1
|
Magers B, Usmani M, Brumfield KD, Huq A, Colwell RR, Jutla AS. Assessment of water scarcity as a risk factor for cholera outbreaks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179412. [PMID: 40250229 DOI: 10.1016/j.scitotenv.2025.179412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/04/2025] [Accepted: 04/09/2025] [Indexed: 04/20/2025]
Abstract
INTRODUCTION Increasing aridity and incidence of droughts pose a significant threat to human health, primarily in exacerbating water scarcity, and is projected to become more frequent and severe as a result of related environmental changes in many regions globally. Concomitantly, water scarcity will force populations to utilize potentially contaminated water sources, hence increasing exposure to waterborne diseases, notably cholera. Proliferation of Vibrio cholerae, causative agent of cholera, is driven by environmental factors. Notably, temperature and precipitation have been employed in providing predictive awareness of cholera, allowing early warning and mitigation. The impact of droughts on incidence and spread of cholera is less understood. METHODS This study aimed to quantify relationships among temperature, precipitation, and droughts as a basis for establishing the connection of environmental parameters and outbreaks of cholera. Thirteen cholera outbreaks between 2003 and 2023 in four African countries (Ethiopia, Kenya, Nigeria, and Senegal) were assessed using odds ratio and k-means clustering analysis. RESULTS Cholera outbreaks were 3.07 (95 % CI: [0.95, 9.88]) times more likely when drought conditions (negative precipitation anomalies, positive temperature anomalies, and negative Standardized Precipitation-Evapotranspiration Index) were present, compared to their absence. When excess rainfall was also considered, the odds ratio increased to 3.50 (95 % CI: [1.03, 11.90]). Complementary evidence obtained using k-means clustering analysis supported the conclusion that outbreaks of cholera were common during drought conditions. CONCLUSIONS Considering the last few decades with increased severity and frequency of droughts in cholera-impacted regions, climate projections indicate the threat of cholera outbreaks will continue, especially noting increasing reports of cholera globally. Hence, predictive intelligence systems for rapid risk assessment, with respect to climate, drought, and human health, are warranted.
Collapse
Affiliation(s)
- Bailey Magers
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Moiz Usmani
- Civil, Construction and Environmental Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kyle D Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA; University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA; University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - Antarpreet S Jutla
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Wiens KE, Xu H, Zou K, Mwaba J, Lessler J, Malembaka EB, Demby MN, Bwire G, Qadri F, Lee EC, Azman AS. Estimating the proportion of clinically suspected cholera cases that are true Vibrio cholerae infections: A systematic review and meta-analysis. PLoS Med 2023; 20:e1004286. [PMID: 37708235 PMCID: PMC10538743 DOI: 10.1371/journal.pmed.1004286] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 09/28/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Cholera surveillance relies on clinical diagnosis of acute watery diarrhea. Suspected cholera case definitions have high sensitivity but low specificity, challenging our ability to characterize cholera burden and epidemiology. Our objective was to estimate the proportion of clinically suspected cholera that are true Vibrio cholerae infections and identify factors that explain variation in positivity. METHODS AND FINDINGS We conducted a systematic review of studies that tested ≥10 suspected cholera cases for V. cholerae O1/O139 using culture, PCR, and/or a rapid diagnostic test. We searched PubMed, Embase, Scopus, and Google Scholar for studies that sampled at least one suspected case between January 1, 2000 and April 19, 2023, to reflect contemporary patterns in V. cholerae positivity. We estimated diagnostic test sensitivity and specificity using a latent class meta-analysis. We estimated V. cholerae positivity using a random-effects meta-analysis, adjusting for test performance. We included 119 studies from 30 countries. V. cholerae positivity was lower in studies with representative sampling and in studies that set minimum ages in suspected case definitions. After adjusting for test performance, on average, 52% (95% credible interval (CrI): 24%, 80%) of suspected cases represented true V. cholerae infections. After adjusting for test performance and study methodology, the odds of a suspected case having a true infection were 5.71 (odds ratio 95% CrI: 1.53, 15.43) times higher when surveillance was initiated in response to an outbreak than in non-outbreak settings. Variation across studies was high, and a limitation of our approach was that we were unable to explain all the heterogeneity with study-level attributes, including diagnostic test used, setting, and case definitions. CONCLUSIONS In this study, we found that burden estimates based on suspected cases alone may overestimate the incidence of medically attended cholera by 2-fold. However, accounting for cases missed by traditional clinical surveillance is key to unbiased cholera burden estimates. Given the substantial variability in positivity between settings, extrapolations from suspected to confirmed cases, which is necessary to estimate cholera incidence rates without exhaustive testing, should be based on local data.
Collapse
Affiliation(s)
- Kirsten E. Wiens
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Hanmeng Xu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kaiyue Zou
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - John Mwaba
- Centre for Infectious Disease Research in Zambia (CIDRZ), Lusaka, Zambia
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka, Zambia
| | - Justin Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Espoir Bwenge Malembaka
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Center for Tropical Diseases and Global Health (CTDGH), Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
| | - Maya N. Demby
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Godfrey Bwire
- Division of Public Health Emergency Preparedness and Response, Ministry of Health, Kampala, Uganda
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Elizabeth C. Lee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Andrew S. Azman
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
3
|
Chac D, Dunmire CN, Singh J, Weil AA. Update on Environmental and Host Factors Impacting the Risk of Vibrio cholerae Infection. ACS Infect Dis 2021; 7:1010-1019. [PMID: 33844507 DOI: 10.1021/acsinfecdis.0c00914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vibrio cholerae is the causative agent of cholera, a diarrheal disease that kills tens of thousands of people each year. Cholera is transmitted primarily by the ingestion of drinking water contaminated with fecal matter, and a safe water supply remains out of reach in many areas of the world. In this Review, we discuss host and environmental factors that impact the susceptibility to V. cholerae infection and the severity of disease.
