1
|
Chen JH, Luo YT, Su YA, Ke YR, Deng MJ, Chen WY, Wang CY, Tsai JL, Lin CH, Shih TT. Fabrication of a Microfluidic-Based Device Coated with Polyelectrolyte-Capped Titanium Dioxide to Couple High-Performance Liquid Chromatography with Inductively Coupled Plasma Mass Spectrometry for Mercury Speciation. Polymers (Basel) 2024; 16:2366. [PMID: 39204587 PMCID: PMC11360531 DOI: 10.3390/polym16162366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Mercury (Hg) is a toxic element which impacts on biological systems and ecosystems. Because the toxicity of Hg species is highly dependent on their concentration levels and chemical forms, the sensitive identification of the chemical forms of Hg-i.e., Hg speciation-is of major significance in providing meaningful information about the sources of Hg exposure. In this study, a microfluidic-based device made of high-clarity poly(methyl methacrylate) (PMMA) was fabricated. Then, titanium dioxide nanoparticles (nano-TiO2s) were attached to the treated channel's interior with the aid of poly(diallyldimethylammonium chloride) (PDADMAC). After coupling the nano-TiO2-coated microfluidic-based photocatalyst-assisted reduction device (the nano-TiO2-coated microfluidic-based PCARD) with high-performance liquid chromatography (HPLC) and inductively coupled plasma mass spectrometry (ICP-MS), a selective and sensitive, hyphenated system for Hg speciation was established. Validation procedures demonstrated that the method could be satisfactorily applied to the determination of mercury ions (Hg2+) and methylmercury ions (CH3Hg+) in both human urine and water samples. Remarkably, the zeta potential measured clearly indicated that the PDADMAC-capped nano-TiO2s with a predominance of positive charges indeed provided a steady force for firm attachment to the negatively charged device channel. The cause of the durability of the nano-TiO2-coated microfluidic-based PCARD was clarified thus.
Collapse
Affiliation(s)
- Ji-Hao Chen
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (J.-H.C.); (Y.-R.K.); (C.-Y.W.); (J.-L.T.)
| | - Yu-Ting Luo
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan; (Y.-T.L.); (Y.-A.S.); (C.-H.L.)
| | - Yi-An Su
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan; (Y.-T.L.); (Y.-A.S.); (C.-H.L.)
| | - Yan-Ren Ke
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (J.-H.C.); (Y.-R.K.); (C.-Y.W.); (J.-L.T.)
| | - Ming-Jay Deng
- Department of Applied Chemistry, Providence University, Taichung City 433303, Taiwan;
| | - Wei-Yu Chen
- Department of Materials Engineering, National Pingtung University of Science and Technology, Pingtung County 912301, Taiwan;
| | - Cheng-Yu Wang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (J.-H.C.); (Y.-R.K.); (C.-Y.W.); (J.-L.T.)
| | - Jia-Lin Tsai
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (J.-H.C.); (Y.-R.K.); (C.-Y.W.); (J.-L.T.)
| | - Cheng-Hsing Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan; (Y.-T.L.); (Y.-A.S.); (C.-H.L.)
| | - Tsung-Ting Shih
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (J.-H.C.); (Y.-R.K.); (C.-Y.W.); (J.-L.T.)
| |
Collapse
|
2
|
Saini RS, Bavabeedu SS, Quadri SA, Gurumurthy V, Kanji MA, Okshah A, Binduhayyim RIH, Alarcón-Sánchez MA, Mosaddad SA, Heboyan A. Mapping the research landscape of nanoparticles and their use in denture base resins: a bibliometric analysis. DISCOVER NANO 2024; 19:95. [PMID: 38814562 PMCID: PMC11139848 DOI: 10.1186/s11671-024-04037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Nanoparticles are increasingly used in dentistry for various applications, including enhancing the mechanical properties of denture base resins. This study aimed to comprehensively review and analyze the research landscape of nanoparticles and their effect on the flexural strength of denture base resins to identify key research areas and trends and to highlight the importance of collaboration between authors and institutions. METHODS A Bibliometric Analysis was conducted using the Keywords "Nanoparticle*" AND "Denture*" OR "CAD/CAM." The literature search from the WOS database was restricted to the publication years 2011 to 2022. RESULTS Key findings encompass an increase in research publications but a decline in citations. Saudi Arabia, China, and Iraq led this research, with specific institutions excelling. Notable journals with high impact factors were identified. Authorship patterns show variations in citation impact. Additionally, keyword analysis revealed that current research trends offer insights into influential authors and their networks. CONCLUSIONS The analysis of nanoparticles and denture base resins reveals a dynamic and evolving landscape that emphasizes the importance of collaboration, staying current with research trends, and conducting high-quality research in this ever-evolving domain.
