1
|
Zhang X, Belousoff MJ, Zhao P, Kooistra AJ, Truong TT, Ang SY, Underwood CR, Egebjerg T, Šenel P, Stewart GD, Liang YL, Glukhova A, Venugopal H, Christopoulos A, Furness SGB, Miller LJ, Reedtz-Runge S, Langmead CJ, Gloriam DE, Danev R, Sexton PM, Wootten D. Differential GLP-1R Binding and Activation by Peptide and Non-peptide Agonists. Mol Cell 2020; 80:485-500.e7. [PMID: 33027691 DOI: 10.1016/j.molcel.2020.09.020] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Peptide drugs targeting class B1 G-protein-coupled receptors (GPCRs) can treat multiple diseases; however, there remains substantial interest in the development of orally delivered non-peptide drugs. Here, we reveal unexpected overlap between signaling and regulation of the glucagon-like peptide-1 (GLP-1) receptor by the non-peptide agonist PF 06882961 and GLP-1 that was not observed for another compound, CHU-128. Compounds from these patent series, including PF 06882961, are currently in clinical trials for treatment of type 2 diabetes. High-resolution cryoelectron microscopy (cryo-EM) structures reveal that the binding sites for PF 06882961 and GLP-1 substantially overlap, whereas CHU-128 adopts a unique binding mode with a more open receptor conformation at the extracellular face. Structural differences involving extensive water-mediated hydrogen bond networks could be correlated to functional data to understand how PF 06882961, but not CHU-128, can closely mimic the pharmacological properties of GLP-1. These findings will facilitate rational structure-based discovery of non-peptide agonists targeting class B GPCRs.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
119 |
2
|
Mobbs JI, Belousoff MJ, Harikumar KG, Piper SJ, Xu X, Furness SGB, Venugopal H, Christopoulos A, Danev R, Wootten D, Thal DM, Miller LJ, Sexton PM. Structures of the human cholecystokinin 1 (CCK1) receptor bound to Gs and Gq mimetic proteins provide insight into mechanisms of G protein selectivity. PLoS Biol 2021; 19:e3001295. [PMID: 34086670 PMCID: PMC8208569 DOI: 10.1371/journal.pbio.3001295] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/16/2021] [Accepted: 05/19/2021] [Indexed: 01/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are critical regulators of cellular function acting via heterotrimeric G proteins as their primary transducers with individual GPCRs capable of pleiotropic coupling to multiple G proteins. Structural features governing G protein selectivity and promiscuity are currently unclear. Here, we used cryo-electron microscopy (cryo-EM) to determine structures of the cholecystokinin (CCK) type 1 receptor (CCK1R) bound to the CCK peptide agonist, CCK-8 and 2 distinct transducer proteins, its primary transducer Gq, and the more weakly coupled Gs. As seen with other Gq/11-GPCR complexes, the Gq-α5 helix (αH5) bound to a relatively narrow pocket in the CCK1R core. Surprisingly, the backbone of the CCK1R and volume of the G protein binding pocket were essentially equivalent when Gs was bound, with the Gs αH5 displaying a conformation that arises from "unwinding" of the far carboxyl-terminal residues, compared to canonically Gs coupled receptors. Thus, integrated changes in the conformations of both the receptor and G protein are likely to play critical roles in the promiscuous coupling of individual GPCRs.