Collapse
Affiliation(s)
- Denise Chac
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | - Chelsea N. Dunmire
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | - Jasneet Singh
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | - Ana A. Weil
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| |
Collapse
|
4
|
Awuor SO, Omwenga EO, Daud II. Geographical distribution and antibiotics susceptibility patterns of toxigenic Vibrio cholerae isolates from Kisumu County, Kenya. Afr J Prim Health Care Fam Med 2020; 12:e1-e6. [PMID: 33354982 PMCID: PMC7736671 DOI: 10.4102/phcfm.v12i1.2264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 11/24/2022] Open
Abstract
Background Multiple drug resistance has become a major threat to the treatment of cholera. Recent studies in Kenya have described the epidemiology, especially the risk factors, of cholera; however, there is little information on the phenotypic and drug susceptibility patterns of Vibrio cholerae (V. cholerae) in outbreaks that in the recent past have occurred in western Kenya. Aim To characterise and determine the antibiotics’ susceptibility profiling of toxigenic V. cholerae isolates from Kisumu County. Setting The project was conducted in Kisumu County, Kenya. Methods A total of 119 V. cholerae O1, biotype El Tor, isolates collected during 2017 cholera outbreak in Kisumu County were used for this study. The samples were cultured on thiosulphate-citrate-bile salts sucrose (TCBS) agar and biochemical tests were carried out using standard procedures. Susceptibility tests were conducted by using various conventional antibiotics against standard procedures. Results Of the 119 isolates, 101 were confirmed to be V. cholerae belonging to serotypes Inaba and Ogawa, with Inaba being the predominant serotype (73.95%). The isolates were susceptible to ciprofloxacin (100%), ofloxacin (100%), gentamycin (100%), doxycycline (99%), ceftriaxone (99%) and streptomycin (96.04%) antimicrobials, and resistant to erythromycin (53.47%), amoxicillin (64.4%), nalidixic acid (83.2%) and ampicillin (89.11%), with high resistance to cotrimoxazole (99%) and tetracycline (97%). Conclusion Vibrio cholerae was resistant to multiple antibiotics, including those commonly used in the management of cholera. Taken together, there is a need to carry out regular surveillance on antimicrobial drug resistance during outbreaks.
Collapse
Affiliation(s)
- Silas O Awuor
- Department of Health, School of Health Sciences, Kisii University, Kisii.
| | | | | |
Collapse
|
5
|
Bundi M, Shah MM, Odoyo E, Kathiiko C, Wandera E, Miring'u G, Guyo S, Langat D, Morita K, Ichinose Y. Characterization of Vibrio cholerae O1 isolates responsible for cholera outbreaks in Kenya between 1975 and 2017. Microbiol Immunol 2019; 63:350-358. [PMID: 31407393 DOI: 10.1111/1348-0421.12731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/12/2019] [Accepted: 07/10/2019] [Indexed: 11/28/2022]
Abstract
Kenya is endemic for cholera with different waves of outbreaks having been documented since 1971. In recent years, new variants of Vibrio cholerae O1 have emerged and have replaced most of the traditional El Tor biotype globally. These strains also appear to have increased virulence, and it is important to describe and document their phenotypic and genotypic traits. This study characterized 146 V. cholerae O1 isolates from cholera outbreaks that occurred in Kenya between 1975 and 2017. Our study reports that the 1975-1984 strains had typical classical or El Tor biotype characters. New variants of V. cholerae O1 having traits of both classical and El Tor biotypes were observed from 2007 with all strains isolated between 2015 and 2017 being sensitive to polymyxin B and carrying both classical and El Tor type ctxB. All strains were resistant to Phage IV and harbored rstR, rtxC, hlyA, rtxA and tcpA genes specific for El Tor biotype indicating that the strains had an El Tor backbone. Pulsed field gel electrophoresis (PFGE) genotyping differentiated the isolates into 14 pulsotypes. The clustering also corresponded with the year of isolation signifying that the cholera outbreaks occurred as separate waves of different genetic fingerprints exhibiting different genotypic and phenotypic characteristics. The emergence and prevalence of V. cholerae O1 strains carrying El Tor type and classical type ctxB in Kenya are reported. These strains have replaced the typical El Tor biotype in Kenya and are potentially more virulent and easily transmitted within the population.
Collapse
Affiliation(s)
- Martin Bundi
- Department of Bacteriology, NUITM-KEMRI Project, Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nairobi, Kenya.,Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Biosafety Training and Accreditation, National Biosafety Authority, Nairobi, Kenya
| | - Mohammad Monir Shah
- Department of Bacteriology, NUITM-KEMRI Project, Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nairobi, Kenya.,Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Eric Odoyo
- Department of Bacteriology, NUITM-KEMRI Project, Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nairobi, Kenya
| | - Cyrus Kathiiko
- Department of Bacteriology, NUITM-KEMRI Project, Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nairobi, Kenya
| | - Ernest Wandera
- Department of Bacteriology, NUITM-KEMRI Project, Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nairobi, Kenya
| | - Gabriel Miring'u
- Department of Bacteriology, NUITM-KEMRI Project, Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nairobi, Kenya
| | - Sora Guyo
- Department of Bacteriology, NUITM-KEMRI Project, Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nairobi, Kenya
| | - Daniel Langat
- Disease Surveillance and Response Unit, Ministry of Health, Nairobi, Kenya
| | - Kouichi Morita
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Yoshio Ichinose
- Department of Bacteriology, NUITM-KEMRI Project, Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nairobi, Kenya.,Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
6
|
Osei FB, Stein A. Temporal trend and spatial clustering of cholera epidemic in Kumasi-Ghana. Sci Rep 2018; 8:17848. [PMID: 30552392 PMCID: PMC6294804 DOI: 10.1038/s41598-018-36029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 11/10/2018] [Indexed: 12/02/2022] Open
Abstract
Knowledge of the temporal trends and spatial patterns will have significant implications for effective preparedness in future epidemics. Our objective was to investigate the temporal trends and the nature of the spatial interaction of cholera incidences, dwelling on an outbreak in the Kumasi Metropolis, Ghana. We developed generalized nonparametric and segmented regression models to describe the epidemic curve. We used the pair correlation function to describe the nature of spatial clustering parameters such as the maximum scale of interaction and the scale of maximal interaction. The epidemic rose suddenly to a peak with 40% daily increments of incidences. The decay, however, was slower with 5% daily reductions. Spatial interaction occurred within 1 km radius. Maximal interaction occurred within 0.3 km, suggesting a household level of interactions. Significant clustering during the first week suggests secondary transmissions sparked the outbreak. The nonparametric and segmented regression models, together with the pair correlation function, contribute to understanding the transmission dynamics. The issue of underreporting remains a challenge we seek to address in future. These findings, however, will have innovative implications for developing preventive measures during future epidemics.
