1
|
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108:1167-74. [PMID: 11602624 PMCID: PMC209533 DOI: 10.1172/jci13505] [Citation(s) in RCA: 4167] [Impact Index Per Article: 173.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metformin is a widely used drug for treatment of type 2 diabetes with no defined cellular mechanism of action. Its glucose-lowering effect results from decreased hepatic glucose production and increased glucose utilization. Metformin's beneficial effects on circulating lipids have been linked to reduced fatty liver. AMP-activated protein kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. Here we report that metformin activates AMPK in hepatocytes; as a result, acetyl-CoA carboxylase (ACC) activity is reduced, fatty acid oxidation is induced, and expression of lipogenic enzymes is suppressed. Activation of AMPK by metformin or an adenosine analogue suppresses expression of SREBP-1, a key lipogenic transcription factor. In metformin-treated rats, hepatic expression of SREBP-1 (and other lipogenic) mRNAs and protein is reduced; activity of the AMPK target, ACC, is also reduced. Using a novel AMPK inhibitor, we find that AMPK activation is required for metformin's inhibitory effect on glucose production by hepatocytes. In isolated rat skeletal muscles, metformin stimulates glucose uptake coincident with AMPK activation. Activation of AMPK provides a unified explanation for the pleiotropic beneficial effects of this drug; these results also suggest that alternative means of modulating AMPK should be useful for the treatment of metabolic disorders.
Collapse
|
research-article |
24 |
4167 |
2
|
Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben PA, Mohammed OF, Sargent EH, Bakr OM. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015; 347:519-22. [DOI: 10.1126/science.aaa2725] [Citation(s) in RCA: 3430] [Impact Index Per Article: 343.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
|
10 |
3430 |
3
|
Bousquet J, Khaltaev N, Cruz AA, Denburg J, Fokkens WJ, Togias A, Zuberbier T, Baena-Cagnani CE, Canonica GW, van Weel C, Agache I, Aït-Khaled N, Bachert C, Blaiss MS, Bonini S, Boulet LP, Bousquet PJ, Camargos P, Carlsen KH, Chen Y, Custovic A, Dahl R, Demoly P, Douagui H, Durham SR, van Wijk RG, Kalayci O, Kaliner MA, Kim YY, Kowalski ML, Kuna P, Le LTT, Lemiere C, Li J, Lockey RF, Mavale-Manuel S, Meltzer EO, Mohammad Y, Mullol J, Naclerio R, O'Hehir RE, Ohta K, Ouedraogo S, Palkonen S, Papadopoulos N, Passalacqua G, Pawankar R, Popov TA, Rabe KF, Rosado-Pinto J, Scadding GK, Simons FER, Toskala E, Valovirta E, van Cauwenberge P, Wang DY, Wickman M, Yawn BP, Yorgancioglu A, Yusuf OM, Zar H, Annesi-Maesano I, Bateman ED, Ben Kheder A, Boakye DA, Bouchard J, Burney P, Busse WW, Chan-Yeung M, Chavannes NH, Chuchalin A, Dolen WK, Emuzyte R, Grouse L, Humbert M, Jackson C, Johnston SL, Keith PK, Kemp JP, Klossek JM, Larenas-Linnemann D, Lipworth B, Malo JL, Marshall GD, Naspitz C, Nekam K, Niggemann B, Nizankowska-Mogilnicka E, Okamoto Y, Orru MP, Potter P, Price D, Stoloff SW, Vandenplas O, Viegi G, Williams D. Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen). Allergy 2008; 63 Suppl 86:8-160. [PMID: 18331513 DOI: 10.1111/j.1398-9995.2007.01620.x] [Citation(s) in RCA: 3124] [Impact Index Per Article: 183.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
