1
|
Diroll BT, Guzelturk B, Po H, Dabard C, Fu N, Makke L, Lhuillier E, Ithurria S. 2D II-VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration. Chem Rev 2023; 123:3543-3624. [PMID: 36724544 DOI: 10.1021/acs.chemrev.2c00436] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The field of colloidal synthesis of semiconductors emerged 40 years ago and has reached a certain level of maturity thanks to the use of nanocrystals as phosphors in commercial displays. In particular, II-VI semiconductors based on cadmium, zinc, or mercury chalcogenides can now be synthesized with tailored shapes, composition by alloying, and even as nanocrystal heterostructures. Fifteen years ago, II-VI semiconductor nanoplatelets injected new ideas into this field. Indeed, despite the emergence of other promising semiconductors such as halide perovskites or 2D transition metal dichalcogenides, colloidal II-VI semiconductor nanoplatelets remain among the narrowest room-temperature emitters that can be synthesized over a wide spectral range, and they exhibit good material stability over time. Such nanoplatelets are scientifically and technologically interesting because they exhibit optical features and production advantages at the intersection of those expected from colloidal quantum dots and epitaxial quantum wells. In organic solvents, gram-scale syntheses can produce nanoparticles with the same thicknesses and optical properties without inhomogeneous broadening. In such nanoplatelets, quantum confinement is limited to one dimension, defined at the atomic scale, which allows them to be treated as quantum wells. In this review, we discuss the synthetic developments, spectroscopic properties, and applications of such nanoplatelets. Covering growth mechanisms, we explain how a thorough understanding of nanoplatelet growth has enabled the development of nanoplatelets and heterostructured nanoplatelets with multiple emission colors, spatially localized excitations, narrow emission, and high quantum yields over a wide spectral range. Moreover, nanoplatelets, with their large lateral extension and their thin short axis and low dielectric surroundings, can support one or several electron-hole pairs with large exciton binding energies. Thus, we also discuss how the relaxation processes and lifetime of the carriers and excitons are modified in nanoplatelets compared to both spherical quantum dots and epitaxial quantum wells. Finally, we explore how nanoplatelets, with their strong and narrow emission, can be considered as ideal candidates for pure-color light emitting diodes (LEDs), strong gain media for lasers, or for use in luminescent light concentrators.
Collapse
|
Review |
2 |
48 |
2
|
Moghaddam N, Dabard C, Dufour M, Po H, Xu X, Pons T, Lhuillier E, Ithurria S. Surface Modification of CdE (E: S, Se, and Te) Nanoplatelets to Reach Thicker Nanoplatelets and Homostructures with Confinement-Induced Intraparticle Type I Energy Level Alignment. J Am Chem Soc 2021; 143:1863-1872. [PMID: 33471504 DOI: 10.1021/jacs.0c10336] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two-dimensional II-VI semiconductor nanoplatelets (NPLs) present exceptionally narrow optical features due to their thickness defined at the atomic scale. Because thickness drives the band-edge energy, its control is of paramount importance. Here, we demonstrate that native carboxylate ligands can be replaced by halides that partially dissolve cadmium chalcogenide NPLs at the edges. The released monomers then recrystallize on the wide top and bottom facets, leading to an increase in NPL thickness. This dissolution/recrystallization method is used to increase NPL thickness to 9 ML while using 3 ML NPLs as the starting material. We also demonstrate that this method is not limited to CdSe and can be extended to CdS and CdTe to grow thick NPLs. When the metal halide precursor is introduced with a chalcogenide precursor on the NPLs, CdSe/CdSe, CdTe/CdTe, and CdSe/CdTe core/shell homo- and heterostructures are achieved. Finally, when an incomplete layer is grown, NPLs with steps are synthesized. These stress-free homostructures are comparable to type I heterostructures, leading to recombination of the exciton in the thicker area of the NPLs. Following the growth of core/crown and core/shell NPLs, it affords a new degree of freedom for the growth of structured NPLs with designed band engineering, which has so far been only achievable for heteromaterial nanostructures.