Collapse
Affiliation(s)
- Ravinder S Saini
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | - Shashit Shetty Bavabeedu
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | | | | | - Masroor Ahmed Kanji
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | - Abdulmajeed Okshah
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | | | - Mario Alberto Alarcón-Sánchez
- Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo de los Bravo, Guerrero, Mexico
| | - Seyed Ali Mosaddad
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Qasr-e-Dasht Street, Shiraz, Iran.
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, 0025, Yerevan, Armenia.
| |
Collapse
|
3
|
Motelica L, Vasile BS, Ficai A, Surdu AV, Ficai D, Oprea OC, Andronescu E, Jinga DC, Holban AM. Influence of the Alcohols on the ZnO Synthesis and Its Properties: The Photocatalytic and Antimicrobial Activities. Pharmaceutics 2022; 14:2842. [PMID: 36559334 PMCID: PMC9783502 DOI: 10.3390/pharmaceutics14122842] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Zinc oxide (ZnO) nanomaterials are used in various health-related applications, from antimicrobial textiles to wound dressing composites and from sunscreens to antimicrobial packaging. Purity, surface defects, size, and morphology of the nanoparticles are the main factors that influence the antimicrobial properties. In this study, we are comparing the properties of the ZnO nanoparticles obtained by solvolysis using a series of alcohols: primary from methanol to 1-hexanol, secondary (2-propanol and 2-butanol), and tertiary (tert-butanol). While the synthesis of ZnO nanoparticles is successfully accomplished in all primary alcohols, the use of secondary or tertiary alcohols does not lead to ZnO as final product, underlining the importance of the used solvent. The shape of the obtained nanoparticles depends on the alcohol used, from quasi-spherical to rods, and consequently, different properties are reported, including photocatalytic and antimicrobial activities. In the photocatalytic study, the ZnO obtained in 1-butanol exhibited the best performance against methylene blue (MB) dye solution, attaining a degradation efficiency of 98.24%. The comparative study among a series of usual model dyes revealed that triarylmethane dyes are less susceptible to photo-degradation. The obtained ZnO nanoparticles present a strong antimicrobial activity on a broad range of microorganisms (bacterial and fungal strains), the size and shape being the important factors. This permits further tailoring for use in medical applications.
Collapse
Affiliation(s)
- Ludmila Motelica
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Bogdan-Stefan Vasile
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Anton Ficai
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Adrian-Vasile Surdu
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Denisa Ficai
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Dan Corneliu Jinga
- Department of Medical Oncology, Neolife Medical Center, Ficusului Bd. 40, 077190 Bucharest, Romania
| | - Alina Maria Holban
- Microbiology and Immunology Department, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| |
Collapse
|
4
|
Spoială A, Ilie CI, Dolete G, Croitoru AM, Surdu VA, Trușcă RD, Motelica L, Oprea OC, Ficai D, Ficai A, Andronescu E, Dițu LM. Preparation and Characterization of Chitosan/TiO 2 Composite Membranes as Adsorbent Materials for Water Purification. MEMBRANES 2022; 12:membranes12080804. [PMID: 36005719 PMCID: PMC9414885 DOI: 10.3390/membranes12080804] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 05/30/2023]
Abstract
As it is used in all aspects of human life, water has become more and more polluted. For the past few decades, researchers and scientists have focused on developing innovative composite adsorbent membranes for water purification. The purpose of this research was to synthesize a novel composite adsorbent membrane for the removal of toxic pollutants (namely heavy metals, antibiotics and microorganisms). The as-synthesized chitosan/TiO2 composite membranes were successfully prepared through a simple casting method. The TiO2 nanoparticle concentration from the composite membranes was kept low, at 1% and 5%, in order not to block the functional groups of chitosan, which are responsible for the adsorption of metal ions. Nevertheless, the concentration of TiO2 must be high enough to bestow good photocatalytic and antimicrobial activities. The synthesized composite membranes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and swelling capacity. The antibacterial activity was determined against four strains, Escherichia coli, Citrobacter spp., Enterococcus faecalis and Staphylococcus aureus. For the Gram-negative strains, a reduction of more than 5 units log CFU/mL was obtained. The adsorption capacity for heavy metal ions was maximum for the chitosan/TiO2 1% composite membrane, the retention values being 297 mg/g for Pb2+ and 315 mg/g for Cd2+ ions. These values were higher for the chitosan/TiO2 1% than for chitosan/TiO2 5%, indicating that a high content of TiO2 can be one of the reasons for modest results reported previously in the literature. The photocatalytic degradation of a five-antibiotic mixture led to removal efficiencies of over 98% for tetracycline and meropenem, while for vancomycin and erythromycin the efficiencies were 86% and 88%, respectively. These values indicate that the chitosan/TiO2 composite membranes exhibit excellent photocatalytic activity under visible light irradiation. The obtained composite membranes can be used for complex water purification processes (removal of heavy metal ions, antibiotics and microorganisms).
