1
|
Alnasser SM. From gut to liver: organoids as platforms for next-generation toxicology assessment vehicles for xenobiotics. Stem Cell Res Ther 2025; 16:150. [PMID: 40140938 PMCID: PMC11948905 DOI: 10.1186/s13287-025-04264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Traditional toxicological assessment relied heavily on 2D cell cultures and animal models of study, which were inadequate for the precise prediction of human response to chemicals. Researchers have now shifted focus on organoids for toxicological assessment. Organoids are 3D structures produced from stem cells that mimic the shape and functionality of human organs and have a number of advantages compared to traditional models of study. They have the capacity to replicate the intricate cellular microenvironment and in vivo interactions. They offer a physiologically pertinent platform that is useful for the researchers to monitor cellular responses in a more realistic manner and evaluate drug toxicity. Additionally, organoids can be created from cells unique to a patient, allowing for individualized toxicological research and providing understanding of the inter-individual heterogeneity in drug responses. Recent developments in the use of gut and liver organoids for assessment of the xenobiotics (environmental toxins and drugs) is reviewed in this article. Gut organoids can reveal potential damage to the digestive system and how xenobiotics affect nutrient absorption and barrier function. Liver is the primary site of detoxification and metabolism of xenobiotics, usually routed from the gut. Hence, these are linked and crucial for evaluating chemical or pollutant induced organ toxicity, forecasting their metabolism and pharmacokinetics. When incorporated into the drug development process, organoid models have the potential to improve the accuracy and efficiency of drug safety assessments, leading to safer and more effective treatments. We also discuss the limitations of using organoid-based toxicological assays, and future prospects, including the need for standardized protocols for overcoming reproducibility issues.
Collapse
Affiliation(s)
- Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, 51452, Buraydah, Qassim, Saudi Arabia.
| |
Collapse
|
2
|
Hu X, Wei J, Liu P, Zheng Q, Zhang Y, Zhang Q, Yao J, Ni J. Organoid as a promising tool for primary liver cancer research: a comprehensive review. Cell Biosci 2024; 14:107. [PMID: 39192365 DOI: 10.1186/s13578-024-01287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Primary liver cancer (PLC) is one of the most common malignant gastrointestinal tumors worldwide. Limited by the shortage of liver transplantation donors and the heterogeneity of tumors, patients with liver cancer lack effective treatment options, which leads to rapid progression and metastasis. Currently, preclinical models of PLC fall short of clinical reality and are limited in their response to disease progression and the effectiveness of drug therapy. Organoids are in vitro three-dimensional cultured preclinical models with a high degree of heterogeneity that preserve the histomorphological and genomic features of primary tumors. Liver cancer organoids have been widely used for drug screening, new target discovery, and precision medicine; thus representing a promising tool to study PLC. Here, we summarize the progress of research on liver cancer organoids and their potential application as disease models. This review provides a comprehensive introduction to this emerging technology and offers new ideas for researchers to explore in the field of precision medicine.
Collapse
Affiliation(s)
- Xuekai Hu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Jiayun Wei
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Pinyan Liu
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Qiuxia Zheng
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yue Zhang
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Qichen Zhang
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Jia Yao
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China.
- The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, 730000, China.
- The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China.
| | - Jingman Ni
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
- School of Basic Medical Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, China.
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China.
| |
Collapse
|
3
|
Rigal S, Casas B, Kanebratt KP, Wennberg Huldt C, Magnusson LU, Müllers E, Karlsson F, Clausen M, Hansson SF, Leonard L, Cairns J, Jansson Löfmark R, Ämmälä C, Marx U, Gennemark P, Cedersund G, Andersson TB, Vilén LK. Normoglycemia and physiological cortisone level maintain glucose homeostasis in a pancreas-liver microphysiological system. Commun Biol 2024; 7:877. [PMID: 39025915 PMCID: PMC11258270 DOI: 10.1038/s42003-024-06514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Current research on metabolic disorders and diabetes relies on animal models because multi-organ diseases cannot be well studied with standard in vitro assays. Here, we have connected cell models of key metabolic organs, the pancreas and liver, on a microfluidic chip to enable diabetes research in a human-based in vitro system. Aided by mechanistic mathematical modeling, we demonstrate that hyperglycemia and high cortisone concentration induce glucose dysregulation in the pancreas-liver microphysiological system (MPS), mimicking a diabetic phenotype seen in patients with glucocorticoid-induced diabetes. In this diseased condition, the pancreas-liver MPS displays beta-cell dysfunction, steatosis, elevated ketone-body secretion, increased glycogen storage, and upregulated gluconeogenic gene expression. Conversely, a physiological culture condition maintains glucose tolerance and beta-cell function. This method was reproducible in two laboratories and was effective in multiple pancreatic islet donors. The model also provides a platform to identify new therapeutic proteins, as demonstrated with a combined transcriptome and proteome analysis.
Collapse
Affiliation(s)
| | - Belén Casas
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Kajsa P Kanebratt
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Charlotte Wennberg Huldt
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lisa U Magnusson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Erik Müllers
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Fredrik Karlsson
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Maryam Clausen
- Translational Genomics, Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sara F Hansson
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Louise Leonard
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Jonathan Cairns
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Rasmus Jansson Löfmark
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Carina Ämmälä
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Peter Gennemark
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Tommy B Andersson
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Liisa K Vilén
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Roudaut M, Caillaud A, Souguir Z, Bray L, Girardeau A, Rimbert A, Croyal M, Lambert G, Patitucci M, Delpouve G, Vandenhaute É, Le May C, Maubon N, Cariou B, Si‐Tayeb K. Human induced pluripotent stem cells-derived liver organoids grown on a Biomimesys® hyaluronic acid-based hydroscaffold as a new model for studying human lipoprotein metabolism. Bioeng Transl Med 2024; 9:e10659. [PMID: 39036087 PMCID: PMC11256179 DOI: 10.1002/btm2.10659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 07/23/2024] Open
Abstract
The liver plays a key role in the metabolism of lipoproteins, controlling both production and catabolism. To accelerate the development of new lipid-lowering therapies in humans, it is essential to have a relevant in vitro study model available. The current hepatocyte-like cells (HLCs) models derived from hiPSC can be used to model many genetically driven diseases but require further improvement to better recapitulate the complexity of liver functions. Here, we aimed to improve the maturation of HLCs using a three-dimensional (3D) approach using Biomimesys®, a hyaluronic acid-based hydroscaffold in which hiPSCs may directly form aggregates and differentiate toward a functional liver organoid model. After a 28-day differentiation 3D protocol, we showed that many hepatic genes were upregulated in the 3D model (liver organoids) in comparison with the 2D model (HLCs). Liver organoids, grown on Biomimesys®, exhibited an autonomous cell organization, were composed of different cell types and displayed enhanced cytochromes P450 activities compared to HLCs. Regarding the functional capacities of these organoids, we showed that they were able to accumulate lipids (hepatic steatosis), internalize low-density lipoprotein and secrete apolipoprotein B. Interestingly, we showed for the first time that this model was also able to produce apolipoprotein (a), the apolipoprotein (a) specific of Lp(a). This innovative hiPSC-derived liver organoid model may serve as a relevant model for studying human lipopoprotein metabolism, including Lp(a).
Collapse
Affiliation(s)
- Meryl Roudaut
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thoraxNantesFrance
- HCS PharmaLilleFrance
| | - Amandine Caillaud
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thoraxNantesFrance
| | | | - Lise Bray
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thoraxNantesFrance
| | - Aurore Girardeau
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thoraxNantesFrance
| | - Antoine Rimbert
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thoraxNantesFrance
| | - Mikaël Croyal
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thoraxNantesFrance
- CRNH‐Ouest Mass Spectrometry Core FacilityNantesFrance
| | - Gilles Lambert
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI)Université de La RéunionSaint‐Denisde La RéunionFrance
| | - Murielle Patitucci
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thoraxNantesFrance
| | | | | | - Cédric Le May
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thoraxNantesFrance
| | | | - Bertrand Cariou
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thoraxNantesFrance
| | - Karim Si‐Tayeb
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thoraxNantesFrance
| |
Collapse
|
5
|
Hendriks D, Artegiani B, Margaritis T, Zoutendijk I, Chuva de Sousa Lopes S, Clevers H. Mapping of mitogen and metabolic sensitivity in organoids defines requirements for human hepatocyte growth. Nat Commun 2024; 15:4034. [PMID: 38740814 DOI: 10.1038/s41467-024-48550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Mechanisms underlying human hepatocyte growth in development and regeneration are incompletely understood. In vitro, human fetal hepatocytes (FH) can be robustly grown as organoids, while adult primary human hepatocyte (PHH) organoids remain difficult to expand, suggesting different growth requirements between fetal and adult hepatocytes. Here, we characterize hepatocyte organoid outgrowth using temporal transcriptomic and phenotypic approaches. FHs initiate reciprocal transcriptional programs involving increased proliferation and repressed lipid metabolism upon initiation of organoid growth. We exploit these insights to design maturation conditions for FH organoids, resulting in acquisition of mature hepatocyte morphological traits and increased expression of functional markers. During PHH organoid outgrowth in the same culture condition as for FHs, the adult transcriptomes initially mimic the fetal transcriptomic signatures, but PHHs rapidly acquire disbalanced proliferation-lipid metabolism dynamics, resulting in steatosis and halted organoid growth. IL6 supplementation, as emerged from the fetal dataset, and simultaneous activation of the metabolic regulator FXR, prevents steatosis and promotes PHH proliferation, resulting in improved expansion of the derived organoids. Single-cell RNA sequencing analyses reveal preservation of their fetal and adult hepatocyte identities in the respective organoid cultures. Our findings uncover mitogen requirements and metabolic differences determining proliferation of hepatocytes changing from development to adulthood.
Collapse
Affiliation(s)
- Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | - Benedetta Artegiani
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | | | - Iris Zoutendijk
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- University Medical Center Utrecht, Utrecht, The Netherlands.
- Pharma Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
6
|
Stüve P, Nerb B, Harrer S, Wuttke M, Feuerer M, Junger H, Eggenhofer E, Lungu B, Laslau S, Ritter U. Analysis of organoid and immune cell co-cultures by machine learning-empowered image cytometry. Front Med (Lausanne) 2024; 10:1274482. [PMID: 38298516 PMCID: PMC10827864 DOI: 10.3389/fmed.2023.1274482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/24/2023] [Indexed: 02/02/2024] Open
Abstract
Organoids are three-dimensional (3D) structures that can be derived from stem cells or adult tissue progenitor cells and exhibit an extraordinary ability to autonomously organize and resemble the cellular composition and architectural integrity of specific tissue segments. This feature makes them a useful tool for analyzing therapeutical relevant aspects, including organ development, wound healing, immune disorders and drug discovery. Most organoid models do not contain cells that mimic the neighboring tissue’s microenvironment, which could potentially hinder deeper mechanistic studies. However, to use organoid models in mechanistic studies, which would enable us to better understand pathophysiological processes, it is necessary to emulate the in situ microenvironment. This can be accomplished by incorporating selected cells of interest from neighboring tissues into the organoid culture. Nevertheless, the detection and quantification of organoids in such co-cultures remains a major technical challenge. These imaging analysis approaches would require an accurate separation of organoids from the other cell types in the co-culture. To efficiently detect and analyze 3D organoids in co-cultures, we developed a high-throughput imaging analysis platform. This method integrates automated imaging techniques and advanced image processing tools such as grayscale conversion, contrast enhancement, membrane detection and structure separation. Based on machine learning algorithms, we were able to identify and classify 3D organoids within dense co-cultures of immune cells. This procedure allows a high-throughput analysis of organoid-associated parameters such as quantity, size, and shape. Therefore, the technology has significant potential to advance contextualized research using organoid co-cultures and their potential applications in translational medicine.