MESH Headings
- Adolescent
- Asthma/epidemiology
- Asthma/etiology
- Asthma/therapy
- Child
- Global Health
- Humans
- Prevalence
- Rhinitis, Allergic, Perennial/complications
- Rhinitis, Allergic, Perennial/diagnosis
- Rhinitis, Allergic, Perennial/epidemiology
- Rhinitis, Allergic, Perennial/therapy
- Rhinitis, Allergic, Seasonal/complications
- Rhinitis, Allergic, Seasonal/diagnosis
- Rhinitis, Allergic, Seasonal/epidemiology
- Rhinitis, Allergic, Seasonal/therapy
- Risk Factors
- World Health Organization
Collapse
|
Practice Guideline |
17 |
3124 |
4
|
Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, Chen Y, Mohammad TA, Chen Y, Fedor HL, Lotan TL, Zheng Q, De Marzo AM, Isaacs JT, Isaacs WB, Nadal R, Paller CJ, Denmeade SR, Carducci MA, Eisenberger MA, Luo J. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 2014; 371:1028-38. [PMID: 25184630 PMCID: PMC4201502 DOI: 10.1056/nejmoa1315815] [Citation(s) in RCA: 2105] [Impact Index Per Article: 191.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The androgen-receptor isoform encoded by splice variant 7 lacks the ligand-binding domain, which is the target of enzalutamide and abiraterone, but remains constitutively active as a transcription factor. We hypothesized that detection of androgen-receptor splice variant 7 messenger RNA (AR-V7) in circulating tumor cells from men with advanced prostate cancer would be associated with resistance to enzalutamide and abiraterone. METHODS We used a quantitative reverse-transcriptase-polymerase-chain-reaction assay to evaluate AR-V7 in circulating tumor cells from prospectively enrolled patients with metastatic castration-resistant prostate cancer who were initiating treatment with either enzalutamide or abiraterone. We examined associations between AR-V7 status (positive vs. negative) and prostate-specific antigen (PSA) response rates (the primary end point), freedom from PSA progression (PSA progression-free survival), clinical or radiographic progression-free survival, and overall survival. RESULTS A total of 31 enzalutamide-treated patients and 31 abiraterone-treated patients were enrolled, of whom 39% and 19%, respectively, had detectable AR-V7 in circulating tumor cells. Among men receiving enzalutamide, AR-V7-positive patients had lower PSA response rates than AR-V7-negative patients (0% vs. 53%, P=0.004) and shorter PSA progression-free survival (median, 1.4 months vs. 6.0 months; P<0.001), clinical or radiographic progression-free survival (median, 2.1 months vs. 6.1 months; P<0.001), and overall survival (median, 5.5 months vs. not reached; P=0.002). Similarly, among men receiving abiraterone, AR-V7-positive patients had lower PSA response rates than AR-V7-negative patients (0% vs. 68%, P=0.004) and shorter PSA progression-free survival (median, 1.3 months vs. not reached; P<0.001), clinical or radiographic progression-free survival (median, 2.3 months vs. not reached; P<0.001), and overall survival (median, 10.6 months vs. not reached, P=0.006). The association between AR-V7 detection and therapeutic resistance was maintained after adjustment for expression of full-length androgen receptor messenger RNA. CONCLUSIONS Detection of AR-V7 in circulating tumor cells from patients with castration-resistant prostate cancer may be associated with resistance to enzalutamide and abiraterone. These findings require large-scale prospective validation. (Funded by the Prostate Cancer Foundation and others.).
