1
|
Cui X, Li C, Zhong J, Liu Y, Xiao P, Liu C, Zhao M, Yang W. Gut microbiota - bidirectional modulator: role in inflammatory bowel disease and colorectal cancer. Front Immunol 2025; 16:1523584. [PMID: 40370465 PMCID: PMC12075242 DOI: 10.3389/fimmu.2025.1523584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
The gut microbiota is a diverse ecosystem that significantly impacts human health and disease. This article focuses on how the gut microbiota interacts with inflammatory bowel diseases and colorectal tumors, especially through immune regulation. The gut microbiota plays a role in immune system development and regulation, while the body's immune status can also affect the composition of the microbiota. These microorganisms exert pathogenic effects or correct disease states in gastrointestinal diseases through the actions of toxins and secretions, inhibition of immune responses, DNA damage, regulation of gene expression, and protein synthesis. The microbiota and its metabolites are essential in the development and progression of inflammatory bowel diseases and colorectal tumors. The complexity and bidirectionality of this connection with tumors and inflammation might render it a new therapeutic target. Hence, we explore therapeutic strategies for the gut microbiota, highlighting the potential of probiotics and fecal microbiota transplantation to restore or adjust the microbial community. Additionally, we address the challenges and future research directions in this area concerning inflammatory bowel diseases and colorectal tumors.
Collapse
Affiliation(s)
- Xilun Cui
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jing Zhong
- Department of Medical Imaging, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yuanda Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pengtuo Xiao
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chang Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mengwei Zhao
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
2
|
Cardenas VJ, Seashore JB, Tapryal N, Ameri M, Rivera R, Sharma K, Hazra T. Low levels of DNA repair enzyme NEIL2 May exacerbate inflammation and genomic damage in subjects with stable COPD and during severe exacerbations. Respir Res 2025; 26:165. [PMID: 40296120 PMCID: PMC12039275 DOI: 10.1186/s12931-025-03251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 04/21/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory airway disease that is an independent risk factor for lung cancer. Reduction in NEIL2 function, a DNA glycosylase involved in DNA repair during transcription, has been associated with an increased incidence of malignancies in humans. NEIL2 knockout mouse models have demonstrated increased inflammation and oxidative DNA damage in the lungs after exposure to an inflammatory insult, but data are lacking regarding NEIL2 function in individuals with COPD. We investigated whether NEIL2 levels and oxidative DNA damage to the transcribed genome are reduced in individuals with stable COPD and during severe acute exacerbations of COPD (AECOPD). METHODS The study was conducted at a single center in the US. Eligible subjects underwent a one-time 30 cc venous blood draw. The population consisted of 50 adults: 16 with stable COPD, 11 hospitalized for AECOPD, and 23 individuals without lung disease (controls). We analyzed blood leukocytes for NEIL2 mRNA and DNA damage by RT‒qPCR and LA‒qPCR, respectively, in all groups. Plasma levels of seven biomarkers, CXCL1, CXCL8, CXCL9, CXCL10, CCL2, CCL11 and IL-6, were analyzed in the COPD groups using a magnetic bead panel (Millipore®). RESULTS The fold change in NEIL2 mRNA levels were lower in individuals with stable COPD and AECOPD than in controls (0.72 for COPD, p = 0.029; 0.407 for AECOPD, p < 0.001). The difference in NEIL2 mRNA expression between the stable COPD group and AECOPD group was also statistically significant (p < 0.001). The fold change in DNA lesions per 10 kb of DNA was greater in the stable COPD (9.38, p < 0.001) and AECOPD (15.81, p < 0.001) groups than in the control group. The difference in fold change was also greater in the AECOPD group versus stable COPD p < 0.024). Cytokine levels were not significantly different between the COPD groups. NEIL2 levels were correlated with plasma eosinophil levels in the stable COPD group (r = 0.737, p = 0.003). CONCLUSIONS NEIL2 mRNA levels are significantly reduced in individuals with COPD and may exacerbate DNA damage and inflammation. These results suggest a possible mechanism that increases inflammation and oxidative genomic damage in COPD. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Victor J Cardenas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0561, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infection and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Justin B Seashore
- Department of Pulmonary and Critical Care, Kaiser Permanente Northern California, Vacaville Medical Center, Vacaville, CA, USA
| | - Nisha Tapryal
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0561, USA
| | - Moe Ameri
- Division of General Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Rosalinda Rivera
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Kabir Sharma
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0561, USA
| | - Tapas Hazra
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0561, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infection and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
3
|
Al-Qadami G, Raposo A, Chien CC, Ma C, Priebe I, Hor M, Fung K. Intestinal organoid coculture systems: current approaches, challenges, and future directions. Am J Physiol Gastrointest Liver Physiol 2025; 328:G252-G276. [PMID: 39716040 DOI: 10.1152/ajpgi.00203.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
The intestinal microenvironment represents a complex and dynamic ecosystem, comprising a diverse range of epithelial and nonepithelial cells, a protective mucus layer, and a diverse community of gut microbiota. Understanding the intricate interplay between these components is essential for uncovering the mechanisms underlying intestinal health and disease. The development of intestinal organoids, three-dimensional (3-D) mini-intestines that closely mimic the architecture, cellular diversity, and functionality of the intestine, offers a powerful platform for investigating different aspects of intestinal physiology and pathology. However, current intestinal organoid models, mainly adult stem cell-derived organoids, lack the nonepithelial and microbial components of the intestinal microenvironment. As such, several coculture systems have been developed to coculture intestinal organoids with other intestinal elements including microbes (bacteria and viruses) and immune, stromal, and neural cells. These coculture models allow researchers to recreate the complex intestinal environment and study the intricate cross talk between different components of the intestinal ecosystem under healthy and pathological conditions. Currently, there are several approaches and methodologies to establish intestinal organoid cocultures, and each approach has its own strengths and limitations. This review discusses the existing methods for coculturing intestinal organoids with different intestinal elements, focusing on the methodological approaches, strengths and limitations, and future directions.
Collapse
Affiliation(s)
| | - Anita Raposo
- Health and Biosecurity, CSIRO, Sydney, New South Wales, Australia
| | - Chia-Chi Chien
- Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| | - Chenkai Ma
- Health and Biosecurity, CSIRO, Sydney, New South Wales, Australia
| | - Ilka Priebe
- Health and Biosecurity, CSIRO, Adelaide, South Australia, Australia
| | - Maryam Hor
- Health and Biosecurity, CSIRO, Adelaide, South Australia, Australia
| | - Kim Fung
- Health and Biosecurity, CSIRO, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Hwang Y, Kang SJ, Kang J, Choi J, Kim SJ, Jang S. DNA repair and disease: insights from the human DNA glycosylase NEIL family. Exp Mol Med 2025; 57:524-532. [PMID: 40033009 PMCID: PMC11958798 DOI: 10.1038/s12276-025-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 03/05/2025] Open
Abstract
The base excision repair pathway protects DNA from base damage via oxidation, deamination, alkylation and methylation. DNA glycosylases are key enzymes that recognize damaged bases in a lesion-specific manner and initiate the base excision repair process. Among these, the endonuclease VIII-like 1-3 (NEIL1-3) family, which is found in mammalian genomes, is a homolog of bacterial DNA glycosylases known as Fpg/Nei. NEIL enzymes have similar structures and substrates but with slight differences. When repair proteins are impaired, the accumulation of damaged bases can lead to increased genomic instability, which is implicated in various pathologies, including cancer and neurodegeneration. Notably, mutations in these proteins also influence a range of other diseases and inflammation. This review focuses on the influence of the NEIL family on human health across different organ systems. Investigating the relationship between NEIL mutations and diseases can improve our understanding of how these enzymes affect the human body. This information is crucial for understanding the basic mechanisms of DNA repair and enabling the development of novel inhibitors or gene therapies that target only these enzymes. Understanding the role of the NEIL family provides insights into novel therapies and improves our ability to combat genetic diseases.
Collapse
Affiliation(s)
- Yuna Hwang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Su-Jin Kang
- College of Pharmacy, Dongduk Women's University, Seoul, Republic of Korea
| | - Jieun Kang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Jeongwoo Choi
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Seung-Jin Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea.
| | - Sunbok Jang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea.
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Sayed IM, Chakraborty A, Inouye K, Dugan L, Tocci S, Advani I, Park K, Gaboyan S, Kasaraneni N, Ma B, Hazra TK, Das S, Crotty Alexander LE. E-cigarettes increase the risk of adenoma formation in murine colorectal cancer model. Arch Toxicol 2025; 99:1223-1236. [PMID: 39786590 DOI: 10.1007/s00204-024-03932-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
E-cigarettes (E.cigs) cause inflammation and damage to human organs, including the lungs and heart. In the gut, E.cig vaping promotes inflammation and gut leakiness. Further, E.cig vaping increases tumorigenesis in oral and lung epithelial cells by inducing mutations and suppressing host DNA repair enzymes. It is well known that cigarette (cig) smoking increases the risk of colorectal cancer (CRC). To date, it is unknown whether E.cig vaping impacts CRC development. A mouse model of human familial adenomatous polyposis (CPC-APC) was utilized wherein a mutation in the adenomatous polyposis coli (APC) gene, CDX2-Cre-APCMin/+, leads to the development of colon adenomas within 11-16 weeks. Mice were exposed to air (controls), E.cig vaping, cig, or both (dual exposure). After 4 weeks of 2 h exposures per day (1 h of each for dual exposures), the colon was collected and assessed for polyp number and pathology scores by microscopy. Expression of inflammatory cytokines and cancer stem cell markers were quantified. DNA damage such as double-strand DNA breaks was evaluated by immunofluorescence, western blot, and gene-specific long amplicon qPCR. DNA repair enzyme levels (NEIL-2, NEIL-1, NTH1, and OGG1) were quantified by western blot. Proliferation markers were assessed by RT-qPCR and ELISA. CPC-APC mice exposed to E.cig, cig, and dual exposure developed a higher number of polyps compared to controls. Inflammatory proteins, DNA damage, and cancer stemness markers were higher in E-cig, cig, and dual-exposed mice as well. DNA damage was found to be associated with the suppression of DNA glycosylases, particularly with NEIL-2 and NTH1. E.cig and dual exposure both stimulated cancer cell stem markers (CD44, Lgr-5, DCLK1, and Ki67). The effect of E.cigs on polyp formation and CRC development was less than that of cigs, while dual exposure was more tumorigenic than either of the inhalants alone. E.cig vaping promotes CRC by stimulating inflammatory pathways, mediating DNA damage, and upregulating transcription of cancer stem cell markers. Critically, combining E.cig vaping with cig smoking leads to higher levels of tumorigenesis. Thus, while the chemical composition of these two inhalants, E.cigs and cigs, is highly disparate, they both drive the development of cancer and when combined, a highly common pattern of use, they can have additive or synergistic effects.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Pathology, University of California, San Diego, CA, 92093, USA.
