1
|
Xing L, Zhang Y, Xing Y, Ge M, Miao H, Huo X. Reference genes selection and validation in yam by real-time quantitative polymerase chain reaction. Sci Rep 2025; 15:19947. [PMID: 40481188 PMCID: PMC12144216 DOI: 10.1038/s41598-025-92244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/26/2025] [Indexed: 06/11/2025] Open
Abstract
Gene expression pattern analysis plays a crucial role in omics research, as it helps us understand the regulatory mechanisms of gene expression and the associated biological processes. Real-time quantitative polymerase chain reaction (q-PCR) is an efficient method for studying gene expression. Reliable q-PCR results depend on proper data normalization, which requires the use of stable reference genes. Yam, valued as both food and medicine, has significant commercial and economic potential. Its cultivation is being actively promoted in the central and western regions of Inner Mongolia. However, studies have shown that no reference gene is universally stable under all conditions. Therefore, screening and validating suitable reference genes are essential for accurately studying gene expression patterns in yam. This study evaluated nine potential reference genes based on transcriptome data of Chinese yam (Dioscorea opposita Thunb.), under various conditions, including yam tuber development, different tissues, High temperature, Low temperature, salt stress (NaCl), drought stress (PEG), abscisic acid stress (ABA), and methyl jasmonate treatment (MeJA). Using geNorm, NormFinder, BestKeeper, and RefFinder, we ranked these nine reference genes according to their expression stability. The results revealed that EIF was not suitable as a reference gene. Conversely, UBQ and PP2A were identified as the most stable and ideal reference genes for expression analysis across different conditions. Our findings provide a theoretical foundation for selecting reference genes in yam and will support more accurate gene expression studies within the genus Dioscorea.
Collapse
Affiliation(s)
- Linan Xing
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010019, Inner Mongolia, China
| | - Yanfang Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010019, Inner Mongolia, China
| | - Yanping Xing
- College of Life and Science, Inner Mongolia Agricultural University, Hohhot, 010019, Inner Mongolia, China
| | - Mingran Ge
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010019, Inner Mongolia, China
| | - Huiqin Miao
- Library, Inner Mongolia Agricultural University, Hohhot, 010019, Inner Mongolia, China
| | - Xiuwen Huo
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010019, Inner Mongolia, China.
| |
Collapse
|
2
|
Deng Y, Sun C, Fu X, Guo Y, Zhu Y, Liu C, Xu R, Liu H, Li Q, Tang N, Kuang M, Yang W, Liu X, Chen Z. Genome-wide identification and functional characterization of the LBD transcription factor gene family in Zanthoxylum armatum DC. reveal its potential role in leaf variation. BMC PLANT BIOLOGY 2025; 25:717. [PMID: 40437374 PMCID: PMC12117909 DOI: 10.1186/s12870-025-06727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 05/15/2025] [Indexed: 06/01/2025]
Abstract
BACKGROUND Leaf morphology plays a crucial role in forecasting the productivity and environmental adaptability of economically important trees. Plants with larger leaves usually have higher photosynthesis efficiency and can accumulate more nutrients, thereby increasing yield. In the natural population of Z. armatum, due to long-term selection, the leaves size and shape show rich diversity in different latitude regions. This diversity is the result of plants' adaptation to different environments. However, to date, no studies have systematically revealed the genetic mechanism of Z. armatum leaf variation. In higher plants, lateral organ boundaries domain (LBD) proteins comprise a unique family of transcription factors that play pivotal roles in the establishment of plant leaf polarity and morphogenesis. However, little is currently known regarding the LBD gene family in Z. armatum. RESULTS In this study, we identified 97 members of the LBD gene family within the genome of Z. armatum, which were unevenly distributed among the 33 chromosomes of this species. Physicochemical analysis revealed that these ZaLBDs are hydrophilic proteins with nuclear subcellular localization, whereas phylogenetic analysis of 234 LBD protein from different species indicated that these can be divided into five subfamilies (Ia, Ib, Ic, Id, and II). Furthermore, and analysis of cis-acting regulatory elements revealed that ZaLBDs may play important roles in responses to abiotic stress, hormone signal transduction, and plant growth and development. Transcriptomic data were used to compare the expression of these genes in leaves with differing morphologies collected from Z. armatum plants originating from sites at three different latitudes within the distribution range of this species. These data revealed differences in the expression of 14 genes among Z. armatum populations with different latitudinal distributions, with difference in the expression of the ZaLBD45 gene being the most pronounced, the expression trend of ZaLBD19 was consistent with the trend of leaf size. Moreover, qRT-PCR analysis verified that the relative expression of these genes was highly consistent with the transcriptomic data. CONCLUSIONS In this study, we comprehensively analyzed the functional characteristics and expression patterns of genes in the LBD family within the heterophyllous plant Z. armatum distributed at different latitudes. By mediating the regulation of leaf morphology, these genes may play important roles in the response to abiotic stress and adaptation to ecological changes. Our findings will not only enhance our understanding of the genetic mechanisms underlying the adaptive variation in Z. armatum but also provide valuable resources for the genetic improvement of this plant.
Collapse
Affiliation(s)
- Yifei Deng
- Chongqing Key Laboratory of Economic Plant Biotechnology/Collaborative Innovation Center of Special Plant Industry in Chongqing/College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Chong Sun
- Chongqing Key Laboratory of Economic Plant Biotechnology/Collaborative Innovation Center of Special Plant Industry in Chongqing/College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation and Utilization, Yangtze University, Jingzhou, 434023, China
| | - Xueqian Fu
- Chongqing Key Laboratory of Economic Plant Biotechnology/Collaborative Innovation Center of Special Plant Industry in Chongqing/College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Yuan Guo
- Chongqing Key Laboratory of Economic Plant Biotechnology/Collaborative Innovation Center of Special Plant Industry in Chongqing/College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Yongxing Zhu
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation and Utilization, Yangtze University, Jingzhou, 434023, China
| | - Chongyu Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology/Collaborative Innovation Center of Special Plant Industry in Chongqing/College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Ruxin Xu
- Chongqing Key Laboratory of Economic Plant Biotechnology/Collaborative Innovation Center of Special Plant Industry in Chongqing/College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Han Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology/Collaborative Innovation Center of Special Plant Industry in Chongqing/College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Qiang Li
- Chongqing Key Laboratory of Economic Plant Biotechnology/Collaborative Innovation Center of Special Plant Industry in Chongqing/College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Ning Tang
- Chongqing Key Laboratory of Economic Plant Biotechnology/Collaborative Innovation Center of Special Plant Industry in Chongqing/College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Mi Kuang
- Chongqing Agricultural Technology Promotion General Station, Yubei, 401120, China
| | - Wenying Yang
- Rongchang District Forestry Science and Technology Extension Station of Chongqing, Rongchang, 402460, China
| | - Xia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology/Collaborative Innovation Center of Special Plant Industry in Chongqing/College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Zexiong Chen
- Chongqing Key Laboratory of Economic Plant Biotechnology/Collaborative Innovation Center of Special Plant Industry in Chongqing/College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
3
|
Wu J, Zheng H, Dong Y, Zhao F, Zhai Y, Yang H, Gong W, Hui W, Urano D, Wang J. The conserved transcriptional regulation mechanism of ADH1 gene in Zanthoxylum armatum to waterlogging stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109133. [PMID: 39326225 DOI: 10.1016/j.plaphy.2024.109133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Waterlogging stress negatively affects plant growth and survival. However, the ability of Zanthoxylum armatum, a valuable tree species, to tolerate and adapt to waterlogging stress remains poorly understood. Here we report how alcohol dehydrogenase 1 (ZaADH1) confers waterlogging stress tolerance in Z. armatum. ZaADH1 expression was induced after waterlogging treatment. ZaADH1 overexpression increased waterlogging stress by modulating the metabolite levels of the ADH enzyme, soluble sugar, and trehalose, promoting glycolysis and carbohydrate metabolism. The overexpression of ZaADH1 in Arabidopsis thaliana increased the total plant area and chlorophyll content, thereby increasing resistance to waterlogging stress. Physiological and overexpression transcriptome analyses in A. thaliana indicated that ZaADH1 overexpressing lines generated more carbohydrates to meet energy demands, employing a "static" strategy to increase tolerance to waterlogging stress, which confirms the conservation of the ADH1 response to waterlogging stress and represents a potential crucial measure for improving waterlogging tolerance in Z. armatum.
Collapse
Affiliation(s)
- Jiaojiao Wu
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China; College of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, China; Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | - Hao Zheng
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yating Dong
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | - Feiyan Zhao
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yafang Zhai
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Hua Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Wei Gong
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China.
| | - Wenkai Hui
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China.
