. Inflammatory Markers Predict Blood Neurofilament Light Chain Levels in Acute COVID-19 Patients. Int J Mol Sci 2024; 25:8259. [PMID: 39125829 PMCID: PMC11311410 DOI: 10.3390/ijms25158259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Acute coronavirus disease 2019 (COVID-19) is paralleled by a rise in the peripheral levels of neurofilament light chain (NfL), suggesting early nervous system damage. In a cohort of 103 COVID-19 patients, we studied the relationship between the NfL and peripheral inflammatory markers. We found that the NfL levels are significantly predicted by a panel of circulating cytokines/chemokines, including CRP, IL-4, IL-8, IL-9, Eotaxin, and MIP-1ß, which are highly up-regulated during COVID-19 and are associated with clinical outcomes. Our findings show that peripheral cytokines influence the plasma levels of the NfL, suggesting a potential role of the NfL as a marker of neuronal damage associated with COVID-19 inflammation.
Collapse
Affiliation(s)
- Rebecca De Lorenzo
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (R.D.L.); (N.I.L.); (P.R.-Q.); (A.A.M.)
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Nicola I. Loré
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (R.D.L.); (N.I.L.); (P.R.-Q.); (A.A.M.)
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Annamaria Finardi
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (A.F.); (A.M.); (R.F.)
| | - Alessandra Mandelli
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (A.F.); (A.M.); (R.F.)
| | - Federico Calesella
- Faculty of Psychology, Università Vita-Salute San Raffaele, 20132 Milan, Italy; (F.C.); (M.P.)
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Mariagrazia Palladini
- Faculty of Psychology, Università Vita-Salute San Raffaele, 20132 Milan, Italy; (F.C.); (M.P.)
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Daniela M. Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Cristina Tresoldi
- Hematology and Bone Marrow Transplant, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Fabio Ciceri
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy;
- Hematology and Bone Marrow Transplant, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Patrizia Rovere-Querini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (R.D.L.); (N.I.L.); (P.R.-Q.); (A.A.M.)
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Angelo A. Manfredi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (R.D.L.); (N.I.L.); (P.R.-Q.); (A.A.M.)
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Mario G. Mazza
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Francesco Benedetti
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy;
- Faculty of Psychology, Università Vita-Salute San Raffaele, 20132 Milan, Italy; (F.C.); (M.P.)
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Roberto Furlan
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (A.F.); (A.M.); (R.F.)
| |
Collapse
|
18
|
Wynberg E, Han AX, van Willigen HDG, Verveen A, van Pul L, Maurer I, van Leeuwen EM, van den Aardweg JG, de Jong MD, Nieuwkerk P, Prins M, Kootstra NA, de Bree GJ. Inflammatory profiles are associated with long COVID up to 6 months after COVID-19 onset: A prospective cohort study of individuals with mild to critical COVID-19. PLoS One 2024; 19:e0304990. [PMID: 39008486 PMCID: PMC11249251 DOI: 10.1371/journal.pone.0304990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/17/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND After initial COVID-19, immune dysregulation may persist and drive post-acute sequelae of COVID-19 (PASC). We described longitudinal trajectories of cytokines in adults up to 6 months following SARS-CoV-2 infection and explored early predictors of PASC. METHODS RECoVERED is a prospective cohort of individuals with laboratory-confirmed SARS-CoV-2 infection between May 2020 and June 2021 in Amsterdam, the Netherlands. Serum was collected at weeks 4, 12 and 24 of follow-up. Monthly symptom questionnaires were completed from month 2 after COVID-19 onset onwards; lung diffusion capacity (DLCO) was tested at 6 months. Cytokine concentrations were analysed by human magnetic Luminex screening assay. We used a linear mixed-effects model to study log-concentrations of cytokines over time, assessing their association with socio-demographic and clinical characteristics that were included in the model as fixed effects. RESULTS 186/349 (53%) participants had ≥2 serum samples and were included in current analyses. Of these, 101/186 (54%: 45/101[45%] female, median age 55 years [IQR = 45-64]) reported PASC at 12 and 24 weeks after COVID-19 onset. We included 37 reference samples (17/37[46%] female, median age 49 years [IQR = 40-56]). In a multivariate model, PASC was associated with raised CRP and abnormal diffusion capacity with raised IL10, IL17, IL6, IP10 and TNFα at 24 weeks. Early (0-4 week) IL-1β and BMI at COVID-19 onset were predictive of PASC at 24 weeks. CONCLUSIONS Our findings indicate that immune dysregulation plays an important role in PASC pathogenesis, especially among individuals with reduced pulmonary function. Early IL-1β shows promise as a predictor of PASC.
Collapse
Affiliation(s)
- Elke Wynberg
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
| | - Alvin X Han
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Hugo D G van Willigen
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Anouk Verveen
- Department of Medical Psychology, Amsterdam UMC, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Lisa van Pul
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Irma Maurer
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Ester M van Leeuwen
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Joost G van den Aardweg
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Menno D de Jong
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Pythia Nieuwkerk
- Department of Medical Psychology, Amsterdam UMC, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Maria Prins
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Department of Infectious Diseases, Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Neeltje A Kootstra
- Department of Medical Psychology, Amsterdam UMC, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Godelieve J de Bree
- Department of Infectious Diseases, Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Ashmawy R, Hammouda EA, El-Maradny YA, Aboelsaad I, Hussein M, Uversky VN, Redwan EM. Interplay between Comorbidities and Long COVID: Challenges and Multidisciplinary Approaches. Biomolecules 2024; 14:835. [PMID: 39062549 PMCID: PMC11275036 DOI: 10.3390/biom14070835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Long COVID, a name often given to the persistent symptoms following acute SARS-CoV-2 infection, poses a multifaceted challenge for health. This review explores the intrinsic relationship between comorbidities and autoimmune responses in shaping the trajectory of long COVID. Autoantibodies have emerged as significant players in COVID-19 pathophysiology, with implications for disease severity and progression. Studies show immune dysregulation persisting months after infection, marked by activated innate immune cells and high cytokine levels. The presence of autoantibodies against various autoantigens suggests their potential as comorbid factors in long COVID. Additionally, the formation of immune complexes may lead to severe disease progression, highlighting the urgency for early detection and intervention. Furthermore, long COVID is highly linked to cardiovascular complications and neurological symptoms, posing challenges in diagnosis and management. Multidisciplinary approaches, including vaccination, tailored rehabilitation, and pharmacological interventions, are used for mitigating long COVID's burden. However, numerous challenges persist, from evolving diagnostic criteria to addressing the psychosocial impact and predicting disease outcomes. Leveraging AI-based applications holds promise in enhancing patient management and improving our understanding of long COVID. As research continues to unfold, unravelling the complexities of long COVID remains paramount for effective intervention and patient care.
Collapse
Affiliation(s)
- Rasha Ashmawy
- Clinical Research Administration, Directorate of Health Affairs, Ministry of Health and Population, Alexandria 21554, Egypt; (R.A.); (I.A.); (M.H.)
- Biomedical Informatics and Medical Statistics, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt;
| | - Esraa Abdellatif Hammouda
- Biomedical Informatics and Medical Statistics, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt;
- Clinical Research Department, El-Raml Pediatric Hospital, Ministry of Health and Population, Alexandria 21563, Egypt
| | - Yousra A. El-Maradny
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab 21934, Alexandria, Egypt;
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El-Alamein Campus, Aswan 51718, Egypt
| | - Iman Aboelsaad
- Clinical Research Administration, Directorate of Health Affairs, Ministry of Health and Population, Alexandria 21554, Egypt; (R.A.); (I.A.); (M.H.)
| | - Mai Hussein
- Clinical Research Administration, Directorate of Health Affairs, Ministry of Health and Population, Alexandria 21554, Egypt; (R.A.); (I.A.); (M.H.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Elrashdy M. Redwan
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg EL-Arab 21934, Alexandria, Egypt
| |
Collapse
|
20
|
Kim AY, Al Jerdi S, MacDonald R, Triggle CR. Alzheimer's disease and its treatment-yesterday, today, and tomorrow. Front Pharmacol 2024; 15:1399121. [PMID: 38868666 PMCID: PMC11167451 DOI: 10.3389/fphar.2024.1399121] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024] Open
Abstract
Alois Alzheimer described the first patient with Alzheimer's disease (AD) in 1907 and today AD is the most frequently diagnosed of dementias. AD is a multi-factorial neurodegenerative disorder with familial, life style and comorbidity influences impacting a global population of more than 47 million with a projected escalation by 2050 to exceed 130 million. In the USA the AD demographic encompasses approximately six million individuals, expected to increase to surpass 13 million by 2050, and the antecedent phase of AD, recognized as mild cognitive impairment (MCI), involves nearly 12 million individuals. The economic outlay for the management of AD and AD-related cognitive decline is estimated at approximately 355 billion USD. In addition, the intensifying prevalence of AD cases in countries with modest to intermediate income countries further enhances the urgency for more therapeutically and cost-effective treatments and for improving the quality of life for patients and their families. This narrative review evaluates the pathophysiological basis of AD with an initial focus on the therapeutic efficacy and limitations of the existing drugs that provide symptomatic relief: acetylcholinesterase inhibitors (AChEI) donepezil, galantamine, rivastigmine, and the N-methyl-D-aspartate receptor (NMDA) receptor allosteric modulator, memantine. The hypothesis that amyloid-β (Aβ) and tau are appropriate targets for drugs and have the potential to halt the progress of AD is critically analyzed with a particular focus on clinical trial data with anti-Aβ monoclonal antibodies (MABs), namely, aducanumab, lecanemab and donanemab. This review challenges the dogma that targeting Aβ will benefit the majority of subjects with AD that the anti-Aβ MABs are unlikely to be the "magic bullet". A comparison of the benefits and disadvantages of the different classes of drugs forms the basis for determining new directions for research and alternative drug targets that are undergoing pre-clinical and clinical assessments. In addition, we discuss and stress the importance of the treatment of the co-morbidities, including hypertension, diabetes, obesity and depression that are known to increase the risk of developing AD.
