1
|
Saini RS, Bavabeedu SS, Quadri SA, Gurumurthy V, Kanji MA, Okshah A, Binduhayyim RIH, Alarcón-Sánchez MA, Mosaddad SA, Heboyan A. Mapping the research landscape of nanoparticles and their use in denture base resins: a bibliometric analysis. DISCOVER NANO 2024; 19:95. [PMID: 38814562 PMCID: PMC11139848 DOI: 10.1186/s11671-024-04037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Nanoparticles are increasingly used in dentistry for various applications, including enhancing the mechanical properties of denture base resins. This study aimed to comprehensively review and analyze the research landscape of nanoparticles and their effect on the flexural strength of denture base resins to identify key research areas and trends and to highlight the importance of collaboration between authors and institutions. METHODS A Bibliometric Analysis was conducted using the Keywords "Nanoparticle*" AND "Denture*" OR "CAD/CAM." The literature search from the WOS database was restricted to the publication years 2011 to 2022. RESULTS Key findings encompass an increase in research publications but a decline in citations. Saudi Arabia, China, and Iraq led this research, with specific institutions excelling. Notable journals with high impact factors were identified. Authorship patterns show variations in citation impact. Additionally, keyword analysis revealed that current research trends offer insights into influential authors and their networks. CONCLUSIONS The analysis of nanoparticles and denture base resins reveals a dynamic and evolving landscape that emphasizes the importance of collaboration, staying current with research trends, and conducting high-quality research in this ever-evolving domain.
Collapse
Affiliation(s)
- Ravinder S Saini
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | - Shashit Shetty Bavabeedu
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | | | | | - Masroor Ahmed Kanji
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | - Abdulmajeed Okshah
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | | | - Mario Alberto Alarcón-Sánchez
- Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo de los Bravo, Guerrero, Mexico
| | - Seyed Ali Mosaddad
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Qasr-e-Dasht Street, Shiraz, Iran.
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, 0025, Yerevan, Armenia.
| |
Collapse
|
2
|
Kaurani P, Hindocha AD, Jayasinghe RM, Pai UY, Batra K, Price C. Effect of addition of titanium dioxide nanoparticles on the antimicrobial properties, surface roughness and surface hardness of polymethyl methacrylate: A Systematic Review. F1000Res 2023; 12:577. [PMID: 37424742 PMCID: PMC10323281 DOI: 10.12688/f1000research.130028.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 07/11/2023] Open
Abstract
Background: Polymethyl Methacrylate (PMMA) denture-base resins have poor surface properties that facilitates microbial adhesion causing denture stomatitis. This systematic review aims to evaluate the effect of different sizes and percentages of titanium dioxide nanoparticles (TiO2NP) on the antimicrobial property, surface roughness and surface hardness of PMMA denture base resin. Methods: A systematic search of English peer-reviewed articles, clinical trial registries, grey literature databases and other online sources was performed using the PRISMA-S Guidelines for In-Vivo and In-Vitro studies. Qualitative data synthesis was performed to analyse sample dimensions, acrylic used, treatments of nanoparticles, methods used for testing and effect of size and percentage of nanoparticle. Risk of bias assessment was done using modified Cochrane risk of bias tool. Results: Out of 1376 articles, 15 were included. TiO 2NP of size less than 30 nm was most frequently used. Both antimicrobial property and surface hardness improved irrespective of the size of the added TiO 2NP. Three studies reported increase in the surface roughness with less than 50 nm TiO 2NP. 3% TiO 2NP was most frequently used. On increasing the percentage, three studies reported an increase in antimicrobial property, while two studies found no change. With TiO 2NP greater than or equal to 3%, six studies reported an increase in surface hardness, while two reported increase in surface roughness. Large methodological variations were observed across studies. All studies except one were of moderate quality. Conclusions: On addition of TiO 2NP to heat polymerized PMMA, the antimicrobial property and surface hardness improved irrespective of the size of the TiO 2NP, however, addition of nanoparticles less than 50 nm increased the surface roughness. Increasing the percentage of TiO 2NP increased the surface hardness but did not always increase the antimicrobial property. Addition of 3% TiO 2NP provided optimum results with regards to antimicrobial effect and surface hardness, but increase in the surface roughness.