Collapse
Affiliation(s)
- Frank Badu Osei
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, Netherlands.
| | - Alfred Stein
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, Netherlands
| |
Collapse
|
7
|
Richterman A, Sainvilien DR, Eberly L, Ivers LC. Individual and Household Risk Factors for Symptomatic Cholera Infection: A Systematic Review and Meta-analysis. J Infect Dis 2018; 218:S154-S164. [PMID: 30137536 PMCID: PMC6188541 DOI: 10.1093/infdis/jiy444] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Cholera has caused 7 global pandemics, including the current one which has been ongoing since 1961. A systematic review of risk factors for symptomatic cholera infection has not been previously published. Methods In accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, we performed a systematic review and meta-analysis of individual and household risk factors for symptomatic cholera infection. Results We identified 110 studies eligible for inclusion in qualitative synthesis. Factors associated with symptomatic cholera that were eligible for meta-analysis included education less than secondary level (summary odds ratio [SOR], 2.64; 95% confidence interval [CI], 1.41-4.92; I2 = 8%), unimproved water source (SOR, 3.48; 95% CI, 2.18-5.54; I2 = 77%), open container water storage (SOR, 2.03; 95% CI, 1.09-3.76; I2 = 62%), consumption of food outside the home (SOR, 2.76; 95% CI, 1.62-4.69; I2 = 64%), household contact with cholera (SOR, 2.91; 95% CI, 1.62-5.25; I2 = 89%), water treatment (SOR, 0.37; 95% CI, .21-.63; I2 = 74%), and handwashing (SOR, 0.29; 95% CI, .20-.43; I2 = 37%). Other notable associations with symptomatic infection included income/wealth, blood group, gastric acidity, infant breastfeeding status, and human immunodeficiency virus infection. Conclusions We identified potential risk factors for symptomatic cholera infection including environmental characteristics, socioeconomic factors, and intrinsic patient factors. Ultimately, a combination of interventional approaches targeting various groups with risk-adapted intensities may prove to be the optimal strategy for cholera control.
Collapse
Affiliation(s)
- Aaron Richterman
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Lauren Eberly
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Louise C Ivers
- Center for Global Health, Massachusetts General Hospital
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Wolfe M, Kaur M, Yates T, Woodin M, Lantagne D. A Systematic Review and Meta-Analysis of the Association between Water, Sanitation, and Hygiene Exposures and Cholera in Case-Control Studies. Am J Trop Med Hyg 2018; 99:534-545. [PMID: 29968551 PMCID: PMC6090371 DOI: 10.4269/ajtmh.17-0897] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Case-control studies are conducted to identify cholera transmission routes. Water, sanitation, and hygiene (WASH) exposures can facilitate cholera transmission (risk factors) or interrupt transmission (protective factors). To our knowledge, the association between WASH exposures and cholera from case-control studies has not been systematically analyzed. A systematic review was completed to close this gap, including describing the theory of risk and protection, developing inclusion criteria, searching and selecting studies, assessing quality of evidence, and summarizing associations between cholera and seven predicted WASH protective factors and eight predicted WASH risk factors using meta-analysis and sensitivity analysis. Overall, 47 articles describing 51 individual studies from 30 countries met the inclusion criteria. All eight predicted risk factors were associated with higher odds of cholera (odds ratio [OR] = 1.9-5.6), with heterogeneity (I2) of 0-92%. Of the predicted protective factors, five of seven were associated with lower odds of cholera (OR = 0.35-1.4), with heterogeneity of 57-91%; exceptions were insignificant associations for improved water source (OR = 1.1, heterogeneity 91%) and improved sanitation (OR = 1.4, heterogeneity 68%). Results were robust; 3/70 (5%) associations changed directionality or significance in sensitivity analysis. Meta-analysis results highlight that predicted risk factors are associated with cholera; however, predicted protective factors are not as consistently protective. This variable protection is attributed to 1) cholera transmission via multiple routes and 2) WASH intervention implementation quality variation. Water, sanitation, and hygiene interventions should address multiple transmission routes and be well implemented, according to international guidance, to ensure that field effectiveness matches theoretical efficacy. In addition, future case-control studies should detail WASH characteristics to contextualize results.