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kaili Inouye
- Department of Pathology, University of California, San Diego, CA, 92093, USA
| | - Leanne Dugan
- Department of Pathology, University of California, San Diego, CA, 92093, USA
| | - Stefania Tocci
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Ira Advani
- Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Kenneth Park
- Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Samvel Gaboyan
- Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Nikita Kasaraneni
- Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Benjamin Ma
- Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Tapas K Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Soumita Das
- Department of Pathology, University of California, San Diego, CA, 92093, USA.
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| | - Laura E Crotty Alexander
- Department of Medicine, University of California, San Diego, CA, 92093, USA.
- Medicine Service, VA San Diego Healthcare System, San Diego, CA, 92161, USA.
| |
Collapse
|
6
|
Galasso L, Termite F, Mignini I, Esposto G, Borriello R, Vitale F, Nicoletti A, Paratore M, Ainora ME, Gasbarrini A, Zocco MA. Unraveling the Role of Fusobacterium nucleatum in Colorectal Cancer: Molecular Mechanisms and Pathogenic Insights. Cancers (Basel) 2025; 17:368. [PMID: 39941737 PMCID: PMC11816155 DOI: 10.3390/cancers17030368] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Fusobacterium nucleatum, a gram-negative anaerobic bacterium, has emerged as a significant player in colorectal cancer (CRC) pathogenesis. The bacterium causes a persistent inflammatory reaction in the colorectal mucosa by stimulating the release of pro-inflammatory cytokines like IL-1β, IL-6, and TNF-α, creating an environment conducive to cancer progression. F. nucleatum binds to and penetrates epithelial cells through adhesins such as FadA, impairing cell junctions and encouraging epithelial-to-mesenchymal transition (EMT), which is associated with cancer advancement. Additionally, the bacterium modulates the host immune system, suppressing immune cell activity and creating conditions favorable for tumor growth. Its interactions with the gut microbiome contribute to dysbiosis, further influencing carcinogenic pathways. Evidence indicates that F. nucleatum can inflict DNA damage either directly via reactive oxygen species or indirectly by creating a pro-inflammatory environment. Additionally, it triggers oncogenic pathways, especially the Wnt/β-catenin signaling pathway, which promotes tumor cell growth and longevity. Moreover, F. nucleatum alters the tumor microenvironment, impacting cancer cell behavior, metastasis, and therapeutic responses. The purpose of this review is to elucidate the molecular mechanisms by which F. nucleatum contributes to CRC. Understanding these mechanisms is crucial for the development of targeted therapies and diagnostic strategies for CRC associated with F. nucleatum.
Collapse
Affiliation(s)
- Linda Galasso
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Fabrizio Termite
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
| | - Irene Mignini
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Giorgio Esposto
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Raffaele Borriello
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Federica Vitale
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
| | - Alberto Nicoletti
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
| | - Mattia Paratore
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Maria Elena Ainora
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Maria Assunta Zocco
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| |
Collapse
|
7
|
Ye C, Liu X, Liu Z, Pan C, Zhang X, Zhao Z, Sun H. Fusobacterium nucleatum in tumors: from tumorigenesis to tumor metastasis and tumor resistance. Cancer Biol Ther 2024; 25:2306676. [PMID: 38289287 PMCID: PMC10829845 DOI: 10.1080/15384047.2024.2306676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/13/2024] [Indexed: 02/01/2024] Open
Abstract
Fusobacterium nucleatum, an anaerobic Gram-negative bacterium primarily residing in the oral cavity, has garnered significant attention for its emerging role in cancer progression and prognosis. While extensive research has revealed mechanistic links between Fusobacterium nucleatum and colorectal cancer, a comprehensive review spanning its presence and metastatic implications in cancers beyond colorectal origin is conspicuously absent. This paper broadens our perspective from colorectal cancer to various malignancies associated with Fusobacterium nucleatum, including oral, pancreatic, esophageal, breast, and gastric cancers. Our central focus is to unravel the mechanisms governing Fusobacterium nucleatum colonization, initiation, and promotion of metastasis across diverse cancer types. Additionally, we explore Fusobacterium nucleatum's adverse impacts on cancer therapies, particularly within the domains of immunotherapy and chemotherapy. Furthermore, this paper underscores the clinical research significance of Fusobacterium nucleatum as a potential tumor biomarker and therapeutic target, offering a novel outlook on its applicability in cancer detection and prognostic assessment.
Collapse
Affiliation(s)
- Chun Ye
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiao Liu
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zilun Liu
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chuxuan Pan
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaowei Zhang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhanyi Zhao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine, Central People’s Hospital of Ji’an, Shanghai East Hospital of Ji’an, Ji’an, China
| |
Collapse
|
8
|
Dadgar-Zankbar L, Elahi Z, Shariati A, Khaledi A, Razavi S, Khoshbayan A. Exploring the role of Fusobacterium nucleatum in colorectal cancer: implications for tumor proliferation and chemoresistance. Cell Commun Signal 2024; 22:547. [PMID: 39548531 PMCID: PMC11566256 DOI: 10.1186/s12964-024-01909-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/24/2024] [Indexed: 11/18/2024] Open
Abstract
Fusobacterium nucleatum (Fn) has been extensively studied for its connection to colorectal cancer (CRC) and its potential role in chemotherapy resistance. Studies indicate that Fn is commonly found in CRC tissues and is associated with unfavorable prognosis and treatment failure. It has been shown that Fn promotes chemoresistance by affecting autophagy, a cellular process that helps cells survive under stressful conditions. Additionally, Fn targets specific signaling pathways that activate particular microRNAs and modulate the response to chemotherapy. Understanding the current molecular mechanisms and investigating the importance of Fn-inducing chemoresistance could provide valuable insights for developing novel therapies. This review surveys the role of Fn in tumor proliferation, metastasis, and chemoresistance in CRC, focusing on its effects on the tumor microenvironment, gene expression, and resistance to conventional chemotherapy drugs. It also discusses the therapeutic implications of targeting Fn in CRC treatment and highlights the need for further research.
Collapse
Affiliation(s)
- Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Vice Chancellery of Education and Research, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| | - Azad Khaledi
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, P.O. Box: 87155.111, Kashan, 87154, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Randall-Demllo S, Al-Qadami G, Raposo AE, Ma C, Priebe IK, Hor M, Singh R, Fung KYC. Ex Vivo Intestinal Organoid Models: Current State-of-the-Art and Challenges in Disease Modelling and Therapeutic Testing for Colorectal Cancer. Cancers (Basel) 2024; 16:3664. [PMID: 39518102 PMCID: PMC11544769 DOI: 10.3390/cancers16213664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Despite improvements in participation in population-based screening programme, colorectal cancer remains a major cause of cancer-related mortality worldwide. Targeted interventions are desirable to reduce the health and economic burden of this disease. Two-dimensional monolayers of colorectal cancer cell lines represent the traditional in vitro models for disease and are often used for diverse purposes, including the delineation of molecular pathways associated with disease aetiology or the gauging of drug efficacy. The lack of complexity in such models, chiefly the limited epithelial cell diversity and differentiation, attenuated mucus production, lack of microbial interactions and mechanical stresses, has driven interest in the development of more holistic and physiologically relevant in vitro model systems. In particular, established ex vivo patient-derived explant and patient-derived tumour xenograft models have been supplemented by progress in organoid and microfluidic organ-on-a-chip cultures. Here, we discuss the applicability of advanced culturing technologies, such as organoid systems, as models for colorectal cancer and for testing chemotherapeutic drug sensitivity and efficacy. We highlight current challenges associated with organoid technologies and discuss their future for more accurate disease modelling and personalized medicine.