Collapse
Affiliation(s)
- Philipp Stüve
- Division of Immunology, LIT – Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Benedikt Nerb
- Division of Immunology, LIT – Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University of Regensburg, Regensburg, Germany
| | - Selina Harrer
- Division of Immunology, LIT – Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Marina Wuttke
- Division of Immunology, LIT – Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Markus Feuerer
- Division of Immunology, LIT – Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University of Regensburg, Regensburg, Germany
| | - Henrik Junger
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Elke Eggenhofer
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | | | | | - Uwe Ritter
- Division of Immunology, LIT – Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
da Silva Nunes Barreto R, da Silva Júnior LN, Henrique Doná Rodrigues Almeida G, de Oliveira Horvath-Pereira B, da Silva TS, Garcia JM, Smith LC, Carreira ACO, Miglino MA. Placental scaffolds as a potential biological platform for embryonic stem cells differentiation into hepatic-like cells lineage: A pilot study. Tissue Cell 2023; 84:102181. [PMID: 37515966 DOI: 10.1016/j.tice.2023.102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
Hepatic microenvironment plays an essential role in liver regeneration, providing the necessary conditions for cell proliferation, differentiation and tissue rearrangement. One of the key factors for hepatic tissue reconstruction is the extracellular matrix (ECM), which through collagenous and non-collagenous proteins provide a three-dimensional structure that confers support for cell adhesion and assists on their survival and maintenance. In this scenario, placental ECM may be eligible for hepatic tissue reconstruction, once these scaffolds hold the major components required for cell support. Therefore, this preliminary study aimed to access the possibility of mouse embryonic stem cells differentiation into hepatocyte-like cells on placental scaffolds in a three-dimensional dynamic system using a Rotary Cell Culture System. Following a four-phase differentiation protocol that simulates liver embryonic development events, the preliminary results showed that a significant quantity of cells adhered and interacted with the scaffold through outer and inner surfaces. Positive immunolabelling for alpha fetus protein and CK7 suggest presence of hepatoblast phenotype cells, and CK18 and Albumin positive immunolabelling suggest the presence of hepatocyte-like phenotype cells, demonstrating the presence of a heterogeneous population into the recellularized scaffolds. Periodic Acid Schiff-Diastase staining confirmed the presence of glycogen storage, indicating that differentiate cells acquired a hepatic-like phenotype. In conclusion, these preliminary results suggested that mouse placental scaffolds might be used as a biological platform for stem cells differentiation into hepatic-like cells and their establishment, which may be a promissing biomaterial for hepatic tissue reconstruction.
Collapse
Affiliation(s)
| | | | | | | | - Thamires Santos da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Joaquim Mansano Garcia
- Department of Preventive Veterinary Medicine and Animal Reproduction, Faculty of Agricultural and Veterinary Sciences, State University of São Paulo, Jaboticabal, SP, Brazil
| | - Lawrence Charles Smith
- Centre de Recherche en Reproduction et Fertilité, University of Montreal, Montreal, QC, Canada
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil; Centre of Human and Natural Sciences, Federal University of ABC, Santo André, SP, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Kaur I, Vasudevan A, Rawal P, Tripathi DM, Ramakrishna S, Kaur S, Sarin SK. Primary Hepatocyte Isolation and Cultures: Technical Aspects, Challenges and Advancements. Bioengineering (Basel) 2023; 10:131. [PMID: 36829625 PMCID: PMC9952008 DOI: 10.3390/bioengineering10020131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Hepatocytes are differentiated cells that account for 80% of the hepatic volume and perform all major functions of the liver. In vivo, after an acute insult, adult hepatocytes retain their ability to proliferate and participate in liver regeneration. However, in vitro, prolonged culture and proliferation of viable and functional primary hepatocytes have remained the major and the most challenging goal of hepatocyte-based cell therapies and liver tissue engineering. The first functional cultures of rat primary hepatocytes between two layers of collagen gel, also termed as the "sandwich cultures", were reported in 1989. Since this study, several technical developments including choice of hydrogels, type of microenvironment, growth factors and culture conditions, mono or co-cultures of hepatocytes along with other supporting cell types have evolved for both rat and human primary hepatocytes in recent years. All these improvements have led to a substantial improvement in the number, life-span and hepatic functions of these cells in vitro for several downstream applications. In the current review, we highlight the details, limitations and prospects of different technical strategies being used in primary hepatocyte cultures. We discuss the use of newer biomaterials as scaffolds for efficient culture of primary hepatocytes. We also describe the derivation of mature hepatocytes from other cellular sources such as induced pluripotent stem cells, bone marrow stem cells and 3D liver organoids. Finally, we also explain the use of perfusion-based bioreactor systems and bioengineering strategies to support the long-term function of hepatocytes in 3D conditions.
Collapse
Affiliation(s)
- Impreet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Ashwini Vasudevan
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Preety Rawal
- School of Biotechnology, Gautam Buddha University, Greater Noida 201312, India
| | - Dinesh M. Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Shiv K. Sarin
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| |
Collapse
|
9
|
Yun C, Kim SH, Jung YS. Current Research Trends in the Application of In Vitro Three-Dimensional Models of Liver Cells. Pharmaceutics 2022; 15:pharmaceutics15010054. [PMID: 36678683 PMCID: PMC9866911 DOI: 10.3390/pharmaceutics15010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The liver produces and stores various nutrients that are necessary for the body and serves as a chemical plant, metabolizing carbohydrates, fats, hormones, vitamins, and minerals. It is also a vital organ for detoxifying drugs and exogenous harmful substances. Culturing liver cells in vitro under three-dimensional (3D) conditions is considered a primary mechanism for liver tissue engineering. The 3D cell culture system is designed to allow cells to interact in an artificially created environment and has the advantage of mimicking the physiological characteristics of cells in vivo. This system facilitates contact between the cells and the extracellular matrix. Several technically different approaches have been proposed, including bioreactors, chips, and plate-based systems in fluid or static media composed of chemically diverse materials. Compared to conventional two-dimensional monolayer culture in vitro models, the ability to predict the function of the tissues, including the drug metabolism and chemical toxicity, has been enhanced by developing three-dimensional liver culture models. This review discussed the methodology of 3D cell cultures and summarized the advantages of an in vitro liver platform using 3D culture technology.
Collapse
|
10
|
Kobayashi T, Takeba Y, Ohta Y, Ootaki M, Kida K, Watanabe M, Iiri T, Matsumoto N. Prenatal glucocorticoid administration accelerates the maturation of fetal rat hepatocytes. Mol Biol Rep 2022; 49:5831-5842. [PMID: 35304682 DOI: 10.1007/s11033-022-07358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/10/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Prenatal glucocorticoid (GC) is clinically administered to pregnant women who are at risk of preterm birth for the maturation of cardiopulmonary function. Preterm and low-birth-weight infants often experience liver dysfunction after birth because their livers are immature. However, the effects of prenatal GC administration on the liver remain unclear. We aimed to investigate the effects of prenatal GC administration on the maturation of liver hepatocytes in preterm rats. METHODS AND RESULTS Dexamethasone (DEX) was administered to pregnant Wistar rats on gestational days 17 and 19 before cesarean section. Real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed to determine the mRNA levels of albumin, hepatocyte nuclear factor-4 alpha (HNF4α), hepatocyte growth factor (HGF), thymus cell antigen 1 (Thy-1), cyclin B, and Cyclin-dependent kinase 1 (CDK1) in the liver samples. Immunohistochemical staining and enzyme-linked immunosorbent assay were performed to examine protein production. The hepatocytes enlarged because of growth and prenatal DEX administration. Albumin, HNF4α, and HGF levels increased secondary to growth and prenatal DEX administration. The levels of the cell cycle markers cyclin B and CDK1 gradually decreased during growth and with DEX administration. CONCLUSIONS The results suggest that prenatal GC administration leads to hepatocyte maturation via expression of HNF4α and HGF in preterm fetuses.
Collapse
Affiliation(s)
- Tsukasa Kobayashi
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Yuko Takeba
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Yuki Ohta
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Masanori Ootaki
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Keisuke Kida
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Minoru Watanabe
- Institute for Animal Experimentation, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Taroh Iiri
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Naoki Matsumoto
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
11
|
Graffmann N, Scherer B, Adjaye J. In vitro differentiation of pluripotent stem cells into hepatocyte like cells - basic principles and current progress. Stem Cell Res 2022; 61:102763. [DOI: 10.1016/j.scr.2022.102763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
|
12
|
Wang AJ, Allen A, Sofman M, Sphabmixay P, Yildiz E, Griffith LG. Engineering Modular 3D Liver Culture Microenvironments In Vitro to Parse the Interplay between Biophysical and Biochemical Microenvironment Cues on Hepatic Phenotypes. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100049. [PMID: 35872804 PMCID: PMC9307216 DOI: 10.1002/anbr.202100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In vitro models of human liver functions are used across a diverse range of applications in preclinical drug development and disease modeling, with particular increasing interest in models that capture facets of liver inflammatory status. This study investigates how the interplay between biophysical and biochemical microenvironment cues influence phenotypic responses, including inflammation signatures, of primary human hepatocytes (PHH) cultured in a commercially available perfused bioreactor. A 3D printing-based alginate microwell system was designed to form thousands of hepatic spheroids in a scalable manner as a comparator 3D culture modality to the bioreactor. Soft, synthetic extracellular matrix (ECM) hydrogel scaffolds with biophysical properties mimicking features of liver were engineered to replace polystyrene scaffolds, and the biochemical microenvironment was modulated with a defined set of growth factors and signaling modulators. The supplemented media significantly increased tissue density, albumin secretion, and CYP3A4 activity but also upregulated inflammatory markers. Basal inflammatory markers were lower for cells maintained in ECM hydrogel scaffolds or spheroid formats than polystyrene scaffolds, while hydrogel scaffolds exhibited the most sensitive response to inflammation as assessed by multiplexed cytokine and RNA-seq analyses. Together, these engineered 3D liver microenvironments provide insights for probing human liver functions and inflammatory response in vitro.
Collapse
Affiliation(s)
- Alex J Wang
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Allysa Allen
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Marianna Sofman
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Pierre Sphabmixay
- Mechanical Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
| | - Ece Yildiz
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Institute of Bioengineering, School of Life Science, École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015 Lausanne, Switzerland
| | - Linda G. Griffith
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Center for Gynepathology Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
13
|
Smith Q, Bays J, Li L, Shareef H, Chen CS, Bhatia SN. Directing Cholangiocyte Morphogenesis in Natural Biomaterial Scaffolds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102698. [PMID: 34786888 PMCID: PMC8787431 DOI: 10.1002/advs.202102698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Patients with Alagille syndrome carry monogenic mutations in the Notch signaling pathway and face complications such as jaundice and cholestasis. Given the presence of intrahepatic ductopenia in these patients, Notch2 receptor signaling is implicated in driving normal biliary development and downstream branching morphogenesis. As a result, in vitro model systems of liver epithelium are needed to further mechanistic insight of biliary tissue assembly. Here, primary human intrahepatic cholangiocytes as a candidate population for such a platform are systematically evaluated, and conditions that direct their branching morphogenesis are described. It is found that extracellular matrix presentation, coupled with mitogen stimulation, promotes biliary branching in a Notch-dependent manner. These results demonstrate the utility of using 3D scaffolds for mechanistic investigation of cholangiocyte branching and provide a gateway to integrate biliary architecture in additional in vitro models of liver tissue.