Collapse
Affiliation(s)
- Pragati Kaurani
- Department of Prosthodontics, Mahatma Gandhi Dental College and Hospital, Jaipur, Rajasthan, 302022, India
| | - Amit D Hindocha
- Department of Prosthodontics, Sinhgad Dental College and Hospital, Pune, Maharashtra, 411041, India
| | - Rasika Manori Jayasinghe
- Department of Prosthetic Dentistry, Faculty of Dental Sciences , University of Peradeniya, Kandy, Central province, 20400, Sri Lanka
| | - Umesh Y Pai
- Department of Prosthodontics, Manipal College of Dental Sciences, Mangalore, Karnataka, 575004, India
| | - Kavita Batra
- Department of Medical Education, Kirk Kerkorian School of Medicine at University of Nevada, Las Vegas, Nevada, 89102, USA
| | - Carrie Price
- Health Professions Librarian, Albert S. Cook Library, Towson University, Towson, Maryland, 21252, USA
| |
Collapse
|
3
|
Are Nano TiO2 Inclusions Improving Biocompatibility of Photocurable Polydimethylsiloxane for Maxillofacial Prosthesis Manufacturing? APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
(1) Background: The development of a biocompatible material for direct additive manufacturing of maxillofacial extraoral prosthesis is still a challenging task. The aim of the present study was to obtain a photocurable PDMS, with nano TiO2 inclusions, for directly 3D printing of extraoral, maxillofacial prosthesis. The biocompatibility of the newly obtained nanocomposite was also investigated; (2) Methods: 2.5% (m/m) titania nanoparticles (TiO2) oxide anatase and a photoinitiator, benzophenone (BF) 4.5% were added to commercially available PDMS for maxillofacial soft prostheses manufacturing. The three different samples (PDMS, PDMS-BF and PDMS-BF-TiO2) were assessed by dielectric curing analysis (DEA) based on their viscosities and curing times. In vitro micronucleus test (MNvit) was performed for genotoxicity assessment and three concentrations of each compounds (2 mg/L, 4 mg/L and 8 mg/L) were tested in duplicate and compared to a control; (3) Results: The nanocomposite PDMS-BP-TiO2 was fully reticulated within a few minutes under UV radiation, according to the dielectric analysis. PDMS-BF-TiO2 nanocomposite showed the lowest degree of cyto- and genotoxicity; (4) Conclusions: In the limits of the present study, the proposed ex situ preparation of a PDMS-BP-TiO2 offers an easy, simple, and promising technique that could be successfully used for 3D printing medical applications.
Collapse
|
4
|
Synthesis, physico-chemical characterization, antimicrobial activity and toxicological features of Ag ZnO nanoparticles. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
5
|
Cristache CM, Totu EE, Iorgulescu G, Pantazi A, Dorobantu D, Nechifor AC, Isildak I, Burlibasa M, Nechifor G, Enachescu M. Eighteen Months Follow-Up with Patient-Centered Outcomes Assessment of Complete Dentures Manufactured Using a Hybrid Nanocomposite and Additive CAD/CAM Protocol. J Clin Med 2020; 9:E324. [PMID: 31979345 PMCID: PMC7073708 DOI: 10.3390/jcm9020324] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
Abstract: The present study aimed to assess the eighteen month follow-up patient-centered outcomes of a simple and predictable protocol for 3D-printed functional complete dentures manufactured using an improved poly(methyl methacrylate) (PMMA)-nanoTiO2. A detailed morphological and structural characterization of the PMMA-TiO2 nanocomposite, using SEM, EDX, XRD, and AFM, after 3D-printing procedure and post-wearing micro-CT, was also performed. METHODS A total of 35 fully edentulous patients were enrolled in this prospective study. A 0.4% TiO2-nanoparticle-reinforced PMMA composite with improved mechanical strength, morphologically and structurally characterized, was used according to an additive computer-aided design and computer-aided manufacturing (CAD/CAM) protocol for complete denture fabrication. The protocol proposed involved a three-step appointment process. Before denture insertion, 1 week, 12 month, and 18-month follow up patients were evaluated via the Visual Analogue Scale (VAS, 0-10) and Oral Health Impact Profile for Edentulous Patients (OHIP-EDENT), with a higher score meaning poor quality of life. RESULTS A total of 45 complete denture sets were inserted. OHIP-EDENT scored significantly better after 18 months of denture wearing, 20.43 (±4.42) compared to 52.57 (±8.16) before treatment; mean VAS was improved for all parameters assessed. CONCLUSIONS Within the limitations of this study, we can state that the proposed workflow with the improved material used is a viable treatment option for patients diagnosed with complete edentulism.