Collapse
Affiliation(s)
- A. Y. Kim
- Medical Education, Weill Cornell Medicine—Qatar, Doha, Qatar
| | | | - R. MacDonald
- Health Sciences Library, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - C. R. Triggle
- Department of Pharmacology and Medical Education, Weill Cornell Medicine—Qatar, Doha, Qatar
| |
Collapse
|
21
|
Zhang Y, Chen S, Tian Y, Fu X. Host factors of SARS-CoV-2 in infection, pathogenesis, and long-term effects. Front Cell Infect Microbiol 2024; 14:1407261. [PMID: 38846354 PMCID: PMC11155306 DOI: 10.3389/fcimb.2024.1407261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
SARS-CoV-2 is the causative virus of the devastating COVID-19 pandemic that results in an unparalleled global health and economic crisis. Despite unprecedented scientific efforts and therapeutic interventions, the fight against COVID-19 continues as the rapid emergence of different SARS-CoV-2 variants of concern and the increasing challenge of long COVID-19, raising a vast demand to understand the pathomechanisms of COVID-19 and its long-term sequelae and develop therapeutic strategies beyond the virus per se. Notably, in addition to the virus itself, the replication cycle of SARS-CoV-2 and clinical severity of COVID-19 is also governed by host factors. In this review, we therefore comprehensively overview the replication cycle and pathogenesis of SARS-CoV-2 from the perspective of host factors and host-virus interactions. We sequentially outline the pathological implications of molecular interactions between host factors and SARS-CoV-2 in multi-organ and multi-system long COVID-19, and summarize current therapeutic strategies and agents targeting host factors for treating these diseases. This knowledge would be key for the identification of new pathophysiological aspects and mechanisms, and the development of actionable therapeutic targets and strategies for tackling COVID-19 and its sequelae.
Collapse
Affiliation(s)
| | | | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, Chengdu, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, Chengdu, China
| |
Collapse
|
22
|
Wiśniewska A, Kijak A, Nowak K, Lulek M, Skwarek A, Małecka-Giełdowska M, Śmiarowski M, Wąsik S, Ciepiela O. Organ-Dysfunction Markers in Mild-to-Moderate COVID-19 Convalescents. J Clin Med 2024; 13:2241. [PMID: 38673514 PMCID: PMC11050795 DOI: 10.3390/jcm13082241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Background: A coronavirus disease 2019 (COVID-19) outbreak led to a worldwide pandemic. COVID-19 not only caused acute symptoms during the severe phase of the disease, but also induced long-term side effects on the functioning of many organs and systems. Symptoms that were associated with the disease and present at least 3 months after recovery were named long COVID. The aim of this study was to assess if mild-to-moderate COVID-19 may lead to the dysfunction of respiratory, cardiovascular, neural, and renal systems in healthy blood donors who recovered from the disease at least 6 months earlier. Methods: Here, we examined 294 adults among volunteer blood donors divided into convalescents (n = 215) and healthy controls (n = 79). Concentrations of soluble CD163, TGF beta, Lp-PLA2, NCAM-1, S100, NGAL, and creatinine were measured either by ELISA or automated methods. The probability value p < 0.05 was considered as statistically significant. Results: We found significant differences in Lp-PLA2, S100, and NCAM-1 between convalescents and never-infected subjects. Lp-PLA2 and NCAM-1 were lower, and S100 higher, in convalescents than in the control group. Conclusion: Mild-to-moderate COVID-19 convalescents are at a low risk of developing lung fibrosis or chronic kidney disease. However, they should regularly carry out their prophylaxis examinations for early detection of possible negative outcomes of COVID-19.
Collapse
Affiliation(s)
- Aleksandra Wiśniewska
- Students Scientific Group of Laboratory Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland (M.L.); (A.S.); (M.Ś.); (S.W.)
| | - Aleksandra Kijak
- Students Scientific Group of Laboratory Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland (M.L.); (A.S.); (M.Ś.); (S.W.)
| | - Karolina Nowak
- Students Scientific Group of Laboratory Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland (M.L.); (A.S.); (M.Ś.); (S.W.)
| | - Michalina Lulek
- Students Scientific Group of Laboratory Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland (M.L.); (A.S.); (M.Ś.); (S.W.)
- Clinical Laboratory of Central Teaching Hospital, University Clinical Center of Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Agata Skwarek
- Students Scientific Group of Laboratory Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland (M.L.); (A.S.); (M.Ś.); (S.W.)
| | - Milena Małecka-Giełdowska
- Clinical Laboratory of Central Teaching Hospital, University Clinical Center of Medical University of Warsaw, 02-097 Warsaw, Poland;
- Department of Laboratory Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Marcin Śmiarowski
- Students Scientific Group of Laboratory Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland (M.L.); (A.S.); (M.Ś.); (S.W.)
| | - Szczepan Wąsik
- Students Scientific Group of Laboratory Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland (M.L.); (A.S.); (M.Ś.); (S.W.)
| | - Olga Ciepiela
- Clinical Laboratory of Central Teaching Hospital, University Clinical Center of Medical University of Warsaw, 02-097 Warsaw, Poland;
- Department of Laboratory Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
23
|
Jiao T, Huang Y, Sun H, Yang L. Research progress of post-acute sequelae after SARS-CoV-2 infection. Cell Death Dis 2024; 15:257. [PMID: 38605011 PMCID: PMC11009241 DOI: 10.1038/s41419-024-06642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
SARS-CoV-2 has spread rapidly worldwide and infected hundreds of millions of people worldwide. With the increasing number of COVID-19 patients discharged from hospitals, the emergence of its associated complications, sequelae, has become a new global health crisis secondary to acute infection. For the time being, such complications and sequelae are collectively called "Post-acute sequelae after SARS-CoV-2 infection (PASC)", also referred to as "long COVID" syndrome. Similar to the acute infection period of COVID-19, there is also heterogeneity in PASC. This article reviews the various long-term complications and sequelae observed in multiple organ systems caused by COVID-19, pathophysiological mechanisms, diagnosis, and treatment of PASC, aiming to raise awareness of PASC and optimize management strategies.
Collapse
Affiliation(s)
- Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China
| | - Yuling Huang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China
| | - Haiyan Sun
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning, 110001, P.R. China.
| | - Lina Yang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China.
- Department of International Physical Examination Center, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China.
| |
Collapse
|
24
|
Sun Q, Gao J, An R, Wang M, Wang Y. Probing molecular pathways: Illuminating the connection between COVID-19 and Alzheimer's disease through the endocannabinoid system dynamics. J Med Virol 2024; 96:e29590. [PMID: 38619024 DOI: 10.1002/jmv.29590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/29/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
Our study investigates the molecular link between COVID-19 and Alzheimer's disease (AD). We aim to elucidate the mechanisms by which COVID-19 may influence the onset or progression of AD. Using bioinformatic tools, we analyzed gene expression datasets from the Gene Expression Omnibus (GEO) database, including GSE147507, GSE12685, and GSE26927. Intersection analysis was utilized to identify common differentially expressed genes (CDEGs) and their shared biological pathways. Consensus clustering was conducted to group AD patients based on gene expression, followed by an analysis of the immune microenvironment and variations in shared pathway activities between clusters. Additionally, we identified transcription factor-binding sites shared by CDEGs and genes in the common pathway. The activity of the pathway and the expression levels of the CDEGs were validated using GSE164805 and GSE48350 datasets. Six CDEGs (MAL2, NECAB1, SH3GL2, EPB41L3, MEF2C, and NRGN) were identified, along with a downregulated pathway, the endocannabinoid (ECS) signaling pathway, common to both AD and COVID-19. These CDEGs showed a significant correlation with ECS activity (p < 0.05) and immune functions. The ECS pathway was enriched in healthy individuals' brains and downregulated in AD patients. Validation using GSE164805 and GSE48350 datasets confirmed the differential expression of these genes in COVID-19 and AD tissues. Our findings reveal a potential pathogenetic link between COVID-19 and AD, mediated by CDEGs and the ECS pathway. However, further research and multicenter evidence are needed to translate these findings into clinical applications.
Collapse
Affiliation(s)
- Qingyuan Sun
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jinyang Gao
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ran An
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Menggeer Wang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanqing Wang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
25
|
Chagas LDS, Serfaty CA. The Influence of Microglia on Neuroplasticity and Long-Term Cognitive Sequelae in Long COVID: Impacts on Brain Development and Beyond. Int J Mol Sci 2024; 25:3819. [PMID: 38612629 PMCID: PMC11011312 DOI: 10.3390/ijms25073819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Microglial cells, the immune cells of the central nervous system, are key elements regulating brain development and brain health. These cells are fully responsive to stressors, microenvironmental alterations and are actively involved in the construction of neural circuits in children and the ability to undergo full experience-dependent plasticity in adults. Since neuroinflammation is a known key element in the pathogenesis of COVID-19, one might expect the dysregulation of microglial function to severely impact both functional and structural plasticity, leading to the cognitive sequelae that appear in the pathogenesis of Long COVID. Therefore, understanding this complex scenario is mandatory for establishing the possible molecular mechanisms related to these symptoms. In the present review, we will discuss Long COVID and its association with reduced levels of BDNF, altered crosstalk between circulating immune cells and microglia, increased levels of inflammasomes, cytokines and chemokines, as well as the alterations in signaling pathways that impact neural synaptic remodeling and plasticity, such as fractalkines, the complement system, the expression of SIRPα and CD47 molecules and altered matrix remodeling. Together, these complex mechanisms may help us understand consequences of Long COVID for brain development and its association with altered brain plasticity, impacting learning disabilities, neurodevelopmental disorders, as well as cognitive decline in adults.
Collapse
Affiliation(s)
- Luana da Silva Chagas
- Program of Neuroscience, Department of Neurobiology, Institute of Biology, Federal Fluminense University, Niterói 24210-201, Rio de Janeiro, Brazil;
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Rio de Janeiro, Brazil
| | - Claudio Alberto Serfaty
- Program of Neuroscience, Department of Neurobiology, Institute of Biology, Federal Fluminense University, Niterói 24210-201, Rio de Janeiro, Brazil;
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Tang N, Kido T, Shi J, McCafferty E, Ford JM, Dal Bon K, Pulliam L. Blood Markers Show Neural Consequences of LongCOVID-19. Cells 2024; 13:478. [PMID: 38534322 PMCID: PMC10969290 DOI: 10.3390/cells13060478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) persists throughout the world with over 65 million registered cases of survivors with post-COVID-19 sequelae, also known as LongCOVID-19 (LongC). LongC survivors exhibit various symptoms that span multiple organ systems, including the nervous system. To search for neurological markers of LongC, we investigated the soluble biomolecules present in the plasma and the proteins associated with plasma neuronal-enriched extracellular vesicles (nEVs) in 33 LongC patients with neurological impairment (nLongC), 12 COVID-19 survivors without any LongC symptoms (Cov), and 28 pre-COVID-19 healthy controls (HC). COVID-19 positive participants were infected between 2020 and 2022, not hospitalized, and were vaccinated or unvaccinated before infection. IL-1β was significantly increased in both nLongC and Cov and IL-8 was elevated in only nLongC. Both brain-derived neurotrophic factor and cortisol were significantly elevated in nLongC and Cov compared to HC. nEVs from people with nLongC had significantly elevated protein markers of neuronal dysfunction, including amyloid beta 42, pTau181 and TDP-43. This study shows chronic peripheral inflammation with increased stress after COVID-19 infection. Additionally, differentially expressed nEV neurodegenerative proteins were identified in people recovering from COVID-19 regardless of persistent symptoms.