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore.
| | - Jingyan Wang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
4
|
Ma L, Shi Q, Ma Q, Wang X, Chen X, Han P, Luo Y, Hu H, Fei X, Wei A. Genome-wide analysis of AP2/ERF transcription factors that regulate fruit development of Chinese prickly ash. BMC PLANT BIOLOGY 2024; 24:565. [PMID: 38879490 PMCID: PMC11179286 DOI: 10.1186/s12870-024-05244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 06/04/2024] [Indexed: 06/19/2024]
Abstract
BACKGROUND AP2/ERF is a large family of plant transcription factor proteins that play essential roles in signal transduction, plant growth and development, and responses to various stresses. The AP2/ERF family has been identified and verified by functional analysis in various plants, but so far there has been no comprehensive study of these factors in Chinese prickly ash. Phylogenetic, motif, and functional analyses combined with transcriptome analysis of Chinese prickly ash fruits at different developmental stages (30, 60, and 90 days after anthesis) were conducted in this study. RESULTS The analysis identified 146 ZbAP2/ERF genes that could be classified into 15 subgroups. The motif analysis revealed the presence of different motifs or elements in each group that may explain the functional differences between the groups. ZbERF13.2, ZbRAP2-12, and ZbERF2.1 showed high levels of expression in the early stages of fruit development. ZbRAP2-4, and ZbERF3.1 were significantly expressed at the fruit coloring stage (R2 and G2). ZbERF16 were significantly expressed at fruit ripening and expression level increased as the fruit continued to develop. Relative gene expression levels of 6 representative ZbAP2/ERFs assessed by RT-qPCR agreed with transcriptome analysis results. CONCLUSIONS These genes identified by screening can be used as candidate genes that affect fruit development. The results of the analysis can help guide future genetic improvement of Chinese prickly ash and enrich our understanding of AP2/ERF transcription factors and their regulatory functions in plants.
Collapse
Affiliation(s)
- Lei Ma
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Qianqian Shi
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
| | - Qin Ma
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Xiaona Wang
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Xin Chen
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Peilin Han
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Yingli Luo
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Haichao Hu
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Xitong Fei
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China.
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China.
| | - Anzhi Wei
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China.
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China.
| |
Collapse
|
5
|
Zhang P, Chen S, Chen S, Zhu Y, Lin Y, Xu X, Liu Z, Zou S. Selection and Validation of qRT-PCR Internal Reference Genes to Study Flower Color Formation in Camellia impressinervis. Int J Mol Sci 2024; 25:3029. [PMID: 38474274 DOI: 10.3390/ijms25053029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Real-time quantitative PCR (qRT-PCR) is a pivotal technique for gene expression analysis. To ensure reliable and accurate results, the internal reference genes must exhibit stable expression across varied experimental conditions. Currently, no internal reference genes for Camellia impressinervis have been established. This study aimed to identify stable internal reference genes from eight candidates derived from different developmental stages of C. impressinervis flowers. We employed geNorm, NormFinder, and BestKeeper to evaluate the expression stability of these candidates, which was followed by a comprehensive stability analysis. The results indicated that CiTUB, a tubulin gene, exhibited the most stable expression among the eight reference gene candidates in the petals. Subsequently, CiTUB was utilized as an internal reference for the qRT-PCR analysis of six genes implicated in the petal pigment synthesis pathway of C. impressinervis. The qRT-PCR results were corroborated by transcriptome sequencing data, affirming the stability and suitability of CiTUB as a reference gene. This study marks the first identification of stable internal reference genes within the entire genome of C. impressinervis, establishing a foundation for future gene expression and functional studies. Identifying such stable reference genes is crucial for advancing molecular research on C. impressinervis.
Collapse
Affiliation(s)
- Peilan Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuying Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siyu Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanming Zhu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqing Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Xu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuangquan Zou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Liu X, Zhang W, Tang N, Chen Z, Rao S, Cheng H, Luo C, Ye J, Cheng S, Xu F. Genomic-wide identification and expression analysis of AP2/ERF transcription factors in Zanthoxylum armatum reveals the candidate genes for the biosynthesis of terpenoids. THE PLANT GENOME 2024; 17:e20422. [PMID: 38129947 DOI: 10.1002/tpg2.20422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Terpenoids are the main active components in the Zanthoxylum armatum leaves, which have extensive medicinal value. The Z. armatum leaf is the main by-product in the Z. armatum industry. However, the transcription factors involved in the biosynthesis of terpenoids are rarely reported. This study was performed to identify and classify the APETALA2/ethylene-responsive factor (AP2/ERF) gene family of Z. armatum. The chromosome distribution, gene structure, conserved motifs, and cis-acting elements of the promoter of the species were also comprehensively analyzed. A total of 214 ZaAP2/ERFs were identified. From the obtained transcriptome and terpenoid content data, four candidate ZaAP2/ERFs involved in the biosynthesis of terpenoids were selected via correlation and weighted gene co-expression network analysis. A phylogenetic tree was constructed using 13 AP2/ERFs related to the biosynthesis of terpenoids in other plants. ZaERF063 and ZaERF166 showed close evolutionary relationships with the ERFs in other plant species and shared a high AP2-domain sequence similarity with the two closest AP2/ERF proteins, namelySmERF8 from Salvia miltiorrhiza and AaERF4 from Artemisia annua. Further investigation into the effects of methyl jasmonate (MeJA) treatment on the content of terpenoids in Z. armatum leaves revealed that MeJA significantly induced the upregulation of ZaERF166 and led to a significant increase in the terpenoids content in Z. armatum leaves, indicating that ZaERF166 might be involved in the accumulation of terpenoids of Z. armatum. Results will be beneficial for the functional characterization of AP2/ERFs in Z. armatum and establishment of the theoretical foundation to increase the production of terpenoids via the manipulation of the regulatory elements and strengthen the development and utilization of Z. armatum leaves.
Collapse
Affiliation(s)
- Xiaomeng Liu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Ning Tang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing, China
| | - Zexiong Chen
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Hua Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | | | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| |
Collapse
|
7
|
Han N, Sun L, Zhang J, Yuan W, Wang C, Zhao A, Wang D. Transcriptomics integrated with metabolomics to characterize key pigment compounds and genes related to anthocyanin biosynthesis in Zanthoxylum bungeanum peel. PHYSIOLOGIA PLANTARUM 2023; 175:e14031. [PMID: 37882301 DOI: 10.1111/ppl.14031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/26/2023] [Accepted: 09/08/2023] [Indexed: 10/27/2023]
Abstract
Zanthoxylum bungeanum is an important condiment with high economic value and its peel color is one of the main quality indexes. However, the key pigment compounds and related genes are still unclear affecting the quality control of the plants. In this study, the contents of four types of pigments were measured in Z. bungeanum and flavonoids were identified as the most important pigments. Based on the targeted flavonoid metabolomics of Z. bungeanum peels, 14 key pigment compounds were screened out from 152 flavonoids, among which cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside were the most critical compounds for peel color. They were further verified to be present in nine varieties of Z. bungeanum by HPLC fingerprints. The 14 compounds were all associated with flavonoid and anthocyanin biosynthesis pathways and the 39 differentially expressed genes related to these pathways were annotated and screened based on transcriptomics. The genes ZbDFR, ZbANS, and ZbUFGT were identified as three key genes for anthocyanin synthesis in Z. bungeanum peels. Further qRT-PCR results confirmed the reliability of transcriptomics and the accuracy of gene screening. Subsequent protein induced expression demonstrated that ZbANS and ZbUFGT were expressed after 12 h induced by IPTG while ZbDFR was expressed after 15 h. Further transient and stable transformation analysis confirmed that both anthocyanin content and the expression of ZbDFR were significantly increased in overexpression Z. bungeanum leaves and Nicotiana benthamiana. The functional effect of stable transformation of ZbDFR was more significant than that of transient transformation with a 7.67-fold/1.49-fold difference in total anthocyanin content and a 42.37-fold/12.32-fold difference in the expression of ZbDFR. This study provides new insights into the chemical composition and the molecular mechanisms of Z. bungeanum peel color and lays an effective foundation for the color quality control, multi-purpose utilization of Z. bungeanum and the creation of new germplasm.