Collapse
Affiliation(s)
- Quinton Smith
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Jennifer Bays
- Department of Bioengineering, Boston University, Boston, MA, 02215, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Linqing Li
- Department of Bioengineering, Boston University, Boston, MA, 02215, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Haniyah Shareef
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Christopher S Chen
- Department of Bioengineering, Boston University, Boston, MA, 02215, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Sangeeta N Bhatia
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| |
Collapse
|
14
|
Choi J, Kang S, Kim B, So S, Han J, Kim GN, Lee MY, Roh S, Lee JY, Oh SJ, Sung YH, Lee Y, Kim SH, Kang E. Efficient hepatic differentiation and regeneration potential under xeno-free conditions using mass-producible amnion-derived mesenchymal stem cells. Stem Cell Res Ther 2021; 12:569. [PMID: 34772451 PMCID: PMC8588618 DOI: 10.1186/s13287-021-02470-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Amnion-derived mesenchymal stem cells (AM-MSCs) are an attractive source of stem cell therapy for patients with irreversible liver disease. However, there are obstacles to their use due to low efficiency and xeno-contamination for hepatic differentiation. METHODS We established an efficient protocol for differentiating AM-MSCs into hepatic progenitor cells (HPCs) by analyzing transcriptome-sequencing data. Furthermore, to generate the xeno-free conditioned differentiation protocol, we replaced fetal bovine serum (FBS) with polyvinyl alcohol (PVA). We investigated the hepatocyte functions with the expression of mRNA and protein, secretion of albumin, and activity of CYP3A4. Finally, to test the transplantable potential of HPCs, we transferred AM-MSCs along with hepatic progenitors after differentiated days 11, 12, and 13 based on the expression of hepatocyte-related genes and mitochondrial function. Further, we established a mouse model of acute liver failure using a thioacetamide (TAA) and cyclophosphamide monohydrate (CTX) and transplanted AM-HPCs in the mouse model through splenic injection. RESULTS We analyzed gene expression from RNA sequencing data in AM-MSCs and detected downregulation of hepatic development-associated genes including GATA6, KIT, AFP, c-MET, FGF2, EGF, and c-JUN, and upregulation of GSK3. Based on this result, we established an efficient hepatic differentiation protocol using the GSK3 inhibitor, CHIR99021. Replacing FBS with PVA resulted in improved differentiation ability, such as upregulation of hepatic maturation markers. The differentiated hepatocyte-like cells (HLCs) not only synthesized and secreted albumin, but also metabolized drugs by the CYP3A4 enzyme. The best time for translation of AM-HPCs was 12 days from the start of differentiation. When the AM-HPCs were transplanted into the liver failure mouse model, they settled in the damaged livers and differentiated into hepatocytes. CONCLUSION This study offers an efficient and xeno-free conditioned hepatic differentiation protocol and shows that AM-HPCs could be used as transplantable therapeutic materials. Thus, we suggest that AM-MSC-derived HPCs are promising cells for treating liver disease.
Collapse
Affiliation(s)
- Jiwan Choi
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
- Present Address: Center for Embryo & Stem Cell Research, CHA Advanced Research Institute and Department of Biomedical Science, CHA University, Pocheon-si, Gyeonggi, 13488, South Korea
| | - Seoon Kang
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
- Present Address: Center for Embryo & Stem Cell Research, CHA Advanced Research Institute and Department of Biomedical Science, CHA University, Pocheon-si, Gyeonggi, 13488, South Korea
| | - Bitnara Kim
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
- Present Address: Center for Embryo & Stem Cell Research, CHA Advanced Research Institute and Department of Biomedical Science, CHA University, Pocheon-si, Gyeonggi, 13488, South Korea
| | - Seongjun So
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Jongsuk Han
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
- Present Address: Center for Embryo & Stem Cell Research, CHA Advanced Research Institute and Department of Biomedical Science, CHA University, Pocheon-si, Gyeonggi, 13488, South Korea
| | - Gyeong-Nam Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Mi-Young Lee
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Seonae Roh
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Ji-Yoon Lee
- Asan Institute for Life Sciences, Asan Medical Center and Department of Convergence Medicine, College of Medicine, University of Ulsan, Seoul, 05505, South Korea
| | - Soo Jin Oh
- Asan Institute for Life Sciences, Asan Medical Center and Department of Convergence Medicine, College of Medicine, University of Ulsan, Seoul, 05505, South Korea
| | - Young Hoon Sung
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Yeonmi Lee
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
- Present Address: Center for Embryo & Stem Cell Research, CHA Advanced Research Institute and Department of Biomedical Science, CHA University, Pocheon-si, Gyeonggi, 13488, South Korea
| | - Sung Hoon Kim
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea.
| | - Eunju Kang
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea.
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea.
- Present Address: Center for Embryo & Stem Cell Research, CHA Advanced Research Institute and Department of Biomedical Science, CHA University, Pocheon-si, Gyeonggi, 13488, South Korea.
| |
Collapse
|
15
|
Peng WC, Kraaier LJ, Kluiver TA. Hepatocyte organoids and cell transplantation: What the future holds. Exp Mol Med 2021; 53:1512-1528. [PMID: 34663941 PMCID: PMC8568948 DOI: 10.1038/s12276-021-00579-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/29/2022] Open
Abstract
Historically, primary hepatocytes have been difficult to expand or maintain in vitro. In this review, we will focus on recent advances in establishing hepatocyte organoids and their potential applications in regenerative medicine. First, we provide a background on the renewal of hepatocytes in the homeostatic as well as the injured liver. Next, we describe strategies for establishing primary hepatocyte organoids derived from either adult or fetal liver based on insights from signaling pathways regulating hepatocyte renewal in vivo. The characteristics of these organoids will be described herein. Notably, hepatocyte organoids can adopt either a proliferative or a metabolic state, depending on the culture conditions. Furthermore, the metabolic gene expression profile can be modulated based on the principles that govern liver zonation. Finally, we discuss the suitability of cell replacement therapy to treat different types of liver diseases and the current state of cell transplantation of in vitro-expanded hepatocytes in mouse models. In addition, we provide insights into how the regenerative microenvironment in the injured host liver may facilitate donor hepatocyte repopulation. In summary, transplantation of in vitro-expanded hepatocytes holds great potential for large-scale clinical application to treat liver diseases.
Collapse
Affiliation(s)
- Weng Chuan Peng
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - Lianne J Kraaier
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Thomas A Kluiver
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| |
Collapse
|
16
|
Michalopoulos GK, Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol 2021; 18:40-55. [PMID: 32764740 DOI: 10.1038/s41575-020-0342-4] [Citation(s) in RCA: 536] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
The liver is the only solid organ that uses regenerative mechanisms to ensure that the liver-to-bodyweight ratio is always at 100% of what is required for body homeostasis. Other solid organs (such as the lungs, kidneys and pancreas) adjust to tissue loss but do not return to 100% of normal. The current state of knowledge of the regenerative pathways that underlie this 'hepatostat' will be presented in this Review. Liver regeneration from acute injury is always beneficial and has been extensively studied. Experimental models that involve partial hepatectomy or chemical injury have revealed extracellular and intracellular signalling pathways that are used to return the liver to equivalent size and weight to those prior to injury. On the other hand, chronic loss of hepatocytes, which can occur in chronic liver disease of any aetiology, often has adverse consequences, including fibrosis, cirrhosis and liver neoplasia. The regenerative activities of hepatocytes and cholangiocytes are typically characterized by phenotypic fidelity. However, when regeneration of one of the two cell types fails, hepatocytes and cholangiocytes function as facultative stem cells and transdifferentiate into each other to restore normal liver structure. Liver recolonization models have demonstrated that hepatocytes have an unlimited regenerative capacity. However, in normal liver, cell turnover is very slow. All zones of the resting liver lobules have been equally implicated in the maintenance of hepatocyte and cholangiocyte populations in normal liver.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Bharat Bhushan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Gatticchi L, de las Heras JI, Sivakumar A, Zuleger N, Roberti R, Schirmer EC. Tm7sf2 Disruption Alters Radial Gene Positioning in Mouse Liver Leading to Metabolic Defects and Diabetes Characteristics. Front Cell Dev Biol 2020; 8:592573. [PMID: 33330474 PMCID: PMC7719783 DOI: 10.3389/fcell.2020.592573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/26/2020] [Indexed: 01/23/2023] Open
Abstract
Tissue-specific patterns of radial genome organization contribute to genome regulation and can be established by nuclear envelope proteins. Studies in this area often use cancer cell lines, and it is unclear how well such systems recapitulate genome organization of primary cells or animal tissues; so, we sought to investigate radial genome organization in primary liver tissue hepatocytes. Here, we have used a NET47/Tm7sf2-/- liver model to show that manipulating one of these nuclear membrane proteins is sufficient to alter tissue-specific gene positioning and expression. Dam-LaminB1 global profiling in primary liver cells shows that nearly all the genes under such positional regulation are related to/important for liver function. Interestingly, Tm7sf2 is a paralog of the HP1-binding nuclear membrane protein LBR that, like Tm7sf2, also has an enzymatic function in sterol reduction. Fmo3 gene/locus radial mislocalization could be rescued with human wild-type, but not TM7SF2 mutants lacking the sterol reductase function. One central pathway affected is the cholesterol synthesis pathway. Within this pathway, both Cyp51 and Msmo1 are under Tm7sf2 positional and expression regulation. Other consequences of the loss of Tm7sf2 included weight gain, insulin sensitivity, and reduced levels of active Akt kinase indicating additional pathways under its regulation, several of which are highlighted by mispositioning genes. This study emphasizes the importance for tissue-specific radial genome organization in tissue function and the value of studying genome organization in animal tissues and primary cells over cell lines.
Collapse
Affiliation(s)
- Leonardo Gatticchi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Aishwarya Sivakumar
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Nikolaj Zuleger
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Rita Roberti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Eric C. Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Wencel A, Ciezkowska M, Wisniewska M, Zakrzewska KE, Pijanowska DG, Pluta KD. Effects of genetically modified human skin fibroblasts, stably overexpressing hepatocyte growth factor, on hepatic functions of cocultured C3A cells. Biotechnol Bioeng 2020; 118:72-81. [PMID: 32880912 DOI: 10.1002/bit.27551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 09/01/2020] [Indexed: 01/18/2023]
Abstract
Diseases leading to terminal hepatic failure are among the most common causes of death worldwide. Transplant of the whole organ is the only effective method to cure liver failure. Unfortunately, this treatment option is not available universally due to the serious shortage of donors. Thus, alternative methods have been developed that are aimed at prolonging the life of patients, including hepatic cells transplantation and bridging therapy based on hybrid bioartificial liver devices. Parenchymal liver cells are highly differentiated and perform many complex functions, such as detoxification and protein synthesis. Unfortunately, isolated hepatocytes display a rapid decline in viability and liver-specific functions. A number of methods have been developed to maintain hepatocytes in their highly differentiated state in vitro, amongst them the most promising being 3D growth scaffolds and decellularized tissues or coculture with other cell types required for the heterotypic cell-cell interactions. Here we present a novel approach to the hepatic cells culture based on the feeder layer cells genetically modified using lentiviral vector to stably produce additional amounts of hepatocyte growth factor and show the positive influence of these coculture conditions on the preservation of the hepatic functions of the liver parenchymal cells' model-C3A cells.