Collapse
MESH Headings
- Cholecystokinin/metabolism
- Cholesterol/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/chemistry
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/ultrastructure
- GTP-Binding Protein alpha Subunits, Gs/chemistry
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- GTP-Binding Protein alpha Subunits, Gs/ultrastructure
- HEK293 Cells
- Humans
- Models, Molecular
- Protein Binding
- Receptors, Cholecystokinin/chemistry
- Receptors, Cholecystokinin/metabolism
- Receptors, Cholecystokinin/ultrastructure
- Signal Transduction
Collapse
|
research-article |
4 |
49 |
3
|
Grinter R, Kropp A, Venugopal H, Senger M, Badley J, Cabotaje PR, Jia R, Duan Z, Huang P, Stripp ST, Barlow CK, Belousoff M, Shafaat HS, Cook GM, Schittenhelm RB, Vincent KA, Khalid S, Berggren G, Greening C. Structural basis for bacterial energy extraction from atmospheric hydrogen. Nature 2023; 615:541-547. [PMID: 36890228 PMCID: PMC10017518 DOI: 10.1038/s41586-023-05781-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 02/02/2023] [Indexed: 03/10/2023]
Abstract
Diverse aerobic bacteria use atmospheric H2 as an energy source for growth and survival1. This globally significant process regulates the composition of the atmosphere, enhances soil biodiversity and drives primary production in extreme environments2,3. Atmospheric H2 oxidation is attributed to uncharacterized members of the [NiFe] hydrogenase superfamily4,5. However, it remains unresolved how these enzymes overcome the extraordinary catalytic challenge of oxidizing picomolar levels of H2 amid ambient levels of the catalytic poison O2 and how the derived electrons are transferred to the respiratory chain1. Here we determined the cryo-electron microscopy structure of the Mycobacterium smegmatis hydrogenase Huc and investigated its mechanism. Huc is a highly efficient oxygen-insensitive enzyme that couples oxidation of atmospheric H2 to the hydrogenation of the respiratory electron carrier menaquinone. Huc uses narrow hydrophobic gas channels to selectively bind atmospheric H2 at the expense of O2, and 3 [3Fe-4S] clusters modulate the properties of the enzyme so that atmospheric H2 oxidation is energetically feasible. The Huc catalytic subunits form an octameric 833 kDa complex around a membrane-associated stalk, which transports and reduces menaquinone 94 Å from the membrane. These findings provide a mechanistic basis for the biogeochemically and ecologically important process of atmospheric H2 oxidation, uncover a mode of energy coupling dependent on long-range quinone transport, and pave the way for the development of catalysts that oxidize H2 in ambient air.
Collapse
|
research-article |
2 |
28 |
4
|
Belousoff MJ, Venugopal H, Wright A, Seoner S, Stuart I, Stubenrauch C, Bamert RS, Lupton DW, Lithgow T. cryoEM-Guided Development of Antibiotics for Drug-Resistant Bacteria. ChemMedChem 2019; 14:527-531. [PMID: 30667174 DOI: 10.1002/cmdc.201900042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Indexed: 11/09/2022]
Abstract
While the ribosome is a common target for antibiotics, challenges with crystallography can impede the development of new bioactives using structure-based drug design approaches. In this study we exploit common structural features present in linezolid-resistant forms of both methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) to redesign the antibiotic. Enabled by rapid and facile cryoEM structures, this process has identified (S)-2,2-dichloro-N-((3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methyl)acetamide (LZD-5) and (S)-2-chloro-N-((3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methyl) acetamide (LZD-6), which inhibit the ribosomal function and growth of linezolid-resistant MRSA and VRE. The strategy discussed highlights the potential for cryoEM to facilitate the development of novel bioactive materials.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
19 |
5
|
Wright A, Deane-Alder K, Marschall E, Bamert R, Venugopal H, Lithgow T, Lupton DW, Belousoff MJ. Characterization of the Core Ribosomal Binding Region for the Oxazolidone Family of Antibiotics Using Cryo-EM. ACS Pharmacol Transl Sci 2020; 3:425-432. [PMID: 32566908 DOI: 10.1021/acsptsci.0c00041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 01/02/2023]
Abstract
Linezolid and tedizolid are oxazolidinones with established clinical utility for the treatment of Gram-positive pathogens. Over time it has become apparent that even modest structural changes to the core phenyl oxazolidinone leads to drastic changes in biological activity. Consequently, the structure-activity relationship around the core oxazolidinone is constantly evolving, often reflected with new structural motifs present in nascent oxazolidinones. Herein we describe the use of cryo-electron microscopy to examine the differences in binding of several functionally different oxazolidinones in the hopes of enhanced understanding of their SAR. Tedizolid, radezolid, T145, and contezolid have been examined within the peptidyl transferase center (PTC) of the 50S ribosomal subunit from methicillin resistant Staphylococcus aureus. The ribosome-antibiotic complexes were resolved to a resolution of around 3 Å enabling unambiguous assignment of how each antibiotic interacts with the PTC.