Collapse
Affiliation(s)
- Norina Tang
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (N.T.); (T.K.); (E.M.)
| | - Tatsuo Kido
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (N.T.); (T.K.); (E.M.)
| | - Jian Shi
- Department of Neurology, San Francisco VA Health Care System, San Francisco, CA 94121, USA;
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Erin McCafferty
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (N.T.); (T.K.); (E.M.)
| | - Judith M. Ford
- Department of Mental Health, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (J.M.F.); (K.D.B.)
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kaitlyn Dal Bon
- Department of Mental Health, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (J.M.F.); (K.D.B.)
| | - Lynn Pulliam
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (N.T.); (T.K.); (E.M.)
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
27
|
Rittmannsberger H, Barth M, Lamprecht B, Malik P, Yazdi-Zorn K. [Interaction of somatic findings and psychiatric symptoms in COVID-19. A scoping review]. NEUROPSYCHIATRIE : KLINIK, DIAGNOSTIK, THERAPIE UND REHABILITATION : ORGAN DER GESELLSCHAFT OSTERREICHISCHER NERVENARZTE UND PSYCHIATER 2024; 38:1-23. [PMID: 38055146 DOI: 10.1007/s40211-023-00487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
An infection with SARS-CoV‑2 can affect the central nervous system, leading to neurological as well as psychiatric symptoms. In this respect, mechanisms of inflammation seem to be of much greater importance than the virus itself. This paper deals with the possible contributions of organic changes to psychiatric symptomatology and deals especially with delirium, cognitive symptoms, depression, anxiety, posttraumatic stress disorder and psychosis. Processes of neuroinflammation with infection of capillary endothelial cells and activation of microglia and astrocytes releasing high amounts of cytokines seem to be of key importance in all kinds of disturbances. They can lead to damage in grey and white matter, impairment of cerebral metabolism and loss of connectivity. Such neuroimmunological processes have been described as a organic basis for many psychiatric disorders, as affective disorders, psychoses and dementia. As the activation of the glia cells can persist for a long time after the offending agent has been cleared, this can contribute to long term sequalae of the infection.
Collapse
Affiliation(s)
- Hans Rittmannsberger
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich.
| | - Martin Barth
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich
| | - Bernd Lamprecht
- Med Campus III, Universitätsklinik für Innere Medizin mit Schwerpunkt Pneumologie, Kepler Universitätsklinikum GmbH, Linz, Österreich
- Medizinische Fakultät, Johannes Kepler Universität Linz, Linz, Österreich
| | - Peter Malik
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich
| | - Kurosch Yazdi-Zorn
- Neuromed Campus, Klinik für Psychiatrie mit Schwerpunkt Suchtmedizin, Kepler Universitätsklinikum GmbH, Linz, Österreich
- Medizinische Fakultät, Johannes Kepler Universität Linz, Linz, Österreich
| |
Collapse
|
28
|
Duindam HB, Mengel D, Kox M, Göpfert JC, Kessels RPC, Synofzik M, Pickkers P, Abdo WF. Systemic inflammation relates to neuroaxonal damage associated with long-term cognitive dysfunction in COVID-19 patients. Brain Behav Immun 2024; 117:510-520. [PMID: 38336025 DOI: 10.1016/j.bbi.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Cognitive deficits are increasingly recognized as a long-term sequela of severe COVID-19. The underlying processes and molecular signatures associated with these long-term neurological sequalae of COVID-19 remain largely unclear, but may be related to systemic inflammation-induced effects on the brain. We studied the systemic inflammation-brain interplay and its relation to development of long-term cognitive impairment in patients who survived severe COVID-19. Trajectories of systemic inflammation and neuroaxonal damage blood biomarkers during ICU admission were analyzed and related to long-term cognitive outcomes. METHODS Prospective longitudinal cohort study of patients with severe COVID-19 surviving ICU admission. During admission, blood was sampled consecutively to assess levels of inflammatory cytokines and neurofilament light chain (NfL) using an ultrasensitive multiplex Luminex assay and single molecule array technique (Simoa). Cognitive functioning was evaluated using a comprehensive neuropsychological assessment six months after ICU-discharge. RESULTS Ninety-six patients (median [IQR] age 61 [55-69] years) were enrolled from March 2020 to June 2021 and divided into two cohorts: those who received no COVID-19-related immunotherapy (n = 28) and those treated with either dexamethasone or dexamethasone and tocilizumab (n = 68). Plasma NfL concentrations increased in 95 % of patients during their ICU stay, from median [IQR] 23 [18-38] pg/mL at admission to 250 [160-271] pg/mL after 28 days, p < 0.001. Besides age, glomerular filtration rate, immunomodulatory treatment, and C-reactive protein, more specific markers of systemic inflammation at day 14 (i.e., interleukin (IL)-8, tumour necrosis factor, and IL-1 receptor antagonist) were significant predictors of blood NfL levels at day 14 of ICU admission (R2 = 44 %, p < 0.001), illustrating the association between sustained systemic inflammation and neuroaxonal damage. Twenty-six patients (27 %) exhibited cognitive impairment six months after discharge from the ICU. NfL concentrations showed a more pronounced increase in patients that developed cognitive impairment (p = 0.03). Higher NfL predicted poorer outcome in information processing speed (Trail Making Test A, r = -0.26, p = 0.01; Letter Digit Substitution Test, r = -0.24, p = 0.02). DISCUSSION Prolonged systemic inflammation in critically ill COVID-19 patients is related to neuroaxonal damage and subsequent long-term cognitive impairment. Moreover, our findings suggest that plasma NfL concentrations during ICU stay may possess prognostic value in predicting future long-term cognitive impairment in patients that survived severe COVID-19.
Collapse
Affiliation(s)
- H B Duindam
- Radboud University Medical Center, Department of Intensive Care Medicine, Nijmegen, the Netherlands
| | - D Mengel
- Center for Neurology and Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - M Kox
- Radboud University Medical Center, Department of Intensive Care Medicine, Nijmegen, the Netherlands
| | - J C Göpfert
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - R P C Kessels
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands; Radboud University Medical Center, Department of Medical Psychology and Radboudumc Alzheimer Center, Nijmegen, the Netherlands; Vincent van Gogh Institute for Psychiatry, Venray, the Netherlands
| | - M Synofzik
- Center for Neurology and Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - P Pickkers
- Radboud University Medical Center, Department of Intensive Care Medicine, Nijmegen, the Netherlands
| | - W F Abdo
- Radboud University Medical Center, Department of Intensive Care Medicine, Nijmegen, the Netherlands.
| |
Collapse
|
29
|
Queiroz MAF, Brito WRDS, Pereira KAS, Pereira LMS, Amoras EDSG, Lima SS, Santos EFD, Costa FPD, Sarges KMLD, Cantanhede MHD, Brito MTFMD, Silva ALSD, Leite MDM, Viana MDNDSDA, Rodrigues FBB, Silva RD, Viana GMR, Chaves TDSS, Veríssimo ADOL, Carvalho MDS, Henriques DF, Silva CPD, Nunes JAL, Costa IB, Cayres-Vallinoto IMV, Brasil-Costa I, Quaresma JAS, Falcão LFM, Santos EJMD, Vallinoto ACR. Severe COVID-19 and long COVID are associated with high expression of STING, cGAS and IFN-α. Sci Rep 2024; 14:4974. [PMID: 38424312 PMCID: PMC10904751 DOI: 10.1038/s41598-024-55696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
The cGAS-STING pathway appears to contribute to dysregulated inflammation during coronavirus disease 2019 (COVID-19); however, inflammatory factors related to long COVID are still being investigated. In the present study, we evaluated the association of cGAS and STING gene expression levels and plasma IFN-α, TNF-α and IL-6 levels with COVID-19 severity in acute infection and long COVID, based on analysis of blood samples from 148 individuals, 87 with acute COVID-19 and 61 in the post-COVID-19 period. Quantification of gene expression was performed by real-time PCR, and cytokine levels were quantified by ELISA and flow cytometry. In acute COVID-19, cGAS, STING, IFN-α, TNF-α, and IL-6 levels were higher in patients with severe disease than in those with nonsevere manifestations (p < 0.05). Long COVID was associated with elevated cGAS, STING and IFN-α levels (p < 0.05). Activation of the cGAS-STING pathway may contribute to an intense systemic inflammatory state in severe COVID-19 and, after infection resolution, induce an autoinflammatory disease in some tissues, resulting in long COVID.
Collapse
Affiliation(s)
- Maria Alice Freitas Queiroz
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.
| | - Wandrey Roberto Dos Santos Brito
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Keise Adrielle Santos Pereira
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Leonn Mendes Soares Pereira
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Sandra Souza Lima
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Erika Ferreira Dos Santos
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Flávia Póvoa da Costa
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Kevin Matheus Lima de Sarges
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Marcos Henrique Damasceno Cantanhede
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | | | - Mauro de Meira Leite
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Maria de Nazaré do Socorro de Almeida Viana
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Fabíola Brasil Barbosa Rodrigues
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Rosilene da Silva
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Giselle Maria Rachid Viana
- Laboratory of Basic Research On Malaria, Parasitology Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Tânia do Socorro Souza Chaves
- Laboratory of Basic Research On Malaria, Parasitology Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
- School of Medicine, Institute of Medical Sciences, Federal University of Pará, Belém, Pará, Brazil
| | | | | | - Daniele Freitas Henriques
- Arbovirology and Hemorrhagic Fevers Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Carla Pinheiro da Silva
- Arbovirology and Hemorrhagic Fevers Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Juliana Abreu Lima Nunes
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Iran Barros Costa
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
| | - Izaura Maria Vieira Cayres-Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Igor Brasil-Costa
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
| | - Juarez Antônio Simões Quaresma
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
- Center of Biological and Health Sciences, University of the State of Pará, Belém, Brazil
| | | | - Eduardo José Melo Dos Santos
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
| |
Collapse
|
30
|
Titze-de-Almeida R, Araújo Lacerda PH, de Oliveira EP, de Oliveira MEF, Vianna YSS, Costa AM, Pereira Dos Santos E, Guérard LMC, Ferreira MADM, Rodrigues Dos Santos IC, Gonçalves JDDS, Ginani Ferreira G, Souza Titze-de-Almeida S, Brandão PRDP, Eri Shimizu H, Silva APB, Delgado-Rodrigues RN. Sleep and memory complaints in long COVID: an insight into clustered psychological phenotypes. PeerJ 2024; 12:e16669. [PMID: 38313024 PMCID: PMC10836207 DOI: 10.7717/peerj.16669] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/22/2023] [Indexed: 02/06/2024] Open
Abstract
This study evaluated clinical features of individuals with long COVID (5-8 months after diagnosis) who reported sleep and memory problems (62 cases) compared to those without (52 controls). Both groups had a similar mean age (41 vs. 39 years). Around 86% of the participants were non-hospitalized at the time of infection, and none of them were vaccinated at that point. Subsequently, both cases and controls received the vaccine; however, the vaccination rates differed significantly between the groups (30.7% vs. 51.0%). Cases and controls had similar rates of symptoms at acute COVID phase. However, cases were more likely to experience coryza, dyspnea, headache, and nausea/vomiting during long COVID. Regarding new-onset symptoms in long COVID, 12.9% of cases had dyspnea, and 14.5% experienced nausea/vomiting, whereas in the control group there were only 1.9% and 0.0%, respectively. Cases also had a significantly higher prevalence of persistent headache (22.6% vs. 7.7%), and dyspnea (12.9% vs. 0.0). In addition, cases also showed an increased rate of mental health complaints: disability in daily activities (45.2% vs. 9.6%; P < 0.001); concentration/sustained attention difficulties (74.2% vs. 9.6%; P < 0.001); anxiety-Generalized Anxiety Disorder 2-item scale (GAD-2) ≥ 3 (66.1% vs. 34.6%; P = 0.0013); and "post-COVID sadness" (82.3% vs. 40.4%; P < 0.001). We observed a significant correlation between sadness and anxiety in cases, which was not observed in controls (P=0.0212; Spearman correlation test). Furthermore, the frequency of concomitant sadness and anxiety was markedly higher in cases compared to controls (59.7% vs. 19.2%) (P < 0.0001; Mann-Whitney test). These findings highlight a noteworthy association between sadness and anxiety specifically in cases. In conclusion, our data identified concurrent psychological phenotypes in individuals experiencing sleep and memory disturbances during long COVID. This strengthens the existing evidence that SARS-CoV-2 causes widespread brain pathology with interconnected phenotypic clusters. This finding highlights the need for comprehensive medical attention to address these complex issues, as well as major investments in testing strategies capable of preventing the development of long COVID sequelae, such as vaccination.