Collapse
Affiliation(s)
- Nuan Han
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Leiwen Sun
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Yuan
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Cheng Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Aiguo Zhao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Dongmei Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
He Z, Lei Y, Gong W, Ye M, Luo X. Karyotype and Phylogenetic Relationship Analysis of Five Varieties and Cultivars of Zanthoxylum armatum Based on Oligo-FISH. Genes (Basel) 2023; 14:1459. [PMID: 37510363 PMCID: PMC10379346 DOI: 10.3390/genes14071459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Green prickly ash (Zanthoxylum armatum) has edible and medicinal value and is an economically significant plant in many countries. Z. armatum has many cultivars and varieties with similar phenotypes that are difficult to distinguish via traditional methods. In this study, we utilized oligo-FISH to distinguish five varieties and cultivars of Z. armatum on the basis of three oligonucleotide probes of 5S rDNA, (AG3T3)3, and (GAA)6. Karyotype analysis of the five varieties and cultivars of Z. armatum showed that the Z. armatum 'Tengjiao' karyotype formula was 2n = 2x = 98m with karyotype type 1C and an arm ratio of 4.3237, including two pairs of 5S rDNA signals and five pairs of (GAA)6 signals. The karyotype formula of Z. armatum 'Youkangtengjiao' was 2n = 2x = 128m + 8sm with karyotype type 2B and an arm ratio of 3.5336, including three pairs of 5S rDNA signals and 17 pairs of (GAA)6 signals. The karyotype formula of Z. armatum var. novemfolius was 2n = 2x = 134m + 2sm with karyotype type 1C and an arm ratio of 5.5224, including two pairs of 5S rDNA signals and eight pairs of (GAA)6 signals. The karyotype formula of Z. armatum 'YT-03' was 2n = 2x = 2M + 128m + 4sm + 2st with karyotype type 2C and an arm ratio of 4.1829, including three pairs of 5S rDNA signals and nine pairs of (GAA)6 signals. The karyotype formula of Z. armatum 'YT-06' was 2n = 2x = 126m + 10sm with cytotype 2B and an arm ratio of 3.3011, including three pairs of 5S rDNA signals and two pairs of (GAA)6 signals. The five varieties and cultivars of Z. armatum had (AG3T3)3 signals on all chromosomes. The chromosomal symmetry of Z. armatum 'Tengjiao' was high, whereas the chromosomal symmetry of Z. armatum 'YT-03' was low, with the karyotypes of the five materials showing a trend toward polyploid evolution. The phylogenetic relationship between Z. armatum 'Tengjiao' and Z. armatum var. novemfolius was the closest, while that between Z. armatum 'YT-03' and Z. armatum 'YT-06' was closer than with Z. armatum 'Youkangtengjiao' according to oligo-FISH. The results provided a karyotype profile and a physical map that contributes to the distinction of varieties and cultivars of Z. armatum and provides strategies for distinguishing other cultivated species.
Collapse
Affiliation(s)
- Zhoujian He
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuting Lei
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Gong
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Meng Ye
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaomei Luo
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
9
|
Huang S, Wang L, Wang Z, Yang G, Xiang X, An Y, Kan J. Multiomics strategy reveals the accumulation and biosynthesis of bitter components in Zanthoxylum schinifolium Sieb. et Zucc. Food Res Int 2022; 162:111964. [DOI: 10.1016/j.foodres.2022.111964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/30/2022]
|
10
|
Zheng H, Zhao H, Zhang X, Liang Z, He Q. Systematic Identification and Validation of Suitable Reference Genes for the Normalization of Gene Expression in Prunella vulgaris under Different Organs and Spike Development Stages. Genes (Basel) 2022; 13:1947. [PMID: 36360184 PMCID: PMC9689956 DOI: 10.3390/genes13111947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 08/01/2023] Open
Abstract
The quantitative real-time PCR (qRT-PCR) is an efficient and sensitive method for determining gene expression levels, but the accuracy of the results substantially depends on the stability of the reference gene (RG). Therefore, choosing an appropriate reference gene is a critical step in normalizing qRT-PCR data. Prunella vulgaris L. is a traditional Chinese medicine herb widely used in China. Its main medicinal part is the fruiting spike which is termed Spica Prunellae. However, thus far, few studies have been conducted on the mechanism of Spica Prunellae development. Meanwhile, no reliable RGs have been reported in P. vulgaris. The expression levels of 14 candidate RGs were analyzed in this study in various organs and at different stages of Spica Prunellae development. Four statistical algorithms (Delta Ct, BestKeeper, NormFinder, and geNorm) were utilized to identify the RGs' stability, and an integrated stability rating was generated via the RefFinder website online. The final ranking results revealed that eIF-2 was the most stable RG, whereas VAB2 was the least suitable as an RG. Furthermore, eIF-2 + Histon3.3 was identified as the best RG combination in different periods and the total samples. Finally, the expressions of the PvTAT and Pv4CL2 genes related to the regulation of rosmarinic acid synthesis in different organs were used to verify the stable and unstable RGs. The stable RGs in P. vulgaris were originally identified and verified in this work. This achievement provides strong support for obtaining a reliable qPCR analysis and lays the foundation for in-depth research on the developmental mechanism of Spica Prunellae.
Collapse
Affiliation(s)
- Hui Zheng
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hongguang Zhao
- Tasly Botanical Pharmaceutical Co., Ltd., Shangluo 726000, China
| | - Xuemin Zhang
- Tasly R&D Institute, Tasly Holding Group Co., Ltd., Tianjin 300410, China
| | - Zongsuo Liang
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312000, China
| | - Qiuling He
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
11
|
Yao J, Zhu G, Liang D, He B, Wang Y, Cai Y, Zhang Q. Reference Gene Selection for qPCR Analysis in Schima superba under Abiotic Stress. Genes (Basel) 2022; 13:genes13101887. [PMID: 36292772 PMCID: PMC9601953 DOI: 10.3390/genes13101887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Quantitative real-time PCR (qPCR) is an indispensable technique for gene expression analysis in modern molecular biology. The selection and evaluation of suitable reference genes is a prerequisite for accurate gene expression analysis. Schimasuperba is a valuable tree species that is environmentally adaptable and highly fire-resistant. In this study, 12 candidate reference genes were selected to check their stability of gene expression in different tissues under abiotic stresses: cold stress, salt stress, and drought stress by ΔCt, geNorm, NormFinder, BestKeeper, and RefFinder. The results indicated that AP-2 was the most stably expressed overall and for the cold stress and drought stress. eIF-5α gene expression was the most stable under the salt stress treatment, while UBQ expression was the most stable across mature leaves, shoots, stems, and roots. In contrast, UBC20, GAPDH, and TUB were the least stably expressed genes tested. This study delivers valid reference genes in S. superba under the different experimental conditions, providing an important resource for the subsequent elucidation of the abiotic stress adaptation mechanisms and genes with biological importance.
Collapse
Affiliation(s)
- Jun Yao
- Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Gang Zhu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dongcheng Liang
- Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Boxiang He
- Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Yingli Wang
- Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Yanling Cai
- Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Qian Zhang
- Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
- Correspondence: ; Tel.: +86-020-87033420
| |
Collapse
|
12
|
Hu H, He B, Ma L, Chen X, Han P, Luo Y, Liu Y, Fei X, Wei A. Physiological and transcriptome analyses reveal the photosynthetic response to drought stress in drought-sensitive (Fengjiao) and drought-tolerant (Hanjiao) Zanthoxylum bungeanum cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:968714. [PMID: 36186061 PMCID: PMC9524374 DOI: 10.3389/fpls.2022.968714] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
As an important economical plant, Zanthoxylum bungeanum is widely cultivated in arid and semi-arid areas. The studies associated with photosynthesis under drought stress were widely carried out, but not yet in Z. bungeanum. Here, the photosynthesis of two Z. bungeanum cultivars (FJ, Z. bungeanum cv. "Fengjiao"; HJ, Z. bungeanum cv. "Hanjiao") was analyzed under drought stress using physiological indicators and transcriptome data. Drought decreased stomatal aperture and stomatal conductance (Gsw), reduced transpiration rate (E) and sub-stomatal CO2 concentration (Ci), and lowered chlorophyll and carotenoid content, which reduced the net photosynthetic rate (Pn) of Z. bungeanum. The higher photosynthetic rate in HJ stemmed from its higher chlorophyll content, larger stomatal aperture and Gsw, and higher Ci. Weighted gene co-expression network analysis (WGCNA) identified several ABA signal transduction genes (PYL4, PYL9, and PYR1), LCH-encoding genes (LHCB4.3), and chlorophyll metabolism genes (CRD1, PORA, and CHLH). Additionally, seven transcription factor genes were identified as important factors regulating photosynthesis under drought conditions. In general, a photosynthetic response model under drought stress was built firstly in Z. bungeanum, and the key genes involved in photosynthesis under drought stress were identified. Therefore, the results in our research provide important information for photosynthesis under drought and provided key clues for future molecular breeding in Z. bungeanum.
Collapse
Affiliation(s)
- Haichao Hu
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| | - Beibei He
- College of Horticulture, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
| | - Lei Ma
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| | - Xin Chen
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| | - Peilin Han
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| | - Yingli Luo
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| | - Yonghong Liu
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| | - Xitong Fei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| | - Anzhi Wei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| |
Collapse
|
13
|
Hui W, Fan J, Liu X, Zhao F, Saba T, Wang J, Wu A, Zhang X, Zhang J, Zhong Y, Chen G, Gong W. Integrated transcriptome and plant growth substance profiles to identify the regulatory factors involved in floral sex differentiation in Zanthoxylum armatum DC. FRONTIERS IN PLANT SCIENCE 2022; 13:976338. [PMID: 36119602 PMCID: PMC9479546 DOI: 10.3389/fpls.2022.976338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Zanthoxylum armatum is a prominent plant for food industries. Its male flowers often occur in gynogenesis plants; however, the potential mechanism remains poorly understood. Herein, a total of 26 floral sex differentiation stages were observed to select four vital phases to reveal key factors by using RNA-seq, phytohormones and carbohydrates investigation. The results showed that a selective abortion of stamen or pistil primordia could result in the floral sex differentiation in Z. armatum. Carbohydrates might collaborate with cytokinin to effect the male floral differentiation, whereas female floral differentiation was involved in SA, GA1, and ABA biosynthesis and signal transduction pathways. Meanwhile, these endogenous regulators associated with reproductive growth might be integrated into ABCDE model to regulate the floral organ differentiation in Z. armatum. Furthermore, the 21 crucial candidates were identified in co-expression network, which would contribute to uncovering their roles in floral sex differentiation of Z. armatum in further studies. To the best of our knowledge, this study was the first comprehensive investigation to link floral sex differentiation with multi-level endogenous regulatory factors in Z. armatum. It also provided new insights to explore the regulatory mechanism of floral sex differentiation, which would be benefited to cultivate high-yield varieties in Z. armatum.