Collapse
|
|
5 |
18 |
6
|
Manuguri S, Webster K, Yewdall NA, An Y, Venugopal H, Bhugra V, Turner A, Domigan LJ, Gerrard JA, Williams DE, Malmström J. Assembly of Protein Stacks With in Situ Synthesized Nanoparticle Cargo. NANO LETTERS 2018; 18:5138-5145. [PMID: 30047268 DOI: 10.1021/acs.nanolett.8b02055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The ability of proteins to form hierarchical structures through self-assembly provides an opportunity to synthesize and organize nanoparticles. Ordered nanoparticle assemblies are a subject of widespread interest due to the potential to harness their emergent functions. In this work, the toroidal-shaped form of the protein peroxiredoxin, which has a pore size of 7 nm, was used to organize iron oxyhydroxide nanoparticles. Iron in the form of Fe2+ was sequestered into the central cavity of the toroid ring using metal-binding sites engineered there and then hydrolyzed to form iron oxyhydroxide particles bound into the protein pore. By precise manipulation of the pH, the mineralized toroids were organized into stacks confining one-dimensional nanoparticle assemblies. We report the formation and the procedures leading to the formation of such nanostructures and their characterization by chromatography and microscopy. Electrostatic force microscopy clearly revealed the formation of iron-containing nanorods as a result of the self-assembly of the iron-loaded protein. This research bodes well for the use of peroxiredoxin as a template with which to form nanowires and structures for electronic and magnetic applications.
Collapse
|
|
7 |
16 |
7
|
Xu Y, Margetts MB, Venugopal H, Menting JG, Kirk NS, Croll TI, Delaine C, Forbes BE, Lawrence MC. How insulin-like growth factor I binds to a hybrid insulin receptor type 1 insulin-like growth factor receptor. Structure 2022; 30:1098-1108.e6. [PMID: 35660159 PMCID: PMC9364964 DOI: 10.1016/j.str.2022.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/11/2022] [Accepted: 05/10/2022] [Indexed: 12/17/2022]
Abstract
Monomers of the insulin receptor and type 1 insulin-like growth factor receptor (IGF-1R) can combine stochastically to form heterodimeric hybrid receptors. These hybrid receptors display ligand binding and signaling properties that differ from those of the homodimeric receptors. Here, we describe the cryoelectron microscopy structure of such a hybrid receptor in complex with insulin-like growth factor I (IGF-I). The structure (ca. 3.7 Å resolution) displays a single IGF-I ligand, bound in a similar fashion to that seen for IGFs in complex with IGF-1R. The IGF-I ligand engages the first leucine-rich-repeat domain and cysteine-rich region of the IGF-1R monomer (rather than those of the insulin receptor monomer), consistent with the determinants for IGF binding residing in the IGF-1R cysteine-rich region. The structure broadens our understanding of this receptor family and assists in delineating the key structural motifs involved in binding their respective ligands.