Collapse
Affiliation(s)
- Marlene Wolfe
- Tufts University Civil and Environmental Engineering Department, Medford, Massachusetts
| | - Mehar Kaur
- Tufts University Civil and Environmental Engineering Department, Medford, Massachusetts
| | - Travis Yates
- Tufts University Civil and Environmental Engineering Department, Medford, Massachusetts
| | - Mark Woodin
- Tufts University Civil and Environmental Engineering Department, Medford, Massachusetts
| | - Daniele Lantagne
- Tufts University Civil and Environmental Engineering Department, Medford, Massachusetts
| |
Collapse
|
9
|
Mudau LS, Mukhola MS, Hunter PR. Cholera and household water treatment why communities do not treat water after a cholera outbreak: a case study in Limpopo Province. S Afr J Infect Dis 2017. [DOI: 10.1080/23120053.2016.1157951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
10
|
Mukhopadhyay AK, Takeda Y, Balakrish Nair G. Cholera outbreaks in the El Tor biotype era and the impact of the new El Tor variants. Curr Top Microbiol Immunol 2014; 379:17-47. [PMID: 24710767 DOI: 10.1007/82_2014_363] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Vibrio cholerae O1, the causative agent of the disease cholera, has two biotypes namely the classical and El Tor. Biotype is a subspecific taxonomic classification of V. cholerae O1. Differentiation of V. cholerae strains into biotype does not alter the clinical management of cholera but is of immense public health and epidemiological importance in identifying the source and spread of infection, particularly when V. cholerae is first isolated in a country or geographic area. From recorded history, till date, the world has experienced seven pandemics of cholera. Among these, the first six pandemics are believed to have been caused by the classical biotype whereas the ongoing seventh pandemic is caused by the El Tor biotype. In recent years, new pathogenic variants of V. cholerae have emerged and spread throughout many Asian and African countries with corresponding cryptic changes in the epidemiology of cholera. In this chapter, we describe the outbreaks during the seventh pandemic El Tor biotype era spanning more than five decades along with the recent advances in our understanding of the development, evolution, spread, and impact of the new variants of El Tor strains.
Collapse
Affiliation(s)
- Asish K Mukhopadhyay
- National Institute of Cholera and Enteric Diseases, P 33, CIT Road, Scheme XM, Beliaghata, Kolkata, 700010, India,
| | | | | |
Collapse
|
11
|
Stoltzfus JD, Carter JY, Akpinar-Elci M, Matu M, Kimotho V, Giganti MJ, Langat D, Elci OC. Interaction between climatic, environmental, and demographic factors on cholera outbreaks in Kenya. Infect Dis Poverty 2014; 3:37. [PMID: 25328678 PMCID: PMC4200235 DOI: 10.1186/2049-9957-3-37] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/11/2014] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Cholera remains an important public health concern in developing countries including Kenya where 11,769 cases and 274 deaths were reported in 2009 according to the World Health Organization (WHO). This ecological study investigates the impact of various climatic, environmental, and demographic variables on the spatial distribution of cholera cases in Kenya. METHODS District-level data was gathered from Kenya's Division of Disease Surveillance and Response, the Meteorological Department, and the National Bureau of Statistics. The data included the entire population of Kenya from 1999 to 2009. RESULTS Multivariate analyses showed that districts had an increased risk of cholera outbreaks when a greater proportion of the population lived more than five kilometers from a health facility (RR: 1.025 per 1% increase; 95% CI: 1.010, 1.039), bordered a body of water (RR: 5.5; 95% CI: 2.472, 12.404), experienced increased rainfall from October to December (RR: 1.003 per 1 mm increase; 95% CI: 1.001, 1.005), and experienced decreased rainfall from April to June (RR: 0.996 per 1 mm increase; 95% CI: 0.992, 0.999). There was no detectable association between cholera and population density, poverty, availability of piped water, waste disposal methods, rainfall from January to March, or rainfall from July to September. CONCLUSION Bordering a large body of water, lack of health facilities nearby, and changes in rainfall were significantly associated with an increased risk of cholera in Kenya.
Collapse
Affiliation(s)
- James D Stoltzfus
- />School of Medicine, Department of Public Health and Preventive Medicine, St. George’s University (SGU), West Indies, Grenada
| | - Jane Y Carter
- />African Medical and Research Foundation (AMREF), Nairobi, Kenya
| | - Muge Akpinar-Elci
- />Center for Global Health, College of Health Sciences, Old Dominion University, Norfolk, VA USA
| | - Martin Matu
- />African Medical and Research Foundation (AMREF), Nairobi, Kenya
| | - Victoria Kimotho
- />African Medical and Research Foundation (AMREF), Nairobi, Kenya
| | - Mark J Giganti
- />School of Medicine, Department of Public Health and Preventive Medicine, St. George’s University (SGU), West Indies, Grenada
| | - Daniel Langat
- />Center for Global Health, College of Health Sciences, Old Dominion University, Norfolk, VA USA
| | - Omur Cinar Elci
- />School of Medicine, Department of Public Health and Preventive Medicine, St. George’s University (SGU), West Indies, Grenada
| |
Collapse
|
12
|
Contaminated pond water favors cholera outbreak at haibatpur village, purba medinipur district, west bengal, India. J Trop Med 2014; 2014:764530. [PMID: 24899903 PMCID: PMC4036642 DOI: 10.1155/2014/764530] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/10/2014] [Indexed: 11/18/2022] Open
Abstract
Health workers reported an increased number of diarrhea cases at Haibatpur village on June 17, 2012. This outbreak was investigated with the following objectives: to confirm the existence of diarrhea outbreak, to find out the risk factors, and propose control measures. Cases were listed; spot map and epidemic curve were drawn. Attack rate was calculated by age and sex and risk factors were found out by calculating odds ratio (OR) with 95% confidence interval (CI). Rectal swabs were taken and water specimens were collected for laboratory test. Forty-one cases of patients were identified with overall attack rate (AR) was 5% (41/780). AR among men was higher 6% (25/404) than women. There was no death. V. cholerae 01 Eltor Ogawa was isolated from one (1/4) stool specimen. Spot map showed cases clustered around two ponds which were contaminated with coliform organisms. The underground water was a bit saline in nature. Using pond water for preparation of fermented rice (Panta Bhat) (OR 4.73, 95% CI 1.69–13.51), washing utensil in pond water (OR 7.31, 95% CI 1.77–42.29) were associated with cholera outbreak. Health education was done to villagers. Disinfection of two ponds with bleaching powder was done. We proposed supplying of safe drinking water and repairing defective deep tube well to village.