Collapse
Affiliation(s)
- Ricardo Titze-de-Almeida
- Central Institute of Sciences, Research Center for Major Themes, University of Brasília, Brasília, DF, Brazil
- University of Brasília/FAV, Central Institute of Sciences, Technology for Gene Therapy Laboratory, Brasília, DF, Brazil
| | | | - Edson Pereira de Oliveira
- Central Institute of Sciences, Research Center for Major Themes, University of Brasília, Brasília, DF, Brazil
| | | | | | - Amanda Machado Costa
- Central Institute of Sciences, Research Center for Major Themes, University of Brasília, Brasília, DF, Brazil
| | - Eloísa Pereira Dos Santos
- Central Institute of Sciences, Research Center for Major Themes, University of Brasília, Brasília, DF, Brazil
| | - Louise Marie Coelho Guérard
- Central Institute of Sciences, Research Center for Major Themes, University of Brasília, Brasília, DF, Brazil
| | | | | | | | - Gabriel Ginani Ferreira
- Central Institute of Sciences, Research Center for Major Themes, University of Brasília, Brasília, DF, Brazil
- University of Brasília/FAV, Central Institute of Sciences, Technology for Gene Therapy Laboratory, Brasília, DF, Brazil
| | - Simoneide Souza Titze-de-Almeida
- Central Institute of Sciences, Research Center for Major Themes, University of Brasília, Brasília, DF, Brazil
- University of Brasília/FAV, Central Institute of Sciences, Technology for Gene Therapy Laboratory, Brasília, DF, Brazil
| | - Pedro Renato de Paula Brandão
- Central Institute of Sciences, Research Center for Major Themes, University of Brasília, Brasília, DF, Brazil
- Sírio-Libanês Hospital, Brasília, Brazil., Brasília, DF, Brazil
| | - Helena Eri Shimizu
- Department of Collective Health, Research Center for Major Themes, University of Brasília, Brasília, DF, Brazil
| | - Andrezza Paula Brito Silva
- Central Institute of Sciences, Research Center for Major Themes, University of Brasília, Brasília, DF, Brazil
| | | |
Collapse
|
31
|
Cao X, Xie Y, Zhou C, Mu H. Clinical characteristics associated with recurrent viral RNA positivity in patients within two weeks after recovering from the first SARS-CoV-2 infection. BIOMOLECULES & BIOMEDICINE 2024; 24:196-204. [PMID: 37702601 PMCID: PMC10787619 DOI: 10.17305/bb.2023.9661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Many studies have shown that recovered coronavirus disease 2019 (COVID-19) patients frequently exhibit recurrent viral RNA positivity (RP) for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our study aimed to summarize the clinical characteristics of these patients and explore potential reasons for RP occurrence. We divided 439 participants into four groups based on the severity of illness prior to the COVID-19 recovery and age: mild-child group, moderate-child group, mild-adult group, and moderate-adult group. Laboratory data were collected and statistical analyzed using the SPSS software, version 24.0. Significant differences were observed in age, alanine aminotransferase (ALT), aspartate aminotransferase (AST), C-reactive protein (CRP), interleukin 6 (IL-6), and neutrophil to lymphocyte ratio (NLR) levels between the mild-adult group and the moderate-adult group (P < 0.05). Additionally, AST levels differed significantly between the mild-child group and the moderate-child group (P < 0.05). The proportion of RP patients within the four groups varied from 7.95% to 26.13% within a 2-week period. Logistic regression analysis revealed that younger age and moderate symptoms were risk factors for RP in children, while the presence of comorbidities (such as chronic heart, lung, liver, and kidney diseases), elevated IL-6 levels, and NLR were risk factors for RP in adults. We constructed two predictive models containing these relevant parameters, and the results of the receiver operating characteristic (ROC) curves indicated strong predictive utility. Our findings suggest that younger children with more severe symptoms, as well as adult patients with elevated levels of IL-6 and NLR and underlying diseases, are at higher risk of RP occurrence.
Collapse
Affiliation(s)
- Xi Cao
- Department of Clinical Laboratory, Tianjin First Central Hospital, Tianjin, China
| | - Yongli Xie
- Department of Clinical Laboratory, Tianjin Stomatological Hospital, Tianjin, China
- Department of Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, Tianjin, China
| | - Chunlei Zhou
- Department of Clinical Laboratory, Tianjin First Central Hospital, Tianjin, China
| | - Hong Mu
- Department of Clinical Laboratory, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
32
|
Domingues KZA, Cobre AF, Lazo REL, Amaral LS, Ferreira LM, Tonin FS, Pontarolo R. Systematic review and evidence gap mapping of biomarkers associated with neurological manifestations in patients with COVID-19. J Neurol 2024; 271:1-23. [PMID: 38015300 DOI: 10.1007/s00415-023-12090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVE This study aimed to synthesize the existing evidence on biomarkers related to coronavirus disease 2019 (COVID-19) patients who presented neurological events. METHODS A systematic review of observational studies (any design) following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and the Cochrane Collaboration recommendations was performed (PROSPERO: CRD42021266995). Searches were conducted in PubMed and Scopus (updated April 2023). The methodological quality of nonrandomized studies was assessed using the Newcastle‒Ottawa Scale (NOS). An evidence gap map was built considering the reported biomarkers and NOS results. RESULTS Nine specific markers of glial activation and neuronal injury were mapped from 35 studies published between 2020 and 2023. A total of 2,237 adult patients were evaluated in the included studies, especially during the acute phase of COVID-19. Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) biomarkers were the most frequently assessed (n = 27 studies, 77%, and n = 14 studies, 40%, respectively). Although these biomarkers were found to be correlated with disease severity and worse outcomes in the acute phase in several studies (p < 0.05), they were not necessarily associated with neurological events. Overall, 12 studies (34%) were judged as having low methodological quality, 9 (26%) had moderate quality, and 9 (26%) had high quality. CONCLUSIONS Different neurological biomarkers in neurosymptomatic COVID-19 patients were identified in observational studies. Although the evidence is still scarce and conflicting for some biomarkers, well-designed longitudinal studies should further explore the pathophysiological role of NfL, GFAP, and tau protein and their potential use for COVID-19 diagnosis and management.
Collapse
Affiliation(s)
- K Z A Domingues
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - A F Cobre
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - R E L Lazo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - L S Amaral
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - L M Ferreira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - F S Tonin
- H&TRC- Health & Technology Research Center, ESTeSL, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096, Lisbon, Portugal
| | - R Pontarolo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil.
| |
Collapse
|
33
|
Chen S, Liang J, Chen D, Huang Q, Sun K, Zhong Y, Lin B, Kong J, Sun J, Gong C, Wang J, Gao Y, Zhang Q, Sun H. Cerebrospinal fluid metabolomic and proteomic characterization of neurologic post-acute sequelae of SARS-CoV-2 infection. Brain Behav Immun 2024; 115:209-222. [PMID: 37858739 DOI: 10.1016/j.bbi.2023.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023] Open
Abstract
The mechanism by which SARS-CoV-2 causes neurological post-acute sequelae of SARS-CoV-2 (neuro-PASC) remains unclear. Herein, we conducted proteomic and metabolomic analyses of cerebrospinal fluid (CSF) samples from 21 neuro-PASC patients, 45 healthy volunteers, and 26 inflammatory neurological diseases patients. Our data showed 69 differentially expressed metabolites and six differentially expressed proteins between neuro-PASC patients and healthy individuals. Elevated sphinganine and ST1A1, sphingolipid metabolism disorder, and attenuated inflammatory responses may contribute to the occurrence of neuro-PASC, whereas decreased levels of 7,8-dihydropterin and activation of steroid hormone biosynthesis may play a role in the repair process. Additionally, a biomarker cohort consisting of sphinganine, 7,8-dihydroneopterin, and ST1A1 was preliminarily demonstrated to have high value in diagnosing neuro-PASC. In summary, our study represents the first attempt to integrate the diagnostic benefits of CSF with the methodological advantages of multi-omics, thereby offering valuable insights into the pathogenesis of neuro-PASC and facilitating the work of neuroscientists in disclosing different neurological dimensions associated with COVID-19.
Collapse
Affiliation(s)
- Shilan Chen
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jianhao Liang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Dingqiang Chen
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Qiyuan Huang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Kaijian Sun
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuxia Zhong
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Baojia Lin
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jingjing Kong
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiaduo Sun
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Chengfang Gong
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jun Wang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ya Gao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Qingguo Zhang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| |
Collapse
|
34
|
El-Baky NA, Amara AA, Uversky VN, Redwan EM. Intrinsic factors behind long COVID: III. Persistence of SARS-CoV-2 and its components. J Cell Biochem 2024; 125:22-44. [PMID: 38098317 DOI: 10.1002/jcb.30514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
Considerable research has been done in investigating SARS-CoV-2 infection, its characteristics, and host immune response. However, debate is still ongoing over the emergence of post-acute sequelae of SARS-CoV-2 infection (PASC). A multitude of long-lasting symptoms have been reported several weeks after the primary acute SARS-CoV-2 infection that resemble several other viral infections. Thousands of research articles have described various post-COVID-19 conditions. Yet, the evidence around these ongoing health problems, the reasons behind them, and their molecular underpinnings are scarce. These persistent symptoms are also known as long COVID-19. The persistence of SARS-CoV-2 and/or its components in host tissues can lead to long COVID. For example, the presence of viral nucleocapsid protein and RNA was detected in the skin, appendix, and breast tissues of some long COVID patients. The persistence of viral RNA was reported in multiple anatomic sites, including non-respiratory tissues such as the adrenal gland, ocular tissue, small intestine, lymph nodes, myocardium, and sciatic nerve. Distinctive viral spike sequence variants were also found in non-respiratory tissues. Interestingly, prolonged detection of viral subgenomic RNA was observed across all tissues, sometimes in multiple tissues of the same patient, which likely reflects recent but defective viral replication. Moreover, the persistence of SARS-CoV-2 RNA was noticed throughout the brain at autopsy, as late as 230 days following symptom onset among unvaccinated patients who died of severe infection. Here, we review the persistence of SARS-CoV-2 and its components as an intrinsic factor behind long COVID. We also highlight the immunological consequences of this viral persistence.