A cryo-EM structure of IGF-I bound to a hybrid IR/IGF-1R ectodomain is presented The structure is congruent to those of the single-liganded homodimeric receptors
Collapse
|
|
3 |
14 |
8
|
Moreau F, Kirk NS, Zhang F, Gelfanov V, List EO, Chrudinová M, Venugopal H, Lawrence MC, Jimenez V, Bosch F, Kopchick JJ, DiMarchi RD, Altindis E, Kahn CR. Interaction of a viral insulin-like peptide with the IGF-1 receptor produces a natural antagonist. Nat Commun 2022; 13:6700. [PMID: 36335114 PMCID: PMC9637144 DOI: 10.1038/s41467-022-34391-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Lymphocystis disease virus-1 (LCDV-1) and several other Iridoviridae encode viral insulin/IGF-1 like peptides (VILPs) with high homology to human insulin and IGFs. Here we show that while single-chain (sc) and double-chain (dc) LCDV1-VILPs have very low affinity for the insulin receptor, scLCDV1-VILP has high affinity for IGF1R where it can antagonize human IGF-1 signaling, without altering insulin signaling. Consequently, scLCDV1-VILP inhibits IGF-1 induced cell proliferation and growth hormone/IGF-1 induced growth of mice in vivo. Cryo-electron microscopy reveals that scLCDV1-VILP engages IGF1R in a unique manner, inducing changes in IGF1R conformation that led to separation, rather than juxtaposition, of the transmembrane segments and hence inactivation of the receptor. Thus, scLCDV1-VILP is a natural peptide with specific antagonist properties on IGF1R signaling and may provide a new tool to guide development of hormonal analogues to treat cancers or metabolic disorders sensitive to IGF-1 without affecting glucose metabolism.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
12 |
9
|
Mahto R, Venugopal H, Vibhuti VS, Mukherjee A, Cherukuri V, Healey B, Baskar V, Buch HN, Singh BM. The effectiveness of a hospital diabetes outreach service in supporting care for acutely admitted patients with diabetes. QJM 2009; 102:203-7. [PMID: 19153084 DOI: 10.1093/qjmed/hcn174] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Patients with diabetes have increased frequency of hospital admissions and longer lengths of stay compared to patients without diabetes. Our specialist diabetes inpatient service was reconfigured to deliver a proactive diabetes outreach service to improve the overall care of this population. AIMS To ascertain the effect of a structured diabetes outreach service to acutely admitted patients with diabetes on avoidable admissions, delayed discharges and appropriate diabetes related follow-up plans. METHODS Audits were carried out before and 4 months after the introduction of a diabetes outreach service. The proportion of patients under care of the diabetes team, avoidable admissions, delayed discharges and existence of effective follow-up plans were compared pre- and post-implementation of this outreach service. RESULTS The number of inpatients with diabetes fell by 35% (83 on a typical day pre-outreach vs. 53 post-outreach) despite a similar number of total medical admissions in that month (1449 vs.1459). This was due to a reduction in those admitted with diabetes related (13 vs. 5) and general medical (29 vs. 10) problems whilst numbers requiring other specialist care (41 vs. 39) remained unchanged. The proportion of patients under the care of diabetes team rose (23% vs. 73%) while those with avoidable admissions (18% vs. 7%), delayed discharges (17% vs. 2%) and inappropriate discharge plans (65% vs. 11%) all fell. CONCLUSION This reformatted service was associated with a marked improvement in a number of parameters relevant to inpatient care.
Collapse
|
|
16 |
10 |
10
|
Baskar V, Venugopal H, Holland MR, Singh BM. Clinical utility of estimated glomerular filtration rates in predicting renal risk in a district diabetes population. Diabet Med 2006; 23:1057-60. [PMID: 16978368 DOI: 10.1111/j.1464-5491.2006.01954.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AIMS To determine the utility of estimated glomerular filtration rates (eGFR) in predicting renal risk over and above currently available strategies that incorporate serum creatinine and microalbuminuria in a diabetes population. METHODS Cross-sectional study of 4548 diabetic individuals attending a single centre over an 18-month period. Glomerular filtration rates were estimated using the Modification of Diet in Renal Disease (MDRD) equation. Microalbuminuria was measured using spot morning urine for albumin:creatinine ratio (ACR). SPSS was utilized for statistical analysis. RESULTS Of the 4303 subjects with complete data, 373 (9%), 2634 (61%), 1197 (28%) and 99 (2%) individuals, respectively, had eGFR > 90, 90-60, 60-30 and < 30 ml/min per 1.73 m(2), respectively. Of those with clinically meaningful renal disease (eGFR < 60 ml/min per 1.73 m(2)), only 42% and 45%, respectively, were identified as at risk by clinical strategies utilizing serum creatinine and urine ACR individually. Even using the two together, 38% of the patients at risk would still not have been identified, since they had normal values of both. CONCLUSION Current strategies utilizing serum creatinine and urine ACR are insufficient for the detection of renal disease in diabetes. Clinicians should consider monitoring GFR estimates in addition to assessing blood pressure, serum creatinine and urine albumin excretion in order to assess renal status and risk in adults with diabetes.