Collapse
Affiliation(s)
- Wenkai Hui
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Jiangtao Fan
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xianzhi Liu
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Feiyan Zhao
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tasheen Saba
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Jingyan Wang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Aimin Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xuebin Zhang
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Junli Zhang
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Yu Zhong
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Gang Chen
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Wei Gong
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Guo L, Shen J, Zhang C, Guo Q, Liang H, Hou X. Characterization and bioinformatics analysis of ptc-miR396g-5p in response to drought stress of Paeonia ostii. Noncoding RNA Res 2022; 7:150-158. [PMID: 35799773 PMCID: PMC9240715 DOI: 10.1016/j.ncrna.2022.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 10/31/2022] Open
Abstract
Drought is one of the main abiotic stress factors affecting yield of Paeonia ostii. In this study, we conducted bioinformatics and differential expression analyses of P. ostii ‘Feng Dan’ ptc-miR396g-5p in leaf samples under different drought stress. ptc-miR396g-5p belongs to the miR396 family. Among the 271 plant species registered in the miRBase database, at least one miR396 member was found in 48 Angiospermae species, 3 in Gymnospermae species, and 1 in Pteridophy. Mature sequence alignment showed that P. ostii ‘Feng Dan’ ptc-miR396g-5p had high sequence similarity with miR396 from other species. Secondary structure prediction showed that the precursor sequence of ‘Feng Dan’ ptc-miR396g-5p could form a stable stem-loop structure, and the mature sequence was located on the 5′ arm of the secondary structure. Phylogenetic tree analysis showed that ‘Feng Dan’ was closely related to 20 species such as Glycine max, Medicago truncatula, Populus trichocarpa, Citrus sinensis, Vitis vinifera, and Theobroma cacao. The predicted target gene of the ‘Feng Dan’ ptc-miR396g-5p encodes a Signal Transducer and Activator of Transcription (STAT) transcription factor. The negative correlation of expression between the miRNA and its target gene was confirmed by qRT-PCR. Our data indicate that ‘Feng Dan’ ptc-miR396g-5p′s expression decreases under drought, leading to an expression increase of the STAT transcription factor.
Collapse
|
15
|
Hu H, Fei X, He B, Chen X, Ma L, Han P, Luo Y, Liu Y, Wei A. UPLC-MS/MS Profile Combined With RNA-Seq Reveals the Amino Acid Metabolism in Zanthoxylum bungeanum Leaves Under Drought Stress. Front Nutr 2022; 9:921742. [PMID: 35873434 PMCID: PMC9301252 DOI: 10.3389/fnut.2022.921742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Zanthoxylum bungeanum leaves have a unique taste and incomparable nutritional value and hence are popular as a food item and traditional medicine in China. However, the studies on the metabolites in Z. bungeanum leaves are quite limited, especially for amino acids. Therefore, this study explored the amino acid component in Z. bungeanum leaves and also the accumulation mechanism under drought stress in two Z. bungeanum cultivars using the widely targeted metabolome combined with transcriptome analysis. A total of 56 amino acids and their derivatives were identified in Z. bungeanum leaves, including eight essential amino acids. The total amino acid content with most individual amino acids increased under progressive drought stress. More differentially accumulated amino acids (DAAs) and differentially expressed genes (DEGs) were found in FJ (Z. bungeanum cv. ‘Fengjiao’) than in HJ (Z. bungeanum cv. ‘Hanjiao’). The orthogonal projections to latent structures discriminant analysis identified nine and seven indicator DAAs in FJ and HJ leaves, respectively. The weighted gene co-expression network analysis (WGCNA) showed that the green module was significantly correlated with most indicator DAAs and revealed the important role of FBA3, DELTA-OAT, PROC, and 15 transcription factor genes in regulating the amino acid synthesis. Furthermore, the correlation analysis and redundancy analysis (RDA) identified four candidate synthesis genes (ASNS, AK, ASPS, and PK) in amino acid biosynthesis pathway. This study provided useful information for the development of Z. bungeanum leaves in food and nutrition industry and also laid the foundations for future molecular breeding.
Collapse
Affiliation(s)
- Haichao Hu
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Xitong Fei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Beibei He
- College of Horticulture, Northwest Agriculture and Forestry University, Xianyang, China
| | - Xin Chen
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Lei Ma
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Peilin Han
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Yingli Luo
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Yonghong Liu
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Anzhi Wei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
- *Correspondence: Anzhi Wei,
| |
Collapse
|
16
|
Tian L, Shi J, Yang L, Wei A. Molecular Cloning and Functional Analysis of DXS and FPS Genes from Zanthoxylum bungeanum Maxim. Foods 2022; 11:foods11121746. [PMID: 35741944 PMCID: PMC9223008 DOI: 10.3390/foods11121746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Zanthoxylum bungeanum Maxim. (Z. bungeanum) has attracted attention for its rich aroma. The aroma of Z. bungeanum is mainly volatile terpenes synthesized by plant terpene metabolic pathways. However, there is little information on Z. bungeanum terpene metabolic gene. In this study, the coding sequence of 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and farnesyl pyrophosphate synthase (FPS) were cloned from Z. bungeanum cv. 'Fengxiandahongpao.' ZbDXS and ZbFPS genes from Z. bungeanum with CDS lengths of 2172 bp and 1029 bp, respectively. The bioinformatics results showed that Z. bungeanum was closely related to citrus, and it was deduced that ZbFPS were hydrophilic proteins without the transmembrane domain. Subcellular localization prediction indicated that ZbDXS was most likely to be located in chloroplasts, and ZbFPS was most likely to be in mitochondria. Meanwhile, the 3D protein structure showed that ZbDXS and ZbFPS were mainly composed of α-helices, which were folded into a single domain. In vitro enzyme activity experiments showed that purified proteins ZbDXS and ZbFPS had the functions of DXS enzyme and FPS enzyme. Transient expression of ZbDXS and ZbFPS in tobacco significantly increased tobacco's terpene content. Moreover, ZbDXS and ZbFPS were expressed in different tissues of Z. bungeanum, and the relative expression of the two genes was the highest in fruits. Therefore, this suggests that ZbDXS and ZbFPS are positively related to terpene synthesis. This study could provide reference genes for improving Z. bungeanum breeding as well as for the Rutaceae research.
Collapse
Affiliation(s)
- Lu Tian
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, China; (L.T.); (J.S.); (L.Y.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Jingwei Shi
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, China; (L.T.); (J.S.); (L.Y.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Lin Yang
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, China; (L.T.); (J.S.); (L.Y.)
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, China; (L.T.); (J.S.); (L.Y.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
- Correspondence: ; Tel.: +86-029-8708-2211
| |
Collapse
|
17
|
Genome-Wide Identification of the NAC Gene Family in Zanthoxylum bungeanum and Their Transcriptional Responses to Drought Stress. Int J Mol Sci 2022; 23:ijms23094769. [PMID: 35563160 PMCID: PMC9103986 DOI: 10.3390/ijms23094769] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/13/2022] Open
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are one of the largest plant-specific TF families and play a pivotal role in adaptation to abiotic stresses. The genome-wide analysis of NAC TFs is still absent in Zanthoxylum bungeanum. Here, 109 ZbNAC proteins were identified from the Z. bungeanum genome and were classified into four groups with Arabidopsis NAC proteins. The 109 ZbNAC genes were unevenly distributed on 46 chromosomes and included 4 tandem duplication events and 17 segmental duplication events. Synteny analysis of six species pairs revealed the closely phylogenetic relationship between Z. bungeanum and C. sinensis. Twenty-four types of cis-elements were identified in the ZbNAC promoters and were classified into three types: abiotic stress, plant growth and development, and response to phytohormones. Co-expression network analysis of the ZbNACs revealed 10 hub genes, and their expression levels were validated by real-time quantitative polymerase chain reaction (qRT-PCR). Finally, ZbNAC007, ZbNAC018, ZbNAC047, ZbNAC072, and ZbNAC079 were considered the pivotal NAC genes for drought tolerance in Z. bungeanum. This study represented the first genome-wide analysis of the NAC family in Z. bungeanum, improving our understanding of NAC proteins and providing useful information for molecular breeding of Z. bungeanum.