Collapse
Affiliation(s)
- Nawal Abd El-Baky
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
| | - Amro A Amara
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
35
|
Choi CY, Gadhave K, Villano J, Pekosz A, Mao X, Jia H. Generation and characterization of a humanized ACE2 mouse model to study long-term impacts of SARS-CoV-2 infection. J Med Virol 2024; 96:e29349. [PMID: 38185937 PMCID: PMC10783855 DOI: 10.1002/jmv.29349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024]
Abstract
Although the COVID-19 pandemic has officially ended, the persistent challenge of long-COVID or post-acute COVID sequelae (PASC) continues to impact societies globally, highlighting the urgent need for ongoing research into its mechanisms and therapeutic approaches. Our team has recently developed a novel humanized ACE2 mouse model (hACE2ki) designed explicitly for long-COVID/PASC research. This model exhibits human ACE2 expression in tissue and cell-specific patterns akin to mouse Ace2. When we exposed young adult hACE2ki mice (6 weeks old) to various SARS-CoV-2 lineages, including WA, Delta, and Omicron, at a dose of 5 × 105 PFU/mouse via nasal instillation, the mice demonstrated distinctive phenotypes characterized by differences in viral load in the lung, trachea, and nasal turbinate, weight loss, and changes in pro-inflammatory cytokines and immune cell profiles in bronchoalveolar lavage fluid. Notably, no mortality was observed in this age group. Further, to assess the model's relevance for long-COVID studies, we investigated tau protein pathologies, which are linked to Alzheimer's disease, in the brains of these mice post SARS-CoV-2 infection. Our findings revealed the accumulation and longitudinal propagation of tau, confirming the potential of our hACE2ki mouse model for preclinical studies of long-COVID.
Collapse
Affiliation(s)
- Chang-Yong Choi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School, of Medicine, Baltimore, MD 21205, USA
| | - Kundlik Gadhave
- Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jason Villano
- Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Xiaobo Mao
- Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for NanoBioTechnology, Department of Material Science and Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Hongpeng Jia
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School, of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
36
|
Wang P, Shi W, Zhao X, Zhao G, Ding L, Zhang S, Li J. The effect of nutritional biochemical indexes on the hospitalization outcome of COVID-19. Aging (Albany NY) 2023; 15:14445-14456. [PMID: 38095633 PMCID: PMC10756130 DOI: 10.18632/aging.205335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023]
Abstract
Aims to investigate the relationship between nutritional biochemical indexes and hospitalization outcomes of COVID-19 patients, 132 continuous patients with COVID-19 from December 2022 to January 2023 in Lishui hospital were retrospectively analyzed, and the nutritional biochemical indexes in peripheral blood, such as total protein, albumin, calcium, phosphorus, and magnesium, were detected. Meanwhile, the levels of several cytokines and PBMC subtypes (CD4, CD3, CD8, NK and B cells) were detected too. The Spearman correlation analysis, one-way ANOVA and multivariate logit regression were conducted. Results suggested that the levels of total protein and albumin were significantly decreased in patients with poor outcomes, and the levels of calcium, phosphorus, and magnesium were significantly correlated with hospitalization outcomes. COVID-19 patients with diabetes had higher levels of IL-6 and IFN-γ than those patients without diabetes. The levels of IL-2, IFN-γ, IL-6 and Il-10 in the dead patients were significantly higher than those in the recovery and worse patients. Total protein and albumin were significantly positively correlated with levels of NK and B, CD4, CD8, CD3 lymphocytes. The levels of CD4, CD8 and CD3 lymphocytes were significantly decreased in dead patients than other patients. Multivariate logit regression analysis suggests that lymphocyte number, albumin and IL-6 are independent risk factors to evaluate the hospitalization outcome. In summary, nutritional biochemical indexes were significantly corelated with cytokines and PBMC subsets, and had an impact on the severity of COVID-19 patients. Improvement of low protein malnutrition is broad-spectrum and basic strategy to improve the hospitalization outcome of COVID-19.
Collapse
Affiliation(s)
- Peng Wang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Wenzhou Medical University and Lishui City People’s Hospital, Lishui 323000, Zhejiang Province, China
| | - Wenying Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, Guizhou, P.R. China
| | - Xiaodi Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guanan Zhao
- Department of Urology Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University and Lishui City People’s Hospital, Lishui 323000, Zhejiang Province, China
| | - Lidan Ding
- Department of Clinical Nutrition, The Sixth Affiliated Hospital of Wenzhou Medical University and Lishui City People’s Hospital, Lishui 323000, Zhejiang Province, China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiaxin Li
- Department of Clinical Nutrition, The Sixth Affiliated Hospital of Wenzhou Medical University and Lishui City People’s Hospital, Lishui 323000, Zhejiang Province, China
| |
Collapse
|
37
|
Cull O, Al Qadi L, Stadler J, Martin M, El Helou A, Wagner J, Maillet D, Chamard-Witkowski L. Radiological markers of neurological manifestations of post-acute sequelae of SARS-CoV-2 infection: a mini-review. Front Neurol 2023; 14:1233079. [PMID: 38073629 PMCID: PMC10704137 DOI: 10.3389/fneur.2023.1233079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/08/2023] [Indexed: 01/31/2025] Open
Abstract
The neurological impact of COVID-19 is a rising concern among medical professionals, as patients continue to experience symptoms long after their recovery. This condition, known as neurological post-acute sequelae of COVID-19 (Neuro-PASC), can last for more than 12 weeks and includes symptoms such as attention disorders, brain fog, fatigue, and memory loss. However, researchers and health professionals face significant challenges in understanding how COVID-19 affects the brain, limiting the development of effective prevention and treatment strategies. In this mini-review, we provide readers with up-to-date information on the imaging techniques currently available for measuring the neurological impact of post-SARS-CoV-2 infection. Our search of PubMed and Google Scholar databases yielded 38 articles on various brain imaging techniques, including structural MRI (magnetic resonance imaging), functional MRI, diffusion MRI, susceptibility-weighted imaging, SPECT (single-photon emission computed tomography) imaging, and PET (positron emission tomography) imaging. We also discuss the optimal usage, limitations, and potential benefits of these techniques. Our findings show that various cerebral imaging techniques have been evaluated to identify a reliable marker for Neuro-PASC. For instance, 18F-FDG-PET/CT and functional MRI have demonstrated hypometabolism in cerebral regions that are directly linked to patient symptoms. Structural MRI studies have revealed different findings, such as infarcts, white matter atrophy, and changes in gray matter volumes. One SPECT imaging study noted frontal lobe hypometabolism, while diffusion MRI showed increased diffusivity in the limbic and olfactory cortical systems. The sequence SWI showed abnormalities primarily in white matter near the gray-white matter junction. A study on 18F-amyloid PET/CT found amyloid lesions in frontal and anterior cingulate cortex areas, and a study on arterial spin labeling (ASL) found hypoperfusion primarily in the frontal lobe. While accessibility and cost limit the widespread use of 18F-FDG-PET/CT scans and functional MRI, they seem to be the most promising techniques. SPECT, SWI sequence, and 18F-amyloid PET/CT require further investigation. Nevertheless, imaging remains a reliable tool for diagnosing Neuro-PASC and monitoring recovery.
Collapse
Affiliation(s)
- Olivia Cull
- Centre de formation médicale du Nouveau Brunswick, University of Sherbrooke, Moncton, NB, Canada
- New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Lina Al Qadi
- Centre de formation médicale du Nouveau Brunswick, University of Sherbrooke, Moncton, NB, Canada
- New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Josiane Stadler
- Centre de formation médicale du Nouveau Brunswick, University of Sherbrooke, Moncton, NB, Canada
- New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Mykella Martin
- Centre de formation médicale du Nouveau Brunswick, University of Sherbrooke, Moncton, NB, Canada
- New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Antonios El Helou
- New Brunswick Center for Precision Medicine, Moncton, NB, Canada
- Faculty of Medicine, Dalhousie University, Halifax Regional Municipality, Halifax, NS, Canada
- Faculty of Medicine, Memorial University, St John's, NL, Canada
- Department of Neurosurgery, The Moncton Hospital, Moncton, NB, Canada
| | - Jeffrey Wagner
- Faculty of Medicine, Dalhousie University, Halifax Regional Municipality, Halifax, NS, Canada
- Department of Diagnostic Imaging, The Moncton Hospital, Moncton, NB, Canada
| | - Danica Maillet
- Vitalité Health Network, Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB, Canada
| | - Ludivine Chamard-Witkowski
- New Brunswick Center for Precision Medicine, Moncton, NB, Canada
- Vitalité Health Network, Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB, Canada
- Department of Neurology, Dr.-Georges-L.-Dumont University Hospital Center, Moncton, NB, Canada
| |
Collapse
|
38
|
Li J, Zhou Y, Ma J, Zhang Q, Shao J, Liang S, Yu Y, Li W, Wang C. The long-term health outcomes, pathophysiological mechanisms and multidisciplinary management of long COVID. Signal Transduct Target Ther 2023; 8:416. [PMID: 37907497 PMCID: PMC10618229 DOI: 10.1038/s41392-023-01640-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/04/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
There have been hundreds of millions of cases of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the growing population of recovered patients, it is crucial to understand the long-term consequences of the disease and management strategies. Although COVID-19 was initially considered an acute respiratory illness, recent evidence suggests that manifestations including but not limited to those of the cardiovascular, respiratory, neuropsychiatric, gastrointestinal, reproductive, and musculoskeletal systems may persist long after the acute phase. These persistent manifestations, also referred to as long COVID, could impact all patients with COVID-19 across the full spectrum of illness severity. Herein, we comprehensively review the current literature on long COVID, highlighting its epidemiological understanding, the impact of vaccinations, organ-specific sequelae, pathophysiological mechanisms, and multidisciplinary management strategies. In addition, the impact of psychological and psychosomatic factors is also underscored. Despite these crucial findings on long COVID, the current diagnostic and therapeutic strategies based on previous experience and pilot studies remain inadequate, and well-designed clinical trials should be prioritized to validate existing hypotheses. Thus, we propose the primary challenges concerning biological knowledge gaps and efficient remedies as well as discuss the corresponding recommendations.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Zhou
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jiechao Ma
- AI Lab, Deepwise Healthcare, Beijing, China
| | - Qin Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Department of Postgraduate Student, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jun Shao
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shufan Liang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yizhou Yu
- Department of Computer Science, The University of Hong Kong, Hong Kong, China.