Collapse
Affiliation(s)
- Angela Spoială
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Alexa-Maria Croitoru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Roxana-Doina Trușcă
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Ludmila Motelica
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Denisa Ficai
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Lia-Mara Dițu
- Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| |
Collapse
|
5
|
Double-Sided Nano-ZnO: Superior Antibacterial Properties and Induced Hepatotoxicity in Zebrafish Embryos. TOXICS 2022; 10:toxics10030144. [PMID: 35324769 PMCID: PMC8950655 DOI: 10.3390/toxics10030144] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 12/30/2022]
Abstract
Zinc oxide nanoparticles (Nano-ZnO) have been widely used in the food, cosmetics, and biomedical fields due to their excellent antibacterial and antioxidant properties. However, with the widespread application of Nano-ZnO, Nano-ZnO inevitably enters the environment and living organisms, causing harm to human health and ecosystem safety. Therefore, the biosafety and toxicological issues of Nano-ZnO are gradually being emphasized. Our study found that Nano-ZnO has superior antibacterial properties compared to ofloxacin in the fight against Staphylococcus aureus (S. aureus). Given that ofloxacin can inhibit bacterial-induced inflammation, we constructed a model of bacterial inflammation using S. aureus in zebrafish. We found that Nano-ZnO inhibited the NF-κB-mediated inflammatory signaling pathway. However, in the process, we found that Nano-ZnO caused hepatic steatosis in zebrafish. This suggested that Nano-ZnO had a certain hepatotoxicity, but did not affect liver development. Subsequently, we investigated the mechanism of hepatotoxicity produced by Nano-ZnO. Nano-ZnO triggered oxidative stress in the liver by generating ROS, which then induced endoplasmic reticulum stress to occur. It further activated srebp and its downstream genes fasn and acc1, which promoted the accumulation of fatty acid synthesis and the development of steatosis, leading to the development of nonalcoholic fatty liver disease (NAFLD). To address the hepatotoxicity of Nano-ZnO, we added carbon dots for the treatment of NAFLD. The carbon dots were found to normalize the steatotic liver. This provided a new strategy to address the hepatotoxicity caused by Nano-ZnO. In this work, we systematically analyzed the antibacterial advantages of Nano-ZnO in vivo and in vitro, explored the mechanism of Nano-ZnO hepatotoxicity, and proposed a new method to treat Nano-ZnO hepatotoxicity.
Collapse
|
6
|
Spoială A, Ilie CI, Trușcă RD, Oprea OC, Surdu VA, Vasile BȘ, Ficai A, Ficai D, Andronescu E, Dițu LM. Zinc Oxide Nanoparticles for Water Purification. MATERIALS 2021; 14:ma14164747. [PMID: 34443269 PMCID: PMC8397993 DOI: 10.3390/ma14164747] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/29/2022]
Abstract
In this study, zinc oxide nanoparticles were synthesized through a simple co-precipitation method starting from zinc acetate dihydrate and sodium hydroxide as reactants. The as-obtained ZnO nanoparticles were morphologically and structurally characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photocatalytic activity, and by determining the antimicrobial activity against Gram-negative and Gram-positive bacteria. The XRD pattern of the zinc oxide nanoparticles showed the wurtzite hexagonal structure, and its purity highlighted that the crystallinity correlated with the presence of a single product, zinc oxide. The ZnO nanoparticles have an average crystallite size of 19 ± 11 nm, which is in accordance with the microscopic data. ZnO nanoparticles were tested against methyl orange, used as a model pollutant, and it was found that they exhibit strong photocatalytic activity against this dye. The antibacterial activity of ZnO nanoparticles was tested against Gram-negative and Gram-positive strains (Escherichia coli, Staphylococcus aureus, and Candida albicans). The strongest activity was found against Gram-positive bacteria (S. aureus).