Collapse
|
|
4 |
28 |
3
|
Qu J, Rastogi P, Gréboval C, Lagarde D, Chu A, Dabard C, Khalili A, Cruguel H, Robert C, Xu XZ, Ithurria S, Silly MG, Ferré S, Marie X, Lhuillier E. Electroluminescence from HgTe Nanocrystals and Its Use for Active Imaging. NANO LETTERS 2020; 20:6185-6190. [PMID: 32662652 DOI: 10.1021/acs.nanolett.0c02557] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mercury telluride (HgTe) nanocrystals are among the most versatile infrared (IR) materials with the absorption of lowest energy optical absorption which can be tuned from the visible to the terahertz range. Therefore, they have been extensively considered as near IR emitters and as absorbers for low-cost IR detectors. However, the electroluminescence of HgTe remains poorly investigated despite its ability to go toward longer wavelengths compared to traditional lead sulfide (PbS). Here, we demonstrate a light-emitting diode (LED) based on an indium tin oxide (ITO)/zinc oxide (ZnO)/ZnO-HgTe/PbS/gold-stacked structure, where the emitting layer consists of a ZnO/HgTe bulk heterojunction which drives the charge balance in the system. This LED has low turn-on voltage, long lifetime, and high brightness. Finally, we conduct short wavelength infrared (SWIR) active imaging, where illumination is obtained from a HgTe NC-based LED, and demonstrate moisture detection.
Collapse
|
|
5 |
15 |
4
|
Chee SS, Gréboval C, Magalhaes DV, Ramade J, Chu A, Qu J, Rastogi P, Khalili A, Dang TH, Dabard C, Prado Y, Patriarche G, Chaste J, Rosticher M, Bals S, Delerue C, Lhuillier E. Correlating Structure and Detection Properties in HgTe Nanocrystal Films. NANO LETTERS 2021; 21:4145-4151. [PMID: 33956449 DOI: 10.1021/acs.nanolett.0c04346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
HgTe nanocrystals (NCs) enable broadly tunable infrared absorption, now commonly used to design light sensors. This material tends to grow under multipodic shapes and does not present well-defined size distributions. Such point generates traps and reduces the particle packing, leading to a reduced mobility. It is thus highly desirable to comprehensively explore the effect of the shape on their performance. Here, we show, using a combination of electron tomography and tight binding simulations, that the charge dissociation is strong within HgTe NCs, but poorly shape dependent. Then, we design a dual-gate field-effect-transistor made of tripod HgTe NCs and use it to generate a planar p-n junction, offering more tunability than its vertical geometry counterpart. Interestingly, the performance of the tripods is higher than sphere ones, and this can be correlated with a stronger Te excess in the case of sphere shapes which is responsible for a higher hole trap density.
Collapse
|
|
4 |
8 |
5
|
Abadie C, Paggi L, Fabas A, Khalili A, Dang TH, Dabard C, Cavallo M, Alchaar R, Zhang H, Prado Y, Bardou N, Dupuis C, Xu XZ, Ithurria S, Pierucci D, Utterback JK, Fix B, Vincent G, Bouchon P, Lhuillier E. Helmholtz Resonator Applied to Nanocrystal-Based Infrared Sensing. NANO LETTERS 2022; 22:8779-8785. [PMID: 36190814 DOI: 10.1021/acs.nanolett.2c02769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
While the integration of nanocrystals as an active medium for optoelectronic devices progresses, light management strategies are becoming required. Over recent years, several photonic structures (plasmons, cavities, mirrors, etc.) have been coupled to nanocrystal films to shape the absorption spectrum, tune the directionality, and so on. Here, we explore a photonic equivalent of the acoustic Helmholtz resonator and propose a design that can easily be fabricated. This geometry combines a strong electromagnetic field magnification and a narrow channel width compatible with efficient charge conduction despite hopping conduction. At 80 K, the device reaches a responsivity above 1 A·W-1 and a detectivity above 1011 Jones (3 μm cutoff) while offering a significantly faster time-response than vertical geometry diodes.
Collapse
|
|
3 |
5 |
6
|
Po H, Dabard C, Roman B, Reyssat E, Bico J, Baptiste B, Lhuillier E, Ithurria S. Chiral Helices Formation by Self-Assembled Molecules on Semiconductor Flexible Substrates. ACS NANO 2022; 16:2901-2909. [PMID: 35107969 DOI: 10.1021/acsnano.1c09982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The crystal structure of atomically defined colloidal II-VI semiconductor nanoplatelets (NPLs) induces the self-assembly of organic ligands over thousands of square nanometers on the top and bottom basal planes of these anisotropic nanoparticles. NPLs curl into helices under the influence of the surface stress induced by these ligands. We demonstrate the control of the radii of NPL helices through the ligands described as an anchoring group and an aliphatic chain of a given length. A mechanical model accounting for the misfit strain between the inorganic core and the surface ligands predicts the helices' radii. We show how the chirality of the helices can be tuned by the ligands anchoring group and inverted from one population to another.