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
39
|
Huang Z, Haile K, Gedefaw L, Lau BWM, Jin L, Yip SP, Huang CL. Blood Biomarkers as Prognostic Indicators for Neurological Injury in COVID-19 Patients: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:15738. [PMID: 37958721 PMCID: PMC10649265 DOI: 10.3390/ijms242115738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been linked to various neurological complications. This meta-analysis assessed the relationship between glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) levels in the blood and neurological injury in COVID-19 patients. A comprehensive search of various databases was conducted until 18 August 2023, to find studies reporting GFAP and NfL blood levels in COVID-19 patients with neurological complications. GFAP and NfL levels were estimated between COVID-19 patients and healthy controls, and meta-analyses were performed using RevMan 5.4 software for analysis. In the 21 collected studies, it was found that COVID-19 patients had significantly higher levels of pooled GFAP (SMD = 0.52; 95% CI: 0.31, 0.73; p ≤ 0.001) and NfL (SMD = 0.60; 95% CI: 0.37, 0.82; p ≤ 0.001) when compared to the healthy controls. The pooled GFAP (SMD = 0.86; 95% CI: 0.26, 1.45; p ≤ 0.01) and NfL (SMD = 0.87; 95% CI: 0.48, 1.26; p ≤ 0.001) were significantly higher in non-survivors. These findings indicate a significant association between COVID-19 severity and elevated levels of GFAP and NfL, suggesting that GFAP and NfL could serve as potential diagnostic and prognostic markers for the early detection and monitoring of COVID-19-related neurological injuries.
Collapse
Affiliation(s)
- Zhiwei Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
| | - Kassahun Haile
- Department of Medical Laboratory Science, Wolkite University, Wolkite P.O. Box 07, Ethiopia;
| | - Lealem Gedefaw
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Ling Jin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
| |
Collapse
|
40
|
Abdullah M, Ali A, Usman M, Naz A, Qureshi JA, Bajaber MA, Zhang X. Post COVID-19 complications and follow up biomarkers. NANOSCALE ADVANCES 2023; 5:5705-5716. [PMID: 37881715 PMCID: PMC10597564 DOI: 10.1039/d3na00342f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/11/2023] [Indexed: 10/27/2023]
Abstract
Millions of people were infected by the coronavirus disease (COVID-19) epidemic, which left a huge burden on the care of post COVID-19 survivors around the globe. The self-reported COVID-19 symptoms were experienced by an estimated 1.3 million people in the United Kingdom (2% of the population), and these symptoms persisted for about 4 weeks from the beginning of the infection. The symptoms most frequently reported were exhaustion, shortness of breath, muscular discomfort, joint pain, headache, cough, chest pain, cognitive impairment, memory loss, anxiety, sleep difficulties, diarrhea, and a decreased sense of smell and taste in post-COVID-19 affected people. The post COVID-19 complications were frequently related to the respiratory, cardiac, nervous, psychological and musculoskeletal systems. The lungs, liver, kidneys, heart, brain and other organs had been impaired by hypoxia and inflammation in post COVID-19 individuals. The upregulation of substance "P" (SP) and various cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), interleukin 10 (IL-10), interleukin 1 beta (IL-1β), angiotensin-converting enzyme 2 (ACE2) and chemokine C-C motif ligand 3 (CCL3) has muddled respiratory, cardiac, neuropsychiatric, dermatological, endocrine, musculoskeletal, gastrointestinal, renal and genitourinary complications in post COVID-19 people. To prevent these complications from worsening, it was therefore important to study how these biomarkers were upregulated and block their receptors.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Institute of Molecular Biology and Biotechnology, University of Lahore Pakistan
| | - Amjed Ali
- University Institute of Physical Therapy, University of Lahore Pakistan
| | - Muhammad Usman
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University Xuzhou China
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology, University of Lahore Pakistan
| | - Javed Anver Qureshi
- Institute of Molecular Biology and Biotechnology, University of Lahore Pakistan
| | - Majed A Bajaber
- Department of Chemistry, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Xiao Zhang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University Xuzhou China
| |
Collapse
|
41
|
Nair S, Nova-Lamperti E, Labarca G, Kulasinghe A, Short KR, Carrión F, Salomon C. Genomic communication via circulating extracellular vesicles and long-term health consequences of COVID-19. J Transl Med 2023; 21:709. [PMID: 37817137 PMCID: PMC10563316 DOI: 10.1186/s12967-023-04552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
COVID-19 continues to affect an unprecedented number of people with the emergence of new variants posing a serious challenge to global health. There is an expansion of knowledge in understanding the pathogenesis of Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the impact of the acute disease on multiple organs. In addition, growing evidence reports that the impact of COVID-19 on different organs persists long after the recovery phase of the disease, leading to long-term consequences of COVID-19. These long-term consequences involve pulmonary as well as extra-pulmonary sequelae of the disease. Noteably, recent research has shown a potential association between COVID-19 and change in the molecular cargo of extracellular vesicles (EVs). EVs are vesicles released by cells and play an important role in cell communication by transfer of bioactive molecules between cells. Emerging evidence shows a strong link between EVs and their molecular cargo, and regulation of metabolism in health and disease. This review focuses on current knowledge about EVs and their potential role in COVID-19 pathogenesis, their current and future implications as tools for biomarker and therapeutic development and their possible effects on long-term impact of COVID-19.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Estefania Nova-Lamperti
- Molecular and Translational Immunology Laboratory, Clinical Biochemistry and Immunology Department, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Gonzalo Labarca
- Molecular and Translational Immunology Laboratory, Clinical Biochemistry and Immunology Department, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Qld, 4102, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Flavio Carrión
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Qld, 4072, Australia.
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| |
Collapse
|
42
|
El-Maradny YA, Rubio-Casillas A, Mohamed KI, Uversky VN, Redwan EM. Intrinsic factors behind long-COVID: II. SARS-CoV-2, extracellular vesicles, and neurological disorders. J Cell Biochem 2023; 124:1466-1485. [PMID: 37801299 DOI: 10.1002/jcb.30486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
With the decline in the number of new Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections, the World Health Organization announced the end of the SARS-CoV-2 pandemic. However, the repercussions of this viral pandemic may remain with us for a longer period of time, as it has remodeled the lives of humankind in many ways, including social and economic. Of course, its most important repercussions remain on the human health level. Long-coronavirus disease (COVID) or post-COVID is a state for which we do not have a concrete definition, a specific international classification of diseases Code, clear diagnostic tools, or well-known effective cures as of yet. In this second article from the Intrinsic Factors behind long-COVID Series, we try to link long-COVID symptoms with their causes, starting from the nervous system. Extracellular vesicles (ECVs) play very complex and ramified roles in the bodies of both healthy and not-healthy individuals. ECVs may facilitate the entry of many bioactive molecules and pathogens into the tissues and cells of the nervous system across the blood-brain barrier. Based on the size, quantity, and quality of their cargo, ECVs are directly proportional to the pathological condition and its severity through intertwined mechanisms that evoke inflammatory immune responses typically accompanied by pathological symptoms over variable time periods according to the type of these symptoms.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Egypt
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El-Alamein, Egypt
| | - Alberto Rubio-Casillas
- Biology Laboratory, Autlán Regional Preparatory School, University of Guadalajara, Autlán, Jalisco, Mexico
| | - Kareem I Mohamed
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El-Alamein, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
43
|
Su S, Zhao Y, Zeng N, Liu X, Zheng Y, Sun J, Zhong Y, Wu S, Ni S, Gong Y, Zhang Z, Gao N, Yuan K, Yan W, Shi L, Ravindran AV, Kosten T, Shi J, Bao Y, Lu L. Epidemiology, clinical presentation, pathophysiology, and management of long COVID: an update. Mol Psychiatry 2023; 28:4056-4069. [PMID: 37491461 DOI: 10.1038/s41380-023-02171-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
The increasing number of coronavirus disease 2019 (COVID-19) infections have highlighted the long-term consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection called long COVID. Although the concept and definition of long COVID are described differently across countries and institutions, there is general agreement that it affects multiple systems, including the immune, respiratory, cardiovascular, gastrointestinal, neuropsychological, musculoskeletal, and other systems. This review aims to provide a synthesis of published epidemiology, symptoms, and risk factors of long COVID. We also summarize potential pathophysiological mechanisms and biomarkers for precise prevention, early diagnosis, and accurate treatment of long COVID. Furthermore, we suggest evidence-based guidelines for the comprehensive evaluation and management of long COVID, involving treatment, health systems, health finance, public attitudes, and international cooperation, which is proposed to improve the treatment strategies, preventive measures, and public health policy making of long COVID.
Collapse
Affiliation(s)
- Sizhen Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yimiao Zhao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Scholl of Public Health, Peking University, Beijing, China
| | - Na Zeng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Scholl of Public Health, Peking University, Beijing, China
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yongbo Zheng
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jie Sun
- Pain Medicine Center, Peking University Third Hospital, Beijing, China
| | - Yi Zhong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Shuilin Wu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Scholl of Public Health, Peking University, Beijing, China
| | - Shuyu Ni
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Scholl of Public Health, Peking University, Beijing, China
| | - Yimiao Gong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Zhibo Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Nan Gao
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Wei Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Le Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Arun V Ravindran
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Thomas Kosten
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.
- Scholl of Public Health, Peking University, Beijing, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.
| |
Collapse
|
44
|
Tziolos NR, Ioannou P, Baliou S, Kofteridis DP. Long COVID-19 Pathophysiology: What Do We Know So Far? Microorganisms 2023; 11:2458. [PMID: 37894116 PMCID: PMC10609046 DOI: 10.3390/microorganisms11102458] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/17/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Long COVID-19 is a recognized entity that affects millions of people worldwide. Its broad clinical symptoms include thrombotic events, brain fog, myocarditis, shortness of breath, fatigue, muscle pains, and others. Due to the binding of the virus with ACE-2 receptors, expressed in many organs, it can potentially affect any system; however, it most often affects the cardiovascular, central nervous, respiratory, and immune systems. Age, high body mass index, female sex, previous hospitalization, and smoking are some of its risk factors. Despite great efforts to define its pathophysiology, gaps remain to be explained. The main mechanisms described in the literature involve viral persistence, hypercoagulopathy, immune dysregulation, autoimmunity, hyperinflammation, or a combination of these. The exact mechanisms may differ from system to system, but some share the same pathways. This review aims to describe the most prevalent pathophysiological pathways explaining this syndrome.