Collapse
Affiliation(s)
- Agnieszka Wencel
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Ciezkowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Monika Wisniewska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina E Zakrzewska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland.,Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota G Pijanowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof D Pluta
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
19
|
Zakeri N, Mirdamadi ES, Kalhori D, Solati-Hashjin M. Signaling molecules orchestrating liver regenerative medicine. J Tissue Eng Regen Med 2020; 14:1715-1737. [PMID: 33043611 DOI: 10.1002/term.3135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022]
Abstract
The liver is in charge of more than 500 functions in the human body, which any damage and failure to the liver can significantly compromise human life. Numerous studies are being carried out in regenerative medicine, as a potential driving force, toward alleviating the need for liver donors and fabrication of a 3D-engineered transplantable hepatic tissue. Liver tissue engineering brings three main factors of cells, extracellular matrix (ECM), and signaling molecules together, while each of these three factors tries to mimic the physiological state of the tissue to direct tissue regeneration. Signaling molecules play a crucial role in directing tissue fabrication in liver tissue engineering. When mimicking the natural in vivo process of regeneration, it is tightly associated with three main phases of differentiation, proliferation (progression), and tissue maturation through vascularization while directing each of these phases is highly regulated by the specific signaling molecules. The understanding of how these signaling molecules guide the dynamic behavior of regeneration would be a tool for further tailoring of bioengineered systems to help the liver regeneration with many cellular, molecular, and tissue-level functions. Hence, the signaling molecules come to aid all these phases for further improvements toward the clinical use of liver tissue engineering as the goal.
Collapse
Affiliation(s)
- Nima Zakeri
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Elnaz Sadat Mirdamadi
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Dianoosh Kalhori
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mehran Solati-Hashjin
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
20
|
Okuyama S, Kawamura F, Kubiura M, Tsuji S, Osaki M, Kugoh H, Oshimura M, Kazuki Y, Tada M. Real-time fluorometric evaluation of hepatoblast proliferation in vivo and in vitro using the expression of CYP3A7 coding for human fetus-specific P450. Pharmacol Res Perspect 2020; 8:e00642. [PMID: 32886454 PMCID: PMC7507068 DOI: 10.1002/prp2.642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
The fields of drug discovery and regenerative medicine require large numbers of adult human primary hepatocytes. For this purpose, it is desirable to use hepatocyte-like cells (HLCs) differentiated from human pluripotent stem cells (PSCs). Premature hepatoblast-like cells (HB-LCs) differentiated from PSCs provide an intermediate source and steady supply of newly mature HLCs. To develop an efficient HB-LC induction method, we constructed a red fluorescent reporter, CYP3A7R, in which DsRed is placed under the transcriptional control of CYP3A7 coding for a human fetus-type P450 enzyme. Before using this reporter in human cells, we created transgenic mice using mouse embryonic stem cells (ESCs) carrying a CYP3A7R transgene and confirmed that CYP3A7R was specifically expressed in fetal and newborn livers and reactivated in the adult liver in response to hepatic regeneration. Moreover, we optimized the induction procedure of HB-LCs from transgenic mouse ESCs using semi-quantitative fluorometric evaluation. Activation of Wnt signaling together with chromatin modulation prior to Activin A treatment greatly improved the induction efficiency of HB-LCs. BMP2 and 1.7% dimethyl sulfoxide induced selective proliferation of HB-LCs, which matured to HLCs. Therefore, CYP3A7R will provide a fluorometric evaluation system for high content screening of chemicals that induce HB-LC differentiation, hepatocyte regeneration, and hepatotoxicity when it is introduced into human PSCs.
Collapse
Affiliation(s)
- Shota Okuyama
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | - Fumihiko Kawamura
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
- Institute of Regenerative Medicine and BiofunctionGraduate School of Medical ScienceTottori UniversityYonagoJapan
| | - Musashi Kubiura
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | - Saori Tsuji
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
| | - Mitsuhiko Osaki
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
| | - Hiroyuki Kugoh
- Institute of Regenerative Medicine and BiofunctionGraduate School of Medical ScienceTottori UniversityYonagoJapan
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
| | - Mitsuo Oshimura
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
| | - Yasuhiro Kazuki
- Institute of Regenerative Medicine and BiofunctionGraduate School of Medical ScienceTottori UniversityYonagoJapan
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
| | - Masako Tada
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| |
Collapse
|
21
|
Ramli MNB, Lim YS, Koe CT, Demircioglu D, Tng W, Gonzales KAU, Tan CP, Szczerbinska I, Liang H, Soe EL, Lu Z, Ariyachet C, Yu KM, Koh SH, Yaw LP, Jumat NHB, Lim JSY, Wright G, Shabbir A, Dan YY, Ng HH, Chan YS. Human Pluripotent Stem Cell-Derived Organoids as Models of Liver Disease. Gastroenterology 2020; 159:1471-1486.e12. [PMID: 32553762 DOI: 10.1053/j.gastro.2020.06.010] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS There are few in vitro models for studying the 3-dimensional interactions among different liver cell types during organogenesis or disease development. We aimed to generate hepatic organoids that comprise different parenchymal liver cell types and have structural features of the liver, using human pluripotent stem cells. METHODS We cultured H1 human embryonic stem cells (WA-01, passage 27-40) and induced pluripotent stem cells (GM23338) with a series of chemically defined and serum-free media to induce formation of posterior foregut cells, which were differentiated in 3 dimensions into hepatic endoderm spheroids and stepwise into hepatoblast spheroids. Hepatoblast spheroids were reseeded in a high-throughput format and induced to form hepatic organoids; development of functional bile canaliculi was imaged live. Levels of albumin and apolipoprotein B were measured in cell culture supernatants using an enzyme-linked immunosorbent assay. Levels of gamma glutamyl transferase and alkaline phosphatase were measured in cholangiocytes. Organoids were incubated with troglitazone for varying periods and bile transport and accumulation were visualized by live-imaging microscopy. Organoids were incubated with oleic and palmitic acid, and formation of lipid droplets was visualized by staining. We compared gene expression profiles of organoids incubated with free fatty acids or without. We also compared gene expression profiles between liver tissue samples from patients with nonalcoholic steatohepatitis (NASH) versus without. We quantified hepatocyte and cholangiocyte populations in organoids using immunostaining and flow cytometry; cholangiocyte proliferation of cholangiocytes was measured. We compared the bile canaliculi network in the organoids incubated with versus without free fatty acids by live imaging. RESULTS Cells in organoids differentiated into hepatocytes and cholangiocytes, based on the expression of albumin and cytokeratin 7. Hepatocytes were functional, based on secretion of albumin and apolipoprotein B and cytochrome P450 activity; cholangiocytes were functional, based on gamma glutamyl transferase and alkaline phosphatase activity and proliferative responses to secretin. The organoids organized a functional bile canaliculi system, which was disrupted by cholestasis-inducing drugs such as troglitazone. Organoids incubated with free fatty acids had gene expression signatures similar to those of liver tissues from patients with NASH. Incubation of organoids with free fatty acid-enriched media resulted in structural changes associated with nonalcoholic fatty liver disease, such as decay of bile canaliculi network and ductular reactions. CONCLUSIONS We developed a hepatic organoid platform with human cells that can be used to model complex liver diseases, including NASH.
Collapse
Affiliation(s)
| | - Yee Siang Lim
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| | - Chwee Tat Koe
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| | - Deniz Demircioglu
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| | - Weiquan Tng
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| | - Kevin Andrew Uy Gonzales
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore; Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York City, New York
| | - Cheng Peow Tan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| | - Iwona Szczerbinska
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| | - Hongqing Liang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| | - Einsi Lynn Soe
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| | - Zhiping Lu
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| | | | - Ka Man Yu
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| | - Shu Hui Koh
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| | - Lai Ping Yaw
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| | - Nur Halisah Binte Jumat
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John Soon Yew Lim
- Institute of Medical Biology, A∗STAR, Singapore; Skin Research Institute of Singapore, A∗STAR, Singapore
| | - Graham Wright
- Institute of Medical Biology, A∗STAR, Singapore; Skin Research Institute of Singapore, A∗STAR, Singapore
| | - Asim Shabbir
- Department of Surgery, University Surgical Cluster, National University Hospital, Singapore
| | - Yock Young Dan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology and Hepatology, University Medicine Cluster, National University Hospital, Singapore
| | - Huck-Hui Ng
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore; Department of Biochemistry, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yun-Shen Chan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore.
| |
Collapse
|
22
|
|
23
|
Makeyev O, Korotkov A, Kostyukova S, Shuman E, Desyatova M. Obtaining hepatocytes by transdifferentiation of multipotent mesenchymal stromal cells by genetic engineering. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202202015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Therapy of liver failure is a common and insufficiently resolved problem. One of the options for its solution it is a liver transplantation. However, this method has a number of drawbacks, which include a limited number of donors and transplant rejection. The use of autologous hepatocytes would allow significant progress to solve the problem under discussion. The work considers a method that allowed obtaining autologous hepatocytes by transdifferentiation of multipotent mesenchymal stromal cells using genetic engineering methods.
Collapse
|
24
|
Peng WC, Logan CY, Fish M, Anbarchian T, Aguisanda F, Álvarez-Varela A, Wu P, Jin Y, Zhu J, Li B, Grompe M, Wang B, Nusse R. Inflammatory Cytokine TNFα Promotes the Long-Term Expansion of Primary Hepatocytes in 3D Culture. Cell 2019; 175:1607-1619.e15. [PMID: 30500539 DOI: 10.1016/j.cell.2018.11.012] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/15/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022]
Abstract
In the healthy adult liver, most hepatocytes proliferate minimally. However, upon physical or chemical injury to the liver, hepatocytes proliferate extensively in vivo under the direction of multiple extracellular cues, including Wnt and pro-inflammatory signals. Currently, liver organoids can be generated readily in vitro from bile-duct epithelial cells, but not hepatocytes. Here, we show that TNFα, an injury-induced inflammatory cytokine, promotes the expansion of hepatocytes in 3D culture and enables serial passaging and long-term culture for more than 6 months. Single-cell RNA sequencing reveals broad expression of hepatocyte markers. Strikingly, in vitro-expanded hepatocytes engrafted, and significantly repopulated, the injured livers of Fah-/- mice. We anticipate that tissue repair signals can be harnessed to promote the expansion of otherwise hard-to-culture cell-types, with broad implications.
Collapse
Affiliation(s)
- Weng Chuan Peng
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Catriona Y Logan
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matt Fish
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Teni Anbarchian
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Francis Aguisanda
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adrián Álvarez-Varela
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peng Wu
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yinhua Jin
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Junjie Zhu
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Bin Li
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Bruce Wang
- Department of Medicine and Liver Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Abu Rmilah A, Zhou W, Nelson E, Lin L, Amiot B, Nyberg SL. Understanding the marvels behind liver regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e340. [PMID: 30924280 DOI: 10.1002/wdev.340] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023]
Abstract
Tissue regeneration is a process by which the remaining cells of an injured organ regrow to offset the missed cells. This field is relatively a new discipline that has been a focus of intense research by clinicians, surgeons, and scientists for decades. It constitutes the cornerstone of tissue engineering, creation of artificial organs, and generation and utilization of therapeutic stem cells to undergo transformation to different types of mature cells. Many medical experts, scientists, biologists, and bioengineers have dedicated their efforts to deeply comprehend the process of liver regeneration, striving for harnessing it to invent new therapies for liver failure. Liver regeneration after partial hepatectomy in rodents has been extensively studied by researchers for many years. It is divided into three important distinctive phases including (a) Initiation or priming phase which includes an overexpression of specific genes to prepare the liver cells for replication, (b) Proliferation phase in which the liver cells undergo a series of cycles of cell division and expansion and finally, (c) termination phase which acts as brake to stop the regenerative process and prevent the liver tissue overgrowth. These events are well controlled by cytokines, growth factors, and signaling pathways. In this review, we describe the function, embryology, and anatomy of human liver, discuss the molecular basis of liver regeneration, elucidate the hepatocyte and cholangiocyte lineages mediating this process, explain the role of hepatic progenitor cells and elaborate the developmental signaling pathways and regulatory molecules required to procure a complete restoration of hepatic lobule. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Signaling Pathways > Global Signaling Mechanisms Gene Expression and Transcriptional Hierarchies > Cellular Differentiation.