Collapse
|
13
|
Saidi SM, Chowdhury N, Awasthi SP, Asakura M, Hinenoya A, Iijima Y, Yamasaki S. Prevalence of Vibrio cholerae O1 El Tor variant in a cholera-endemic zone of Kenya. J Med Microbiol 2014; 63:415-420. [PMID: 24396087 DOI: 10.1099/jmm.0.068999-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Since 2007, Kenya has experienced an increase in cholera outbreaks characterized by a high fatality rate. In this study, we characterized 81 Vibrio cholerae isolates from diarrhoeal stool samples in Nyanza, a cholera-endemic lake region of Kenya, for virulence properties, clonality and antibiotic susceptibility. Eighty of these isolates were V. cholerae O1 El Tor variants carrying the classical ctxB gene sequence, while one isolate was V. cholerae non-O1/O139. All of the El Tor variants were of clonal origin, as revealed by PFGE, and were susceptible to ampicillin, tetracycline, ciprofloxacin, fosfomycin, kanamycin and norfloxacin. However, the isolates showed resistance to sulfamethoxazole/trimethoprim and streptomycin, and intermediate resistance to nalidixic acid, chloramphenicol and imipenem. The non-O1/O139 isolate carried the cholix toxin II gene (chxA II) and was susceptible to all antimicrobials tested except ampicillin. We propose that an El Tor variant clone caused the Nyanza cholera outbreak of 2007-2008.
Collapse
Affiliation(s)
- Suleiman M Saidi
- Medical Sciences Department, Technical University of Mombasa, Mombasa, Kenya.,International Prevention of Epidemics, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Nityananda Chowdhury
- International Prevention of Epidemics, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Sharda P Awasthi
- International Prevention of Epidemics, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Masahiro Asakura
- International Prevention of Epidemics, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Atsushi Hinenoya
- International Prevention of Epidemics, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | | | - Shinji Yamasaki
- International Prevention of Epidemics, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
14
|
Abstract
During the current seventh cholera pandemic, Africa bore the major brunt of global disease burden. More than 40 years after its resurgence in Africa in 1970, cholera remains a grave public health problem, characterized by large disease burden, frequent outbreaks, persistent endemicity, and high CFRs, particularly in the region of the central African Great Lakes which might act as reservoirs for cholera. There, cases occur year round with a rise in incidence during the rainy season. Elsewhere in sub-Saharan Africa, cholera occurs mostly in outbreaks of varying size with a constant threat of widespread epidemics. Between 1970 and 2011, African countries reported 3,221,050 suspected cholera cases to the World Health Organization, representing 46 % of all cases reported globally. Excluding the Haitian epidemic, sub-Saharan Africa accounted for 86 % of reported cases and 99 % of deaths worldwide in 2011. The number of cholera cases is possibly much higher than what is reported to the WHO due to the variation in modalities, completeness, and case definition of national cholera data. One source on country specific incidence rates for Africa, adjusting for underreporting, estimates 1,341,080 cases and 160,930 deaths (52.6 % of 2,548,227 estimated cases and 79.6 % of 209,216 estimated deaths worldwide). Another estimates 1,411,453 cases and 53,632 deaths per year, respectively (50 % of 2,836,669 estimated cases and 58.6 % of 91,490 estimated deaths worldwide). Within Africa, half of all cases between 1970 and 2011 were notified from only seven countries: Angola, Democratic Republic of the Congo, Mozambique, Nigeria, Somalia, Tanzania, and South Africa. In contrast to a global trend of decreasing case fatality ratios (CFRs), CFRs have remained stable in Africa at approximately 2 %. Early propagation of cholera outbreaks depends largely on the extent of individual bacterial shedding, host and organism characteristics, the likelihood of people coming into contact with an infectious dose of Vibrio cholerae and on the virulence of the implicated strain. Cholera transmission can then be amplified by several factors including contamination of human water- or food sources; climate and extreme weather events; political and economic crises; high population density combined with poor quality informal housing and poor hygiene practices; spread beyond a local community through human travel and animals, e.g., water birds. At an individual level, cholera risk may increase with decreasing immunity and hypochlorhydria, such as that induced by Helicobacter pylori infection, which is endemic in much of Africa, and may increase individual susceptibility and cholera incidence. Since contaminated water is the main vehicle for the spread of cholera, the obvious long-term solution to eradicate the disease is the provision of safe water to all African populations. This requires considerable human and financial resources and time. In the short and medium term, vaccination may help to prevent and control the spread of cholera outbreaks. Regardless of the intervention, further understanding of cholera biology and epidemiology is essential to identify populations and areas at increased risk and thus ensure the most efficient use of scarce resources for the prevention and control of cholera.
Collapse
Affiliation(s)
- Martin A Mengel
- Agence de Médecine Préventive, 164 rue de Vaugirard, 75015, Paris, France,
| | | | | | | |
Collapse
|
15
|
Mutonga D, Langat D, Mwangi D, Tonui J, Njeru M, Abade A, Irura Z, Njeru I, Dahlke M. National surveillance data on the epidemiology of cholera in Kenya, 1997-2010. J Infect Dis 2013; 208 Suppl 1:S55-61. [PMID: 24101646 DOI: 10.1093/infdis/jit201] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Kenya has experienced multiple cholera outbreaks since 1971. Cholera remains an issue of major public health importance and one of the 35 priority diseases under Kenya's updated Integrated Disease Surveillance and Response strategy. METHODS We reviewed the cholera surveillance data reported to the World Health Organization and the Kenya Ministry of Public Health and Sanitation from 1997 through 2010 to determine trends in cholera disease for the 14-year period. RESULTS A total of 68 522 clinically suspected cases of cholera and 2641 deaths were reported (overall case-fatality rate [CFR], 3.9%), affecting all regions of the country. Kenya's largest outbreak occurred during 1997-1999, resulting in 26 901 cases and 1362 deaths (CFR, 5.1%). Following a decline in disease occurrence, the country experienced a resurgence of epidemic cholera during 2007-2009 (16 616 cases and 454 deaths; CFR, 2.7%), which declined rapidly to 0 cases. Cases were reported through July 2010, with no cases reported during the second half of the year. About 42% of cases occurred in children aged <15 years. Vibrio cholerae O1, serotype Inaba, was the predominant strain recorded from 2007 through 2010, although serotype Ogawa was also isolated. Recurrent outbreaks have most frequently affected Nairobi, Nyanza, and Coast provinces, as well as remote arid and semiarid regions and refugee camps. DISCUSSION Kenya has experienced substantial amounts of reported cases of cholera during the past 14 years. Recent decreases in cholera case counts may reflect cholera control measures put in place by the National Ministry of Health; confirmation of this theory will require ongoing surveillance.