Collapse
|
Evaluation Study |
19 |
4 |
11
|
Zhang S, Gervinskas G, Qiu S, Venugopal H, Marceau RKW, de Marco A, Li J, Fu J. Methods of Preparing Nanoscale Vitreous Ice Needles for High-Resolution Cryogenic Characterization. NANO LETTERS 2022; 22:6501-6508. [PMID: 35926226 DOI: 10.1021/acs.nanolett.2c01495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
New high-resolution imaging methods for biological samples such as atom probe tomography (APT), facilitated by the invention of laser-pulsed atom probes and cryo-transfer procedures, have recently emerged. However, ensuring the vitreous state of the fabricated aqueous needle-shaped APT samples remains a challenge despite it being crucial for characterizing biomolecules such as proteins and cellular architectures in their near-native state. Our work investigated three potential approaches: (1) open microcapillary (OMC) method, (2) high-pressure freezing method (HPF), and (3) graphene encapsulation method. Diffraction patterns of the needle specimens acquired by cryo-TEM have demonstrated the vitreous state of the ice needles, although limited to the tip regions, has been achieved with the three proposed approaches. With the capability to prepare vitreous ice needles from hydrated samples of up to ∼200 μm thickness (HPF), combined use of the three approaches opens new avenues for future near-atomic imaging of biological cells in their near-native state.
Collapse
|
|
3 |
2 |
12
|
Uckelmann M, Levina V, Taveneau C, Ng XH, Pandey V, Martinez J, Mendiratta S, Houx J, Boudes M, Venugopal H, Trépout S, Zhang Q, Flanigan S, Li M, Sierecki E, Gambin Y, Das PP, Bell O, de Marco A, Davidovich C. Dynamic PRC1-CBX8 stabilizes a porous structure of chromatin condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.08.539931. [PMID: 38405976 PMCID: PMC10888862 DOI: 10.1101/2023.05.08.539931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The compaction of chromatin is a prevalent paradigm in gene repression. Chromatin compaction is commonly thought to repress transcription by restricting chromatin accessibility. However, the spatial organisation and dynamics of chromatin compacted by gene-repressing factors are unknown. Using cryo-electron tomography, we solved the three-dimensional structure of chromatin condensed by the Polycomb Repressive Complex 1 (PRC1) in a complex with CBX8. PRC1-condensed chromatin is porous and stabilised through multivalent dynamic interactions of PRC1 with chromatin. Mechanistically, positively charged residues on the internally disordered regions (IDRs) of CBX8 mask negative charges on the DNA to stabilize the condensed state of chromatin. Within condensates, PRC1 remains dynamic while maintaining a static chromatin structure. In differentiated mouse embryonic stem cells, CBX8-bound chromatin remains accessible. These findings challenge the idea of rigidly compacted polycomb domains and instead provides a mechanistic framework for dynamic and accessible PRC1-chromatin condensates.