Collapse
Affiliation(s)
- Anan Abu Rmilah
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Wei Zhou
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Erek Nelson
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Li Lin
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Bruce Amiot
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Scott L Nyberg
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
26
|
Gatticchi L, de Las Heras JI, Roberti R, Schirmer EC. Optimization of DamID for use in primary cultures of mouse hepatocytes. Methods 2019; 157:88-99. [PMID: 30445179 PMCID: PMC6426339 DOI: 10.1016/j.ymeth.2018.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 01/09/2023] Open
Abstract
DamID adaptation to primary hepatocytes may preserve tissue 3D genome architecture. Growth factors, vector tropism and enhancers are needed for DamID in primary cells. Mitochondrial contamination can yield high background signal in primary cells. Signal intensity comparisons can increase calling of interesting differential LADs.
DamID, a method to identify DNA associating with a particular protein, was originally developed for use in immortalized tissue culture lines. The power of this technique has led to its adaptation for a number of additional systems. Here we report adaptations for its use in primary cells isolated from rodents with emphasis on the challenges this presents. Specifically, we present several modifications that allow the method to be performed in mouse acutely isolated primary hepatocytes while seemingly maintaining tissue genome architecture. We also describe the downstream bioinformatic analysis necessary to identify LADs and discuss some of the parameters and their effects with regards to the sensitivity of the method.
Collapse
Affiliation(s)
- Leonardo Gatticchi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Rita Roberti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Eric C Schirmer
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
27
|
Matsui S, Ochiai M, Yasuda K, Mae SI, Kotaka M, Toyoda T, Yamamoto T, Osafune K. Differentiation and isolation of iPSC-derived remodeling ductal plate-like cells by use of an AQP1-GFP reporter human iPSC line. Stem Cell Res 2019; 35:101400. [PMID: 30735882 DOI: 10.1016/j.scr.2019.101400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 12/19/2018] [Accepted: 01/30/2019] [Indexed: 11/30/2022] Open
Abstract
Cholangiocytes are the epithelial cells that line bile ducts, and ductal plate malformation is a developmental anomaly of bile ducts that causes severe congenital biliary disorders. However, because of a lack of specific marker genes, methods for the stepwise differentiation and isolation of human induced pluripotent stem cell (hiPSC)-derived cholangiocyte progenitors at ductal plate stages have not been established. We herein generated an AQP1-GFP reporter hiPSC line and developed a combination treatment with transforming growth factor (TGF) β2 and epidermal growth factor (EGF) to induce hiPSC-derived hepatoblasts into AQP1+ cells in vitro. By confirming that the isolated AQP1+ cells showed similar gene expression patterns to cholangiocyte progenitors at the remodeling ductal plate stage around gestational week (GW) 20, we established a differentiation protocol from hiPSCs through SOX9+CK19+AQP1- ductal plate-like cells into SOX9+CK19+AQP1+ remodeling ductal plate-like cells. We further generated 3D bile duct-like structures from the induced ductal plate-like cells. These results suggest that AQP1 is a useful marker for the generation of remodeling ductal plate cells from hiPSCs. Our methods may contribute to elucidating the differentiation mechanisms of ductal plate cells and the pathogenesis of ductal plate malformation.
Collapse
Affiliation(s)
- Satoshi Matsui
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Miyuki Ochiai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Katsutaro Yasuda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Shin-Ichi Mae
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Maki Kotaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Taro Toyoda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
| |
Collapse
|
28
|
Yokoyama T, Yagi Mendoza H, Tanaka T, Ii H, Takano R, Yaegaki K, Ishikawa H. Regulation of CCl 4-induced liver cirrhosis by hepatically differentiated human dental pulp stem cells. Hum Cell 2019; 32:125-140. [PMID: 30637566 DOI: 10.1007/s13577-018-00234-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/09/2018] [Indexed: 02/07/2023]
Abstract
Liver transplantation is the most effective treatment for treating liver cirrhosis. However, a limited number of donors, graft rejection, and other complications can undermine transplant success. It is considered that cell transplantation is an alternative approach of liver transplantation. We previously developed a protocol for hepatic differentiation of cluster of differentiation 117+ stem cells isolated from human exfoliated deciduous tooth pulp (SHEDs) under hydrogen sulfide exposure. These cells showed excellent hepatic function. Here, we investigated whether hepatocyte-like cell transplantation is effective for treating carbon tetrachloride (CCl4)-induced liver cirrhosis. SHEDs were hepatically differentiated, which was confirmed via immunological analyses and albumin concentration determination in the medium. Rats were intraperitoneally injected with CCl4 for and the differentiated cells were injected into rat spleen. Histopathological and immunohistochemical analyses were performed. Liver functions were serologically and pathologically determined. Quantitative real-time-polymerase chain reaction was implemented to clarify the treatment procedure of liver cirrhosis. In vitro-differentiated hepatocyte-like cells were positive for all examined hepatic markers. SHED-derived hepatocyte transplantation eliminated liver fibrosis and restored liver structure in rats. Liver immunohistochemical analyses showed the presence of human-specific hepatic markers, i.e., a large amount of human hepatic cells were very active in the liver and spleen. Serological tests revealed significant liver function recovery in the transplantation group. Expression of genes promoting fibrosis increased after cirrhosis induction but was suppressed after transplantation. Our results suggest that xenotransplantation of hepatocyte-like cells of human origin can treat cirrhosis. Moreover, cell-based therapy of chronic liver conditions may be an effective option.
Collapse
Affiliation(s)
- Tomomi Yokoyama
- Department of Oral Health, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Hiromi Yagi Mendoza
- Department of Oral Health, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Tomoko Tanaka
- Department of Oral Health, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Hisataka Ii
- Department of Oral Health, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Riya Takano
- Department of Oral Health, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Ken Yaegaki
- Department of Oral Health, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.
| | - Hiroshi Ishikawa
- Department of Oral Health, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.,Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Laboratory of Advanced Research D # 326, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
29
|
Manco R, Leclercq IA, Clerbaux LA. Liver Regeneration: Different Sub-Populations of Parenchymal Cells at Play Choreographed by an Injury-Specific Microenvironment. Int J Mol Sci 2018; 19:E4115. [PMID: 30567401 PMCID: PMC6321497 DOI: 10.3390/ijms19124115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Liver regeneration is crucial for the maintenance of liver functional mass during homeostasis and diseases. In a disease context-dependent manner, liver regeneration is contributed to by hepatocytes or progenitor cells. As long as they are replicatively competent, hepatocytes are the main cell type responsible for supporting liver size homeostasisand regeneration. The concept that all hepatocytes within the lobule have the same proliferative capacity but are differentially recruited according to the localization of the wound, or whether a yet to be defined sub-population of hepatocytes supports regeneration is still debated. In a chronically or severely injured liver, hepatocytes may enter a state of replicative senescence. In such conditions, small biliary cells activate and expand, a process called ductular reaction (DR). Work in the last few decades has demonstrated that DR cells can differentiate into hepatocytes and thereby contribute to parenchymal reconstitution. In this study we will review the molecular mechanisms supporting these two processes to determine potential targets that would be amenable for therapeutic manipulation to enhance liver regeneration.
Collapse
Affiliation(s)
- Rita Manco
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Laure-Alix Clerbaux
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| |
Collapse
|
30
|
Continuous zebularine treatment enhances hepatic differentiation of mesenchymal stem cells under liver-specific factors induction in vitro. Life Sci 2018; 215:57-63. [PMID: 30473025 DOI: 10.1016/j.lfs.2018.10.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 11/20/2022]
Abstract
AIMS To investigate the effect of zebularine, a stable inhibitor of DNA methylation, on hepatic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) under liver-specific factors induction in vitro. MAIN METHODS BM-MSCs were isolated from the mononuclear cell fraction of rabbit bone marrow samples. The identification of these cells was carried out by immunophenotype analysis. The three hepatic differentiation protocols of BM-MSCs were as follows: liver-specific factors (hepatocyte growth factor and epidermal growth factor) without zebularine, liver-specific factors combined with a 24 h zebularine pre-treatment, and liver-specific factors combined with continuous zebularine treatment. BM-MSCs cultured in basic medium without the differentiation stimuli were set as the control. Morphological features, liver-specific gene and protein expression, and functional analyses were assessed to evaluate hepatic differentiation of BM-MSCs. Global DNA methylation status was tested for investigating the underlying mechanism. KEY FINDINGS Flow cytometry immunophenotyping proved the isolated cells with plastic adherence and a spindle shape were CD29, CD90 positive and CD34, CD45 negative. Albumin (ALB) and alpha-fetoprotein (AFP) messenger RNA and protein expression, glycogen storage and urea production were significantly higher in the continuous zebularine-treated group than the other groups while the differences between the zebularine-untreated group and 24 h zebularine pre-treated group were not significant. Meanwhile, significant decrease of global DNA methylation was observed in the continuous zebularine-treated group. SIGNIFICANCE We conclude that continuous zebularine treatment can improve hepatic differentiation of BM-MSCs under liver-specific factors induction in vitro, and the decrease of global DNA methylation maybe involved in this process.
Collapse
|
31
|
Wang Y, Wang H, Deng P, Chen W, Guo Y, Tao T, Qin J. In situ differentiation and generation of functional liver organoids from human iPSCs in a 3D perfusable chip system. LAB ON A CHIP 2018; 18:3606-3616. [PMID: 30357207 DOI: 10.1039/c8lc00869h] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Liver organoids derived from human pluripotent stem cells (PSCs) represent a new type of in vitro liver model for understanding organ development, disease mechanism and drug testing. However, engineering liver organoids with favorable functions in a controlled cellular microenvironment remains challenging. In this work, we present a new strategy for engineering liver organoids derived from human induced PSCs (hiPSCs) in a 3D perfusable chip system by combining stem cell biology with microengineering technology. This approach enabled formation of hiPSC-based embryoid bodies (EBs), in situ hepatic differentiation, long-term 3D culture and generation of liver organoids in a perfusable micropillar chip. The generated liver organoids exhibited favorable growth and differentiation of hepatocytes and cholangiocytes, recapitulating the key features of human liver formation with cellular heterogeneity. The liver organoids in perfused cultures displayed improved cell viability and higher expression of endodermal genes (SOX17 and FOXA2) and mature hepatic genes (ALB and CYP3A4) under perfused culture conditions. In addition, the liver organoids showed a marked enhancement of hepatic-specific functions, including albumin and urea production and metabolic capabilities, indicating the role of mechanical fluid flow in promoting the functions of the liver organoids. Moreover, the liver organoids exhibited hepatotoxic response after exposure to acetaminophen (APAP) in a dose- and time-dependent manner. The established liver organoid-on-a-chip system may provide a promising platform for engineering stem cell-based organoids with applications in regenerative medicine, disease modeling and drug testing.