Collapse
Affiliation(s)
- Sarron Randall-Demllo
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide 5000, Australia; (S.R.-D.); (G.A.-Q.)
| | - Ghanyah Al-Qadami
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide 5000, Australia; (S.R.-D.); (G.A.-Q.)
| | - Anita E. Raposo
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Westmead 2145, Australia; (A.E.R.); (C.M.)
| | - Chenkai Ma
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Westmead 2145, Australia; (A.E.R.); (C.M.)
| | - Ilka K. Priebe
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide 5000, Australia; (S.R.-D.); (G.A.-Q.)
| | - Maryam Hor
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide 5000, Australia; (S.R.-D.); (G.A.-Q.)
| | - Rajvinder Singh
- Division of Gastroenterology, Lyell McEwin Hospital, Adelaide 5112, Australia
| | - Kim Y. C. Fung
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Westmead 2145, Australia; (A.E.R.); (C.M.)
| |
Collapse
|
10
|
Tindle C, Fonseca AG, Taheri S, Katkar GD, Lee J, Maity P, Sayed IM, Ibeawuchi SR, Vidales E, Pranadinata RF, Fuller M, Stec DL, Anandachar MS, Perry K, Le HN, Ear J, Boland BS, Sandborn WJ, Sahoo D, Das S, Ghosh P. A living organoid biobank of patients with Crohn's disease reveals molecular subtypes for personalized therapeutics. Cell Rep Med 2024; 5:101748. [PMID: 39332415 PMCID: PMC11513829 DOI: 10.1016/j.xcrm.2024.101748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/15/2024] [Accepted: 08/31/2024] [Indexed: 09/29/2024]
Abstract
Crohn's disease (CD) is a complex and heterogeneous condition with no perfect preclinical model or cure. To address this, we explore adult stem cell-derived organoids that retain their tissue identity and disease-driving traits. We prospectively create a biobank of CD patient-derived organoid cultures (PDOs) from colonic biopsies of 53 subjects across all clinical subtypes and healthy subjects. Gene expression analyses enabled benchmarking of PDOs as tools for modeling the colonic epithelium in active disease and identified two major molecular subtypes: immune-deficient infectious CD (IDICD) and stress and senescence-induced fibrostenotic CD (S2FCD). Each subtype shows internal consistency in the transcriptome, genome, and phenome. The spectrum of morphometric, phenotypic, and functional changes within the "living biobank" reveals distinct differences between the molecular subtypes. Drug screens reverse subtype-specific phenotypes, suggesting phenotyped-genotyped CD PDOs can bridge basic biology and patient trials by enabling preclinical phase "0" human trials for personalized therapeutics.
Collapse
Affiliation(s)
- Courtney Tindle
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | - Ayden G Fonseca
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | - Sahar Taheri
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gajanan D Katkar
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jasper Lee
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Priti Maity
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | - Ibrahim M Sayed
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stella-Rita Ibeawuchi
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eleadah Vidales
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | - Rama F Pranadinata
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | - Mackenzie Fuller
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | - Dominik L Stec
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Kevin Perry
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | - Helen N Le
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason Ear
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brigid S Boland
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - William J Sandborn
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Soumita Das
- HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA; Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
11
|
Cardenas VJ, Seashore JB, Tapryal N, Ameri M, Rivera R, Sharma K, Hazra T. Suppression of the DNA repair enzyme NEIL2 promotes persistent inflammation and genomic damage in subjects with stable COPD and during severe exacerbations. RESEARCH SQUARE 2024:rs.3.rs-4849668. [PMID: 39281860 PMCID: PMC11398562 DOI: 10.21203/rs.3.rs-4849668/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory airway disease that is an independent risk factor for lung cancer. NEIL2, a DNA glycolase involved in DNA repair during transcription, has also been associated with an increased incidence of malignancies in humans. NEIL2 knockout mouse models have demonstrated increased inflammation and oxidative DNA damage in the lungs after exposure to an inflammatory insult, but data are lacking regarding NEIL2 function in individuals with stable COPD and during severe acute exacerbations of COPD (AECOPD). We investigated whether NEIL2 levels and oxidative DNA damage to the transcribed genome are altered in individuals with stable COPD and AECOPD. Methods The study was conducted at a single center in the US. Eligible subjects underwent a one-time 30 cc venous blood draw. The population consisted of 50 adults: 16 with stable COPD, 11 hospitalized for AECOPD, and 23 volunteers. We analyzed blood leukocytes for NEIL2 mRNA and DNA damage by RT-qPCR and LA-qPCR, respectively, in all groups. Plasma levels of seven biomarkers, CXCL1, CXCL8, CXCL9, CXCL10, CCL2, CCL11 and IL-6, were analyzed in the COPD groups using a magnetic bead panel (Millipore®). Results The NEIL2 mRNA levels were lower in individuals with stable COPD and AECOPD than in controls (0.72 for COPD, p = 0.0289; 0.407 for AECOPD, p = 0.0002). The difference in NEIL2 mRNA expression between the stable COPD group and AECOPD group was also statistically significant (p < 0.001). The fold change in DNA lesions per 10 kb of DNA was greater in the stable COPD (9.38, p < 0.0008) and AECOPD (15.81, p < 0.0004) groups than in the control group. The difference in fold change was also greater in the AECOPD group versus stable COPD p < 0.0236). Biomarker levels were not significantly different between the COPD groups. NEIL2 levels were correlated with plasma eosinophil levels in the stable COPD group (r = 0.737, p < 0.0027). Conclusions NEIL2 mRNA levels are significantly reduced in COPD subjects and are associated with increased DNA damage and inflammation. These results reveal a mechanism that promotes persistent airway inflammation and oxidative genomic damage and increases the risk of malignancy in this population.
Collapse
|
12
|
Sayed IM, Chakraborty A, Inouye K, Dugan L, Tocci S, Advani I, Park K, Hazra TK, Das S, Crotty Alexander LE. E-cigarettes increase the risk of adenoma formation in murine colorectal cancer model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609469. [PMID: 39253444 PMCID: PMC11383026 DOI: 10.1101/2024.08.23.609469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Background E-cigarettes (E.cigs) cause inflammation and damage to human organs, including the lungs and heart. In the gut, E.cig vaping promotes inflammation and gut leakiness. Further, E.cig vaping increases tumorigenesis in oral and lung epithelial cells by inducing mutations and suppressing host DNA repair enzymes. It is well known that cigarette (cig) smoking increases the risk of colorectal cancer (CRC). To date, it is unknown whether E.cig vaping impacts CRC development. Methods A mouse model of human familial adenomatous polyposis (CPC-APC) was utilized wherein a mutation in the adenomatous polyposis coli (APC) gene, CDX2-Cre-APCMin/+, leads to the development of colon adenomas within 16 weeks. Mice were exposed to air (controls), E.cig vaping, cig, or both (dual exposure). After 4 weeks of 2-hour exposures per day (1 hour of each for dual exposures), the colon was collected and assessed for polyp number and pathology scores by microscopy. Expression of inflammatory cytokines and cancer stem cell markers were quantified. DNA damage such as double-strand DNA breaks was evaluated by immunofluorescence, western blot and gene-specific long amplicon qPCR. DNA repair enzyme levels (NEIL-2, NEIL-1, NTH1, and OGG1) were quantified by western blot. Proliferation markers were assessed by RT-qPCR and ELISA. Results CPC-APC mice exposed to E.cig, cig, and dual exposure developed a higher number of polyps compared to controls. Inflammatory proteins, DNA damage, and cancer stemness markers were higher in E-cig, cig, and dual-exposed mice as well. DNA damage was found to be associated with the suppression of DNA glycosylases, particularly with NEIL-2 and NTH1. E.cig and dual exposure both stimulated cancer cell stem markers (CD44, Lgr-5, DCLK1, and Ki67). The effect of E.cigs on polyp formation and CRC development was less than that of cigs, while dual exposure was more tumorigenic than either of the inhalants alone. Conclusion E.cig vaping promotes CRC by stimulating inflammatory pathways, mediating DNA damage, and upregulating transcription of cancer stem cell markers. Critically, combining E.cig vaping with cig smoking leads to higher levels of tumorigenesis. Thus, while the chemical composition of these two inhalants, E.cigs and cigs, is highly disparate, they both drive the development of cancer and when combined, a highly common pattern of use, they can have additive or synergistic effects.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Pathology, University of California, San Diego, CA, 92093, USA
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kaili Inouye
- Department of Pathology, University of California, San Diego, CA, 92093, USA
| | - Leanne Dugan
- Department of Pathology, University of California, San Diego, CA, 92093, USA
| | - Stefania Tocci
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Ira Advani
- Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Kenneth Park
- Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Tapas K Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Soumita Das
- Department of Pathology, University of California, San Diego, CA, 92093, USA
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Laura E. Crotty Alexander
- Department of Medicine, University of California, San Diego, CA, 92093, USA
- Medicine Service, VA San Diego Healthcare System, San Diego, CA, 92161, USA
| |
Collapse
|
13
|
Broering MF, Tocci S, Sout NT, Reutelingsperger C, Farsky SHP, Das S, Sayed IM. Development of an Inflamed High Throughput Stem-cell-based Gut Epithelium Model to Assess the Impact of Annexin A1. Stem Cell Rev Rep 2024; 20:1299-1310. [PMID: 38498294 DOI: 10.1007/s12015-024-10708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE AND DESIGN Annexin A1 (ANXA1) plays a role in maintaining intestinal hemostasis, especially following mucosal inflammation. The published data about ANXA1 was derived from experimental animal models where there is an overlapping between epithelial and immune cells. There is no in vitro gut epithelial model that can assess the direct effect of ANXA1 on the gut epithelium. METHODS We developed high-throughput stem-cell-based murine epithelial cells and bacterial lipopolysaccharides (LPS) were used to induce inflammation. The impact of ANXA1 and its functional part (Ac2-26) was evaluated in the inflamed model. Intestinal integrity was assessed by the transepithelial electrical resistance (TEER), and FITC-Dextran permeability. Epithelial junction proteins were assessed using confocal microscopy and RT-qPCR. Inflammatory cytokines were evaluated by RT-qPCR and ELISA. RESULTS LPS challenge mediated a damage in the epithelial cells as shown by a drop in the TEER and an increase in FITC-dextran permeability; reduced the expression of epithelial junctional proteins (Occludin, ZO-1, and Cadherin) and increased the expression of the gut leaky protein, Claudin - 2. ANXA1 and Ac2-26 treatment reduced the previous damaging effects. In addition, ANXA1 and Ac2-26 inhibited the inflammatory responses mediated by the LPS and increased the transcription of the anti-inflammatory cytokine, IL-10. CONCLUSION ANXA1 and Ac2-26 directly protect the epithelial integrity by affecting the expression of epithelial junction and inflammatory markers. The inflamed gut model is a reliable tool to study intestinal inflammatory diseases, and to evaluate the efficacy of potential anti-inflammatory drugs and the screening of new drugs that could be candidates for inflammatory bowel disease.