Collapse
|
Research Support, N.I.H., Extramural |
11 |
2105 |
5
|
|
|
13 |
1572 |
6
|
Abbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB, Affeldt C, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aiello L, Ain A, Ajith P, Allen B, Allocca A, Altin PA, Anderson SB, Anderson WG, Arai K, Arain MA, Araya MC, Arceneaux CC, Areeda JS, Arnaud N, Arun KG, Ascenzi S, Ashton G, Ast M, Aston SM, Astone P, Aufmuth P, Aulbert C, Babak S, Bacon P, Bader MKM, Baker PT, Baldaccini F, Ballardin G, Ballmer SW, Barayoga JC, Barclay SE, Barish BC, Barker D, Barone F, Barr B, Barsotti L, Barsuglia M, Barta D, Bartlett J, Barton MA, Bartos I, Bassiri R, Basti A, Batch JC, Baune C, Bavigadda V, Bazzan M, Behnke B, Bejger M, Belczynski C, Bell AS, Bell CJ, Berger BK, Bergman J, Bergmann G, Berry CPL, Bersanetti D, Bertolini A, Betzwieser J, Bhagwat S, Bhandare R, Bilenko IA, Billingsley G, Birch J, Birney R, Birnholtz O, Biscans S, Bisht A, Bitossi M, Biwer C, Bizouard MA, Blackburn JK, Blair CD, Blair DG, Blair RM, Bloemen S, Bock O, Bodiya TP, Boer M, Bogaert G, Bogan C, Bohe A, Bojtos P, Bond C, et alAbbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB, Affeldt C, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aiello L, Ain A, Ajith P, Allen B, Allocca A, Altin PA, Anderson SB, Anderson WG, Arai K, Arain MA, Araya MC, Arceneaux CC, Areeda JS, Arnaud N, Arun KG, Ascenzi S, Ashton G, Ast M, Aston SM, Astone P, Aufmuth P, Aulbert C, Babak S, Bacon P, Bader MKM, Baker PT, Baldaccini F, Ballardin G, Ballmer SW, Barayoga JC, Barclay SE, Barish BC, Barker D, Barone F, Barr B, Barsotti L, Barsuglia M, Barta D, Bartlett J, Barton MA, Bartos I, Bassiri R, Basti A, Batch JC, Baune C, Bavigadda V, Bazzan M, Behnke B, Bejger M, Belczynski C, Bell AS, Bell CJ, Berger BK, Bergman J, Bergmann G, Berry CPL, Bersanetti D, Bertolini A, Betzwieser J, Bhagwat S, Bhandare R, Bilenko IA, Billingsley G, Birch J, Birney R, Birnholtz O, Biscans S, Bisht A, Bitossi M, Biwer C, Bizouard MA, Blackburn JK, Blair CD, Blair DG, Blair RM, Bloemen S, Bock O, Bodiya TP, Boer M, Bogaert G, Bogan C, Bohe A, Bojtos P, Bond C, Bondu F, Bonnand R, Boom BA, Bork R, Boschi V, Bose S, Bouffanais Y, Bozzi A, Bradaschia C, Brady PR, Braginsky VB, Branchesi M, Brau JE, Briant T, Brillet A, Brinkmann M, Brisson V, Brockill P, Brooks AF, Brown DA, Brown DD, Brown NM, Buchanan CC, Buikema A, Bulik T, Bulten HJ, Buonanno A, Buskulic D, Buy C, Byer RL, Cabero M, Cadonati L, Cagnoli G, Cahillane C, Calderón Bustillo J, Callister T, Calloni E, Camp JB, Cannon KC, Cao J, Capano CD, Capocasa E, Carbognani F, Caride S, Casanueva Diaz J, Casentini C, Caudill S, Cavaglià M, Cavalier F, Cavalieri R, Cella G, Cepeda CB, Cerboni Baiardi L, Cerretani G, Cesarini E, Chakraborty R, Chalermsongsak T, Chamberlin SJ, Chan M, Chao S, Charlton P, Chassande-Mottin E, Chen HY, Chen Y, Cheng C, Chincarini