Collapse
|
18
|
Zhou J, Meng J, Zhang S, Chi R, Wang C, Wang D, Li H. The UV-B-Induced Transcription Factor HY5 Regulated Anthocyanin Biosynthesis in Zanthoxylum bungeanum. Int J Mol Sci 2022; 23:2651. [PMID: 35269793 PMCID: PMC8910586 DOI: 10.3390/ijms23052651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Pericarp color is an important economic characteristic of Zanthoxylum bungeanum. Anthocyanins are the main reason for the pericarp's red appearance in Z. bungeanum. In this study, through the combined analysis of the metabolome and transcriptome, HY5, whose expression is highly correlated to changes in the anthocyanin content, was screened and identified. Under natural ripening conditions, the Z. bungeanum fruit gradually changed in color from green to red, while bagging resulted in the fruit maintaining its green color. After unbagging, the fruit gradually turned red, and the ZbHY5 expression and anthocyanin content increased. In addition, the leaves changed from green to red after exposure to UV-B radiation, and the ZbHY5 expression and anthocyanin content increased. The transient overexpression of ZbHY5 deepened the redness of the Z. bungeanum leaves and promoted the expression of ZbHY5 and ZbMYB113 as well as anthocyanin accumulation. Bimolecular fluorescence complementation (BIFC) showed that there was an interaction between ZbHY5 and ZbMYB113. These results revealed that under UV-B irradiation, ZbHY5 might regulate the expression levels of the structural genes related to anthocyanin biosynthesis through combination with ZbMYB113, thereby affecting anthocyanin accumulation. This finding provides useful insights for further studies focusing on UV-B-induced anthocyanin accumulation in Z. bungeanum.
Collapse
Affiliation(s)
- Jing Zhou
- College of Landscape Architecture Sand Art, Northwest A&F University, Xianyang 712100, China; (J.Z.); (J.M.); (S.Z.); (R.C.)
| | - Jiaxin Meng
- College of Landscape Architecture Sand Art, Northwest A&F University, Xianyang 712100, China; (J.Z.); (J.M.); (S.Z.); (R.C.)
| | - Shuangyu Zhang
- College of Landscape Architecture Sand Art, Northwest A&F University, Xianyang 712100, China; (J.Z.); (J.M.); (S.Z.); (R.C.)
| | - Rufei Chi
- College of Landscape Architecture Sand Art, Northwest A&F University, Xianyang 712100, China; (J.Z.); (J.M.); (S.Z.); (R.C.)
| | - Cheng Wang
- College of Forestry, Northwest A&F University, Xianyang 712100, China;
| | - Dongmei Wang
- College of Forestry, Northwest A&F University, Xianyang 712100, China;
| | - Houhua Li
- College of Landscape Architecture Sand Art, Northwest A&F University, Xianyang 712100, China; (J.Z.); (J.M.); (S.Z.); (R.C.)
| |
Collapse
|
19
|
Rodríguez-Parra A, Picazo-Aragonés J, Balao F. Evaluation of Reference Genes in the Polyploid Complex Dianthus broteri (Caryophyllaceae) Using qPCR. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040518. [PMID: 35214851 PMCID: PMC8878694 DOI: 10.3390/plants11040518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 05/14/2023]
Abstract
Dianthus broteri is an endemic complex which is considered the largest polyploid series within the Dianthus genus. This polyploid species involves four cytotypes (2×, 4×, 6× and 12×) with spatial and ecological segregation. The study of gene expression in polyploid species must be very rigorous because of the effects of duplications on gene regulation. In these cases, real-time polymerase chain reaction (qPCR) is the most appropriate technique for determining the gene expression profile because of its high sensitivity. The relative quantification strategy using qPCR requires genes with stable expression, known as reference genes, for normalization. In this work, we evaluated the stability of 13 candidate genes to be considered reference genes in leaf and petal tissues in Dianthus broteri. Several statistical analyses were used to determine the most stable candidate genes: Bayesian analysis, network analysis based on equivalence tests, geNorm and BestKeeper algorithms. In the leaf tissue, the most stable candidate genes were TIP41, TIF5A, PP2A and SAMDC. Similarly, the most adequate reference genes were H3.1, TIP41, TIF5A and ACT7 in the petal tissue. Therefore, we suggest that the best reference genes to compare different ploidy levels for both tissues in D. broteri are TIP41 and TIF5A.
Collapse
|
20
|
Fu Y, Niu F, Jia H, Wang Y, Guo B, Wei Y. Reference gene selection for real-time quantitative PCR assays in different tissues of Huperzia serrata based on full-length transcriptome sequencing. PLANT DIRECT 2021; 5:e362. [PMID: 34849452 PMCID: PMC8611506 DOI: 10.1002/pld3.362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Huperzia serrata (H. serrata) produces various types of effective lycopodium alkaloids, especially Huperzine A (HupA), which is a promising drug for the treatment of Alzheimer's disease. Numerous studies focused on the chemistry, bioactivities, toxicology, and clinical trials of HupA; however, the public genomic and transcriptomic resources are very limited for H. serrata research, especially for the selection of optimum reference genes. Based on the full-length transcriptome datasets and previous studies, 10 traditional and three new candidate reference genes were selected in different tissue of H. serrata. Then, two optimal reference genes GAPDHB and HisH2A were confirmed by four analysis methods. In order to further verify the accuracy of the two reference genes, they were used to analyze the expression patterns of four HupA-biosynthetic genes (lysine decarboxylas, RS-norcoclaurine 6-O-methyltransferase, cytochrome P45072A1, and copper amine oxidase). The data suggested that the expression pattern of HupA-biosynthetic genes was consistent with them in transcriptome sequencing in different tissue of H. serrata. This study identified that GAPDHB and HisH2A provides the reliable normalization for analyzing the HupA biosynthetic gene expression in different tissues of H. serrata on the transcriptional level.
Collapse
Affiliation(s)
- Yanping Fu
- Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life ScienceNorthwest UniversityXi'anChina
| | - Fei Niu
- Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life ScienceNorthwest UniversityXi'anChina
| | - Hui Jia
- Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life ScienceNorthwest UniversityXi'anChina
| | - Yanli Wang
- Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life ScienceNorthwest UniversityXi'anChina
| | - Bin Guo
- Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life ScienceNorthwest UniversityXi'anChina
| | - Yahui Wei
- Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life ScienceNorthwest UniversityXi'anChina
| |
Collapse
|
21
|
Wu Y, Zhang C, Yang H, Lyu L, Li W, Wu W. Selection and Validation of Candidate Reference Genes for Gene Expression Analysis by RT-qPCR in Rubus. Int J Mol Sci 2021; 22:ijms221910533. [PMID: 34638877 PMCID: PMC8508773 DOI: 10.3390/ijms221910533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Due to the lack of effective and stable reference genes, studies on functional genes in Rubus, a genus of economically important small berry crops, have been greatly limited. To select the best internal reference genes of different types, we selected four representative cultivars of blackberry and raspberry (red raspberry, yellow raspberry, and black raspberry) as the research material and used RT-qPCR technology combined with three internal stability analysis software programs (geNorm, NormFinder, and BestKeeper) to analyze 12 candidate reference genes for the stability of their expression. The number of most suitable internal reference genes for different cultivars, tissues, and fruit developmental stages of Rubus was calculated by geNorm software to be two. Based on the results obtained with the three software programs, the most stable genes in the different cultivars were RuEEF1A and Ru18S. Finally, to validate the reliability of selected reference genes, the expression pattern of the RuCYP73A gene was analyzed, and the results highlighted the importance of appropriate reference gene selection. RuEEF1A and Ru18S were screened as reference genes for their relatively stable expression, providing a reference for the further study of key functional genes in blackberry and raspberry and an effective tool for the analysis of differential gene expression.
Collapse
Affiliation(s)
- Yaqiong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (H.Y.); (L.L.)
| | - Chunhong Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (H.Y.); (L.L.)
| | - Haiyan Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (H.Y.); (L.L.)
| | - Lianfei Lyu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (H.Y.); (L.L.)
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
- Correspondence: (W.L.); (W.W.); Tel.: +86-25-8542-8531 (W.L.); +86-25-8434-7063 (W.W.)
| | - Wenlong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (H.Y.); (L.L.)
- Correspondence: (W.L.); (W.W.); Tel.: +86-25-8542-8531 (W.L.); +86-25-8434-7063 (W.W.)
| |
Collapse
|
22
|
Chen Y, Luo B, Liu C, Zhang Z, Zhou C, Zhou T, Peng G, Wang X, Li W, Wu C, Rao L, Wang Q. Identification of reliable reference genes for quantitative real-time PCR analysis of the Rhus chinensis Mill. leaf response to temperature changes. FEBS Open Bio 2021; 11:2763-2773. [PMID: 34403204 PMCID: PMC8487043 DOI: 10.1002/2211-5463.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/25/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
Rhus chinensis Mill. (RCM) is the host plant of Galla chinensis, which is valued in traditional medicine. Environmental temperature directly determines the probability of gallnut formation and RCM growth. At present, there is no experiment to systematically analyse the stability of internal reference gene (RG) expression in RCM. In this experiment, leaves that did not form gallnuts were used as the control group, while leaves that formed gallnuts were used as the experimental group. First, we conducted transcriptome experiments on RCM leaves to obtain 45 103 differential genes and functional enrichment annotations between the two groups. On this basis, this experiment established a transcriptional gene change model of leaves in the process of gallnut formation after being bitten by aphids, and RCM reference candidate genes were screened from RNA sequencing (RNA‐seq) data. This study is based on RCM transcriptome data and evaluates the stability of 11 potential reference genes under cold stress (4 °C) and heat stress (34 °C), using three statistical algorithms (geNorm, NormFinder, and BestKeeper). The results show that GAPDH1 + PP2A2/UBQ are stable reference genes under heat stress, while GAPDH1 + ACT are the most stable under cold stress. This study is the first to screen candidate reference genes in RCM and could help guide future molecular studies in this genus.