Collapse
Affiliation(s)
- Angela Spoială
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (V.-A.S.); (B.Ș.V.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania; (R.-D.T.); (O.-C.O.); (D.F.)
| | - Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (V.-A.S.); (B.Ș.V.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania; (R.-D.T.); (O.-C.O.); (D.F.)
| | - Roxana-Doina Trușcă
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania; (R.-D.T.); (O.-C.O.); (D.F.)
| | - Ovidiu-Cristian Oprea
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania; (R.-D.T.); (O.-C.O.); (D.F.)
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (V.-A.S.); (B.Ș.V.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania; (R.-D.T.); (O.-C.O.); (D.F.)
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (V.-A.S.); (B.Ș.V.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania; (R.-D.T.); (O.-C.O.); (D.F.)
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (V.-A.S.); (B.Ș.V.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania; (R.-D.T.); (O.-C.O.); (D.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
- Correspondence:
| | - Denisa Ficai
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania; (R.-D.T.); (O.-C.O.); (D.F.)
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (V.-A.S.); (B.Ș.V.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania; (R.-D.T.); (O.-C.O.); (D.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Lia-Mara Dițu
- Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania;
| |
Collapse
|
7
|
Cristache CM, Totu EE, Iorgulescu G, Pantazi A, Dorobantu D, Nechifor AC, Isildak I, Burlibasa M, Nechifor G, Enachescu M. Eighteen Months Follow-Up with Patient-Centered Outcomes Assessment of Complete Dentures Manufactured Using a Hybrid Nanocomposite and Additive CAD/CAM Protocol. J Clin Med 2020; 9:E324. [PMID: 31979345 PMCID: PMC7073708 DOI: 10.3390/jcm9020324] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
Abstract: The present study aimed to assess the eighteen month follow-up patient-centered outcomes of a simple and predictable protocol for 3D-printed functional complete dentures manufactured using an improved poly(methyl methacrylate) (PMMA)-nanoTiO2. A detailed morphological and structural characterization of the PMMA-TiO2 nanocomposite, using SEM, EDX, XRD, and AFM, after 3D-printing procedure and post-wearing micro-CT, was also performed. METHODS A total of 35 fully edentulous patients were enrolled in this prospective study. A 0.4% TiO2-nanoparticle-reinforced PMMA composite with improved mechanical strength, morphologically and structurally characterized, was used according to an additive computer-aided design and computer-aided manufacturing (CAD/CAM) protocol for complete denture fabrication. The protocol proposed involved a three-step appointment process. Before denture insertion, 1 week, 12 month, and 18-month follow up patients were evaluated via the Visual Analogue Scale (VAS, 0-10) and Oral Health Impact Profile for Edentulous Patients (OHIP-EDENT), with a higher score meaning poor quality of life. RESULTS A total of 45 complete denture sets were inserted. OHIP-EDENT scored significantly better after 18 months of denture wearing, 20.43 (±4.42) compared to 52.57 (±8.16) before treatment; mean VAS was improved for all parameters assessed. CONCLUSIONS Within the limitations of this study, we can state that the proposed workflow with the improved material used is a viable treatment option for patients diagnosed with complete edentulism.
Collapse
Affiliation(s)
- Corina Marilena Cristache
- Department of Dental Techniques, Faculty of Midwifery and Medical Assisting (FMAM), “Carol Davila” University of Medicine and Pharmacy, 8, Eroilor Sanitari Blvd, 050474 Bucharest, Romania;
| | - Eugenia Eftimie Totu
- Department of Analytical Chemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu St., sector 1, 011061 Bucharest, Romania; (A.C.N.); (G.N.)
| | - Gabriela Iorgulescu
- Department of Behavioral Science, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 19 Plevnei Ave., 010221 Bucharest, Romania;
| | - Aida Pantazi
- Center for Surface Science and Nanotechnology (CSSNT), University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060032 Bucharest, Romania; (A.P.); (D.D.); (M.E.)
| | - Dorel Dorobantu
- Center for Surface Science and Nanotechnology (CSSNT), University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060032 Bucharest, Romania; (A.P.); (D.D.); (M.E.)
| | - Aurelia Cristina Nechifor
- Department of Analytical Chemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu St., sector 1, 011061 Bucharest, Romania; (A.C.N.); (G.N.)
| | - Ibrahim Isildak
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler-Istanbul 34210, Turkey;
| | - Mihai Burlibasa
- Department of Dental Techniques, Faculty of Midwifery and Medical Assisting (FMAM), “Carol Davila” University of Medicine and Pharmacy, 8, Eroilor Sanitari Blvd, 050474 Bucharest, Romania;
| | - Gheorghe Nechifor
- Department of Analytical Chemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu St., sector 1, 011061 Bucharest, Romania; (A.C.N.); (G.N.)
| | - Marius Enachescu
- Center for Surface Science and Nanotechnology (CSSNT), University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060032 Bucharest, Romania; (A.P.); (D.D.); (M.E.)