Collapse
|
Preprint |
1 |
1 |
13
|
Bayly-Jones C, Lupton CJ, Keen AC, Dong S, Mastos C, Luo W, Qian C, Jones GD, Venugopal H, Chang YG, Clarke RJ, Halls ML, Ellisdon AM. LYCHOS is a human hybrid of a plant-like PIN transporter and a GPCR. Nature 2024; 634:1238-1244. [PMID: 39358511 PMCID: PMC11525196 DOI: 10.1038/s41586-024-08012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Lysosomes have crucial roles in regulating eukaryotic metabolism and cell growth by acting as signalling platforms to sense and respond to changes in nutrient and energy availability1. LYCHOS (GPR155) is a lysosomal transmembrane protein that functions as a cholesterol sensor, facilitating the cholesterol-dependent activation of the master protein kinase mechanistic target of rapamycin complex 1 (mTORC1)2. However, the structural basis of LYCHOS assembly and activity remains unclear. Here we determine several high-resolution cryo-electron microscopy structures of human LYCHOS, revealing a homodimeric transmembrane assembly of a transporter-like domain fused to a G-protein-coupled receptor (GPCR) domain. The class B2-like GPCR domain is captured in the apo state and packs against the surface of the transporter-like domain, providing an unusual example of a GPCR as a domain in a larger transmembrane assembly. Cholesterol sensing is mediated by a conserved cholesterol-binding motif, positioned between the GPCR and transporter domains. We reveal that the LYCHOS transporter-like domain is an orthologue of the plant PIN-FORMED (PIN) auxin transporter family, and has greater structural similarity to plant auxin transporters than to known human transporters. Activity assays support a model in which the LYCHOS transporter and GPCR domains coordinate to sense cholesterol and regulate mTORC1 activation.
Collapse
|
research-article |
1 |
|
14
|
Hardy J, Newton N, Modhiran N, Scott C, Venugopal H, Vet L, Young P, Hall R, Hobson-Peters J, Watterson D, Coulibaly F. High-resolution structures of immature and chimeric flaviviruses reveal key features redefining viral architecture and maturation. Acta Crystallogr A Found Adv 2021. [DOI: 10.1107/s0108767321094393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
|
4 |
|
15
|
Chrudinová M, Kirk NS, Chuard A, Venugopal H, Zhang F, Lubos M, Gelfanov V, Páníková T, Žáková L, Cutone J, Mojares M, DiMarchi R, Jiráček J, Altindis E. A viral insulin-like peptide inhibits IGF-1 receptor phosphorylation and regulates IGF1R gene expression. Mol Metab 2024; 80:101863. [PMID: 38182007 PMCID: PMC10831276 DOI: 10.1016/j.molmet.2023.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024] Open
Abstract
OBJECTIVE The insulin/IGF superfamily is conserved across vertebrates and invertebrates. Our team has identified five viruses containing genes encoding viral insulin/IGF-1 like peptides (VILPs) closely resembling human insulin and IGF-1. This study aims to characterize the impact of Mandarin fish ranavirus (MFRV) and Lymphocystis disease virus-Sa (LCDV-Sa) VILPs on the insulin/IGF system for the first time. METHODS We chemically synthesized single chain (sc, IGF-1 like) and double chain (dc, insulin like) forms of MFRV and LCDV-Sa VILPs. Using cell lines overexpressing either human insulin receptor isoform A (IR-A), isoform B (IR-B) or IGF-1 receptor (IGF1R), and AML12 murine hepatocytes, we characterized receptor binding, insulin/IGF signaling. We further characterized the VILPs' effects of proliferation and IGF1R and IR gene expression, and compared them to native ligands. Additionally, we performed insulin tolerance test in CB57BL/6 J mice to examine in vivo effects of VILPs on blood glucose levels. Finally, we employed cryo-electron microscopy (cryoEM) to analyze the structure of scMFRV-VILP in complex with the IGF1R ectodomain. RESULTS VILPs can bind to human IR and IGF1R, stimulate receptor autophosphorylation and downstream signaling pathways. Notably, scMFRV-VILP exhibited a particularly strong affinity for IGF1R, with a mere 10-fold decrease compared to human IGF-1. At high concentrations, scMFRV-VILP selectively reduced IGF-1 stimulated IGF1R autophosphorylation and Erk phosphorylation (Ras/MAPK pathway), while leaving Akt phosphorylation (PI3K/Akt