Collapse
Affiliation(s)
- Yanchao Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.,Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha, China
| | - Biao Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.,Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha, China
| | - Chuwei Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.,Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha, China
| | - Zhengfeng Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Chi Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.,Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha, China
| | - Ting Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.,Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha, China
| | - Guoping Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.,Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha, China
| | - Xujun Wang
- Hunan Academy of Forestry, Changsha, China
| | - Waichin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, China
| | - Chuan Wu
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, China.,School of Metallurgy and Environment, Central South University, Changsha, China
| | - Liqun Rao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.,Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha, China
| | - Qiming Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.,Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha, China
| |
Collapse
|
23
|
Fei X, Shi Q, Lei Y, Wang S, Qi Y, Hu H, Wei A. Pollination promotes ABA synthesis but not sexual reproduction in the apomictic species Zanthoxylum bungeanum Maxim. TREE PHYSIOLOGY 2021; 41:1497-1509. [PMID: 33440426 DOI: 10.1093/treephys/tpab004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/20/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Apomixis is a form of reproduction that does not involve the fertilization of female gametes by male gametes but instead involves the production of offspring directly from the female parent. The offspring of apomixis are genetically identical to the female parent and inherit its traits. Therefore, apomixis has great potential for application to agricultural genetic breeding. However, it remains unclear whether apomictic species require pollination, and the impacts of pollination on such species are poorly understood. We investigated the effects of pollination on the apomictic species Zanthoxylum bungeanum Maxim. by analyzing its fertilization process, assembling its transcriptome, and measuring hormone concentrations, fruit setting rate and gene expression levels. Transcriptome sequencing of pollinated and unpollinated fruits resulted in a total of 69,131 PacBio reads. Of these, 7102 genes were up-regulated and 6491 genes were down-regulated. Analysis of the differentially expressed genes (DEGs) and construction of a weighted gene co-expression network showed that many DEGs were involved in plant hormone signal transduction, suggesting that hormonal signaling during development differs between pollinated and unpollinated fruit. The germination rate of Z. bungeanum pollen in vitro was only 11%, and pollen could not germinate in the embryo sac to complete fertilization. Although pollination did not enable Z. bungeanum to complete the sexual reproduction process, it significantly increased abscisic acid (ABA) concentration and fruit setting rate. Spraying 100 μg l-1 ABA also significantly increased the fruit setting rate. Therefore, ABA appears to be a key factor in the regulation of fruit setting in apomictic Z. bungeanum. Based on these results, we suggest that some male plants be cultivated in Z. bungeanum plantations or exogenous ABA be sprayed to increase the likelihood of pollination and thereby increase the fruit setting rate.
Collapse
Affiliation(s)
- Xitong Fei
- College of Forestry, Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling district, Xianyang City, Shaanxi Province, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, No. 3 Taicheng Road, Yangling district, Xianyang City, Shaanxi Province, 712100, China
| | - Qianqian Shi
- College of Forestry, Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling district, Xianyang City, Shaanxi Province, 712100, China
| | - Yu Lei
- College of Forestry, Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling district, Xianyang City, Shaanxi Province, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, No. 3 Taicheng Road, Yangling district, Xianyang City, Shaanxi Province, 712100, China
| | - Shujie Wang
- College of Forestry, Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling district, Xianyang City, Shaanxi Province, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, No. 3 Taicheng Road, Yangling district, Xianyang City, Shaanxi Province, 712100, China
| | - Yichen Qi
- College of Forestry, Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling district, Xianyang City, Shaanxi Province, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, No. 3 Taicheng Road, Yangling district, Xianyang City, Shaanxi Province, 712100, China
| | - Haichao Hu
- College of Forestry, Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling district, Xianyang City, Shaanxi Province, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, No. 3 Taicheng Road, Yangling district, Xianyang City, Shaanxi Province, 712100, China
| | - Anzhi Wei
- College of Forestry, Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling district, Xianyang City, Shaanxi Province, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, No. 3 Taicheng Road, Yangling district, Xianyang City, Shaanxi Province, 712100, China
| |
Collapse
|
24
|
Fei X, Lei Y, Qi Y, Wang S, Hu H, Wei A. Small RNA sequencing provides candidate miRNA-target pairs for revealing the mechanism of apomixis in Zanthoxylum bungeanum. BMC PLANT BIOLOGY 2021; 21:178. [PMID: 33849456 PMCID: PMC8042946 DOI: 10.1186/s12870-021-02935-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/23/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Apomixis is a form of asexual reproduction that produces offspring without the need for combining male and female gametes, and the offspring have the same genetic makeup as the mother. Therefore, apomixis technology has great application potential in plant breeding. To identify the apomixis types and critical period, embryonic development at different flower development stages of Zanthoxylum bungeanum was observed by cytology. RESULTS The results show that the S3 stage is the critical period of apomixis, during which the nucellar cells develop into an adventitious primordial embryo. Cytological observations showed that the type of apomixis in Z. bungeanum is sporophytic apomixis. Furthermore, miRNA sequencing, miRNA-target gene interaction, dual luciferase reporter assay, and RT-qPCR verification were used to reveal the dynamic regulation of miRNA-target pairs in Z. bungeanum apomixis. The miRNA sequencing identified 96 mature miRNAs, of which 40 were known and 56 were novel. Additionally, 29 differentially expressed miRNAs were screened according to the miRNAs expression levels at the different developmental stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses showed that the target genes of the differentially expressed miRNAs were mainly enriched in plant hormone signal transduction, RNA biosynthetic process, and response to hormone pathways. CONCLUSIONS During the critical period of apomictic embryonic development, miR172c significantly reduces the expression levels of TOE3 and APETALA 2 (AP2) genes, thereby upregulating the expression of the AGAMOUS gene. A molecular regulation model of miRNA-target pairs was constructed based on their interactions and expression patterns to further understand the role of miRNA-target pairs in apomixis. Our data suggest that miR172c may regulates AGAMOUS expression by inhibiting TOE3 in the critical period of apomixis.
Collapse
Affiliation(s)
- Xitong Fei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Yu Lei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Yichen Qi
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Shujie Wang
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Haichao Hu
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Anzhi Wei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, 712100, China.
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China.
| |
Collapse
|
25
|
Appropriate Reference Genes for RT-qPCR Normalization in Various Organs of Anemone flaccida Fr. Schmidt at Different Growing Stages. Genes (Basel) 2021; 12:genes12030459. [PMID: 33807101 PMCID: PMC8005022 DOI: 10.3390/genes12030459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
Anemone flaccida Fr. Schmidt is a traditional medicinal herb in southwestern China and has multiple pharmacological effects on bruise injuries and rheumatoid arthritis (RA). A new drug with a good curative effect on RA has recently been developed from the extract of A. flaccida rhizomes, of which the main medicinal ingredients are triterpenoid saponins. Due to excessive exploitation, the wild population has been scarce and endangered in a few of its natural habitats and research on the cultivation of the plant commenced. Studies on the gene expressions related to the biosynthesis of triterpenoid saponins are not only helpful for understanding the effects of environmental factors on the medicinal ingredient accumulations but also necessary for monitoring the herb quality of the cultivated plants. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) as a sensitive and powerful technique has been widely used to detect gene expression across tissues in plants at different stages; however, its accuracy and reliability depend largely on the reference gene selection. In this study, the expressions of 10 candidate reference genes were evaluated in various organs of the wild and cultivated plants at different stages, using the algorithms of geNorm, NormFinder and BestKeeper, respectively. The purpose of this study was to identify the suitable reference genes for RT-qPCR detection in A. flaccida. The results showed that two reference genes were sufficient for RT-qPCR data normalization in A. flaccida. PUBQ and ETIF1a can be used as suitable reference genes in most organs at various stages because of their expression stabilitywhereas the PUBQ and EF1Α genes were desirable in the rhizomes of the plant at the vegetative stage.