Collapse
Affiliation(s)
- Milena Fronza Broering
- Department of Biomedical and Nutritional Sciences, University of Massachusetts-Lowell, Lowell, MA, 01854, USA
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, São Paulo, 05508-000, Brazil
| | - Stefania Tocci
- Department of Biomedical and Nutritional Sciences, University of Massachusetts-Lowell, Lowell, MA, 01854, USA
| | - Noah T Sout
- Department of Biomedical and Nutritional Sciences, University of Massachusetts-Lowell, Lowell, MA, 01854, USA
| | - Chris Reutelingsperger
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht University, Maastricht, 6211 LK, The Netherlands
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, São Paulo, 05508-000, Brazil
| | - Soumita Das
- Department of Biomedical and Nutritional Sciences, University of Massachusetts-Lowell, Lowell, MA, 01854, USA.
| | - Ibrahim M Sayed
- Department of Biomedical and Nutritional Sciences, University of Massachusetts-Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
14
|
Yu LC, Li YP, Xin YM, Mao M, Pan YX, Qu YX, Luo ZD, Zhang Y, Zhang X. Application of Fusobacterium nucleatum as a biomarker in gastrointestinal malignancies. World J Gastrointest Oncol 2024; 16:2271-2283. [PMID: 38994170 PMCID: PMC11236247 DOI: 10.4251/wjgo.v16.i6.2271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 06/13/2024] Open
Abstract
The morbidity and mortality of gastrointestinal (GI) malignancies are among the highest in the world, posing a serious threat to human health. Because of the insidious onset of the cancer, it is difficult for patients to be diagnosed at an early stage, and it rapidly progresses to an advanced stage, resulting in poor treatment and prognosis. Fusobacterium nucleatum (F. nucleatum) is a gram-negative, spore-free anaerobic bacterium that primarily colonizes the oral cavity and is implicated in the development of colorectal, esophageal, gastric, and pancreatic cancers via various intricate mechanisms. Recent development in novel research suggests that F. nucleatum may function as a biomarker in GI malignancies. Detecting the abundance of F. nucleatum in stool, saliva, and serum samples of patients may aid in the diagnosis, risk assessment, and prognosis monitoring of GI malignancies. This editorial systematically describes the biological roles and mechanisms of F. nucleatum in GI malignancies focusing on the application of F. nucleatum as a biomarker in the diagnosis and prognosis of GI malignancies to promote the clinical translation of F. nucleatum and GI tumors-related research.
Collapse
Affiliation(s)
- Long-Chen Yu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Ya-Ping Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Yue-Ming Xin
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Mai Mao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Ya-Xin Pan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Yi-Xuan Qu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Zheng-Dong Luo
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| |
Collapse
|
15
|
Hua AB, Sweasy JB. Functional roles and cancer variants of the bifunctional glycosylase NEIL2. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 1:40-56. [PMID: 37310399 DOI: 10.1002/em.22555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
Over 70,000 DNA lesions occur in the cell every day, and the inability to properly repair them can lead to mutations and destabilize the genome, resulting in carcinogenesis. The base excision repair (BER) pathway is critical for maintaining genomic integrity by repairing small base lesions, abasic sites and single-stranded breaks. Monofunctional and bifunctional glycosylases initiate the first step of BER by recognizing and excising specific base lesions, followed by DNA end processing, gap filling, and finally nick sealing. The Nei-like 2 (NEIL2) enzyme is a critical bifunctional DNA glycosylase in BER that preferentially excises cytosine oxidation products and abasic sites from single-stranded, double-stranded, and bubble-structured DNA. NEIL2 has been implicated to have important roles in several cellular functions, including genome maintenance, participation in active demethylation, and modulation of the immune response. Several germline and somatic variants of NEIL2 with altered expression and enzymatic activity have been reported in the literature linking them to cancers. In this review, we provide an overview of NEIL2 cellular functions and summarize current findings on NEIL2 variants and their relationship to cancer.
Collapse
Affiliation(s)
- Anh B Hua
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Joann B Sweasy
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona, USA
| |
Collapse
|
16
|
Yadav D, Sainatham C, Filippov E, Kanagala SG, Ishaq SM, Jayakrishnan T. Gut Microbiome-Colorectal Cancer Relationship. Microorganisms 2024; 12:484. [PMID: 38543535 PMCID: PMC10974515 DOI: 10.3390/microorganisms12030484] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 11/12/2024] Open
Abstract
Traditionally, the role of gut dysbiosis was thought to be limited to pathologies like Clostridioides difficile infection, but studies have shown its role in other intestinal and extraintestinal pathologies. Similarly, recent studies have surfaced showing the strong potential role of the gut microbiome in colorectal cancer, which was traditionally attributed mainly to sporadic or germline mutations. Given that it is the third most common cancer and the second most common cause of cancer-related mortality, 78 grants totaling more than USD 28 million have been granted to improve colon cancer management since 2019. Concerted efforts by several of these studies have identified specific bacterial consortia inducing a proinflammatory environment and promoting genotoxin production, causing the induction or progression of colorectal cancer. In addition, changes in the gut microbiome have also been shown to alter the response to cancer chemotherapy and immunotherapy, thus changing cancer prognosis. Certain bacteria have been identified as biomarkers to predict the efficacy of antineoplastic medications. Given these discoveries, efforts have been made to alter the gut microbiome to promote a favorable diversity to improve cancer progression and the response to therapy. In this review, we expand on the gut microbiome, its association with colorectal cancer, and antineoplastic medications. We also discuss the evolving paradigm of fecal microbiota transplantation in the context of colorectal cancer management.
Collapse
Affiliation(s)
- Devvrat Yadav
- Department of Internal Medicine, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD 21215, USA (E.F.); (S.M.I.)
| | - Chiranjeevi Sainatham
- Department of Internal Medicine, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD 21215, USA (E.F.); (S.M.I.)
| | - Evgenii Filippov
- Department of Internal Medicine, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD 21215, USA (E.F.); (S.M.I.)
| | - Sai Gautham Kanagala
- Department of Internal Medicine, NYC Health + Hospital/Metropolitan, New York, NY 10029, USA
| | - Syed Murtaza Ishaq
- Department of Internal Medicine, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD 21215, USA (E.F.); (S.M.I.)
| | - Thejus Jayakrishnan
- Division of Hematology and Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
17
|
Martin-Gallausiaux C, Salesse L, Garcia-Weber D, Marinelli L, Beguet-Crespel F, Brochard V, Le Gléau C, Jamet A, Doré J, Blottière HM, Arrieumerlou C, Lapaque N. Fusobacterium nucleatum promotes inflammatory and anti-apoptotic responses in colorectal cancer cells via ADP-heptose release and ALPK1/TIFA axis activation. Gut Microbes 2024; 16:2295384. [PMID: 38126163 PMCID: PMC10761154 DOI: 10.1080/19490976.2023.2295384] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The anaerobic bacterium Fusobacterium nucleatum is significantly associated with human colorectal cancer (CRC) and is considered a significant contributor to the disease. The mechanisms underlying the promotion of intestinal tumor formation by F. nucleatum have only been partially uncovered. Here, we showed that F. nucleatum releases a metabolite into the microenvironment that strongly activates NF-κB in intestinal epithelial cells via the ALPK1/TIFA/TRAF6 pathway. Furthermore, we showed that the released molecule had the biological characteristics of ADP-heptose. We observed that F. nucleatum induction of this pathway increased the expression of the inflammatory cytokine IL-8 and two anti-apoptotic genes known to be implicated in CRC, BIRC3 and TNFAIP3. Finally, it promoted the survival of CRC cells and reduced 5-fluorouracil chemosensitivity in vitro. Taken together, our results emphasize the importance of the ALPK1/TIFA pathway in Fusobacterium induced-CRC pathogenesis, and identify the role of ADP-H in this process.
Collapse
Affiliation(s)
| | - Laurène Salesse
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Ludovica Marinelli
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Vincent Brochard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Camille Le Gléau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alexandre Jamet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Joël Doré
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, Metagenopolis, Jouy-en-Josas, France
| | - Hervé M. Blottière
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, Metagenopolis, Jouy-en-Josas, France
| | | | - Nicolas Lapaque
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
18
|
Tapryal N, Chakraborty A, Saha K, Islam A, Pan L, Hosoki K, Sayed IM, Duran JM, Alcantara J, Castillo V, Tindle C, Sarker AH, Wakamiya M, Cardenas VJ, Sharma G, Crotty Alexander LE, Sur S, Sahoo D, Ghosh G, Das S, Ghosh P, Boldogh I, Hazra TK. The DNA glycosylase NEIL2 is protective during SARS-CoV-2 infection. Nat Commun 2023; 14:8169. [PMID: 38071370 PMCID: PMC10710473 DOI: 10.1038/s41467-023-43938-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
SARS-CoV-2 infection-induced aggravation of host innate immune response not only causes tissue damage and multiorgan failure in COVID-19 patients but also induces host genome damage and activates DNA damage response pathways. To test whether the compromised DNA repair capacity of individuals modulates the severity of COVID-19 infection, we analyze DNA repair gene expression in publicly available patient datasets and observe a lower level of the DNA glycosylase NEIL2 in the lungs of severely infected COVID-19 patients. This observation of lower NEIL2 levels is further validated in infected patients, hamsters and ACE2 receptor-expressing human A549 (A549-ACE2) cells. Furthermore, delivery of recombinant NEIL2 in A549-ACE2 cells shows decreased expression of proinflammatory genes and viral E-gene, as well as lowers the yield of viral progeny compared to mock-treated cells. Mechanistically, NEIL2 cooperatively binds to the 5'-UTR of SARS-CoV-2 genomic RNA to block viral protein synthesis. Collectively, these data strongly suggest that the maintenance of basal NEIL2 levels is critical for the protective response of hosts to viral infection and disease.