Collapse
|
|
3 |
5 |
7
|
Dang TH, Cavallo M, Khalili A, Dabard C, Bossavit E, Zhang H, Ledos N, Prado Y, Lafosse X, Abadie C, Gacemi D, Ithurria S, Vincent G, Todorov Y, Sirtori C, Vasanelli A, Lhuillier E. Multiresonant Grating to Replace Transparent Conductive Oxide Electrode for Bias Selected Filtering of Infrared Photoresponse. NANO LETTERS 2023; 23:8539-8546. [PMID: 37712683 DOI: 10.1021/acs.nanolett.3c02306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Optoelectronic devices rely on conductive layers as electrodes, but they usually introduce optical losses that are detrimental to the device performances. While the use of transparent conductive oxides is established in the visible region, these materials show high losses at longer wavelengths. Here, we demonstrate a photodiode based on a metallic grating acting as an electrode. The grating generates a multiresonant photonic structure over the diode stack and allows strong broadband absorption. The obtained device achieves the highest performances reported so far for a midwave infrared nanocrystal-based detector, with external quantum efficiency above 90%, detectivity of 7 × 1011 Jones at 80 K at 5 μm, and a sub-100 ns time response. Furthermore, we demonstrate that combining different gratings with a single diode stack can generate a bias reconfigurable response and develop new functionalities such as band rejection.
Collapse
|
|
2 |
1 |
8
|
D'Amato M, Belzane L, Dabard C, Silly M, Patriarche G, Glorieux Q, Le Jeannic H, Lhuillier E, Bramati A. Highly Photostable Zn-Treated Halide Perovskite Nanocrystals for Efficient Single Photon Generation. NANO LETTERS 2023; 23:10228-10235. [PMID: 37930320 DOI: 10.1021/acs.nanolett.3c02739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Achieving pure single-photon emission is essential for a range of quantum technologies, from quantum computing to quantum key distribution to quantum metrology. Among solid-state quantum emitters, colloidal lead halide perovskite (LHP) nanocrystals (NCs) have attracted considerable interest due to their structural and optical properties, which make them attractive candidates for single-photon sources (SPSs). However, their practical utilization has been hampered by environment-induced instabilities. In this study, we fabricate and characterize in a systematic manner Zn-treated CsPbBr3 colloidal NCs obtained through Zn2+ ion doping at the Pb-site, demonstrating improved stability under dilution and illumination. The doped NCs exhibit high single-photon purity, reduced blinking on a submillisecond time scale, and stability of the bright state even at excitation powers well above saturation. Our findings highlight the potential of this synthesis approach to optimize the performance of LHP-based SPSs, opening up interesting prospects for their integration into nanophotonic systems for quantum technology applications.
Collapse
|
|
2 |
|
9
|
Diroll BT, Dabard C, Hua M, Climente JI, Lhuillier E, Ithurria S. Hole Relaxation Bottlenecks in CdSe/CdTe/CdSe Lateral Heterostructures Lead to Bicolor Emission. NANO LETTERS 2024; 24:7934-7940. [PMID: 38885197 DOI: 10.1021/acs.nanolett.4c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Concentric lateral CdSe/CdTe/CdSe heterostructures show bicolor photoluminescence from both a red charge transfer band of the CdSe/CdTe interface and a green fluorescence from CdSe. This work uses visible and near-infrared transient spectroscopy measurements to demonstrate that the deviation from Kasha's rule arises from a hole relaxation bottleneck from CdSe to CdTe. Hole transfer can take up to 1 ns, which permits radiative relaxation of excitons remaining in CdSe. Simulations indicate that the hole relaxation bottleneck arises due to the sparse density of states and poor spatial overlap of hole states at energies near the CdSe band edge. The divergent kinetics of transfer for band edge and hot holes is exploited to vary the ratio of green and red photoluminescence with excitation wavelength, providing another knob to control emission color. These findings support the use of lateral heterojunctions as a method for slowing carrier relaxation in two-dimensional materials.