Collapse
|
26
|
Fei X, Qi Y, Lei Y, Wang S, Hu H, Wei A. Transcriptome and Metabolome Dynamics Explain Aroma Differences between Green and Red Prickly Ash Fruit. Foods 2021; 10:391. [PMID: 33579038 PMCID: PMC7916813 DOI: 10.3390/foods10020391] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/04/2022] Open
Abstract
Green prickly ash (Zanthoxylum armatum) and red prickly ash (Zanthoxylum bungeanum) fruit have unique flavor and aroma characteristics that affect consumers' purchasing preferences. However, differences in aroma components and relevant biosynthesis genes have not been systematically investigated in green and red prickly ash. Here, through the analysis of differentially expressed genes (DEGs), differentially abundant metabolites, and terpenoid biosynthetic pathways, we characterize the different aroma components of green and red prickly ash fruits and identify key genes in the terpenoid biosynthetic pathway. Gas chromatography-mass spectrometry (GC-MS) was used to identify 41 terpenoids from green prickly ash and 61 terpenoids from red prickly ash. Piperitone was the most abundant terpenoid in green prickly ash fruit, whereas limonene was most abundant in red prickly ash. Intergroup correlation analysis and redundancy analysis showed that HDS2, MVK2, and MVD are key genes for terpenoid synthesis in green prickly ash, whereas FDPS2 and FDPS3 play an important role in the terpenoid synthesis of red prickly ash. In summary, differences in the composition and content of terpenoids are the main factors that cause differences in the aromas of green and red prickly ash, and these differences reflect contrasting expression patterns of terpenoid synthesis genes.
Collapse
Affiliation(s)
- Xitong Fei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Yichen Qi
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Yu Lei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Shujie Wang
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Haichao Hu
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Anzhi Wei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| |
Collapse
|
27
|
Fei X, Shi Q, Qi Y, Wang S, Lei Y, Hu H, Liu Y, Yang T, Wei A. ZbAGL11, a class D MADS-box transcription factor of Zanthoxylum bungeanum, is involved in sporophytic apomixis. HORTICULTURE RESEARCH 2021; 8:23. [PMID: 33518706 PMCID: PMC7848008 DOI: 10.1038/s41438-020-00459-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 05/26/2023]
Abstract
Apomixis is a reproductive model that bypasses sexual reproduction, so it does not require the combination of paternal and maternal gametes but instead results in the production of offspring directly from maternal tissues. This reproductive mode results in the same genetic material in the mother and the offspring and has significant applications in agricultural breeding. Molecular and cytological methods were used to identify the reproductive type of Zanthoxylum bungeanum (ZB). Fluorescence detection of the amplified products of 12 pairs of polymorphic SSR primers showed consistent fluorescence signals for mother and offspring, indicating that no trait separation occurred during reproduction. In addition, the cytological observation results showed differentiation of ZB embryos (2n) from nucellar cells (2n) to form indefinite embryonic primordia and then form adventitious embryos (2n), indicating that the apomictic type of ZB is sporophytic apomixis. The MADS-box transcription factor ZbAGL11 was highly expressed during the critical period of nucellar embryo development in ZB. Unpollinated ZbAGL11-OE Arabidopsis produced fertile offspring and exhibited an apomictic phenotype. The overexpression of ZbAGL11 increased the callus induction rate of ZB tissue. In addition, the results of the yeast two-hybrid experiment showed that ZbAGL11 could interact with the ZbCYP450 and ZbCAD11 proteins. Our results demonstrate that ZbAGL11 can cause developmental disorders of Arabidopsis flower organs and result in apomixis-like phenotypes.
Collapse
Affiliation(s)
- Xitong Fei
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Qianqian Shi
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yichen Qi
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Shujie Wang
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Yu Lei
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Haichao Hu
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Yulin Liu
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Tuxi Yang
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Anzhi Wei
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China.
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China.
| |
Collapse
|
28
|
Fei X, Li J, Kong L, Hu H, Tian J, Liu Y, Wei A. miRNAs and their target genes regulate the antioxidant system of Zanthoxylum bungeanum under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:196-203. [PMID: 32155447 DOI: 10.1016/j.plaphy.2020.01.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Plants can accumulate a large amount of reactive oxygen species under adverse conditions such as drought and high temperature, which seriously affect the normal growth and development of plants. The antioxidant system can scavenge the reactive oxygen species produced under drought conditions and so mitigate oxidative damage. However, the regulation patterns of many miRNAs under drought stress are still unclear. The content of antioxidant enzymes and the expression patterns of miRNAs and their target genes related to antioxidant systems were studied under drought stress in Zanthoxylum bungeanum. The results indicate that under drought stress, POD, CAT, APX, proline, MDA and related genes all show positive responses to drought, while SOD and its genes showed a negative response. It is indicated that in the antioxidant process of Z. bungeanum, POD, CAT, and APX play a major role, and SOD plays a supporting role. In addition, GUS histochemical and RT-qPCR experimental results show that the expression levels of miRNAs and their target genes are basically negatively correlated, indicating that miRNAs can inhibit the expression of related genes and are also important regulators in the antioxidant system of Z. bungeanum. According to the expression patterns of antioxidant enzymes, miRNA and its target genes under drought stress, combined with previous research results, a model of plant antioxidant mechanism was constructed to provide a reference for further understanding of plant antioxidant mechanism.
Collapse
Affiliation(s)
- Xitong Fei
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China; Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Jingmiao Li
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China; Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Lijuan Kong
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China; Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Haichao Hu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China; Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Jieyun Tian
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China; Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Yulin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China; Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China; Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China.
| |
Collapse
|
29
|
Hui WK, Zhao FY, Wang JY, Chen XY, Li JW, Zhong Y, Li HY, Zheng JX, Zhang LZ, Que QM, Wu AM, Gong W. De novo transcriptome assembly for the five major organs of Zanthoxylum armatum and the identification of genes involved in terpenoid compound and fatty acid metabolism. BMC Genomics 2020; 21:81. [PMID: 31992199 PMCID: PMC6986037 DOI: 10.1186/s12864-020-6521-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background Zanthoxylum armatum (Z. armatum) is a highly economically important tree that presents a special numbing taste. However, the underlying regulatory mechanism of the numbing taste remains poorly understood. Thus, the elucidation of the key genes associated with numbing taste biosynthesis pathways is critical for providing genetic information on Z. armatumand the breeding of high-quality germplasms of this species. Results Here, de novo transcriptome assembly was performed for the five major organs of Z. armatum, including the roots, stems, leaf buds, mature leaves and fruits. A total of 111,318 unigenes were generated with an average length of 1014 bp. Additionally, a large number of SSRs were obtained to improve our understanding of the phylogeny and genetics of Z. armatum. The organ-specific unigenes of the five major samples were screened and annotated via GO and KEGG enrichment analysis. A total of 53 and 34 unigenes that were exclusively upregulated in fruit samples were identified as candidate unigenes for terpenoid biosynthesis or fatty acid biosynthesis, elongation and degradation pathways, respectively. Moreover, 40 days after fertilization (Fr4 stage) could be an important period for the accumulation of terpenoid compounds during the fruit development and maturation of Z. armatum. The Fr4 stage could be a key point at which the first few steps of the fatty acid biosynthesis process are promoted, and the catalysis of subsequent reactions could be significantly induced at 62 days after fertilization (Fr6 stage). Conclusions The present study realized de novo transcriptome assembly for the five major organs of Z. armatum. To the best of our knowledge, this study provides the first comprehensive analysis revealing the genes underlying the special numbing taste of Z. armatum. The assembled transcriptome profiles expand the available genetic information on this species and will contribute to gene functional studies, which will aid in the engineering of high-quality cultivars of Z. armatum.
Collapse
Affiliation(s)
- Wen-Kai Hui
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fei-Yan Zhao
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing-Yan Wang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Yang Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Jue-Wei Li
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Zhong
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hong-Yun Li
- Agricultural Technology Extension Center in Yantan District, Zigong, 643030, China
| | - Jun-Xing Zheng
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liang-Zhen Zhang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qing-Min Que
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Wei Gong
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
30
|
Selection of Suitable Reference Genes in Pinus massoniana Lamb. Under Different Abiotic Stresses for qPCR Normalization. FORESTS 2019. [DOI: 10.3390/f10080632] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The normalization of data by choosing suitable reference genes is fundamental for obtaining accurate and reliable results in quantitative real-time polymerase chain reaction (qPCR) analyses. In this study, the expression stability of 12 candidate reference genes of Pinus massoniana under different abiotic stresses was evaluated using four statistical algorithms: geNorm, NormFinder, BestKeeper, and RefFinder. The results indicate that the following genes could be used as reference genes under different treatments: Actin 2 (ACT2) and F-box family gene (F-box) for salinity treatment, cyclophilin (CYP) and alpha-tubulin (TUA) for ABA treatment, actin 7 (ACT7) and CYP for drought treatment, actin 1 (ACT1) and ACT7 for cold treatment, ACT1 and CYP for heat treatment, and TUA and ACT2 for the “Total” group. To validate the suitability of the selected reference genes in this study, the Short-Root protein (SHR), Alpha-pinene synthase (APS), and Pyrabactin resistance-like protein (PYL) gene expression patterns were analyzed. The expression patterns had significant biases when the most unstable reference genes were used for normalization, compared with when the optimum reference gene or gene combinations were used for normalization. These results will be beneficial for further studies on gene transcription in early-stage, unlignified seedlings of P. massoniana.