Collapse
Affiliation(s)
- Nisha Tapryal
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kaushik Saha
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92037, USA
- Department of Biological Sciences, School of Engineering and Sciences, SRM University-AP, Guntur District, Andhra Pradesh, 522240, India
| | - Azharul Islam
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Koa Hosoki
- Department of Medicine, Immunology Allergy and Rheumatology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ibrahim M Sayed
- Department of Pathology, University of California, San Diego, CA, 92093, USA
- Department of Biomedical and Nutritional Science, University of Massachusetts-Lowell, Lowell, MA, 01854, USA
| | - Jason M Duran
- Department of Internal Medicine, Division of Cardiology, UC San Diego Medical Center, La Jolla, CA, 92037, USA
| | - Joshua Alcantara
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Vanessa Castillo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Courtney Tindle
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Altaf H Sarker
- Department of Cancer and DNA Damage Responses, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Maki Wakamiya
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Victor J Cardenas
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Gulshan Sharma
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | | | - Sanjiv Sur
- Department of Medicine, Immunology Allergy and Rheumatology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92037, USA.
| | - Soumita Das
- Department of Pathology, University of California, San Diego, CA, 92093, USA.
- Department of Biomedical and Nutritional Science, University of Massachusetts-Lowell, Lowell, MA, 01854, USA.
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Medicine, University of California, San Diego, CA, 92093, USA.
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Tapas K Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
19
|
Wang N, Fang JY. Fusobacterium nucleatum, a key pathogenic factor and microbial biomarker for colorectal cancer. Trends Microbiol 2023; 31:159-172. [PMID: 36058786 DOI: 10.1016/j.tim.2022.08.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/27/2023]
Abstract
Colorectal cancer (CRC), one of the most prevalent cancers, has complex etiology. The dysbiosis of intestinal bacteria has been highlighted as an important contributor to CRC. Fusobacterium nucleatum, an oral anaerobic opportunistic pathogen, is enriched in both stools and tumor tissues of patients with CRC. Therefore, F. nucleatum is considered to be a risk factor for CRC. This review summarizes the biological characteristics and the mechanisms underlying the regulatory behavior of F. nucleatum in the tumorigenesis and progression of CRC. F. nucleatum as a marker for the early warning and prognostic prediction of CRC, and as a target for prevention and treatment, is also described.
Collapse
Affiliation(s)
- Ni Wang
- Division of Gastroenterology and Hepatology, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China; NHC Key Laboratory of Digestive Diseases, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China; NHC Key Laboratory of Digestive Diseases, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
20
|
Zhu A, Liu Y, Li Z, He Y, Bai L, Wu Y, Zhang Y, Huang Y, Jiang P. Diagnosis and functional prediction of microbial markers in tumor tissues of sporadic colorectal cancer patients associated with the MLH1 protein phenotype. Front Oncol 2023; 12:1116780. [PMID: 36755857 PMCID: PMC9899897 DOI: 10.3389/fonc.2022.1116780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/30/2022] [Indexed: 01/25/2023] Open
Abstract
Objective Most patients with sporadic colorectal cancer (SCRC) develop microsatellite instability because of defects in mismatch repair (MMR). Moreover, the gut microbiome plays a vital role in the pathogenesis of SCRC. In this study, we assessed the microbial composition and diversity of SCRC tumors with varying MutL protein homolog 1 (MLH1) status, and the effects of functional genes related to bacterial markers and clinical diagnostic prediction. Methods The tumor microbial diversity and composition were profiled using high-throughput sequencing of the 16S ribosomal RNA (rRNA) gene V4 region. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) software and BugBase tool were used to predict the functional roles of the microbiome. We aimed to construct a high-accuracy model to detect and evaluate the area under the receiver operating characteristic curve with candidate biomarkers. Results The study included 23 patients with negative/defective MLH1 (DM group) and 22 patients with positive/intact MLH1 (IM group). Estimation of alpha diversity indices showed that the Shannon index (p = 0.049) was significantly higher in the DM group than in the controls, while the Simpson index (p = 0.025) was significantly lower. At the genus level, we observed a significant difference in beta diversity in the DM group versus the IM group. Moreover, the abundance of Lachnoclostridium spp. and Coprococcus spp. was significantly more enriched in the DM group than in the IM group (q < 0.01 vs. q < 0.001). When predicting metagenomes, there were 18 Kyoto Encyclopedia of Genes and Genomes pathways and one BugBase function difference in both groups (all q < 0.05). On the basis of the model of diagnostic prediction, we built a simplified optimal model through stepwise selection, consisting of the top two bacterial candidate markers (area under the curve = 0.93). Conclusion In conclusion, the genera Lachnoclostridium and Coprococcus as key species may be crucial biomarkers for non-invasive diagnostic prediction of DM in patients with SCRC in the future.
Collapse
Affiliation(s)
- Anchao Zhu
- Department of Pathology, Harbin First Hospital, Harbin, China
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yingying Liu
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, China
| | - Zongmin Li
- Department of Pathology, Harbin First Hospital, Harbin, China
| | - Ying He
- Department of Gastroenterology, Harbin First Hospital, Harbin, China
| | - Lijing Bai
- Department of Laboratory Diagnosis, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Youtian Wu
- Department of Pathology, Harbin First Hospital, Harbin, China
| | - Yuying Zhang
- Department of Pathology, Harbin First Hospital, Harbin, China
| | - Ying Huang
- Department of Pathology, Harbin First Hospital, Harbin, China
| | - Ping Jiang
- Department of Pathology, Harbin First Hospital, Harbin, China
| |
Collapse
|
21
|
Sayed IM, Chakraborty A, Das S. Assays with Patient-Derived Organoids to Evaluate the Impact of Microbial Infection on Base Excision Repair (BER) Enzymes. Methods Mol Biol 2023; 2701:157-172. [PMID: 37574481 DOI: 10.1007/978-1-0716-3373-1_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Microbes play an important role in regulating cellular responses and the induction of chronic diseases. Infection and chronic inflammation can cause DNA damage, and the accumulation of mutations leads to cancer development. The well-known examples of cancer-associated microbes are Helicobacter pylori in gastric cancer and Fusobacterium nucleatum (Fn), Bacteroides fragilis, and E.coli NC101 in colorectal cancer (CRC). These carcinopathogens modify the expressions of the base excision repair enzymes and cause DNA damage. This chapter will show how Fn can initiate CRC through the downregulation of a critical enzyme of the base excision repair (BER) pathway that subsequently causes accumulation of DNA damage. We used the stem cell-based organoid model and enteroid-derived monolayer (EDM) from the murine and human colon to assess the impact of infection on the expression of BER enzymes on the transcriptional and translational levels and to develop other functional assays. For example, we used this EDM model to assess the inflammatory response, DNA damage response, and physiological responses, where we correlated the level of these parameters to BER enzyme levels.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Asyut, Egypt
- Department of Pathology, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Soumita Das
- Department of Pathology, School of Medicine, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
22
|
Tocci S, Ibeawuchi SR, Das S, Sayed IM. Role of ELMO1 in inflammation and cancer-clinical implications. Cell Oncol (Dordr) 2022; 45:505-525. [PMID: 35668246 DOI: 10.1007/s13402-022-00680-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Engulfment and cell motility protein 1 (ELMO1) is a key protein for innate immunity since it is required for the clearance of apoptotic cells and pathogenic bacteria as well as for the control of inflammatory responses. ELMO1, through binding with Dock180 and activation of the Rac1 signaling pathway, plays a significant role in cellular shaping and motility. Rac-mediated actin cytoskeletal rearrangement is essential for bacterial phagocytosis, but also plays a crucial role in processes such as cancer cell invasion and metastasis. While the role of ELMO1 in bacterial infection and inflammatory responses is well established, its implication in cancer is not widely explored yet. Molecular changes or epigenetic alterations such as DNA methylation, which ultimately leads to alterations in gene expression and deregulation of cellular signaling, has been reported for ELMO1 in different cancer types. CONCLUSIONS In this review, we provide an updated and comprehensive summary of the roles of ELMO1 in infection, inflammatory diseases and cancer. We highlight the possible mechanisms regulated by ELMO1 that are relevant for cancer development and progression and provide insight into the possible use of ELMO1 as a diagnostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Stefania Tocci
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | | | - Soumita Das
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
| | - Ibrahim M Sayed
- Department of Pathology, University of California San Diego, La Jolla, CA, USA. .,Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
23
|
Hazra T, Tapryal N, Chakraborty A, Rayavara K, Wakamiya M, Islam A, Pan L, Hsu J, Tat V, Maruyama J, Hosoki K, Sayed I, Alcantara J, Castillo V, Tindle C, Sarker A, Cardenas V, Sharma G, Alexander LC, Sur S, Ghosh G, Paessler S, Sahoo D, Ghosh P, Das S, Boldogh I, Tseng CT. The DNA glycosylase NEIL2 plays a vital role in combating SARS-CoV-2 infection. RESEARCH SQUARE 2022:rs.3.rs-1690354. [PMID: 35665009 PMCID: PMC9164514 DOI: 10.21203/rs.3.rs-1690354/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Compromised DNA repair capacity of individuals could play a critical role in the severity of SARS-CoV-2 infection-induced COVID-19. We therefore analyzed the expression of DNA repair genes in publicly available transcriptomic datasets of COVID-19 patients and found that the level of NEIL2, an oxidized base specific mammalian DNA glycosylase, is particularly low in the lungs of COVID-19 patients displaying severe symptoms. Downregulation of pulmonary NEIL2 in CoV-2-permissive animals and postmortem COVID-19 patients validated these results. To investigate the potential roles of NEIL2 in CoV-2 pathogenesis, we infected Neil2-null (Neil2-/-) mice with a mouse-adapted CoV-2 strain and found that Neil2-/- mice suffered more severe viral infection concomitant with increased expression of proinflammatory genes, which resulted in an enhanced mortality rate of 80%, up from 20% for the age matched Neil2+/+ cohorts. We also found that infected animals accumulated a significant amount of damage in their lung DNA. Surprisingly, recombinant NEIL2 delivered into permissive A549-ACE2 cells significantly decreased viral replication. Toward better understanding the mechanistic basis of how NEIL2 plays such a protective role against CoV-2 infection, we determined that NEIL2 specifically binds to the 5'-UTR of SARS-CoV-2 genomic RNA and blocks protein synthesis. Together, our data suggest that NEIL2 plays a previously unidentified role in regulating CoV-2-induced pathogenesis, via inhibiting viral replication and preventing exacerbated proinflammatory responses, and also via its well-established role of repairing host genome damage.