A, Chiummo A, Cho HS, Cho M, Chow JH, Christensen N, Chu Q, Chua S, Chung S, Ciani G, Clara F, Clark JA, Cleva F, Coccia E, Cohadon PF, Colla A, Collette CG, Cominsky L, Constancio M, Conte A, Conti L, Cook D, Corbitt TR, Cornish N, Corsi A, Cortese S, Costa CA, Coughlin MW, Coughlin SB, Coulon JP, Countryman ST, Couvares P, Cowan EE, Coward DM, Cowart MJ, Coyne DC, Coyne R, Craig K, Creighton JDE, Creighton TD, Cripe J, Crowder SG, Cruise AM, Cumming A, Cunningham L, Cuoco E, Dal Canton T, Danilishin SL, D'Antonio S, Danzmann K, Darman NS, Da Silva Costa CF, Dattilo V, Dave I, Daveloza HP, Davier M, Davies GS, Daw EJ, Day R, De S, DeBra D, Debreczeni G, Degallaix J, De Laurentis M, Deléglise S, Del Pozzo W, Denker T, Dent T, Dereli H, Dergachev V, DeRosa RT, De Rosa R, DeSalvo R, Dhurandhar S, Díaz MC, Di Fiore L, Di Giovanni M, Di Lieto A, Di Pace S, Di Palma I, Di Virgilio A, Dojcinoski G, Dolique V, Donovan F, Dooley KL, Doravari S, Douglas R, Downes TP, Drago M, Drever RWP, Driggers JC, Du Z, Ducrot M, Dwyer SE, Edo TB, Edwards MC, Effler A, Eggenstein HB, Ehrens P, Eichholz J, Eikenberry SS, Engels W, Essick RC, Etzel T, Evans M, Evans TM, Everett R, Factourovich M, Fafone V, Fair H, Fairhurst S, Fan X, Fang Q, Farinon S, Farr B, Farr WM, Favata M, Fays M, Fehrmann H, Fejer MM, Feldbaum D, Ferrante I, Ferreira EC, Ferrini F, Fidecaro F, Finn LS, Fiori I, Fiorucci D, Fisher RP, Flaminio R, Fletcher M, Fong H, Fournier JD, Franco S, Frasca S, Frasconi F, Frede M, Frei Z, Freise A, Frey R, Frey V, Fricke TT, Fritschel P, Frolov VV, Fulda P, Fyffe M, Gabbard HAG, Gair JR, Gammaitoni L, Gaonkar SG, Garufi F, Gatto A, Gaur G, Gehrels N, Gemme G, Gendre B, Genin E, Gennai A, George J, Gergely L, Germain V, Ghosh A, Ghosh A, Ghosh S, Giaime JA, Giardina KD, Giazotto A, Gill K, Glaefke A, Gleason JR, Goetz E, Goetz R, Gondan L, González G, Gonzalez Castro JM, Gopakumar A, Gordon NA, Gorodetsky ML, Gossan SE, Gosselin M, Gouaty R, Graef C, Graff PB, Granata M, Grant A, Gras S, Gray C, Greco G, Green AC, Greenhalgh RJS, Groot P, Grote H, Grunewald S, Guidi GM, Guo X, Gupta A, Gupta MK, Gushwa KE, Gustafson EK, Gustafson R, Hacker JJ, Hall BR, Hall ED, Hammond G, Haney M, Hanke MM, Hanks J, Hanna C, Hannam MD, Hanson J, Hardwick T, Harms J, Harry GM, Harry IW, Hart MJ, Hartman MT, Haster CJ, Haughian K, Healy J, Heefner J, Heidmann A, Heintze MC, Heinzel G, Heitmann H, Hello P, Hemming G, Hendry M, Heng IS, Hennig J, Heptonstall AW, Heurs M, Hild S, Hoak D, Hodge KA, Hofman D, Hollitt SE, Holt K, Holz DE, Hopkins P, Hosken DJ, Hough J, Houston EA, Howell EJ, Hu YM, Huang S, Huerta EA, Huet D, Hughey B, Husa S, Huttner SH, Huynh-Dinh T, Idrisy A, Indik N, Ingram DR, Inta R, Isa HN, Isac JM, Isi M, Islas G, Isogai T, Iyer BR, Izumi K, Jacobson MB, Jacqmin T, Jang H, Jani K, Jaranowski P, Jawahar S, Jiménez-Forteza F, Johnson WW, Johnson-McDaniel NK, Jones DI, Jones R, Jonker RJG, Ju L, Haris K, Kalaghatgi CV, Kalogera V, Kandhasamy S, Kang G, Kanner JB, Karki S, Kasprzack M, Katsavounidis E, Katzman W, Kaufer S, Kaur T, Kawabe K, Kawazoe F, Kéfélian F, Kehl MS, Keitel D, Kelley DB, Kells W, Kennedy R, Keppel DG, Key JS, Khalaidovski A, Khalili FY, Khan I, Khan S, Khan Z, Khazanov