Collapse
|
16
|
Schaetti C, Sundaram N, Merten S, Ali SM, Nyambedha EO, Lapika B, Chaignat CL, Hutubessy R, Weiss MG. Comparing sociocultural features of cholera in three endemic African settings. BMC Med 2013; 11:206. [PMID: 24047241 PMCID: PMC4016292 DOI: 10.1186/1741-7015-11-206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 08/15/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cholera mainly affects developing countries where safe water supply and sanitation infrastructure are often rudimentary. Sub-Saharan Africa is a cholera hotspot. Effective cholera control requires not only a professional assessment, but also consideration of community-based priorities. The present work compares local sociocultural features of endemic cholera in urban and rural sites from three field studies in southeastern Democratic Republic of Congo (SE-DRC), western Kenya and Zanzibar. METHODS A vignette-based semistructured interview was used in 2008 in Zanzibar to study sociocultural features of cholera-related illness among 356 men and women from urban and rural communities. Similar cross-sectional surveys were performed in western Kenya (n = 379) and in SE-DRC (n = 360) in 2010. Systematic comparison across all settings considered the following domains: illness identification; perceived seriousness, potential fatality and past household episodes; illness-related experience; meaning; knowledge of prevention; help-seeking behavior; and perceived vulnerability. RESULTS Cholera is well known in all three settings and is understood to have a significant impact on people's lives. Its social impact was mainly characterized by financial concerns. Problems with unsafe water, sanitation and dirty environments were the most common perceived causes across settings; nonetheless, non-biomedical explanations were widespread in rural areas of SE-DRC and Zanzibar. Safe food and water and vaccines were prioritized for prevention in SE-DRC. Safe water was prioritized in western Kenya along with sanitation and health education. The latter two were also prioritized in Zanzibar. Use of oral rehydration solutions and rehydration was a top priority everywhere; healthcare facilities were universally reported as a primary source of help. Respondents in SE-DRC and Zanzibar reported cholera as affecting almost everybody without differentiating much for gender, age and class. In contrast, in western Kenya, gender differentiation was pronounced, and children and the poor were regarded as most vulnerable to cholera. CONCLUSIONS This comprehensive review identified common and distinctive features of local understandings of cholera. Classical treatment (that is, rehydration) was highlighted as a priority for control in the three African study settings and is likely to be identified in the region beyond. Findings indicate the value of insight from community studies to guide local program planning for cholera control and elimination.
Collapse
Affiliation(s)
- Christian Schaetti
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, PO Box, 4002, Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Neisha Sundaram
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, PO Box, 4002, Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Sonja Merten
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, PO Box, 4002, Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Said M Ali
- Public Health Laboratory Ivo de Carneri, PO Box 122, Wawi, Chake-Chake, Pemba, Zanzibar, United Republic of Tanzania
| | - Erick O Nyambedha
- Department of Sociology and Anthropology, Maseno University, Private Bag, Maseno, Kenya
| | - Bruno Lapika
- Department of Anthropology, University of Kinshasa, PO Box 127, Kinshasa XI, Democratic Republic of Congo
| | - Claire-Lise Chaignat
- Global Task Force on Cholera Control, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland
| | - Raymond Hutubessy
- Initiative for Vaccine Research, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland
| | - Mitchell G Weiss
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, PO Box, 4002, Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| |
Collapse
|
17
|
Kiiru J, Mutreja A, Mohamed AA, Kimani RW, Mwituria J, Sanaya RO, Muyodi J, Revathi G, Parkhill J, Thomson N, Dougan G, Kariuki S. A study on the geophylogeny of clinical and environmental Vibrio cholerae in Kenya. PLoS One 2013; 8:e74829. [PMID: 24066154 PMCID: PMC3774669 DOI: 10.1371/journal.pone.0074829] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/06/2013] [Indexed: 12/13/2022] Open
Abstract
Cholera remains a significant public health challenge in many sub-Saharan countries including Kenya. We have performed a combination of phylogenetic and phenotypic analysis based on whole genome DNA sequences derived from 40 environmental and 57 clinical V. cholerae from different regions of Kenya isolated between 2005 and 2010. Some environmental and all clinical isolates mapped back onto wave three of the monophyletic seventh pandemic V. cholerae El Tor phylogeny but other environmental isolates were phylogenetically very distinct. Thus, the genomes of the Kenyan V. cholerae O1 El Tor isolates are clonally related to other El Tor V. cholerae isolated elsewhere in the world and similarly harbour antibiotic resistance-associated STX elements. Further, the Kenyan O1 El Tor isolates fall into two distinct clades that may have entered Kenya independently.