- Academy of Romanian Scientists, Splaiul Independentei 54, 050094 Bucharest, Romania
| |
Collapse
|
8
|
Nechifor G, Totu EE, Nechifor AC, Constantin L, Constantin AM, Cărăuşu ME, Isildak I. Added value recyclability of glass fiber waste as photo-oxidation catalyst for toxic cytostatic micropollutants. Sci Rep 2020; 10:136. [PMID: 31924816 PMCID: PMC6954219 DOI: 10.1038/s41598-019-56836-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/17/2019] [Indexed: 02/05/2023] Open
Abstract
There is an increased interest in recycling valuable waste materials for usage in procedures with high added values. Silica microparticles are involved in the processes of catalysis, separation, immobilization of complexants, biologically active compounds, and different nanospecies, responding to restrictive requirements for selectivity of various chemical and biochemical processes. This paper presents the surface modification of accessible and dimensionally controlled recycled silica microfiber with titanium dioxide. Strong base species in organic solvents: methoxide, ethoxide, propoxide, and potassium butoxide in corresponding alcohol, activated the glass microfibres with 12-13 µm diameter. In the photo-oxidation process of a toxic micro-pollutant, cyclophosphamide, the new composite material successfully proved photocatalytic effectiveness. The present work fulfills simultaneously two specific objectives related to the efforts directed towards a sustainable environment and circular economy: recycling of optical glass microfibers resulted as waste from the industry, and their usage for the photo-oxidation of highly toxic emerging micro-pollutants.
Collapse
Affiliation(s)
- Gheorghe Nechifor
- Faculty of Applied Chemistry and Material Science, Polytechnic University of Bucharest, 060042, Bucharest, Romania
| | - Eugenia Eftimie Totu
- Faculty of Applied Chemistry and Material Science, Polytechnic University of Bucharest, 060042, Bucharest, Romania.
| | - Aurelia Cristina Nechifor
- Faculty of Applied Chemistry and Material Science, Polytechnic University of Bucharest, 060042, Bucharest, Romania
| | - Lucian Constantin
- National Research and Development Institute for Industrial Ecology - ECOIND Bucharest, 71-73 Drumul Podul Dambovitei Str., 060652, Bucharest, Romania
| | - Alina Mirela Constantin
- National Research and Development Institute for Industrial Ecology - ECOIND Bucharest, 71-73 Drumul Podul Dambovitei Str., 060652, Bucharest, Romania
| | - Mihaela Elena Cărăuşu
- Department of Public Health and Management, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115, Iasi, Romania
| | - Ibrahim Isildak
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210, Esenler-Istanbul, Turkey
| |
Collapse
|
9
|
Behavior of PMMA Denture Base Materials Containing Titanium Dioxide Nanoparticles: A Literature Review. Int J Biomater 2019; 2019:6190610. [PMID: 30792739 PMCID: PMC6354146 DOI: 10.1155/2019/6190610] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/22/2018] [Accepted: 01/02/2019] [Indexed: 11/17/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2NP) have gained interest in the dental field because of their multiple uses in addition to their antimicrobial effect. One of the applications in dentistry involves the incorporation into poly methyl methacrylate (PMMA) resin. However, there is a lack of evidence on their effects on the behavior of the resulting nanocomposite. Therefore, the present review aims to screen literatures for data related to PMMA/TiO2 nanocomposite to figure out the properties of TiO2 nanoparticles, methods of addition, interaction with PMMA resin matrix, and finally the addition effects on the properties of introduced nanocomposite and evidence on its clinical performance. Regardless of the latest research progress of PMMA/TiO2 nanocomposite, the questionable properties of final nanocomposite and the lack of long-term clinical evidence addressing their performance restrict their wide clinical use. A conclusive connection between nanoparticle size or addition method and nanocomposite properties could not be established.
Collapse
|