Collapse
Affiliation(s)
- Yaqing Wang
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. and University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wang
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. and University of Chinese Academy of Sciences, Beijing, China
| | - Pengwei Deng
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. and University of Chinese Academy of Sciences, Beijing, China
| | - Wenwen Chen
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. and University of Chinese Academy of Sciences, Beijing, China
| | - Yaqiong Guo
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. and University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Tao
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. and University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Qin
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. and Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China and CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China and University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Kiamehr M, Alexanova A, Viiri LE, Heiskanen L, Vihervaara T, Kauhanen D, Ekroos K, Laaksonen R, Käkelä R, Aalto-Setälä K. hiPSC-derived hepatocytes closely mimic the lipid profile of primary hepatocytes: A future personalised cell model for studying the lipid metabolism of the liver. J Cell Physiol 2018; 234:3744-3761. [PMID: 30146765 DOI: 10.1002/jcp.27131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022]
Abstract
Hepatocyte-like cells (HLCs) differentiated from human-induced pluripotent stem cells offer an alternative platform to primary human hepatocytes (PHHs) for studying the lipid metabolism of the liver. However, despite their great potential, the lipid profile of HLCs has not yet been characterized. Here, we comprehensively studied the lipid profile and fatty acid (FA) metabolism of HLCs and compared them with the current standard hepatocyte models: HepG2 cells and PHHs. We differentiated HLCs by five commonly used methods from three cell lines and thoroughly characterized them by gene and protein expression. HLCs generated by each method were assessed for their functionality and the ability to synthesize, elongate, and desaturate FAs. In addition, lipid and FA profiles of HLCs were investigated by both mass spectrometry and gas chromatography and then compared with the profiles of PHHs and HepG2 cells. HLCs resembled PHHs by expressing hepatic markers: secreting albumin, lipoprotein particles, and urea, and demonstrating similarities in their lipid and FA profile. Unlike HepG2 cells, HLCs contained low levels of lysophospholipids similar to the content of PHHs. Furthermore, HLCs were able to efficiently use the exogenous FAs available in their medium and simultaneously modify simple lipids into more complex ones to fulfill their needs. In addition, we propose that increasing the polyunsaturated FA supply of the culture medium may positively affect the lipid profile and functionality of HLCs. In conclusion, our data showed that HLCs provide a functional and relevant model to investigate human lipid homeostasis at both molecular and cellular levels.
Collapse
Affiliation(s)
- Mostafa Kiamehr
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Anna Alexanova
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Leena E Viiri
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | | | | | | | - Kim Ekroos
- Lipidomics Consulting Ltd, Espoo, Finland
| | - Reijo Laaksonen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Zora Biosciences, Espoo, Finland
| | - Reijo Käkelä
- Faculty of Biology and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Heart Hospital, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
33
|
Jafarpour Z, Soleimani M, Hosseinkhani S, M. H. MH, Yaghmaei P, Mobarra N, Geramizadeh B. Efficient Production of Hepatocyte-like Cells from Human-induced Pluripotent Stem Cells by Optimizing Growth Factors. Int J Organ Transplant Med 2018; 9:77-87. [PMID: 30834092 PMCID: PMC6390985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
BACKGROUND Generating hepatocytes with complete liver functions is still a challenge and developing more functional hepatocytes is needed. OBJECTIVE To compare various differentiation factors and protocols and introducing a preferable protocol to differentiate human-induced pluripotent stem cells (hiPSCs) into hepatocyte-like cells (HLCs). METHODS After 3 days of the endoderm differentiation of hiPSCs, the cells were incubated with 5 hepatocyte differentiation culture media, protocols (P), for 14 days-P1: hepatocyte growth factor and fibroblast growth factor-4 (FGF-4) for the first week and oncostatin-M and dexamethasone for the second week; P2: similar to P1 but FGF4 was used in both the first and second weeks; P3: similar to P1 but FGF-4 was not used; P4: similar to P1 but FGF-4 and dexamethasone were not used; and P5: similar to P1 but FGF-4 and oncostatin-M were not used. After 17 days, characterization was done by qRT-PCR, immunofluorescence and ELISA. RESULTS The mRNA expression levels of hepatocyte markers (albumin, cytokeratin-18, tyrosine aminotransferase, hepatocyte nuclear factor-4α, cytochrome-P450 7A1) increased significantly (p<0.05) in the differentiated cells by 5 different protocols. Furthermore, significant protein expression and secretion of albumin were detected in the differentiated cells by 5 different protocols. In P3, the differentiated cells had the highest exhibit of hepatocyte characteristics and in P4 they had the lowest. Moreover, in P1 and P2 similar results were observed. CONCLUSION Since P3 gave us the best results among all protocols, we recommend it as an efficient protocol to differentiate the functional HLCs from hiPSCs, which can improve cell therapies.
Collapse
Affiliation(s)
- Z. Jafarpour
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - M. Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - S. Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - M. H. M. H.
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - P. Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - N. Mobarra
- Metabolic Disorders Research Center, Department of Biochemistry, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - B. Geramizadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Correspondence: Bita Geramizadeh, MD, Professor of Pathology, Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. Tel: +98-71-3647-3954, Fax: +98-71-3647-3954, E-mail:
| |
Collapse
|
34
|
Sgodda M, Dai Z, Zweigerdt R, Sharma AD, Ott M, Cantz T. A Scalable Approach for the Generation of Human Pluripotent Stem Cell-Derived Hepatic Organoids with Sensitive Hepatotoxicity Features. Stem Cells Dev 2017; 26:1490-1504. [DOI: 10.1089/scd.2017.0023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Malte Sgodda
- Research Group Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Zhen Dai
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Junior Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Junior Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Tobias Cantz
- Research Group Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Max Planck Institute for Molecular Biomedicine, Cell and Developmental Biology, Münster, Germany
| |
Collapse
|
35
|
Fukuda T, Takayama K, Hirata M, Liu YJ, Yanagihara K, Suga M, Mizuguchi H, Furue MK. Isolation and expansion of human pluripotent stem cell-derived hepatic progenitor cells by growth factor defined serum-free culture conditions. Exp Cell Res 2017; 352:333-345. [PMID: 28215634 DOI: 10.1016/j.yexcr.2017.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/30/2022]
Abstract
Limited growth potential, narrow ranges of sources, and difference in variability and functions from batch to batch of primary hepatocytes cause a problem for predicting drug-induced hepatotoxicity during drug development. Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells in vitro are expected as a tool for predicting drug-induced hepatotoxicity. Several studies have already reported efficient methods for differentiating hPSCs into hepatocyte-like cells, however its differentiation process is time-consuming, labor-intensive, cost-intensive, and unstable. In order to solve this problem, expansion culture for hPSC-derived hepatic progenitor cells, including hepatic stem cells and hepatoblasts which can self-renewal and differentiate into hepatocytes should be valuable as a source of hepatocytes. However, the mechanisms of the expansion of hPSC-derived hepatic progenitor cells are not yet fully understood. In this study, to isolate hPSC-derived hepatic progenitor cells, we tried to develop serum-free growth factor defined culture conditions using defined components. Our culture conditions were able to isolate and grow hPSC-derived hepatic progenitor cells which could differentiate into hepatocyte-like cells through hepatoblast-like cells. We have confirmed that the hepatocyte-like cells prepared by our methods were able to increase gene expression of cytochrome P450 enzymes upon encountering rifampicin, phenobarbital, or omeprazole. The isolation and expansion of hPSC-derived hepatic progenitor cells in defined culture conditions should have advantages in terms of detecting accurate effects of exogenous factors on hepatic lineage differentiation, understanding mechanisms underlying self-renewal ability of hepatic progenitor cells, and stably supplying functional hepatic cells.
Collapse
Affiliation(s)
- Takayuki Fukuda
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; K-CONNEX, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuhi Hirata
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yu-Jung Liu
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kana Yanagihara
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Mika Suga
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; iPS Cell-based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miho K Furue
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.
| |
Collapse
|
36
|
Wang Y, Yu X, Chen E, Li L. Liver-derived human mesenchymal stem cells: a novel therapeutic source for liver diseases. Stem Cell Res Ther 2016; 7:71. [PMID: 27176654 PMCID: PMC4866276 DOI: 10.1186/s13287-016-0330-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) represent an attractive cell type for research and therapy due to their ability to proliferate, differentiate, modulate immune reactions, and secrete trophic factors. MSCs exist in a multitude of tissues, including bone marrow, umbilical cord, and adipose tissues. Moreover, MSCs have recently been isolated from the liver. Compared with other MSC types, liver-derived human MSCs (LHMSCs) possess general morphologies, immune functions, and differentiation capacities. Interestingly, LHMCSs produce higher levels of pro-angiogenic, anti-inflammatory, and anti-apoptotic cytokines than those of bone marrow-derived MSCs. Thus, these cells may be a promising therapeutic source for liver diseases. This paper summarizes the biological characteristics of LHMSCs and their potential benefits and risks for the treatment of liver diseases.
Collapse
Affiliation(s)
- Yini Wang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaopeng Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Ermei Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
37
|
Yarygin KN, Lupatov AY, Kholodenko IV. Cell-based therapies of liver diseases: age-related challenges. Clin Interv Aging 2015; 10:1909-24. [PMID: 26664104 PMCID: PMC4671765 DOI: 10.2147/cia.s97926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The scope of this review is to revise recent advances of the cell-based therapies of liver diseases with an emphasis on cell donor's and patient's age. Regenerative medicine with cell-based technologies as its integral part is focused on the structural and functional restoration of tissues impaired by sickness or aging. Unlike drug-based medicine directed primarily at alleviation of symptoms, regenerative medicine offers a more holistic approach to disease and senescence management aimed to achieve restoration of homeostasis. Hepatocyte transplantation and organ engineering are very probable forthcoming options of liver disease treatment in people of different ages and vigorous research and technological innovations in this area are in progress. Accordingly, availability of sufficient amounts of functional human hepatocytes is crucial. Direct isolation of autologous hepatocytes from liver biopsy is problematic due to related discomfort and difficulties with further expansion of cells, particularly those derived from aging people. Allogeneic primary human hepatocytes meeting quality standards are also in short supply. Alternatively, autologous hepatocytes can be produced by reprogramming of differentiated cells through the stage of induced pluripotent stem cells. In addition, fibroblasts and mesenchymal stromal cells can be directly induced to undergo advanced stage hepatogenic differentiation. Reprogramming of cells derived from elderly people is accompanied by the reversal of age-associated changes at the cellular level manifesting itself by telomere elongation and the U-turn of DNA methylation. Cell reprogramming can provide high quality rejuvenated hepatocytes for cell therapy and liver tissue engineering. Further technological advancements and establishment of national and global registries of induced pluripotent stem cell lines homozygous for HLA haplotypes can allow industry-style production of livers for immunosuppression-free transplantation.
Collapse
Affiliation(s)
| | - Alexei Y Lupatov
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow, Russia
| | - Irina V Kholodenko
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
38
|
Chung-Davidson YW, Yeh CY, Bussy U, Li K, Davidson PJ, Nanlohy KG, Brown CT, Whyard S, Li W. Hsp90 and hepatobiliary transformation during sea lamprey metamorphosis. BMC DEVELOPMENTAL BIOLOGY 2015; 15:47. [PMID: 26627605 PMCID: PMC4667476 DOI: 10.1186/s12861-015-0097-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/23/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Biliary atresia (BA) is a human infant disease with inflammatory fibrous obstructions in the bile ducts and is the most common cause for pediatric liver transplantation. In contrast, the sea lamprey undergoes developmental BA with transient cholestasis and fibrosis during metamorphosis, but emerges as a fecund adult. Therefore, sea lamprey liver metamorphosis may serve as an etiological model for human BA and provide pivotal information for hepatobiliary transformation and possible therapeutics. RESULTS We hypothesized that liver metamorphosis in sea lamprey is due to transcriptional reprogramming that dictates cellular remodeling during metamorphosis. We determined global gene expressions in liver at several metamorphic landmark stages by integrating mRNA-Seq and gene ontology analyses, and validated the results with real-time quantitative PCR, histological and immunohistochemical staining. These analyses revealed that gene expressions of protein folding chaperones, membrane transporters and extracellular matrices were altered and shifted during liver metamorphosis. HSP90, important in protein folding and invertebrate metamorphosis, was identified as a candidate key factor during liver metamorphosis in sea lamprey. Blocking HSP90 with geldanamycin facilitated liver metamorphosis and decreased the gene expressions of the rate limiting enzyme for cholesterol biosynthesis, HMGCoA reductase (hmgcr), and bile acid biosynthesis, cyp7a1. Injection of hsp90 siRNA for 4 days altered gene expressions of met, hmgcr, cyp27a1, and slc10a1. Bile acid concentrations were increased while bile duct and gall bladder degeneration was facilitated and synchronized after hsp90 siRNA injection. CONCLUSIONS HSP90 appears to play crucial roles in hepatobiliary transformation during sea lamprey metamorphosis. Sea lamprey is a useful animal model to study postembryonic development and mechanisms for hsp90-induced hepatobiliary transformation.