pathway) unaffected, indicating a potential biased inhibitory function. Prolonged exposure to MFRV-VILP led to a significant decrease in IGF1R gene expression in IGF1R overexpressing cells and AML12 hepatocytes. Furthermore, insulin tolerance test revealed scMFRV-VILP's sustained glucose-lowering effect compared to insulin and IGF-1. Finally, cryo-EM analysis revealed that scMFRV-VILP engages with IGF1R in a manner closely resembling IGF-1 binding, resulting in a highly analogous structure. CONCLUSIONS This study introduces MFRV and LCDV-Sa VILPs as novel members of the insulin/IGF superfamily. Particularly, scMFRV-VILP exhibits a biased inhibitory effect on IGF1R signaling at high concentrations, selectively inhibiting IGF-1 stimulated IGF1R autophosphorylation and Erk phosphorylation, without affecting Akt phosphorylation. In addition, MFRV-VILP specifically regulates IGF-1R gene expression and IGF1R protein levels without affecting IR. CryoEM analysis confirms that scMFRV-VILP' binding to IGF1R is mirroring the interaction pattern observed with IGF-1. These findings offer valuable insights into IGF1R action and inhibition, suggesting potential applications in development of IGF1R specific inhibitors and advancing long-lasting insulins.
Collapse
|
research-article |
1 |
|
16
|
Kropp A, Gillett DL, Venugopal H, Gonzálvez MA, Lingford JP, Jain S, Barlow CK, Zhang J, Greening C, Grinter R. Quinone extraction drives atmospheric carbon monoxide oxidation in bacteria. Nat Chem Biol 2025:10.1038/s41589-025-01836-0. [PMID: 39881213 DOI: 10.1038/s41589-025-01836-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025]
Abstract
Diverse bacteria and archaea use atmospheric CO as an energy source for long-term survival. Bacteria use [MoCu]-CO dehydrogenases (Mo-CODH) to convert atmospheric CO to carbon dioxide, transferring the obtained electrons to the aerobic respiratory chain. However, it is unknown how these enzymes oxidize CO at low concentrations and interact with the respiratory chain. Here, we use cryo-electron microscopy and structural modeling to show how Mo-CODHMs (CoxSML) from Mycobacterium smegmatis interacts with its partner, the membrane-bound menaquinone-binding protein CoxG. We provide electrochemical, biochemical and genetic evidence that Mo-CODH transfers CO-derived electrons to the aerobic respiratory chain through CoxG. Lastly, we show that Mo-CODH and CoxG genetically and structurally associate in diverse bacteria and archaea. These findings reveal the basis of the biogeochemically and ecologically important process of atmospheric CO oxidation, while demonstrating that long-range quinone transport is a general mechanism of energy conservation, which convergently evolved on multiple occasions.
Collapse
|
|
1 |
|
17
|
Bayly-Jones C, Lupton CJ, D’Andrea L, Chang YG, Jones GD, Steele JR, Venugopal H, Schittenhelm RB, Halls ML, Ellisdon AM. Structure of the human TSC:WIPI3 lysosomal recruitment complex. SCIENCE ADVANCES 2024; 10:eadr5807. [PMID: 39565846 PMCID: PMC11578170 DOI: 10.1126/sciadv.adr5807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Tuberous sclerosis complex (TSC) is targeted to the lysosomal membrane, where it hydrolyzes RAS homolog-mTORC1 binding (RHEB) from its GTP-bound to GDP-bound state, inhibiting mechanistic target of rapamycin complex 1 (mTORC1). Loss-of-function mutations in TSC cause TSC disease, marked by excessive tumor growth. Here, we overcome a high degree of continuous conformational heterogeneity to determine the 2.8-Å cryo-electron microscopy (cryo-EM) structure of the complete human TSC in complex with the lysosomal recruitment factor WD repeat domain phosphoinositide-interacting protein 3 (WIPI3). We discover a previously undetected amino-terminal TSC1 HEAT repeat dimer that clamps onto a single TSC wing and forms a phosphatidylinositol phosphate (PIP)-binding pocket, which specifically binds monophosphorylated PIPs. These structural advances provide a model by which WIPI3 and PIP-signaling networks coordinate to recruit TSC to the lysosomal membrane to inhibit mTORC1. The high-resolution TSC structure reveals previously unrecognized mutational hotspots and uncovers crucial insights into the mechanisms of TSC dysregulation in disease.