Collapse
Affiliation(s)
- Corina Marilena Cristache
- Department of Dental Techniques, Faculty of Midwifery and Medical Assisting (FMAM), “Carol Davila” University of Medicine and Pharmacy, 8, Eroilor Sanitari Blvd, 050474 Bucharest, Romania;
| | - Eugenia Eftimie Totu
- Department of Analytical Chemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu St., sector 1, 011061 Bucharest, Romania; (A.C.N.); (G.N.)
| | - Gabriela Iorgulescu
- Department of Behavioral Science, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 19 Plevnei Ave., 010221 Bucharest, Romania;
| | - Aida Pantazi
- Center for Surface Science and Nanotechnology (CSSNT), University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060032 Bucharest, Romania; (A.P.); (D.D.); (M.E.)
| | - Dorel Dorobantu
- Center for Surface Science and Nanotechnology (CSSNT), University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060032 Bucharest, Romania; (A.P.); (D.D.); (M.E.)
| | - Aurelia Cristina Nechifor
- Department of Analytical Chemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu St., sector 1, 011061 Bucharest, Romania; (A.C.N.); (G.N.)
| | - Ibrahim Isildak
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler-Istanbul 34210, Turkey;
| | - Mihai Burlibasa
- Department of Dental Techniques, Faculty of Midwifery and Medical Assisting (FMAM), “Carol Davila” University of Medicine and Pharmacy, 8, Eroilor Sanitari Blvd, 050474 Bucharest, Romania;
| | - Gheorghe Nechifor
- Department of Analytical Chemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu St., sector 1, 011061 Bucharest, Romania; (A.C.N.); (G.N.)
| | - Marius Enachescu
- Center for Surface Science and Nanotechnology (CSSNT), University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060032 Bucharest, Romania; (A.P.); (D.D.); (M.E.)
- Academy of Romanian Scientists, Splaiul Independentei 54, 050094 Bucharest, Romania
| |
Collapse
|
6
|
Non-Resorbable Nanocomposite Membranes for Guided Bone Regeneration Based On Polysulfone-Quartz Fiber Grafted with Nano-TiO 2. NANOMATERIALS 2019; 9:nano9070985. [PMID: 31288413 PMCID: PMC6669488 DOI: 10.3390/nano9070985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
Abstract
The polymer-inorganic nanoparticles composite membranes are the latest solutions for multiple physicochemical resistance and selectivity requirements of membrane processes. This paper presents the production of polysulfone-silica microfiber grafted with titanium dioxide nanoparticles (PSf-SiO2-TiO2) composite membranes. Silica microfiber of length 150-200 μm and diameter 12-15 μm were grafted with titanium dioxide nanoparticles, which aggregated as microspheres of 1-3 μm, applying the sol-gel method. The SiO2 microfibers grafted with nano-TiO2 were used to prepare 12% polysulfone-based nanocomposite membranes in N-methyl pyrrolidone through the inversion phase method by evaporation. The obtained nanocomposite membranes, PSf-SiO2-TiO2, have flux characteristics, retention, mechanical characteristics, and chemical oxidation resistance superior to both the polysulfone integral polymer membranes and the PSf-SiO2 composite membranes. The antimicrobial tests highlighted the inhibitory effect of the PSf-SiO2-TiO2 composite membranes on five Gram (-) microorganisms and did not allow the proliferation of Candida albicans strain, proving that they are suitable for usage in the oral environment. The designed membrane met the required characteristics for application as a functional barrier in guided bone regeneration.
Collapse
|