Collapse
Affiliation(s)
- Nikolaos-Renatos Tziolos
- Department of Internal Medicine & Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece (D.P.K.)
| | - Petros Ioannou
- Department of Internal Medicine & Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece (D.P.K.)
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Stella Baliou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Diamantis P. Kofteridis
- Department of Internal Medicine & Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece (D.P.K.)
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
45
|
Stojkovic A, Ilic I, Kostic A, Dajic K, Raskovic Z, Nestorovic J, Ilic M. The Difficulty Detecting Tuberculosis in a Child with Post-COVID-19 and Cerebral Palsy. Diagnostics (Basel) 2023; 13:2826. [PMID: 37685364 PMCID: PMC10486478 DOI: 10.3390/diagnostics13172826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
When hypostatic pneumonia is present at the same time as COVID-19 pneumonia, the clinical course is almost always prolonged (prolonged-COVID-19) due to persistent inflammation, long-term anti-inflammatory syndrome, followed by immune exhaustion, i.e., by immunosuppression and catabolic syndrome. In the immunosuppression phase, viral reactivation can be accompanied by a secondary infection, which, in this case, is pulmonary tuberculosis. Pulmonary tuberculosis in post-COVID-19 patients and in patients with spastic quadriplegic cerebral palsy does not have a typical clinical course nor laboratory, radiological, immunological, microbiological, or fiberbronchoscopic pathohistological confirmation. Due to this, the treatment of pulmonary tuberculosis was not carried out on time, postponed after the unsuccessful treatment of sepsis, post-COVID-19, and other accompanying viral (adenovirus, RSV) and bacterial (streptococcus viridans) infections. The treatment of pulmonary tuberculosis was possible only "ex juvantibus" (trial) post-COVID-19. It becomes imperative to search for a new, more precise and reliable diagnostic test for the detection of tuberculosis bacillus.
Collapse
Affiliation(s)
- Andjelka Stojkovic
- University Clinical Center Clinic of Pediatrics Kragujevac Serbia, 34000 Kragujevac, Serbia; (A.K.); (K.D.); (Z.R.); (J.N.)
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Pediatrics, 34000 Kragujevac, Serbia
| | - Irena Ilic
- Department of Epidemiology, Faculty of Medicine University of Belgrade, 11000 Belgrade, Serbia;
| | - Andrijana Kostic
- University Clinical Center Clinic of Pediatrics Kragujevac Serbia, 34000 Kragujevac, Serbia; (A.K.); (K.D.); (Z.R.); (J.N.)
| | - Katerina Dajic
- University Clinical Center Clinic of Pediatrics Kragujevac Serbia, 34000 Kragujevac, Serbia; (A.K.); (K.D.); (Z.R.); (J.N.)
| | - Zorica Raskovic
- University Clinical Center Clinic of Pediatrics Kragujevac Serbia, 34000 Kragujevac, Serbia; (A.K.); (K.D.); (Z.R.); (J.N.)
| | - Jelena Nestorovic
- University Clinical Center Clinic of Pediatrics Kragujevac Serbia, 34000 Kragujevac, Serbia; (A.K.); (K.D.); (Z.R.); (J.N.)
| | - Milena Ilic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Epidemiology, 34000 Kragujevac, Serbia;
| |
Collapse
|
46
|
Eberle RJ, Coronado MA, Gering I, Sommerhage S, Korostov K, Stefanski A, Stühler K, Kraemer-Schulien V, Blömeke L, Bannach O, Willbold D. Tau protein aggregation associated with SARS-CoV-2 main protease. PLoS One 2023; 18:e0288138. [PMID: 37603556 PMCID: PMC10441795 DOI: 10.1371/journal.pone.0288138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/20/2023] [Indexed: 08/23/2023] Open
Abstract
The primary function of virus proteases is the proteolytic processing of the viral polyprotein. These enzymes can also cleave host cell proteins, which is important for viral pathogenicity, modulation of cellular processes, viral replication, the defeat of antiviral responses and modulation of the immune response. It is known that COVID-19 can influence multiple tissues or organs and that infection can damage the functionality of the brain in multiple ways. After COVID-19 infections, amyloid-β, neurogranin, tau and phosphorylated tau were detected extracellularly, implicating possible neurodegenerative processes. The present study describes the possible induction of tau aggregation by the SARS-CoV-2 3CL protease (3CLpro) possibly relevant in neuropathology. Further investigations demonstrated that tau was proteolytically cleaved by the viral protease 3CL and, consequently, generated aggregates. However, more evidence is needed to confirm that COVID-19 is able to trigger neurodegenerative diseases.
Collapse
Affiliation(s)
- Raphael Josef Eberle
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Mônika Aparecida Coronado
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Ian Gering
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Simon Sommerhage
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Karolina Korostov
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory (MPL), BMFZ, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory (MPL), BMFZ, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Victoria Kraemer-Schulien
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Lara Blömeke
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Oliver Bannach
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- attyloid GmbH, Düsseldorf, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- JuStruct: Jülich Centre for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
47
|
Sfera A, Rahman L, Zapata-Martín Del Campo CM, Kozlakidis Z. Long COVID as a Tauopathy: Of "Brain Fog" and "Fusogen Storms". Int J Mol Sci 2023; 24:12648. [PMID: 37628830 PMCID: PMC10454863 DOI: 10.3390/ijms241612648] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Long COVID, also called post-acute sequelae of SARS-CoV-2, is characterized by a multitude of lingering symptoms, including impaired cognition, that can last for many months. This symptom, often called "brain fog", affects the life quality of numerous individuals, increasing medical complications as well as healthcare expenditures. The etiopathogenesis of SARS-CoV-2-induced cognitive deficit is unclear, but the most likely cause is chronic inflammation maintained by a viral remnant thriving in select body reservoirs. These viral sanctuaries are likely comprised of fused, senescent cells, including microglia and astrocytes, that the pathogen can convert into neurotoxic phenotypes. Moreover, as the enteric nervous system contains neurons and glia, the virus likely lingers in the gastrointestinal tract as well, accounting for the intestinal symptoms of long COVID. Fusogens are proteins that can overcome the repulsive forces between cell membranes, allowing the virus to coalesce with host cells and enter the cytoplasm. In the intracellular compartment, the pathogen hijacks the actin cytoskeleton, fusing host cells with each other and engendering pathological syncytia. Cell-cell fusion enables the virus to infect the healthy neighboring cells. We surmise that syncytia formation drives cognitive impairment by facilitating the "seeding" of hyperphosphorylated Tau, documented in COVID-19. In our previous work, we hypothesized that the SARS-CoV-2 virus induces premature endothelial senescence, increasing the permeability of the intestinal and blood-brain barrier. This enables the migration of gastrointestinal tract microbes and/or their components into the host circulation, eventually reaching the brain where they may induce cognitive dysfunction. For example, translocated lipopolysaccharides or microbial DNA can induce Tau hyperphosphorylation, likely accounting for memory problems. In this perspective article, we examine the pathogenetic mechanisms and potential biomarkers of long COVID, including microbial cell-free DNA, interleukin 22, and phosphorylated Tau, as well as the beneficial effect of transcutaneous vagal nerve stimulation.
Collapse
Affiliation(s)
- Adonis Sfera
- Paton State Hospital, 3102 Highland Ave, Patton, CA 92369, USA
- School of Behavioral Health, Loma Linda University, 11139 Anderson St., Loma Linda, CA 92350, USA
- Department of Psychiatry, University of California, Riverside 900 University Ave, Riverside, CA 92521, USA
| | - Leah Rahman
- Department of Neuroscience, University of Oregon, 222 Huestis Hall, Eugene, OR 97401, USA
| | | | - Zisis Kozlakidis
- International Agency for Research on Cancer, World Health Organization, 69000 Lyon, France
| |
Collapse
|
48
|
Comeau D, Martin M, Robichaud GA, Chamard-Witkowski L. Neurological manifestations of post-acute sequelae of COVID-19: which liquid biomarker should we use? Front Neurol 2023; 14:1233192. [PMID: 37545721 PMCID: PMC10400889 DOI: 10.3389/fneur.2023.1233192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Long COVID syndrome, also known as post-acute sequelae of COVID-19 (PASC), is characterized by persistent symptoms lasting 3-12 weeks post SARS-CoV-2 infection. Patients suffering from PASC can display a myriad of symptoms that greatly diminish quality of life, the most frequent being neuropsychiatric. Thus, there is an eminent need to diagnose and treat PASC related neuropsychiatric manifestation (neuro-PASC). Evidence suggests that liquid biomarkers could potentially be used in the diagnosis and monitoring of patients. Undoubtedly, such biomarkers would greatly benefit clinicians in the management of patients; however, it remains unclear if these can be reliably used in this context. In this mini review, we highlight promising liquid (blood and cerebrospinal fluid) biomarkers, namely, neuronal injury biomarkers NfL, GFAP, and tau proteins as well as neuroinflammatory biomarkers IL-6, IL-10, TNF-α, and CPR associated with neuro-PASC and discuss their limitations in clinical applicability.
Collapse
Affiliation(s)
- Dominique Comeau
- Dr. Georges-L. Dumont University Hospital Centre, Clinical Research Sector, Vitalité Health Network, Moncton, NB, Canada
| | - Mykella Martin
- Centre de Formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada
| | - Gilles A. Robichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- The New Brunswick Center for Precision Medicine, Moncton, NB, Canada
- The Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Ludivine Chamard-Witkowski
- Centre de Formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada
- Department of Neurology, Dr. Georges-L. Dumont University Hospital Centre, Moncton, NB, Canada
| |
Collapse
|
49
|
Mina Y, Enose-Akahata Y, Hammoud DA, Videckis AJ, Narpala SR, O'Connell SE, Carroll R, Lin BC, McMahan CC, Nair G, Reoma LB, McDermott AB, Walitt B, Jacobson S, Goldstein DS, Smith BR, Nath A. Deep Phenotyping of Neurologic Postacute Sequelae of SARS-CoV-2 Infection. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:10/4/e200097. [PMID: 37147136 PMCID: PMC10162706 DOI: 10.1212/nxi.0000000000200097] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/04/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND OBJECTIVES SARS-CoV-2 infection has been associated with a syndrome of long-term neurologic sequelae that is poorly characterized. We aimed to describe and characterize in-depth features of neurologic postacute sequelae of SARS-CoV-2 infection (neuro-PASC). METHODS Between October 2020 and April 2021, 12 participants were seen at the NIH Clinical Center under an observational study to characterize ongoing neurologic abnormalities after SARS-CoV-2 infection. Autonomic function and CSF immunophenotypic analysis were compared with healthy volunteers (HVs) without prior SARS-CoV-2 infection tested using the same methodology. RESULTS Participants were mostly female (83%), with a mean age of 45 ± 11 years. The median time of evaluation was 9 months after COVID-19 (range 3-12 months), and most (11/12, 92%) had a history of only a mild infection. The most common neuro-PASC symptoms were cognitive difficulties and fatigue, and there was evidence for mild cognitive impairment in half of the patients (MoCA score <26). The majority (83%) had a very disabling disease, with Karnofsky Performance Status ≤80. Smell testing demonstrated different degrees of microsmia in 8 participants (66%). Brain MRI scans were normal, except 1 patient with bilateral olfactory bulb hypoplasia that was likely congenital. CSF analysis showed evidence of unique intrathecal oligoclonal bands in 3 cases (25%). Immunophenotyping of CSF compared with HVs showed that patients with neuro-PASC had lower frequencies of effector memory phenotype both for CD4+ T cells (p < 0.0001) and for CD8+ T cells (p = 0.002), an increased frequency of antibody-secreting B cells (p = 0.009), and increased frequency of cells expressing immune checkpoint molecules. On autonomic testing, there was evidence for decreased baroreflex-cardiovagal gain (p = 0.009) and an increased peripheral resistance during tilt-table testing (p < 0.0001) compared with HVs, without excessive plasma catecholamine responses. DISCUSSION CSF immune dysregulation and neurocirculatory abnormalities after SARS-CoV-2 infection in the setting of disabling neuro-PASC call for further evaluation to confirm these changes and explore immunomodulatory treatments in the context of clinical trials.