Collapse
Affiliation(s)
- John Kiiru
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Ankur Mutreja
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | | | - Racheal W. Kimani
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Joyce Mwituria
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Robert Onsare Sanaya
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Jane Muyodi
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Gunturu Revathi
- Division of Microbiology, Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Nicholas Thomson
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Maina AN, Mwaura FB, Oyugi J, Goulding D, Toribio AL, Kariuki S. Characterization of Vibrio cholerae bacteriophages isolated from the environmental waters of the Lake Victoria region of Kenya. Curr Microbiol 2013; 68:64-70. [PMID: 23982202 PMCID: PMC4173113 DOI: 10.1007/s00284-013-0447-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 07/23/2013] [Indexed: 12/11/2022]
Abstract
Over the last decade, cholera outbreaks have become common in some parts of Kenya. The most recent cholera outbreak occurred in Coastal and Lake Victoria region during January 2009 and May 2010, where a total of 11,769 cases and 274 deaths were reported by the Ministry of Public Health and Sanitation. The objective of this study is to isolate Vibriocholerae bacteriophages from the environmental waters of the Lake Victoria region of Kenya with potential for use as a biocontrol for cholera outbreaks. Water samples from wells, ponds, sewage effluent, boreholes, rivers, and lakes of the Lake Victoria region of Kenya were enriched for 48 h at 37 °C in broth containing a an environmental strain of V.cholerae. Bacteriophages were isolated from 5 out of the 42 environmental water samples taken. Isolated phages produced tiny, round, and clear plaques suggesting that these phages were lytic to V. cholerae. Transmission electron microscope examination revealed that all the nine phages belonged to the family Myoviridae, with typical icosahedral heads, long contractile tails, and fibers. Head had an average diameter of 88.3 nm and tail of length and width 84.9 and 16.1 nm, respectively. Vibriophages isolated from the Lake Victoria region of Kenya have been characterized and the isolated phages may have a potential to be used as antibacterial agents to control pathogenic V.cholerae bacteria in water reservoirs.
Collapse
|
19
|
Swierczewski BE, Odundo EA, Koech MC, Ndonye JN, Kirera RK, Odhiambo CP, Cheruiyot EK, Wu MT, Lee JE, Zhang C, Oaks EV. Surveillance for enteric pathogens in a case-control study of acute diarrhea in Western Kenya. Trans R Soc Trop Med Hyg 2012; 107:83-90. [PMID: 23222955 DOI: 10.1093/trstmh/trs022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Acute diarrhea remains a major public health problem in East African nations such as Kenya. Surveillance for a broad range of enteric pathogens is necessary to accurately predict the frequency of pathogens and potential changes in antibiotic resistance patterns. METHOD Stool samples were collected from September 2009 to September 2011; 193 and 239 samples, from age-matched cases and asymptomatic controls, were collected, respectively, from Kericho and Kisumu District Hospitals in western Kenya. Bacterial pathogens were identified by conventional microbiological methods; antibiotic susceptibility of bacterial isolates was ascertained using the MicroScan WalkAway 40 Plus. An enzyme immunoassay kit was used to detect rotavirus, and ova and parasite examination was conducted by microscopy and an enzyme immunoassay. RESULTS Rotavirus (10.2% and 10.5%) and Shigella (11% and 8%) were isolated significantly more often in the cases than the controls from Kericho and Kisumu District Hospitals respectively. The diarrheagenic Escherichia coli, Campylobacter jejuni and Salmonella were found most often in the cases while Giardia lamblia and Entamoeba histolytica/E. dispar were found more often in the controls. Most pathogens were isolated from children under 5 years old. More than 50% of the Shigella, Salmonella and diarrheagenic E. coli isolates were multidrug resistant to ampicillin, tetracycline and trimethoprim/sulfamethoxazole with several enteroaggregative and enterotoxigenic E. coli isolates producing extended-spectrum beta-lactamases. CONCLUSION Accurate epidemiologic information on acute diarrheal illness in Kenya will be critical for augmenting existing diarrhea management policies in terms of treatment and to strengthen future community awareness and health promotion programs.
Collapse
Affiliation(s)
- Brett E Swierczewski
- United States Army Medical Research Unit - Kenya, Kericho Field Station, PO Box 1357, Hospital Road, Kericho, Kenya 20220
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mohamed AA, Oundo J, Kariuki SM, Boga HI, Sharif SK, Akhwale W, Omolo J, Amwayi AS, Mutonga D, Kareko D, Njeru M, Li S, Breiman RF, Stine OC. Molecular epidemiology of geographically dispersed Vibrio cholerae, Kenya, January 2009-May 2010. Emerg Infect Dis 2012; 18:925-31. [PMID: 22607971 PMCID: PMC3358164 DOI: 10.3201/eid1806.111774] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Isolates represent multiple genetic lineages, a finding consistent with multiple emergences from endemic reservoirs. Numerous outbreaks of cholera have occurred in Kenya since 1971. To more fully understand the epidemiology of cholera in Kenya, we analyzed the genetic relationships among 170 Vibrio cholerae O1 isolates at 5 loci containing variable tandem repeats. The isolates were collected during January 2009–May 2010 from various geographic areas throughout the country. The isolates grouped genetically into 5 clonal complexes, each comprising a series of genotypes that differed by an allelic change at a single locus. No obvious correlation between the geographic locations of the isolates and their genotypes was observed. Nevertheless, geographic differentiation of the clonal complexes occurred. Our analyses showed that multiple genetic lineages of V. cholerae were simultaneously infecting persons in Kenya. This finding is consistent with the simultaneous emergence of multiple distinct genetic lineages of V. cholerae from endemic environmental reservoirs rather than recent introduction and spread by travelers.