Collapse
|
|
1 |
|
10
|
Bailly E, Hugonin JP, Coudevylle JR, Dabard C, Ithurria S, Vest B, Greffet JJ. 2D Silver-Nanoplatelets Metasurface for Bright Directional Photoluminescence, Designed with the Local Kirchhoff's Law. ACS NANO 2024. [PMID: 38286025 DOI: 10.1021/acsnano.3c09874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Semiconductor colloidal nanocrystals are excellent light emitters in terms of efficiency and spectral control. They can be integrated with a metasurface to make ultrathin photoluminescent devices with a reduced amount of active material and perform complex functionalities such as beam shaping or polarization control. To design such a metasurface, a quantitative model of the emitted power is needed. Here, we report the design, fabrication, and characterization of a ∼300 nm thick light-emitting device combining a plasmonic metasurface with an ensemble of nanoplatelets. The source has been designed with a methodology based on a local form of Kirchhoff's law. The source displays record high directionality and absorptivity.
Collapse
|
|
1 |
|
11
|
Lehouelleur H, Po H, Makké L, Fu N, Curti L, Dabard C, Roux-Byl C, Baptiste B, Van Zee NJ, Pons T, Lhuillier E, Li J, Ithurria S. Self-Assembly of Chiral Ligands on 2D Semiconductor Nanoplatelets for High Circular Dichroism. J Am Chem Soc 2024; 146:30871-30882. [PMID: 39491517 DOI: 10.1021/jacs.4c08981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Group II-VI semiconductor nanoplatelets (NPLs) with atomically defined thicknesses and extended atomically flat (001) facets are used for ligand binding and chiro-optical effects. In this study, we demonstrate that tartrate ligands, anchored by two carboxylate groups, chelate the (001) facets of NPLs at an average ratio of one tartrate molecule to two cadmium (Cd) surface atoms. This assembly of chiral molecules on inorganic nanocrystals generates a circular dichroism g-factor as high as 1.3 × 10-2 at the first excitonic transition wavelength of NPLs. Tartrate ligands induce an orthorhombic distortion of the initially "cubic" crystal structure, classifying the NPLs within the 222-point group. Unlike spherical nanocrystals, where it is difficult to discern whether chiral ligands affect only the surface atoms or the entire crystal structure, our findings unequivocally show that the crystal structure of NPLs is modified due to their thinness and atomically precise thickness. The in-plane lattice parameters experience compressive and tensile stresses, significantly splitting the heavy-hole and light-hole bands. Additionally, tartrate ligands adopt different conformations on the NPL surface over time, resulting in dynamic changes in the circular dichroism signal, including an inversion of its sign.
Collapse
|
|
1 |
|
12
|
Vu Cam N, Rahman MA, Akhil S, Durmusoglu EG, Do TTH, Hernandez-Martinez PL, Dabard C, Arora D, Uddin S, Zamiri G, Wang H, Ha ST, Mortensen NA, Demir HV, Yang JKW. Tunable Multiresonant Microcavity Exciton-Polaritons in Colloidal Quantum Wells. NANO LETTERS 2025; 25:6109-6116. [PMID: 40082251 DOI: 10.1021/acs.nanolett.5c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Optical microcavities are widely used to confine photons for exciton-polariton formation. However, their compact design often imposes limitations on spatial freedom, particularly in controlling the cavity length with the nanometer precision required for effective coupling with excitons. Existing methods for tuning resonances by integrating cavities with dynamic structures often lack sufficient resolution or a complex operation. Here, we introduce a multiresonant microcavity array that provides a full spectral selection of cavity resonances with a sub-5 nm cavity length variation. We employed this platform to investigate room-temperature polariton formation using gradient core-crown colloidal quantum wells that host highly stable excitons. The strong coupling system exhibits longevity of Rabi oscillations with a quality factor of QR = 3.3 and a large Rabi splitting exceeding twice the thermal losses. Notably, we achieved control of the polariton mixed properties across the cavity arrays on a single substrate. This platform is promising for the development of on-chip polaritonic devices.
Collapse
|
|
1 |
|
13
|
Cavallo M, Bossavit E, Zhang H, Dabard C, Dang TH, Khalili A, Abadie C, Alchaar R, Mastrippolito D, Prado Y, Becerra L, Rosticher M, Silly MG, Utterback JK, Ithurria S, Avila J, Pierucci D, Lhuillier E. Mapping the Energy Landscape from a Nanocrystal-Based Field Effect Transistor under Operation Using Nanobeam Photoemission Spectroscopy. NANO LETTERS 2023; 23:1363-1370. [PMID: 36692377 DOI: 10.1021/acs.nanolett.2c04637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As the field of nanocrystal-based optoelectronics matures, more advanced techniques must be developed in order to reveal the electronic structure of nanocrystals, particularly with device-relevant conditions. So far, most of the efforts have been focused on optical spectroscopy, and electrochemistry where an absolute energy reference is required. Device optimization requires probing not only the pristine material but also the material in its actual environment (i.e., surrounded by a transport layer and an electrode, in the presence of an applied electric field). Here, we explored the use of photoemission microscopy as a strategy for operando investigation of NC-based devices. We demonstrate that the method can be applied to a variety of materials and device geometries. Finally, we show that it provides direct access to the metal-semiconductor interface band bending as well as the distance over which the gate effect propagates in field-effect transistors.