Collapse
Affiliation(s)
- Yu-Wen Chung-Davidson
- Departments of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA.
| | - Chu-Yin Yeh
- Physiology & College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Ugo Bussy
- Departments of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA.
| | - Ke Li
- Departments of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA.
| | - Peter J Davidson
- Departments of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA.
| | - Kaben G Nanlohy
- Departments of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA.
| | - C Titus Brown
- Computer Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
| | - Steven Whyard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Weiming Li
- Departments of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA.
- Physiology & College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
39
|
Al Ghrbawy NM, Afify RAAM, Dyaa N, El Sayed AA. Differentiation of Bone Marrow: Derived Mesenchymal Stem Cells into Hepatocyte-like Cells. Indian J Hematol Blood Transfus 2015; 32:276-83. [PMID: 27429519 DOI: 10.1007/s12288-015-0581-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/17/2015] [Indexed: 02/06/2023] Open
Abstract
Cirrhosis is the end-stage liver fibrosis, whereby normal liver architecture is disrupted by fibrotic bands, parenchymal nodules and vascular distortion. Portal hypertension and hepatocyte dysfunction are the end results and give rise to major systemic complications and premature death. Mesenchymal stem cells (MSC) have the capacity of self-renew and to give rise to cells of various lineages, so MSC can be isolated from bone marrow (BM) and induced to differentiate into hepatocyte-like cells. MSC were induced to differentiate into hepatocyte-like cells by hepatotic growth factor (HGF) and fibroblast growth factor-4 (FGF-4). Differentiated cells were examined for the expression of hepatocyte-specific markers and hepatocyte functions. MSC were isolated. Flow cytometry analysis showed that they expressed the MSC-specific markers, reverse transcriptase-polymerase chain reaction (RT-PCR) demonstrated that MSC expressed the hepatocyte-specific marker cytokeratin 18 (CK-18) following hepatocyte induction. This study demonstrates that BM-derived-MSC can differentiate into functional hepatocyte-like cells following the induction of HGF and FGF-4. MSC can serve as a favorable cell source for tissue engineering in the treatment of liver disease.
Collapse
Affiliation(s)
- Nesrien M Al Ghrbawy
- Clinical Pathology Department, Faculty of Medicine, Al kaser Al Aini, Cairo University, Cairo, Egypt
| | | | - Nehal Dyaa
- Clinical Pathology Department, Faculty of Medicine, Al kaser Al Aini, Cairo University, Cairo, Egypt
| | | |
Collapse
|
40
|
Li P, Zhang J, Liu J, Ma H, Liu J, Lie P, Wang Y, Liu G, Zeng H, Li Z, Wei X. Promoting the recovery of injured liver with poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) scaffolds loaded with umbilical cord-derived mesenchymal stem cells. Tissue Eng Part A 2014; 21:603-15. [PMID: 25273546 DOI: 10.1089/ten.tea.2013.0331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cell-based therapies are major focus of current research for treatment of liver diseases. In this study, mesenchymal stem cells were isolated from human umbilical cord Wharton's jelly (WJ-MSCs). Results confirmed that WJ-MSCs isolated in this study could express the typical MSC-specific markers and be induced to differentiate into adipocytes, osteoblasts, and chondrocytes. They could also be induced to differentiate into hepatocyte-like cells. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PHBVHHx) is a new member of polyhydroxyalkanoate family and biodegradable polyester produced by bacteria. PHBVHHx scaffolds showed much higher cell attachment and viability than the other polymers tested. PHBVHHx scaffolds loaded with WJ-MSCs were transplanted into liver-injured mice. Liver morphology improved after 30 days of transplantation and looked similar to normal liver. Concentrations of serum alanine aminotransferase and total bilirubin were significantly lower, and albumin was significantly higher on days 14 and 30 in the WJ-MSCs+scaffold group than in the carbon tetrachloride (CCl4) group. Hematoxylin-eosin staining showed that liver had similar structure of normal liver lobules and similar size and shape of normal hepatic cells, and Masson staining demonstrated that liver had less blue staining for collagen after 30 days of transplantation. Real-time reverse transcription-polymerase chain reaction (RT-PCR) showed that the expression of the bile duct epithelial cell gene CK-19 in mouse liver is significantly lower on days 14 and 30 in the WJ-MSCs+scaffold group than in the CCl4 group. Real-time RT-PCR, immunocytochemistry, and periodic acid-Schiff staining showed that WJ-MSCs in scaffolds differentiated into hepatocyte-like cells on days 14 and 30 in the WJ-MSCs+scaffold group. Real-time RT-PCR also demonstrated that WJ-MSCs in scaffolds expressed endothelial cell genes Flk-1, vWF, and VE-cadherin on days 14 and 30 in the WJ-MSCs+scaffold group, indicating that WJ-MSCs also differentiated into endothelial-like cells. These results demonstrated that PHBVHHx scaffolds loaded with WJ-MSCs significantly promoted the recovery of injured liver and could be further studied for liver tissue engineering.
Collapse
Affiliation(s)
- Pengshan Li
- 1 Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University , Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Glucocorticoid receptor regulates organic cation transporter 1 (OCT1, SLC22A1) expression via HNF4α upregulation in primary human hepatocytes. Pharmacol Rep 2014; 65:1322-35. [PMID: 24399729 DOI: 10.1016/s1734-1140(13)71491-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/07/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND Organic cation transporter 1 (OCT1, SLC22A1) is a membrane transporter that is important for therapeutic effect of the antidiabetic drug metformin. Its liver-specific expression in hepatocytes is strongly controlled by hepatocyte nuclear factor-4α (HNF4α). HNF4α expression and transcriptional activity have been demonstrated to be augmented by glucocorticoid receptor (GR) in human hepatocytes and rodent livers. METHODS It was examined whether GR activation indirectly induces OCT1 gene expression via HNF4α up-regulation in primary human hepatocytes. We also examined which other transcription factors are involved in OCT1 gene expression and whether they are regulated by dexamethasone using qRT-PCR and gene reporter assays. RESULTS We found that dexamethasone significantly up-regulates OCT1 mRNA and protein in normal primary human hepatocytes, but not in hepatocyte-derived tumor cell lines HepG2 and MZ-Hep1. Consistently, we observed that HNF4α is induced by dexamethasone in primary human hepatocytes, but not in hepatocyte tumor-derived cell lines. Viral transduction of MZ-Hep1 cells with the expression constructs for HNF4α, CCAAT/enhancer binding proteins β (C/EBPβ) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) demonstrated significant roles of the transcription factors in OCT1 gene regulation. We found that expression of OCT1 mRNA in human livers significantly correlates with C/EBPβ and HNF4α mRNAs expression and that C/EBPβ co-transfection stimulates OCT1 gene reporter construct in HepG2 cells. Nevertheless, neither C/EBPβ nor PGC1α were upregulated in human hepatocytes by dexamethasone. CONCLUSION We can conclude that GR-induced expression of HNF4α may contribute to indirect OCT1 gene up-regulation by dexamethasone in primary human hepatocytes, but not in hepatocyte-derived tumor cell lines.
Collapse
|
42
|
Liu T, Zhang S, Xiang D, Wang Y. Induction of hepatocyte-like cells from mouse embryonic stem cells by lentivirus-mediated constitutive expression of Foxa2/Hnf4a. J Cell Biochem 2014; 114:2531-41. [PMID: 23744720 DOI: 10.1002/jcb.24604] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/14/2013] [Indexed: 11/10/2022]
Abstract
Hepatocytes can be generated from embryonic stem cells (ESCs) using inducers such as chemical compounds and cytokines, but issues related to low differentiation efficiencies remain to be resolved. Recent work has shown that overexpression of lineage-specific transcription factors can directly cause cells phenotypic changes, including differentiation, trans-differentiation, and de-differentiation. We hypothesized that lentivirus-mediated constitutive expression of forkhead box A2 (Foxa2) and hepatocyte nuclear factor 4 alpha (Hnf4a) could promote inducing mouse ESCs to hepatocyte-likes cells. First, ESC lines that stably expressed Foxa2, Hnf4a, or Foxa2/Hnf4a were constructed via lentiviral expression vectors. Second, observations of cell morphology changes were made during the cell culture process, followed by experiments examining teratoma formation. Then, the effects of constitutive expression of Foxa2 and Hnf4a on hepatic differentiation and maturation were determined by measuring the marker gene expression levels of Albumin, α-fetoprotein, Cytokeratin18, and α1-antitrypsin. The results indicate that constitutive expression of Foxa2 and Hnf4a does not affect ESCs culture, teratoma formation, or the expression levels of the specific hepatocyte genes under autonomous differentiation. However, with some assistance from inducing factors, Foxa2 significantly increased the hepatic differentiation of ESCs, whereas the expression of Hnf4a alone or Foxa2/Hnf4a could not. Differentiated CCE-Foxa2 cells were more superior in expressing several liver-specific markers and protein, storing glycogen than differentiated CCE cells. Therefore, our method employing the transduction of Foxa2 would be a valuable tool for the efficient generation of functional hepatocytes derived from ESCs.
Collapse
Affiliation(s)
- Tao Liu
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Internal Medicine 3, The Northern Region of No. 401 Hospital, Qingdao, Shandong, China
| | | | | | | |
Collapse
|
43
|
Differentiation of Human Umbilical Cord Lining Membrane-Derived Mesenchymal Stem Cells into Hepatocyte-Like Cells. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/749587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. Mesenchymal stem cells (MSCs), isolated from bone marrow, adipose tissue, and umbilical cord tissue, have been known to differentiate into hepatocyte-like cells. MSCs can also be easily obtained from umbilical cord lining membrane (CLMSCs). CLMSCs are more primitive MSCs than those isolated from other tissue sources. Objectives. The aim of this study was to investigate the in vitro differentiation of CLMSCs into hepatocyte lineage. Materials and Methods. In this study, CLMSCs were isolated through a tissue attachment method. Cells were characterized for expression of MSC-specific markers and differentiation potency. CLMSCs were induced to differentiate into hepatocytes by a simple two-step protocol. Differentiated cells were examined for the expression of hepatocyte-specific markers and hepatocyte functions. Results. CLMSCs expressed MSC-specific markers and differentiated into adipocytes and osteoblasts. RT-PCR, real-time qRT-PCR, Western blot, and immunocytochemistry analyses demonstrated that differentiated CLMSCs, having hepatocyte-like morphology, expressed several liver-specific markers, such as ALB, AFP, CK18, and CK19, at both mRNA and protein levels following hepatocyte differentiation. Furthermore, periodic acid-Schiff staining and low-density lipoprotein (LDL) uptake assay showed that differentiated cells could store glycogen and uptake LDL. Conclusion. This study demonstrated that CLMSCs can differentiate into functional hepatocyte-like cells. CLMSCs can serve as a favorable cell source for tissue engineering in the treatment of liver disease.
Collapse
|
44
|
Konstorum A, Sprowl SA, Waterman ML, Lander AD, Lowengrub JS. Predicting mechanism of biphasic growth factor action on tumor growth using a multi-species model with feedback control. JOURNAL OF COUPLED SYSTEMS AND MULTISCALE DYNAMICS 2013; 1:459-467. [PMID: 25075381 PMCID: PMC4112130 DOI: 10.1166/jcsmd.2013.1028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A large number of growth factors and drugs are known to act in a biphasic manner: at lower concentrations they cause increased division of target cells, whereas at higher concentrations the mitogenic effect is inhibited. Often, the molecular details of the mitogenic effect of the growth factor are known, whereas the inhibitory effect is not. Hepatoctyte Growth Factor, HGF, has recently been recognized as a strong mitogen that is present in the microenvironment of solid tumors. Recent evidence suggests that HGF acts in a biphasic manner on tumor growth. We build a multi-species model of HGF action on tumor cells using different hypotheses for high dose-HGF activation of a growth inhibitor and show that the shape of the dose-response curve is directly related to the mechanism of inhibitor activation. We thus hypothesize that the shape of a dose-response curve is informative of the molecular action of the growth factor on the growth inhibitor.