Collapse
|
21
|
Osei FB, Duker AA, Stein A. Bayesian structured additive regression modeling of epidemic data: application to cholera. BMC Med Res Methodol 2012; 12:118. [PMID: 22866662 PMCID: PMC3528434 DOI: 10.1186/1471-2288-12-118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 07/12/2012] [Indexed: 11/24/2022] Open
Abstract
Background A significant interest in spatial epidemiology lies in identifying associated risk factors which enhances the risk of infection. Most studies, however, make no, or limited use of the spatial structure of the data, as well as possible nonlinear effects of the risk factors. Methods We develop a Bayesian Structured Additive Regression model for cholera epidemic data. Model estimation and inference is based on fully Bayesian approach via Markov Chain Monte Carlo (MCMC) simulations. The model is applied to cholera epidemic data in the Kumasi Metropolis, Ghana. Proximity to refuse dumps, density of refuse dumps, and proximity to potential cholera reservoirs were modeled as continuous functions; presence of slum settlers and population density were modeled as fixed effects, whereas spatial references to the communities were modeled as structured and unstructured spatial effects. Results We observe that the risk of cholera is associated with slum settlements and high population density. The risk of cholera is equal and lower for communities with fewer refuse dumps, but variable and higher for communities with more refuse dumps. The risk is also lower for communities distant from refuse dumps and potential cholera reservoirs. The results also indicate distinct spatial variation in the risk of cholera infection. Conclusion The study highlights the usefulness of Bayesian semi-parametric regression model analyzing public health data. These findings could serve as novel information to help health planners and policy makers in making effective decisions to control or prevent cholera epidemics.
Collapse
Affiliation(s)
- Frank B Osei
- Faculty of Public Health and Allied Sciences, Catholic University College of Ghana, Sunyani/Fiapre, Ghana.
| | | | | |
Collapse
|
22
|
Sharifnia A, Bakhshi B, Pourshafie MR. wbeT sequence typing and IS1004 profiling of Vibrio cholerae isolates. Lett Appl Microbiol 2012; 54:267-71. [PMID: 22225492 DOI: 10.1111/j.1472-765x.2012.03204.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To investigate the molecular basis for serotype variation in Vibrio cholerae O1 and the genetic relatedness amongst different serotypes isolated from 2004 to 2008 in Iran. METHODS AND RESULTS Despite the presence of all three serotypes of V.cholerae O1 (Ogawa, Inaba and Hikojima) in Iran in the last decade, the Inaba strains have been the dominated serotype. Sequence analysis of wbeT determined only a single substitution of G for A at position 295 in all Inaba strains resulting in a replacement of serine to proline. No difference was found in the copy numbers and profile of IS1004 between the classical and El Tor V. cholerae O1 strains, supporting the clonality amongst the isolates obtained over 5 years in Iran. In addition, Southern blots of HpaII-digested chromosomal DNAs of our Ogawa and Inaba isolates showed the presence of an incomplete copy of IS1004 for all isolates. CONCLUSIONS IS1004 profiling can be a reliable method for analysis of clonal dissemination of V. cholerae. The results indicated that specific point mutation at a particular position within the wbeT of V. cholerae O1 strains in Iran may occur which, in turn, may result in serotype switching. SIGNIFICANCE AND IMPACT OF THE STUDY Understanding the molecular basis for serotype conversion of V. cholerae and their genetic relatedness could give insights for the incoming cholera epidemic prediction and control.
Collapse
Affiliation(s)
- A Sharifnia
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | | |
Collapse
|
23
|
Hove-Musekwa SD, Nyabadza F, Chiyaka C, Das P, Tripathi A, Mukandavire Z. Modelling and analysis of the effects of malnutrition in the spread of cholera. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.mcm.2010.11.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Feikin DR, Tabu CW, Gichuki J. Does water hyacinth on East African lakes promote cholera outbreaks? Am J Trop Med Hyg 2010; 83:370-3. [PMID: 20682884 DOI: 10.4269/ajtmh.2010.09-0645] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cholera outbreaks continue to occur regularly in Africa. Cholera has been associated with proximity to lakes in East Africa, and Vibrio cholerae has been found experimentally to concentrate on the floating aquatic plant, water hyacinth, which is periodically widespread in East African lakes since the late 1980s. From 1994 to 2008, Nyanza Province, which is the Kenyan province bordering Lake Victoria, accounted for a larger proportion of cholera cases than expected by its population size (38.7% of cholera cases versus 15.3% of national population). Yearly water-hyacinth coverage on the Kenyan section of Lake Victoria was positively associated with the number of cholera cases reported in Nyanza Province (r = 0.83; P = 0.0010). Water hyacinth on freshwater lakes might play a role in initiating cholera outbreaks and causing sporadic disease in East Africa.
Collapse
Affiliation(s)
- Daniel R Feikin
- Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | |
Collapse
|
25
|
|
26
|
Opintan JA, Newman MJ, Nsiah-Poodoh OA, Okeke IN. Vibrio cholerae O1 from Accra, Ghana carrying a class 2 integron and the SXT element. J Antimicrob Chemother 2008; 62:929-33. [PMID: 18755696 PMCID: PMC2566517 DOI: 10.1093/jac/dkn334] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objectives Vibrio cholerae O1 from a 2006 outbreak in Accra were commonly resistant to multiple antimicrobials and, in particular, to trimethoprim/sulfamethoxazole, drugs commonly used in the treatment of cholera. We sought to determine the genetic basis for trimethoprim/sulfamethoxazole resistance in outbreak isolates. Methods Twenty-seven isolates from the outbreak were screened by PCR and sequencing for class 1 and 2 integrons and for the SXT element. Results Twenty-one of the 27 isolates examined, all from the Accra metropolitan area, carried both SXT, an integrated chromosomal element, and a class 2 integron bearing dfrA1, sat and aadA1 cassettes. All these isolates had identical random amplification of polymorphic DNA profiles and two of them also carried a class 1 integron. Conclusions Most strains characterized carried multiple elements conferring resistance to trimethoprim. This suggests that trimethoprim/sulfamethoxazole should not be used empirically in cholera treatment.
Collapse
Affiliation(s)
- Japheth A Opintan
- Department of Microbiology, University of Ghana Medical School, PO Box 4236, Accra, Ghana
| | | | | | | |
Collapse
|