Collapse
Affiliation(s)
- Tapas Hazra
- The University of Texas Medical Branch at Galveston
| | | | | | | | | | | | - Lang Pan
- The University of Texas Medical Branch at Galveston
| | - Jason Hsu
- The University of Texas Medical Branch
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhao T, Wang X, Fu L, Yang K. Fusobacterium nucleatum: a new player in regulation of cancer development and therapeutic response. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:436-450. [PMID: 35800370 PMCID: PMC9255244 DOI: 10.20517/cdr.2021.144] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 12/15/2022]
Abstract
A dysbiosis in microbial diversity or functionality can promote disease development. Emerging preclinical and clinical evidence emphasizes the interplay between microbiota and both disease evolution and the treatment response of different cancers. One bacterium that has garnered much attention in a few cancer microbiota studies is Fusobacterium nucleaum (Fn). To provide updated knowledge of the functional role of Fn in cancer prevention and management, this review summarizes the relationship among Fn, cancer, and chemoimmunotherapy response, with the potential mechanisms of action also intensively discussed, which will benefit the development of strategies to prevent or treat cancer via Fn-based therapeutic interventions.
Collapse
Affiliation(s)
- Tengda Zhao
- Department of Oral and Maxillofacial Surgery, Department of Health Management Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Xueping Wang
- Sun Yat-sen University Cancer center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Liwu Fu
- Sun Yat-sen University Cancer center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Ke Yang
- Department of Oral and Maxillofacial Surgery, Department of Health Management Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| |
Collapse
|
25
|
Catalano F, Borea R, Puglisi S, Boutros A, Gandini A, Cremante M, Martelli V, Sciallero S, Puccini A. Targeting the DNA Damage Response Pathway as a Novel Therapeutic Strategy in Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14061388. [PMID: 35326540 PMCID: PMC8946235 DOI: 10.3390/cancers14061388] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Defective DNA damage response (DDR) is a hallmark of cancer leading to genomic instability. Up to 15–20% of colorectal cancers carry alterations in DDR. However, the role of DDR alterations as a prognostic factor and as a therapeutic target must be elucidated. To date, disappointing results have been obtained in different clinical trials mainly due to poor molecular selection of patients. Several challenges must be overcome before these compounds may have an impact on colorectal cancer. For instance, although some preclinical evidence showed the vulnerability of a subset of CRCs to PARP inhibitors, no specific clinical or molecular biomarkers have been validated to select patients. Moreover, different DDR alterations may not equally confer platinum sensitivity in CRC patients. Further efforts are needed in both preclinical and clinical settings to exploit DDR alterations as therapeutic targets and to eventually discover PARP or other DDR inhibitors (e.g., Wee1) with clinical benefit on colorectal cancer patients. Abstract Major advances have been made in CRC treatment in recent years, especially in molecularly driven therapies and immunotherapy. Despite this, a large number of advanced colorectal cancer patients do not benefit from these treatments and their prognosis remains poor. The landscape of DNA damage response (DDR) alterations is emerging as a novel target for treatment in different cancer types. PARP inhibitors have been approved for the treatment of ovarian, breast, pancreatic, and prostate cancers carrying deleterious BRCA1/2 pathogenic variants or homologous recombination repair (HRR) deficiency (HRD). Recent research reported on the emerging role of HRD in CRC and showed that alterations in these genes, either germline or somatic, are carried by up to 15–20% of CRCs. However, the role of HRD is still widely unknown, and few data about their clinical impact are available, especially in CRC patients. In this review, we report preclinical and clinical data currently available on DDR inhibitors in CRC. We also emphasize the predictive role of DDR mutations in response to platinum-based chemotherapy and the potential clinical role of DDR inhibitors. More preclinical and clinical trials are required to better understand the impact of DDR alterations in CRC patients and the therapeutic opportunities with novel DDR inhibitors.
Collapse
Affiliation(s)
- Fabio Catalano
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Roberto Borea
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Silvia Puglisi
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Andrea Boutros
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Annalice Gandini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Malvina Cremante
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Valentino Martelli
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Stefania Sciallero
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
| | - Alberto Puccini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
- Correspondence: ; Tel.: +39-0105553301 (ext.3302); Fax: +39-0105555141
| |
Collapse
|
26
|
Kakhkharova ZI, Zharkov DO, Grin IR. A Low-Activity Polymorphic Variant of Human NEIL2 DNA Glycosylase. Int J Mol Sci 2022; 23:ijms23042212. [PMID: 35216329 PMCID: PMC8879280 DOI: 10.3390/ijms23042212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 01/05/2023] Open
Abstract
Human NEIL2 DNA glycosylase (hNEIL2) is a base excision repair protein that removes oxidative lesions from DNA. A distinctive feature of hNEIL2 is its preference for the lesions in bubbles and other non-canonical DNA structures. Although a number of associations of polymorphisms in the hNEIL2 gene were reported, there is little data on the functionality of the encoded protein variants, as follows: only hNEIL2 R103Q was described as unaffected, and R257L, as less proficient in supporting the repair in a reconstituted system. Here, we report the biochemical characterization of two hNEIL2 variants found as polymorphisms in the general population, R103W and P304T. Arg103 is located in a long disordered segment within the N-terminal domain of hNEIL2, while Pro304 occupies a position in the β-turn of the DNA-binding zinc finger motif. Similar to the wild-type protein, both of the variants could catalyze base excision and nick DNA by β-elimination but demonstrated a lower affinity for DNA. Steady-state kinetics indicates that the P304T variant has its catalytic efficiency (in terms of kcat/KM) reduced ~5-fold compared with the wild-type hNEIL2, whereas the R103W enzyme is much less affected. The P304T variant was also less proficient than the wild-type, or R103W hNEIL2, in the removal of damaged bases from single-stranded and bubble-containing DNA. Overall, hNEIL2 P304T could be worthy of a detailed epidemiological analysis as a possible cancer risk modifier.
Collapse
Affiliation(s)
- Zarina I. Kakhkharova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia;
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia;
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence: (D.O.Z.); (I.R.G.)
| | - Inga R. Grin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia;
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence: (D.O.Z.); (I.R.G.)
| |
Collapse
|
27
|
Chen B, Sun H, Xu S, Mo Q. Long Non-coding RNA TPT1-AS1 Suppresses APC Transcription in a STAT1-Dependent Manner to Increase the Stemness of Colorectal Cancer Stem Cells. Mol Biotechnol 2022; 64:560-574. [PMID: 35022996 DOI: 10.1007/s12033-022-00448-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/02/2022] [Indexed: 12/24/2022]
Abstract
Cancer stem cells (CSCs) are the major culprits leading to a new level of complexity and the consequential therapy resistance and disease recurrence in colorectal cancer (CRC). This study focuses on the effect of long non-coding RNA (lncRNA) TPT1-AS1 and its associated molecules on the stemness maintenance of CRC stem cells. TPT1-AS1 was identified as a significantly upregulated gene in CRC using the GSE146587 dataset. Stem cells from CRC HCT116 and CACO2 cells were isolated. TPT1-AS1 was significantly highly expressed in the CSCs compared to non-stem cells. Downregulation of TPT1-AS1 reduced the stemness of the CRC stem cells. TPT1-AS1 recruited STAT1 to the promoter region of APC to suppress APC transcription. Further upregulation of STAT1 or downregulation of APC blocked the role of TPT1-AS1 silencing and restored the malignant behaviors of CSC stem cells. APC inactivated the Wnt/β-catenin pathway. Overexpression of STAT1 restored the levels of cyclin D1 and β-catenin in cells suppressed by TPT1-AS1 silencing. In summary, this work demonstrates that TPT1-AS1 recruits STAT1 to suppress APC transcription and increase the stemness of colorectal CSCs via Wnt/β-catenin activation.
Collapse
Affiliation(s)
- Bingxue Chen
- Department of General Surgery, Changzhou No. 2 People's Hospital, No. 168, Gehu Road, Changzhou, 213100, Jiangsu, People's Republic of China
| | - Haojie Sun
- Department of General Surgery, Changzhou No. 2 People's Hospital, No. 168, Gehu Road, Changzhou, 213100, Jiangsu, People's Republic of China
| | - Suting Xu
- Department of General Surgery, Changzhou No. 2 People's Hospital, No. 168, Gehu Road, Changzhou, 213100, Jiangsu, People's Republic of China
| | - Qi Mo
- Department of General Surgery, Changzhou No. 2 People's Hospital, No. 168, Gehu Road, Changzhou, 213100, Jiangsu, People's Republic of China.