Collapse
|
|
2 |
|
14
|
Dabard C, Po H, Fu N, Makke L, Lehouelleur H, Curti L, Xu XZ, Lhuillier E, Diroll BT, Ithurria S. Expanding the color palette of bicolor-emitting nanocrystals. NANOSCALE 2023; 15:14651-14658. [PMID: 37622447 DOI: 10.1039/d3nr03235c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Owing to their bright and tunable luminescence spectra, nanocrystals appear as a unique playground for light source design. Displays and lighting require white light sources that combine several narrow lines. As Kasha's rule prevents the emission of hot carriers, blends of multiple nanocrystal populations are currently the obvious strategy for broad-band source design. However, a few reports suggest that bicolor emission can also be obtained from a single particle even under weak excitation if a careful design of the exciton scattering mechanism sufficiently slows down its relaxation pathways. A key challenge remains to maintain quantum confinement for color tunability in the same structure, while simultaneously achieving a large size to leverage the critical, slower exciton diffusion or relaxation down to the ground state. Herein, we demonstrate that 2D nanoplatelets offer an original opportunity for the design of confined and large heterostructures. We demonstrate that bicolor emission is not limited to green-red pair and show that blue-yellow and purple-green emissions can be obtained from CdSe/CdTe/CdSe core/crown/crown and CdSe/CdS core/crown heterostructures, respectively.
Collapse
|
|
2 |
|
15
|
Zhang H, Prado Y, Alchaar R, Lehouelleur H, Cavallo M, Dang TH, Khalili A, Bossavit E, Dabard C, Ledos N, Silly MG, Madouri A, Fournier D, Utterback JK, Pierucci D, Parahyba V, Potet P, Darson D, Ithurria S, Bartłomiej Szafran, Diroll BT, Climente JI, Lhuillier E. Infrared Imaging Using Thermally Stable HgTe/CdS Nanocrystals. NANO LETTERS 2024. [PMID: 38608158 DOI: 10.1021/acs.nanolett.4c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Transferring nanocrystals (NCs) from the laboratory environment toward practical applications has raised new challenges. HgTe appears as the most spectrally tunable infrared colloidal platform. Its low-temperature synthesis reduces the growth energy cost yet also favors sintering. Once coupled to a read-out circuit, the Joule effect aggregates the particles, leading to a poorly defined optical edge and large dark current. Here, we demonstrate that CdS shells bring the expected thermal stability (no redshift upon annealing, reduced tendency to form amalgams, and preservation of photoconduction after an atomic layer deposition process). The electronic structure of these confined particles is unveiled using k.p self-consistent simulations showing a significant exciton binding energy of ∼200 meV. After shelling, the material displays a p-type behavior that favors the generation of photoconductive gain. The latter is then used to increase the external quantum efficiency of an infrared imager, which now reaches 40% while presenting long-term stability.
Collapse
|
|
1 |
|
16
|
Khalili A, Cavallo M, Dang TH, Dabard C, Zhang H, Bossavit E, Abadie C, Prado Y, Xu XZ, Ithurria S, Vincent G, Coinon C, Desplanque L, Lhuillier E. Mid-wave infrared sensitized InGaAs using intraband transition in doped colloidal II-VI nanocrystals. J Chem Phys 2023; 158:094702. [PMID: 36889960 DOI: 10.1063/5.0141328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Narrow bandgap nanocrystals (NCs) are now used as infrared light absorbers, making them competitors to epitaxially grown semiconductors. However, these two types of materials could benefit from one another. While bulk materials are more effective in transporting carriers and give a high degree of doping tunability, NCs offer a larger spectral tunability without lattice-matching constraints. Here, we investigate the potential of sensitizing InGaAs in the mid-wave infrared throughout the intraband transition of self-doped HgSe NCs. Our device geometry enables the design of a photodiode remaining mostly unreported for intraband-absorbing NCs. Finally, this strategy allows for more effective cooling and preserves the detectivity above 108 Jones up to 200 K, making it closer to cryo-free operation for mid-infrared NC-based sensors.
Collapse
|
|
2 |
|