Collapse
|
research-article |
1 |
|
18
|
Uckelmann M, Levina V, Taveneau C, Ng XH, Pandey V, Martinez J, Mendiratta S, Houx J, Boudes M, Venugopal H, Trépout S, Fulcher AJ, Zhang Q, Flanigan S, Li M, Sierecki E, Gambin Y, Das PP, Bell O, de Marco A, Davidovich C. Dynamic PRC1-CBX8 stabilizes a porous structure of chromatin condensates. Nat Struct Mol Biol 2025; 32:520-530. [PMID: 39815045 PMCID: PMC11919719 DOI: 10.1038/s41594-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/21/2024] [Indexed: 01/18/2025]
Abstract
The compaction of chromatin is a prevalent paradigm in gene repression. Chromatin compaction is commonly thought to repress transcription by restricting chromatin accessibility. However, the spatial organization and dynamics of chromatin compacted by gene-repressing factors are unknown. Here, using cryo-electron tomography, we solved the three-dimensional structure of chromatin condensed by the polycomb repressive complex 1 (PRC1) in a complex with CBX8. PRC1-condensed chromatin is porous and stabilized through multivalent dynamic interactions of PRC1 with chromatin. Mechanistically, positively charged residues on the internally disordered regions of CBX8 mask negative charges on the DNA to stabilize the condensed state of chromatin. Within condensates, PRC1 remains dynamic while maintaining a static chromatin structure. In differentiated mouse embryonic stem cells, CBX8-bound chromatin remains accessible. These findings challenge the idea of rigidly compacted polycomb domains and instead provide a mechanistic framework for dynamic and accessible PRC1-chromatin condensates.
Collapse
|
research-article |
1 |
|
19
|
Munder F, Voutsinos M, Hantke K, Venugopal H, Grinter R. High-affinity PQQ import is widespread in Gram-negative bacteria. SCIENCE ADVANCES 2025; 11:eadr2753. [PMID: 40446051 PMCID: PMC12124388 DOI: 10.1126/sciadv.adr2753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 04/28/2025] [Indexed: 06/02/2025]
Abstract
Pyrroloquinoline quinone (PQQ) is a soluble redox cofactor used by diverse bacteria. Many Gram-negative bacteria that encode PQQ-dependent enzymes do not produce it and instead obtain it from the environment. To achieve this, Escherichia coli uses the TonB-dependent transporter PqqU as a high-affinity PQQ importer. Here, we show that PqqU binds PQQ with high affinity and determine the high-resolution structure of the PqqU-PQQ complex, revealing that PqqU undergoes conformational changes in PQQ binding to capture the cofactor in an internal cavity. We show that these conformational changes preclude the binding of a bacteriophage, which targets PqqU as a cell surface receptor. Guided by the PqqU-PQQ structure, we identify amino acids essential for PQQ import and leverage this information to map the presence of PqqU across Gram-negative bacteria. This reveals that PqqU is encoded by Gram-negative bacteria from at least 22 phyla occupying diverse habitats, indicating that PQQ is an important cofactor for bacteria that adopt diverse lifestyles and metabolic strategies.
Collapse
|
research-article |
1 |
|