| |
Collapse
|
28
|
Chakraborty A, Tapryal N, Islam A, Mitra S, Hazra T. Transcription coupled base excision repair in mammalian cells: So little is known and so much to uncover. DNA Repair (Amst) 2021; 107:103204. [PMID: 34390916 DOI: 10.1016/j.dnarep.2021.103204] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/06/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
Oxidized bases in the genome has been implicated in various human pathologies, including cancer, aging and neurological diseases. Their repair is initiated with excision by DNA glycosylases (DGs) in the base excision repair (BER) pathway. Among the five oxidized base-specific human DGs, OGG1 and NTH1 preferentially excise oxidized purines and pyrimidines, respectively, while NEILs remove both oxidized purines and pyrimidines. However, little is known about why cells possess multiple DGs with overlapping substrate specificities. Studies of the past decades revealed that some DGs are involved in repair of oxidized DNA base lesions in the actively transcribed regions. Preferential removal of lesions from the transcribed strands of active genes, called transcription-coupled repair (TCR), was discovered as a distinct sub-pathway of nucleotide excision repair; however, such repair of oxidized DNA bases had not been established until our recent demonstration of NEIL2's role in TC-BER of the nuclear genome. We have shown that NEIL2 forms a distinct transcriptionally active, repair proficient complex. More importantly, we for the first time reconstituted TC-BER using purified components. These studies are important for characterizing critical requirement for the process. However, because NEIL2 cannot remove all types of oxidized bases, it is unlikely to be the only DNA glycosylase involved in TC-BER. Hence, we postulate TC-BER process to be universally involved in maintaining the functional integrity of active genes, especially in post-mitotic, non-growing cells. We further postulate that abnormal bases (e.g., uracil), and alkylated and other small DNA base adducts are also repaired via TC-BER. In this review, we have provided an overview of the various aspects of TC-BER in mammalian cells with the hope of generating significant interest of many researchers in the field. Further studies aimed at better understanding the mechanistic aspects of TC-BER could help elucidate the linkage of TC-BER deficiency to various human pathologies.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Nisha Tapryal
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Azharul Islam
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sankar Mitra
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Tapas Hazra
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
29
|
Heusler M, Einenkel R, Ehrhardt J, Muzzio DO, Zygmunt M. Low Abundance Fusobacterium Nucleatum Supports Early Pregnancy Development - An In Vitro Study. Front Immunol 2021; 12:698045. [PMID: 34531854 PMCID: PMC8438310 DOI: 10.3389/fimmu.2021.698045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/13/2021] [Indexed: 01/12/2023] Open
Abstract
Pregnancy success depends greatly on a balanced immune homeostasis. The detection of bacterial components in the upper reproductive tract in non-pregnant and pregnant women raised questions on its possible beneficial role in reproductive health. The local conditions that allow the presence of bacteria to harmonize with the establishment of pregnancy are still unknown. Among the described bacterial species in endometrial and placental samples, Fusobacterium nucleatum was found. It has been observed that F. nucleatum can induce tumorigenesis in colon carcinoma, a process that shares several features with embryo implantation. We propose that low concentrations of F. nucleatum may improve trophoblast function without exerting destructive responses. Inactivated F. nucleatum and E. coli were incubated with the trophoblastic cell lines HTR8/SVneo, BeWo, and JEG-3. Viability, proliferation, migratory capacity, invasiveness and the secretion of chemokines, other cytokines and matrix metalloproteinases were assessed. The presence of F. nucleatum significantly induced HTR8/SVneo invasion, accompanied by the secretion of soluble mediators (CXCL1, IL-6 and IL-8) and metalloproteinases (MMP-2 and MMP-9). However, as concentrations of F. nucleatum increased, these did not improve invasiveness, hindered migration, reduced cell viability and induced alterations in the cell cycle. Part of the F. nucleatum effects on cytokine release were reverted with the addition of a TLR4 blocking antibody. Other effects correlated with the level of expression of E-cadherin on the different cell lines tested. Low amounts of F. nucleatum promote invasion of HTR8/SVneo cells and induce the secretion of important mediators for pregnancy establishment. Some effects were independent of LPS and correlated with the expression of E-cadherin on trophoblasts.
Collapse
Affiliation(s)
- Martha Heusler
- Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| | - Rebekka Einenkel
- Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| | - Jens Ehrhardt
- Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| | - Damián Oscar Muzzio
- Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| | - Marek Zygmunt
- Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
30
|
Sayed IM, Tindle C, Fonseca AG, Ghosh P, Das S. Functional assays with human patient-derived enteroid monolayers to assess the human gut barrier. STAR Protoc 2021; 2:100680. [PMID: 34337445 PMCID: PMC8313751 DOI: 10.1016/j.xpro.2021.100680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Here, we describe the use of polarized patient enteroid-derived monolayers (EDMs) to assess the impact of e-cigarettes on the human gut barrier. These EDMs can be adapted to culture in a 96-well plate for high-throughput screening. We model the effect of e-cigarettes by combining pathogens, enteroids, and e-cigarette vapor-infused media and assess gut barrier integrity, bacterial internalization, and inflammatory response of the gut epithelium. This protocol can be used to assess the effects of e-cigarette components on gut functions. For complete details on the use and execution of this protocol, please refer to Sharma et al. (2021).
Collapse
Affiliation(s)
- Ibrahim M. Sayed
- Department of Pathology, University of California, San Diego, CA 92093, USA
| | - Courtney Tindle
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA 92093, USA
- HUMANOID CoRE, University of California, San Diego, CA 92093, USA
| | - Ayden G. Fonseca
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA 92093, USA
- HUMANOID CoRE, University of California, San Diego, CA 92093, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA 92093, USA
- HUMANOID CoRE, University of California, San Diego, CA 92093, USA
- Department of Medicine, University of California, San Diego, CA 92093, USA
- Moore’s Comprehensive Cancer Center, University of California, San Diego, CA 92093, USA
- Veterans Affairs Medical Center, VA San Diego Healthcare System, La Jolla, San Diego, CA 92093, USA
| | - Soumita Das
- Department of Pathology, University of California, San Diego, CA 92093, USA
- HUMANOID CoRE, University of California, San Diego, CA 92093, USA
- Moore’s Comprehensive Cancer Center, University of California, San Diego, CA 92093, USA
- Veterans Affairs Medical Center, VA San Diego Healthcare System, La Jolla, San Diego, CA 92093, USA
| |
Collapse
|
31
|
Tindle C, Fuller M, Fonseca A, Taheri S, Ibeawuchi SR, Beutler N, Katkar GD, Claire A, Castillo V, Hernandez M, Russo H, Duran J, Crotty Alexander LE, Tipps A, Lin G, Thistlethwaite PA, Chattopadhyay R, Rogers TF, Sahoo D, Ghosh P, Das S. Adult stem cell-derived complete lung organoid models emulate lung disease in COVID-19. eLife 2021; 10:e66417. [PMID: 34463615 PMCID: PMC8463074 DOI: 10.7554/elife.66417] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Background SARS-CoV-2, the virus responsible for COVID-19, causes widespread damage in the lungs in the setting of an overzealous immune response whose origin remains unclear. Methods We present a scalable, propagable, personalized, cost-effective adult stem cell-derived human lung organoid model that is complete with both proximal and distal airway epithelia. Monolayers derived from adult lung organoids (ALOs), primary airway cells, or hiPSC-derived alveolar type II (AT2) pneumocytes were infected with SARS-CoV-2 to create in vitro lung models of COVID-19. Results Infected ALO monolayers best recapitulated the transcriptomic signatures in diverse cohorts of COVID-19 patient-derived respiratory samples. The airway (proximal) cells were critical for sustained viral infection, whereas distal alveolar differentiation (AT2→AT1) was critical for mounting the overzealous host immune response in fatal disease; ALO monolayers with well-mixed proximodistal airway components recapitulated both. Conclusions Findings validate a human lung model of COVID-19, which can be immediately utilized to investigate COVID-19 pathogenesis and vet new therapies and vaccines. Funding This work was supported by the National Institutes for Health (NIH) grants 1R01DK107585-01A1, 3R01DK107585-05S1 (to SD); R01-AI141630, CA100768 and CA160911 (to PG) and R01-AI 155696 (to PG, DS and SD); R00-CA151673 and R01-GM138385 (to DS), R01- HL32225 (to PT), UCOP-R00RG2642 (to SD and PG), UCOP-R01RG3780 (to P.G. and D.S) and a pilot award from the Sanford Stem Cell Clinical Center at UC San Diego Health (P.G, S.D, D.S). GDK was supported through The American Association of Immunologists Intersect Fellowship Program for Computational Scientists and Immunologists. L.C.A's salary was supported in part by the VA San Diego Healthcare System. This manuscript includes data generated at the UC San Diego Institute of Genomic Medicine (IGC) using an Illumina NovaSeq 6000 that was purchased with funding from a National Institutes of Health SIG grant (#S10 OD026929).