Collapse
|
31
|
Nong Q, Yang Y, Zhang M, Zhang M, Chen J, Jian S, Lu H, Xia K. RNA-seq-based selection of reference genes for RT-qPCR analysis of pitaya. FEBS Open Bio 2019; 9:1403-1412. [PMID: 31127874 PMCID: PMC6668369 DOI: 10.1002/2211-5463.12678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/08/2019] [Accepted: 05/23/2019] [Indexed: 11/18/2022] Open
Abstract
Reverse‐transcription quantitative real‐time PCR (RT‐qPCR) is a primary tool for measuring gene expression levels, and selection of appropriate reference genes is crucial for accurate and reproducible results of gene expression under various experimental conditions. However, no systematic evaluation of reference genes in pitaya (Hylocereus undatus Britt.) has been performed. Here, we examined the expression of five candidate reference genes, namely elongation factor 1‐alpha (HuEF1‐α), 18S ribosomal RNA (Hu18S rRNA), ubiquitin (HuUBQ), actin (HuACT), and ubiquitin‐conjugating enzyme (HuUQT), under different conditions in pitaya. The expression stabilities of these five genes were evaluated using two computation programs: geNorm and NormFinder. The results were further validated by normalizing the expression of the phosphoglycerate kinase (HuPGK) and ethylene‐responsive transcription factor (HuERF) genes. Our results indicate that combined use of HuUBQ and HuUQT is the most stable reference under all of the experimental conditions examined. HuEF1‐α, HuUBQ, and HuUQT are the top three most stable reference genes under salt stress, drought stress, and heat stress, and across different cultivars. HuEF1‐α, HuACT, and HuUQT exhibited the most stable expression patterns across different tissues. Our results will allow researchers to select the most appropriate reference genes for gene expression studies of pitaya under different conditions.
Collapse
Affiliation(s)
- Quandong Nong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Wenshan Academy of Agricultural Sciences, China
| | | | - Mingyong Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Mei Zhang
- Guangdong Provincial Key laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jiantong Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shuguang Jian
- Guangdong Provincial Key laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hongfang Lu
- Guangdong Provincial Key laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Kuaifei Xia
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
32
|
Zhang J, Xie W, Yu X, Zhang Z, Zhao Y, Wang N, Wang Y. Selection of Suitable Reference Genes for RT-qPCR Gene Expression Analysis in Siberian Wild Rye ( Elymus sibiricus) under Different Experimental Conditions. Genes (Basel) 2019; 10:E451. [PMID: 31200580 PMCID: PMC6627066 DOI: 10.3390/genes10060451] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 11/17/2022] Open
Abstract
Elymus sibiricus, which is a perennial and self-pollinated grass, is the typical species of the genus Elymus, which plays an important role in forage production and ecological restoration. No reports have, so far, systematically described the selection of optimal reference genes for reverse transcriptase quantitative real-time polymerase chain reaction (RT-qPCR) analysis in E. sibiricus. The goals of this study were to evaluate the expression stability of 13 candidate reference genes in different experimental conditions, and to determine the appropriate reference genes for gene expression analysis in E. sibiricus. Five methods including Delta Ct (ΔCt), BestKeeper, NormFinder, geNorm, and RefFinder were used to assess the expression stability of 13 potential reference genes. The results of the RefFinder analysis showed that TBP2 and HIS3 were the most stable reference genes in different genotypes. TUA2 and PP2A had the most stable expression in different developmental stages. TBP2 and PP2A were suitable reference genes in different tissues. Under salt stress, ACT2 and TBP2 were identified as the most stable reference genes. ACT2 and TUA2 showed the most stability under heat stress. For cold stress, PP2A and ACT2 presented the highest degree of expression stability. DNAJ and U2AF were considered as the most stable reference genes under osmotic stress. The optimal reference genes were selected to investigate the expression pattern of target gene CSLE6 in different conditions. This study provides suitable reference genes for further gene expression analysis using RT-qPCR in E. sibiricus.
Collapse
Affiliation(s)
- Junchao Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Wengang Xie
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Xinxuan Yu
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Zongyu Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Yongqiang Zhao
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Na Wang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Yanrong Wang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
33
|
Identification of Key Genes in the Synthesis Pathway of Volatile Terpenoids in Fruit of Zanthoxylum bungeanum Maxim. FORESTS 2019. [DOI: 10.3390/f10040328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Zanthoxylum bungeanum Maxim. (Z. bungeanum), a plant that belongs to the Rutaceae family, is widely planted in China. Its outstanding feature is its rich aroma. The main component that creates this aroma is the volatile terpenoids. In this study, we aimed to understand the molecular mechanism related to aroma synthesis in Z. bungeanum and provide new ideas for breeding. Headspace solid phase micro extraction-gas chromatography mass spectrometry (HS-SPME-GC-MS), RT-qPCR and bioinformatics were used to study the changes in volatile terpenoids and identify key genes in the pathway of terpenoids in fruits of Z. bungeanum. The results show that the trend of volatile terpenoids is consistent among the two varieties. As the fruit matures, the terpenoids gradually accumulate and peak in the third period (mid-development) before gradually decreasing. Among these terpenoids, there is the highest content of α-pinene. In Z. bungeanum cv. ‘Hanchengdahongpao’ (Hanchengdahongpao) and Z. bungeanum cv. ‘Fuguhuajiao’ (Fuguhuajiao), this reached 24.74% and 20.78% respectively. In general, for the content of volatile terpenoids, Hanchengdahongpao is 62% and Fuguhuajiao is 41%. The results of RT-qPCR showed that most gene expression in this study was upregulated. Among them, ZbDXS has the highest relative level of expression in itself, which is the key rate-limiting enzymein the MEP pathway. These results explore the synthetic route of terpenoids during the ripening process of Z. bungeanum, which provides a reference for cultivar and improving good traits.
Collapse
|
34
|
Meng H, Yang Y, Gao ZH, Wei JH. Selection and Validation of Reference Genes for Gene Expression Studies by RT-PCR in Dalbergia odorifera. Sci Rep 2019; 9:3341. [PMID: 30833587 PMCID: PMC6399326 DOI: 10.1038/s41598-019-39088-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/16/2019] [Indexed: 01/18/2023] Open
Abstract
Perennial tree Dalbergia odorifera T. Chen could form the precious heartwood used to produce chinese traditional medicine, rosewood furniture and fragrances. However the formation of heartwood is time-consuming and low efficient, leading to the severe destruction of its wild resources. Thus, it is urgent to study the molecular mechanism of heartwood formation in D. odorifera. But till now, there is no report about the reference gene selection in this species. In this study, the expression stability of nine candidate reference genes were evaluated across different tissues and stems treated by wound and chemical stimulators. Four algorithms were applied to obtain the robust genes. The results support HIS2, GAPDH, and CYP to be the most stable reference genes in samples under different wound treatments while DNAj was the least stable. In different tissues, HIS2, UBQ, and RPL were the most stable reference genes while DNAj was the least stable. The selected reference genes were validated through the normalization of the qRT-PCR data of six heartwood related genes in terpene biosynthesis pathway and ethylene signal pathway. The results showed that their expression levels were accurate when they were normalized by the most stable reference gene HIS2, or by the combination of the two or three most stable reference genes. These results demonstrated that these selected reference genes are reliable.
Collapse
Affiliation(s)
- Hui Meng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.,Hainan Branch Institute of Medicinal Plant Development (Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine), Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China
| | - Yun Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.,Hainan Branch Institute of Medicinal Plant Development (Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine), Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China
| | - Zhi-Hui Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Jian-He Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China. .,Hainan Branch Institute of Medicinal Plant Development (Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine), Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China.
| |
Collapse
|
35
|
Patterns of Drought Response of 38 WRKY Transcription Factors of Zanthoxylum bungeanum Maxim. Int J Mol Sci 2018; 20:ijms20010068. [PMID: 30586928 PMCID: PMC6337418 DOI: 10.3390/ijms20010068] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/15/2018] [Accepted: 12/21/2018] [Indexed: 01/06/2023] Open
Abstract
The WRKY family of transcription factors (TFs) includes a number of transcription-specific groupings that play important roles in plant growth and development and in plant responses to various stresses. To screen for WRKY transcription factors associated with drought stress in Zanthoxylum bungeanum, a total of 38 ZbWRKY were identified and these were then classified and identified with Arabidopsis WRKY. Using bioinformatics analyses based on the structural characteristics of the conservative domain, 38 WRKY transcription factors were identified and categorized into three groups: Groups I, II, and III. Of these, Group II can be divided into four subgroups: subgroups IIb, IIc, IId, and IIe. No ZbWRKY members of subgroup IIa were found in the sequencing data. In addition, 38 ZbWRKY were identified by real-time PCR to determine the behavior of this family of genes under drought stress. Twelve ZbWRKY transcription factors were found to be significantly upregulated under drought stress and these were identified by relative quantification. As predicted by the STRING website, the results show that the WRKYs are involved in four signaling pathways—the jasmonic acid (JA), the salicylic acid (SA), the mitogen-activated protein kinase (MAPK), and the ethylene signaling pathways. ZbWRKY33 is the most intense transcription factor in response to drought stress. We predict that WRKY33 binds directly to the ethylene synthesis precursor gene ACS6, to promote ethylene synthesis. Ethylene then binds to the ethylene activator release signal to activate a series of downstream genes for cold stress and osmotic responses. The roles of ZbWRKY transcription factors in drought stress rely on a regulatory network center on the JA signaling pathway.
Collapse
|