Collapse
Affiliation(s)
- Yair Mina
- From the National Institute of Neurological Disorders and Stroke (Y.M., Y.E.-A., A.J.V., C.C.M., G.N., L.B.R., B.W., S.J., D.S.G., B.R.S., A.N.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel-Aviv University, Israel; Center for Infectious Disease Imaging (D.A.H.), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health; and Vaccine Immunology Program (S.R.N., S.E.O.C., R.C., B.C.L., A.B.M.), Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Yoshimi Enose-Akahata
- From the National Institute of Neurological Disorders and Stroke (Y.M., Y.E.-A., A.J.V., C.C.M., G.N., L.B.R., B.W., S.J., D.S.G., B.R.S., A.N.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel-Aviv University, Israel; Center for Infectious Disease Imaging (D.A.H.), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health; and Vaccine Immunology Program (S.R.N., S.E.O.C., R.C., B.C.L., A.B.M.), Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Dima A Hammoud
- From the National Institute of Neurological Disorders and Stroke (Y.M., Y.E.-A., A.J.V., C.C.M., G.N., L.B.R., B.W., S.J., D.S.G., B.R.S., A.N.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel-Aviv University, Israel; Center for Infectious Disease Imaging (D.A.H.), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health; and Vaccine Immunology Program (S.R.N., S.E.O.C., R.C., B.C.L., A.B.M.), Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Anthony J Videckis
- From the National Institute of Neurological Disorders and Stroke (Y.M., Y.E.-A., A.J.V., C.C.M., G.N., L.B.R., B.W., S.J., D.S.G., B.R.S., A.N.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel-Aviv University, Israel; Center for Infectious Disease Imaging (D.A.H.), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health; and Vaccine Immunology Program (S.R.N., S.E.O.C., R.C., B.C.L., A.B.M.), Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sandeep R Narpala
- From the National Institute of Neurological Disorders and Stroke (Y.M., Y.E.-A., A.J.V., C.C.M., G.N., L.B.R., B.W., S.J., D.S.G., B.R.S., A.N.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel-Aviv University, Israel; Center for Infectious Disease Imaging (D.A.H.), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health; and Vaccine Immunology Program (S.R.N., S.E.O.C., R.C., B.C.L., A.B.M.), Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sarah E O'Connell
- From the National Institute of Neurological Disorders and Stroke (Y.M., Y.E.-A., A.J.V., C.C.M., G.N., L.B.R., B.W., S.J., D.S.G., B.R.S., A.N.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel-Aviv University, Israel; Center for Infectious Disease Imaging (D.A.H.), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health; and Vaccine Immunology Program (S.R.N., S.E.O.C., R.C., B.C.L., A.B.M.), Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Robin Carroll
- From the National Institute of Neurological Disorders and Stroke (Y.M., Y.E.-A., A.J.V., C.C.M., G.N., L.B.R., B.W., S.J., D.S.G., B.R.S., A.N.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel-Aviv University, Israel; Center for Infectious Disease Imaging (D.A.H.), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health; and Vaccine Immunology Program (S.R.N., S.E.O.C., R.C., B.C.L., A.B.M.), Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Bob C Lin
- From the National Institute of Neurological Disorders and Stroke (Y.M., Y.E.-A., A.J.V., C.C.M., G.N., L.B.R., B.W., S.J., D.S.G., B.R.S., A.N.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel-Aviv University, Israel; Center for Infectious Disease Imaging (D.A.H.), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health; and Vaccine Immunology Program (S.R.N., S.E.O.C., R.C., B.C.L., A.B.M.), Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Cynthia Chen McMahan
- From the National Institute of Neurological Disorders and Stroke (Y.M., Y.E.-A., A.J.V., C.C.M., G.N., L.B.R., B.W., S.J., D.S.G., B.R.S., A.N.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel-Aviv University, Israel; Center for Infectious Disease Imaging (D.A.H.), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health; and Vaccine Immunology Program (S.R.N., S.E.O.C., R.C., B.C.L., A.B.M.), Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Govind Nair
- From the National Institute of Neurological Disorders and Stroke (Y.M., Y.E.-A., A.J.V., C.C.M., G.N., L.B.R., B.W., S.J., D.S.G., B.R.S., A.N.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel-Aviv University, Israel; Center for Infectious Disease Imaging (D.A.H.), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health; and Vaccine Immunology Program (S.R.N., S.E.O.C., R.C., B.C.L., A.B.M.), Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Lauren B Reoma
- From the National Institute of Neurological Disorders and Stroke (Y.M., Y.E.-A., A.J.V., C.C.M., G.N., L.B.R., B.W., S.J., D.S.G., B.R.S., A.N.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel-Aviv University, Israel; Center for Infectious Disease Imaging (D.A.H.), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health; and Vaccine Immunology Program (S.R.N., S.E.O.C., R.C., B.C.L., A.B.M.), Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Adrian B McDermott
- From the National Institute of Neurological Disorders and Stroke (Y.M., Y.E.-A., A.J.V., C.C.M., G.N., L.B.R., B.W., S.J., D.S.G., B.R.S., A.N.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel-Aviv University, Israel; Center for Infectious Disease Imaging (D.A.H.), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health; and Vaccine Immunology Program (S.R.N., S.E.O.C., R.C., B.C.L., A.B.M.), Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Brian Walitt
- From the National Institute of Neurological Disorders and Stroke (Y.M., Y.E.-A., A.J.V., C.C.M., G.N., L.B.R., B.W., S.J., D.S.G., B.R.S., A.N.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel-Aviv University, Israel; Center for Infectious Disease Imaging (D.A.H.), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health; and Vaccine Immunology Program (S.R.N., S.E.O.C., R.C., B.C.L., A.B.M.), Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Steven Jacobson
- From the National Institute of Neurological Disorders and Stroke (Y.M., Y.E.-A., A.J.V., C.C.M., G.N., L.B.R., B.W., S.J., D.S.G., B.R.S., A.N.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel-Aviv University, Israel; Center for Infectious Disease Imaging (D.A.H.), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health; and Vaccine Immunology Program (S.R.N., S.E.O.C., R.C., B.C.L., A.B.M.), Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - David S Goldstein
- From the National Institute of Neurological Disorders and Stroke (Y.M., Y.E.-A., A.J.V., C.C.M., G.N., L.B.R., B.W., S.J., D.S.G., B.R.S., A.N.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel-Aviv University, Israel; Center for Infectious Disease Imaging (D.A.H.), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health; and Vaccine Immunology Program (S.R.N., S.E.O.C., R.C., B.C.L., A.B.M.), Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Bryan R Smith
- From the National Institute of Neurological Disorders and Stroke (Y.M., Y.E.-A., A.J.V., C.C.M., G.N., L.B.R., B.W., S.J., D.S.G., B.R.S., A.N.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel-Aviv University, Israel; Center for Infectious Disease Imaging (D.A.H.), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health; and Vaccine Immunology Program (S.R.N., S.E.O.C., R.C., B.C.L., A.B.M.), Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Avindra Nath
- From the National Institute of Neurological Disorders and Stroke (Y.M., Y.E.-A., A.J.V., C.C.M., G.N., L.B.R., B.W., S.J., D.S.G., B.R.S., A.N.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel-Aviv University, Israel; Center for Infectious Disease Imaging (D.A.H.), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health; and Vaccine Immunology Program (S.R.N., S.E.O.C., R.C., B.C.L., A.B.M.), Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
50
|
Allan-Blitz LT, Goodrich J, Hu H, Akbari O, Klausner JD. Altered Tumor Necrosis Factor Response in Neurologic Postacute SARS-CoV-2 Syndrome. J Interferon Cytokine Res 2023; 43:307-313. [PMID: 37384921 PMCID: PMC10354723 DOI: 10.1089/jir.2023.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/27/2023] [Indexed: 07/01/2023] Open
Abstract
Neurologic manifestations of postacute sequelae after SARS-CoV-2 infection (neuro-PASC) are common; however, the underlying drivers of those symptoms remain poorly understood. Prior work has postulated that immune dysregulation leads to ongoing neuroinflammation. We aimed to identify the cytokines involved in that immune dysregulation by comparing 37 plasma cytokine profiles among 20 case patients with neuro-PASC to 20 age- and gender-matched controls. Neuro-PASC cases were defined as individuals with self-reported persistent headache, general malaise, and anosmia or ageusia at least 28 days post-SARS-CoV-2 infection. As a sensitivity analysis, we repeated the main analysis among only participants of Hispanic heritage. In total, 40 specimens were tested. Participants were an average of 43.5 years old (interquartile range 30-52), 20 (50.0%) of whom identified as women. Levels of tumor necrosis factor alpha (TNFα) were 0.76 times lower [95% confidence interval (CI) 0.62-0.94] among cases of neuro-PASC compared with controls, as were levels of C-C motif chemokine 19 (CCL19) (0.67; 95% CI 0.50-0.91), C-C motif chemokine 2 (CCL2) (0.72; 95% CI 0.55-0.95), chemokine interferon-gamma inducible protein 10 (CXCL10) (0.63; 95% CI 0.42-0.96), and chemokine interferon-gamma inducible protein 9 (CXCL9) (0.62; 95% CI 0.38-0.99). Restricting analysis of TNF and CCL19 to participants who identified as Hispanic did not alter results. We noted a reduction in TNFα and down-stream chemokines among patients with neuro-PASC, suggesting an overall immune attenuation.
Collapse
Affiliation(s)
- Lao-Tzu Allan-Blitz
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jesse Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Howard Hu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Omid Akbari
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jeffrey D. Klausner
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|