Collapse
Affiliation(s)
- Courtney Tindle
- Department of Cellular and Molecular Medicine, University of California San DiegoSan DiegoUnited States
- HUMANOID CoRE, University of California San DiegoSan DiegoUnited States
| | - MacKenzie Fuller
- Department of Cellular and Molecular Medicine, University of California San DiegoSan DiegoUnited States
- HUMANOID CoRE, University of California San DiegoSan DiegoUnited States
| | - Ayden Fonseca
- Department of Cellular and Molecular Medicine, University of California San DiegoSan DiegoUnited States
- HUMANOID CoRE, University of California San DiegoSan DiegoUnited States
| | - Sahar Taheri
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San DiegoSan DiegoUnited States
| | | | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research InstituteLa JollaUnited States
| | - Gajanan Dattatray Katkar
- Department of Cellular and Molecular Medicine, University of California San DiegoSan DiegoUnited States
| | - Amanraj Claire
- Department of Cellular and Molecular Medicine, University of California San DiegoSan DiegoUnited States
- HUMANOID CoRE, University of California San DiegoSan DiegoUnited States
| | - Vanessa Castillo
- Department of Cellular and Molecular Medicine, University of California San DiegoSan DiegoUnited States
| | - Moises Hernandez
- Division of Cardiothoracic Surgery, University of California San DiegoSan DiegoUnited States
| | - Hana Russo
- Department of Pathology, University of California San DiegoSan DiegoUnited States
| | - Jason Duran
- Division of Cardiology, Department of Internal Medicine, UC San Diego Medical CenterSan DiegoUnited States
| | - Laura E Crotty Alexander
- Pulmonary Critical Care Section, Veterans Affairs (VA) San Diego Healthcare SystemLa JollaUnited States
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San DiegoLa Jolla, CAUnited States
| | - Ann Tipps
- Department of Pathology, University of California San DiegoSan DiegoUnited States
| | - Grace Lin
- Department of Pathology, University of California San DiegoSan DiegoUnited States
| | | | - Ranajoy Chattopadhyay
- Department of Cellular and Molecular Medicine, University of California San DiegoSan DiegoUnited States
- HUMANOID CoRE, University of California San DiegoSan DiegoUnited States
- Cell Applications Inc.La Jolla, CAUnited States
| | - Thomas F Rogers
- Department of Immunology and Microbiology, The Scripps Research InstituteLa JollaUnited States
- Division of Infectious Diseases, Department of Medicine, University of California, San DiegoLa JollaUnited States
- Department of Immunology and Microbiology, The Scripps Research InstituteLa JollaUnited States
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San DiegoSan DiegoUnited States
- Department of Pediatrics, University of California, San DiegoLa Jolla, CAUnited States
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San DiegoSan DiegoUnited States
- HUMANOID CoRE, University of California San DiegoSan DiegoUnited States
- Department of Medicine, University of California, San DiegoLa Jolla, CAUnited States
| | - Soumita Das
- HUMANOID CoRE, University of California San DiegoSan DiegoUnited States
- Department of Pathology, University of California San DiegoSan DiegoUnited States
| |
Collapse
|
32
|
Sayed IM, Ramadan HKA, El-Mokhtar MA, Abdel-Wahid L. Microbiome and gastrointestinal malignancies. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Tindle C, Fuller M, Fonseca A, Taheri S, Ibeawuchi SR, Beutler N, Katkar G, Claire A, Castillo V, Hernandez M, Russo H, Duran J, Crotty Alexander LE, Tipps A, Lin G, Thistlethwaite PA, Chattopadhyay R, Rogers TF, Sahoo D, Ghosh P, Das S. Adult Stem Cell-derived Complete Lung Organoid Models Emulate Lung Disease in COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.10.17.344002. [PMID: 33106807 PMCID: PMC7587781 DOI: 10.1101/2020.10.17.344002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
SARS-CoV-2, the virus responsible for COVID-19, causes widespread damage in the lungs in the setting of an overzealous immune response whose origin remains unclear. We present a scalable, propagable, personalized, cost-effective adult stem cell-derived human lung organoid model that is complete with both proximal and distal airway epithelia. Monolayers derived from adult lung organoids (ALOs), primary airway cells, or hiPSC-derived alveolar type-II (AT2) pneumocytes were infected with SARS-CoV-2 to create in vitro lung models of COVID-19. Infected ALO-monolayers best recapitulated the transcriptomic signatures in diverse cohorts of COVID-19 patient-derived respiratory samples. The airway (proximal) cells were critical for sustained viral infection whereas distal alveolar differentiation (AT2→AT1) was critical for mounting the overzealous host immune response in fatal disease; ALO monolayers with well-mixed proximodistal airway components recapitulated both. Findings validate a human lung model of COVID-19 which can be immediately utilized to investigate COVID-19 pathogenesis, and vet new therapies and vaccines.
Collapse
|
34
|
Tapryal N, Shahabi S, Chakraborty A, Hosoki K, Wakamiya M, Sarkar G, Sharma G, Cardenas VJ, Boldogh I, Sur S, Ghosh G, Hazra TK. Intrapulmonary administration of purified NEIL2 abrogates NF-κB-mediated inflammation. J Biol Chem 2021; 296:100723. [PMID: 33932404 PMCID: PMC8164026 DOI: 10.1016/j.jbc.2021.100723] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Aberrant or constitutive activation of nuclear factor kappa B (NF-κB) contributes to various human inflammatory diseases and malignancies via the upregulation of genes involved in cell proliferation, survival, angiogenesis, inflammation, and metastasis. Thus, inhibition of NF-κB signaling has potential for therapeutic applications in cancer and inflammatory diseases. We reported previously that Nei-like DNA glycosylase 2 (NEIL2), a mammalian DNA glycosylase, is involved in the preferential repair of oxidized DNA bases from the transcriptionally active sequences via the transcription-coupled base excision repair pathway. We have further shown that Neil2-null mice are highly sensitive to tumor necrosis factor α (TNFα)- and lipopolysaccharide-induced inflammation. Both TNFα and lipopolysaccharide are potent activators of NF-κB. However, the underlying mechanism of NEIL2's role in the NF-κB-mediated inflammation remains elusive. Here, we have documented a noncanonical function of NEIL2 and demonstrated that the expression of genes, such as Cxcl1, Cxcl2, Cxcl10, Il6, and Tnfα, involved in inflammation and immune cell migration was significantly higher in both mock- and TNFα-treated Neil2-null mice compared with that in the WT mice. NEIL2 blocks NF-κB's binding to target gene promoters by directly interacting with the Rel homology region of RelA and represses proinflammatory gene expression as determined by co-immunoprecipitation, chromatin immunoprecipitation, and electrophoretic mobility-shift assays. Remarkably, intrapulmonary administration of purified NEIL2 via a noninvasive nasal route significantly abrogated binding of NF-κB to cognate DNA, leading to decreased expression of proinflammatory genes and neutrophil recruitment in Neil2-null as well as WT mouse lungs. Our findings thus highlight the potential of NEIL2 as a biologic for inflammation-associated human diseases.
Collapse
Affiliation(s)
- Nisha Tapryal
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Shandy Shahabi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Koa Hosoki
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA,Department of Medicine, Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, Texas, USA
| | - Maki Wakamiya
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Gobinda Sarkar
- Department of Orthopedics, Mayo Clinic and Foundation, Rochester, Minnesota, USA,Department of Experimental Pathology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Gulshan Sharma
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Victor J. Cardenas
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sanjiv Sur
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA,Department of Medicine, Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, Texas, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Tapas K. Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA,For correspondence: Tapas K. Hazra
| |
Collapse
|
35
|
Nishimura H, Fukui H, Wang X, Ebisutani N, Nakanishi T, Tomita T, Oshima T, Hirota S, Miwa H. Role of the β-Catenin/REG Iα Axis in the Proliferation of Sessile Serrated Adenoma/Polyps Associated with Fusobacterium nucleatum. Pathogens 2021; 10:pathogens10040434. [PMID: 33917384 PMCID: PMC8067346 DOI: 10.3390/pathogens10040434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/24/2022] Open
Abstract
Although sessile serrated adenoma/polyps (SSA/Ps) may arise through a pathway different from the traditional adenoma–carcinoma sequence, details of SSA/P tumorigenesis still remain unclear. Fusobacterium nucleatum (Fn) is frequently detected in colorectal cancer (CRC) tissues and may play a pivotal role in colorectal carcinogenesis. Here, we investigated the relationship between Fn and the β-catenin/REG Iα axis in SSA/Ps and their involvement in the proliferation of these lesions. Fn was detected in SSA/Ps by fluorescence in situ hybridization using a Fn-targeted probe, and expression of β-catenin, REG Iα and Ki67 was examined using immunohistochemistry. Sixteen of 30 SSA/P lesions (53.3%) were positive for Fn. Eighteen SSA/P lesions (60%) showed β-catenin immunoreactivity in the tumor cell nuclei. A significant majority of Fn-positive lesions showed nuclear expression of β-catenin (87.5%) and higher REG Iα scores and Ki67 labeling indices relative to Fn-negative lesions. The SSA/P lesions expressing β-catenin in nuclei had significantly higher REG Iα scores and Ki67 labeling indices than those expressing β-catenin on cytomembranes. The REG Iα score was positively correlated with the Ki67 labeling index in SSA/P lesions. The treatment with Wnt agonist SKL2001 promoted nuclear β-catenin translocation and enhanced REG Ia expression in Caco2 cells. Fn may play a role in the proliferation of SSA/P lesions through promotion of β-catenin nuclear translocation and REG Iα expression.
Collapse
Affiliation(s)
- Heihachiro Nishimura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
| | - Hirokazu Fukui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
- Correspondence: ; Tel.: +81-798-456-662
| | - Xuan Wang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
| | - Nobuhiko Ebisutani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
| | - Takashi Nakanishi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
| | - Toshihiko Tomita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
| | - Tadayuki Oshima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan;
| | - Hiroto Miwa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
| |
Collapse
|
36
|
Sayed IM, El-Hafeez AAA, Maity PP, Das S, Ghosh P. Modeling colorectal cancers using multidimensional organoids. Adv Cancer Res 2021; 151:345-383. [PMID: 34148617 PMCID: PMC8221168 DOI: 10.1016/bs.acr.2021.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Organoids have revolutionized cancer research as highly adaptable models that enable an array of experimental techniques to interrogate tissue morphology and function. Because they preserve the genetic, phenotypic, and behavioral traits of their source tissue, organoids have gained traction as the most relevant models for drug discovery, tracking therapeutic response and for personalized medicine. As organoids are indisputably becoming a mainstay of cancer research, this review specifically addresses how colon-derived organoids can be perfected as multidimensional, scalable, reproducible models of healthy, pre-neoplastic and neoplastic conditions of the colon and for use in high-throughput "Phase-0" human clinical trials-in-a-dish.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Pathology, University of California, San Diego, CA, United States
| | - Amer Ali Abd El-Hafeez
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, United States
| | - Priti P Maity
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, United States
| | - Soumita Das
- Department of Pathology, University of California, San Diego, CA, United States; Rebecca and John Moore Comprehensive Cancer Center, University of California, San Diego, CA, United States; HUMANOID Center of Research Excellence (CoRE), University of California, San Diego, CA, United States.
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, United States; Rebecca and John Moore Comprehensive Cancer Center, University of California, San Diego, CA, United States; Department of Medicine, University of California, San Diego, CA, United States; Veterans Affairs Medical Center, San Diego, CA, United States; HUMANOID Center of Research Excellence (CoRE), University of California, San Diego, CA, United States.
| |
Collapse
|