Collapse
Affiliation(s)
- Anna Konstorum
- Department of Mathematics, University of California, Irvine, CA 92697-3875, USA
- Center for Complex Biological Systems, University of California, 2620 Biological Sciences III, Irvine, CA 92697-2280, USA
| | - Stephanie A. Sprowl
- Center for Complex Biological Systems, University of California, 2620 Biological Sciences III, Irvine, CA 92697-2280, USA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4025, USA
| | - Marian L. Waterman
- Center for Complex Biological Systems, University of California, 2620 Biological Sciences III, Irvine, CA 92697-2280, USA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4025, USA
| | - Arthur D. Lander
- Center for Complex Biological Systems, University of California, 2620 Biological Sciences III, Irvine, CA 92697-2280, USA
- Department of Developmental and Cell Biology, University of California, 2011 Biological Sciences III, Irvine, CA 92697-2300, USA
| | - John S. Lowengrub
- Department of Mathematics, University of California, Irvine, CA 92697-3875, USA
- Center for Complex Biological Systems, University of California, 2620 Biological Sciences III, Irvine, CA 92697-2280, USA
- Department of Biomedical Engineering, University of California, 3120 Natural Sciences II, Irvine, CA 92697-2715, USA
| |
Collapse
|
45
|
Ham DS, Shin J, Kim JW, Park HS, Cho JH, Yoon KH. Generation of functional insulin-producing cells from neonatal porcine liver-derived cells by PDX1/VP16, BETA2/NeuroD and MafA. PLoS One 2013; 8:e79076. [PMID: 24260156 PMCID: PMC3829837 DOI: 10.1371/journal.pone.0079076] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/26/2013] [Indexed: 12/13/2022] Open
Abstract
Surrogate β-cells derived from stem cells are needed to cure type 1 diabetes, and neonatal liver cells may be an attractive alternative to stem cells for the generation of β-cells. In this study, we attempted to generate insulin-producing cells from neonatal porcine liver-derived cells using adenoviruses carrying three genes: pancreatic and duodenal homeobox factor1 (PDX1)/VP16, BETA2/NeuroD and v-maf musculo aponeurotic fibrosarcoma oncogene homolog A (MafA), which are all known to play critical roles in pancreatic development. Isolated neonatal porcine liver-derived cells were sequentially transduced with triple adenoviruses and grown in induction medium containing a high concentration of glucose, epidermal growth factors, nicotinamide and a low concentration of serum following the induction of aggregation for further maturation. We noted that the cells displayed a number of molecular characteristics of pancreatic β-cells, including expressing several transcription factors necessary for β-cell development and function. In addition, these cells synthesized and physiologically secreted insulin. Transplanting these differentiated cells into streptozotocin-induced immunodeficient diabetic mice led to the reversal of hyperglycemia, and more than 18% of the cells in the grafts expressed insulin at 6 weeks after transplantation. These data suggested that neonatal porcine liver-derived cells can be differentiated into functional insulin-producing cells under the culture conditions presented in this report and indicated that neonatal porcine liver-derived cells (NPLCs) might be useful as a potential source of cells for β-cell replacement therapy in efforts to cure type I diabetes.
Collapse
Affiliation(s)
- Dong-Sik Ham
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Seoul St. Mary’s Hospital Convergent Research Consortium for Immunologic Disease, Seoul, Korea
| | - Juyoung Shin
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Seoul St. Mary’s Hospital Convergent Research Consortium for Immunologic Disease, Seoul, Korea
| | - Ji-Won Kim
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Seoul St. Mary’s Hospital Convergent Research Consortium for Immunologic Disease, Seoul, Korea
| | - Heon-Seok Park
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Seoul St. Mary’s Hospital Convergent Research Consortium for Immunologic Disease, Seoul, Korea
| | - Jae-Hyoung Cho
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kun-Ho Yoon
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Seoul St. Mary’s Hospital Convergent Research Consortium for Immunologic Disease, Seoul, Korea
- * E-mail:
| |
Collapse
|
46
|
Gong P, Wang Y, Zhang J, Wang Z. Differential hepatic stem cell proliferation and differentiation after partial hepatectomy in rats. Mol Med Rep 2013; 8:1005-10. [PMID: 23903957 DOI: 10.3892/mmr.2013.1606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 06/24/2013] [Indexed: 11/05/2022] Open
Abstract
Stem cell‑derived hepatocyte precursor cells represent a promising model for clinical transplantation to diseased livers, as well as for establishment of in vitro systems for drug metabolism and toxicology studies. The present study aimed to establish a new method of induction of hepatocyte differentiation using various factors and evaluate the effect of different partial hepatectomies and the duration of collagenase perfusion on hepatic stem cell proliferation and differentiation. A rat model of hepatic oval cell proliferation was established by partial hepatectomy (PH). Following 73.1 and 83.4% PH, rats underwent perfusion with IV collagenase for 10, 20 and 30 min. Density gradient centrifugation was performed and cells in the supernatant were cultured in various combinations of factors to induce oval cells to differentiate into mature hepatocytes. Cells were characterized for hepatocyte marker expression by morphology, flow cytometry, immunofluorescence and western blot analysis. Hepatic oval cells isolated from rats at 7 and 14 days post‑PH exhibited properties of hepatic stem/progenitor cells. Following culturing in RPMI‑1640 medium with hepatocyte growth factor and fibroblast growth factor‑4, the cells resembled primary human hepatocytes with regard to morphology and expression of the hepatocyte markers, cytokeratin 18 (CK‑18) and α‑1‑fetoprotein (AFP). Optimal differentiation of hepatic stem cells to CK‑18‑ and AFP‑positive cells was observed when stem cells isolated from 83.4% PH rats (7 days following surgery) were perfused with IV collagenase for 20 min. The results of this study provide novel insights into characteristics of rat hepatic stem cells.
Collapse
Affiliation(s)
- Peng Gong
- Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 110001, P.R. China.
| | | | | | | |
Collapse
|
47
|
Abstract
Liver is a prime organ responsible for synthesis, metabolism, and detoxification. The organ is endodermal in origin and its development is regulated by temporal, complex, and finely balanced cellular and molecular interactions that dictate its origin, growth, and maturation. We discuss the relevance of endoderm patterning, which truly is the first step toward mapping of domains that will give rise to specific organs. Once foregut patterning is completed, certain cells within the foregut endoderm gain competence in the form of expression of certain transcription factors that allow them to respond to certain inductive signals. Hepatic specification is then a result of such inductive signals, which often emanate from the surrounding mesenchyme. During hepatic specification bipotential hepatic stem cells or hepatoblasts become apparent and undergo expansion, which results in a visible liver primordium during the stage of hepatic morphogenesis. Hepatoblasts next differentiate into either hepatocytes or cholangiocytes. The expansion and differentiation is regulated by cellular and molecular interactions between hepatoblasts and mesenchymal cells including sinusoidal endothelial cells, stellate cells, and also innate hematopoietic elements. Further maturation of hepatocytes and cholangiocytes continues during late hepatic development as a function of various growth factors. At this time, liver gains architectural novelty in the form of zonality and at cellular level acquires polarity. A comprehensive elucidation of such finely tuned developmental cues have been the basis of transdifferentiation of various types of stem cells to hepatocyte-like cells for purposes of understanding health and disease and for therapeutic applications.
Collapse
Affiliation(s)
- Donghun Shin
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | |
Collapse
|
48
|
Kim SE, An SY, Woo DH, Han J, Kim JH, Jang YJ, Son JS, Yang H, Cheon YP, Kim JH. Engraftment potential of spheroid-forming hepatic endoderm derived from human embryonic stem cells. Stem Cells Dev 2013; 22:1818-29. [PMID: 23373441 DOI: 10.1089/scd.2012.0401] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transplantation and drug discovery programs for liver diseases are hampered by the shortage of donor tissue. While recent studies have shown that hepatic cells can be derived from human embryonic stem cells (hESCs), few cases have shown selective enrichment of hESC-derived hepatocytes and their integration into host liver tissues. Here we demonstrate that the dissociation and reaggregation procedure after an endodermal differentiation of hESC produces spheroids mainly consisted of cells showing hepatic phenotypes in vitro and in vivo. A combined treatment with Wnt3a and bone morphogenic protein 4 efficiently differentiated hESCs into definitive endoderm in an adherent culture. Dissociation followed by reaggregation of these cells in a nonadherent condition lead to the isolation of spheroid-forming cells that preferentially expressed early hepatic markers from the adherent cell population. Further differentiation of these spheroid cells in the presence of the hepatocyte growth factor, oncostatin M, and dexamethasone produced a highly enriched population of cells exhibiting characteristics of early hepatocytes, including glycogen storage, indocyanine green uptake, and synthesis of urea and albumin. Furthermore, we show that grafted spheroid cells express hepatic features and attenuate the serum aspartate aminotransferase level in a model of acute liver injury. These data suggest that hepatic progenitor cells can be enriched by the spheroid formation of differentiating hESCs and that these cells have engraftment potential to replace damaged liver tissues.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Division of Biotechnology, Laboratory of Stem Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Liver regeneration is perhaps the most studied example of compensatory growth aimed to replace loss of tissue in an organ. Hepatocytes, the main functional cells of the liver, manage to proliferate to restore mass and to simultaneously deliver all functions hepatic functions necessary to maintain body homeostasis. They are the first cells to respond to regenerative stimuli triggered by mitogenic growth factor receptors MET (the hepatocyte growth factor receptor] and epidermal growth factor receptor and complemented by auxiliary mitogenic signals induced by other cytokines. Termination of liver regeneration is a complex process affected by integrin mediated signaling and it restores the organ to its original mass as determined by the needs of the body (hepatostat function). When hepatocytes cannot proliferate, progenitor cells derived from the biliary epithelium transdifferentiate to restore the hepatocyte compartment. In a reverse situation, hepatocytes can also transdifferentiate to restore the biliary compartment. Several hormones and xenobiotics alter the hepatostat directly and induce an increase in liver to body weight ratio (augmentative hepatomegaly). The complex challenges of the liver toward body homeostasis are thus always preserved by complex but unfailing responses involving orchestrated signaling and affecting growth and differentiation of all hepatic cell types.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
50
|
Kang LI, Mars WM, Michalopoulos GK. Signals and cells involved in regulating liver regeneration. Cells 2012; 1:1261-1292. [PMID: 24710554 PMCID: PMC3901148 DOI: 10.3390/cells1041261] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/27/2012] [Accepted: 12/07/2012] [Indexed: 12/11/2022] Open
Abstract
Liver regeneration is a complex phenomenon aimed at maintaining a constant liver mass in the event of injury resulting in loss of hepatic parenchyma. Partial hepatectomy is followed by a series of events involving multiple signaling pathways controlled by mitogenic growth factors (HGF, EGF) and their receptors (MET and EGFR). In addition multiple cytokines and other signaling molecules contribute to the orchestration of a signal which drives hepatocytes into DNA synthesis. The other cell types of the liver receive and transmit to hepatocytes complex signals so that, in the end of the regenerative process, complete hepatic tissue is assembled and regeneration is terminated at the proper time and at the right liver size. If hepatocytes fail to participate in this process, the biliary compartment is mobilized to generate populations of progenitor cells which transdifferentiate into hepatocytes and restore liver size.
Collapse
Affiliation(s)
- Liang-I Kang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Wendy M Mars
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|