EA, Kijbunchoo N, Kim C, Kim J, Kim K, Kim NG, Kim N, Kim YM, King EJ, King PJ, Kinzel DL, Kissel JS, Kleybolte L, Klimenko S, Koehlenbeck SM, Kokeyama K, Koley S, Kondrashov V, Kontos A, Koranda S, Korobko M, Korth WZ, Kowalska I, Kozak DB, Kringel V, Krishnan B, Królak A, Krueger C, Kuehn G, Kumar P, Kumar R, Kuo L, Kutynia A, Kwee P, Lackey BD, Landry M, Lange J, Lantz B, Lasky PD, Lazzarini A, Lazzaro C, Leaci P, Leavey S, Lebigot EO, Lee CH, Lee HK, Lee HM, Lee K, Lenon A, Leonardi M, Leong JR, Leroy N, Letendre N, Levin Y, Levine BM, Li TGF, Libson A, Littenberg TB, Lockerbie NA, Logue J, Lombardi AL, London LT, Lord JE, Lorenzini M, Loriette V, Lormand M, Losurdo G, Lough JD, Lousto CO, Lovelace G, Lück H, Lundgren AP, Luo J, Lynch R, Ma Y, MacDonald T, Machenschalk B, MacInnis M, Macleod DM, Magaña-Sandoval F, Magee RM, Mageswaran M, Majorana E, Maksimovic I, Malvezzi V, Man N, Mandel I, Mandic V, Mangano V, Mansell GL, Manske M, Mantovani M, Marchesoni F, Marion F, Márka S, Márka Z, Markosyan AS, Maros E, Martelli F, Martellini L, Martin IW, Martin RM, Martynov DV, Marx JN, Mason K, Masserot A, Massinger TJ, Masso-Reid M, Matichard F, Matone L, Mavalvala N, Mazumder N, Mazzolo G, McCarthy R, McClelland DE, McCormick S, McGuire SC, McIntyre G, McIver J, McManus DJ, McWilliams ST, Meacher D, Meadors GD, Meidam J, Melatos A, Mendell G, Mendoza-Gandara D, Mercer RA, Merilh E, Merzougui M, Meshkov S, Messenger C, Messick C, Meyers PM, Mezzani F, Miao H, Michel C, Middleton H, Mikhailov EE, Milano L, Miller J, Millhouse M, Minenkov Y, Ming J, Mirshekari S, Mishra C, Mitra S, Mitrofanov VP, Mitselmakher G, Mittleman R, Moggi A, Mohan M, Mohapatra SRP, Montani M, Moore BC, Moore CJ, Moraru D, Moreno G, Morriss SR, Mossavi K, Mours B, Mow-Lowry CM, Mueller CL, Mueller G, Muir AW, Mukherjee A, Mukherjee D, Mukherjee S, Mukund N, Mullavey A, Munch J, Murphy DJ, Murray PG, Mytidis A, Nardecchia I, Naticchioni L, Nayak RK, Necula V, Nedkova K, Nelemans G, Neri M, Neunzert A, Newton G, Nguyen TT, Nielsen AB, Nissanke S, Nitz A, Nocera F, Nolting D, Normandin MEN, Nuttall LK, Oberling J, Ochsner E, O'Dell J, Oelker E, Ogin GH, Oh JJ, Oh SH, Ohme F, Oliver M, Oppermann P, Oram RJ, O'Reilly B, O'Shaughnessy R, Ott CD, Ottaway DJ, Ottens RS, Overmier H, Owen BJ, Pai A, Pai SA, Palamos JR, Palashov O, Palomba C, Pal-Singh A, Pan H, Pan Y, Pankow C, Pannarale F, Pant BC, Paoletti F, Paoli A, Papa MA, Paris HR, Parker W, Pascucci D, Pasqualetti A, Passaquieti R, Passuello D, Patricelli B, Patrick Z, Pearlstone BL, Pedraza M, Pedurand R, Pekowsky L, Pele A, Penn S, Perreca A, Pfeiffer HP, Phelps M, Piccinni O, Pichot M, Pickenpack M, Piergiovanni F, Pierro V, Pillant G, Pinard L, Pinto IM, Pitkin M, Poeld JH, Poggiani R, Popolizio P, Post A, Powell J, Prasad J, Predoi V, Premachandra SS, Prestegard T, Price LR, Prijatelj M, Principe M, Privitera S, Prix R, Prodi GA, Prokhorov L, Puncken O, Punturo M, Puppo P, Pürrer M, Qi H, Qin J, Quetschke V, Quintero EA, Quitzow-James R, Raab FJ, Rabeling DS, Radkins H, Raffai P, Raja S, Rakhmanov M, Ramet CR, Rapagnani P, Raymond V, Razzano M, Re V, Read J, Reed CM, Regimbau T, Rei L, Reid S, Reitze DH, Rew H, Reyes SD, Ricci F, Riles K, Robertson NA, Robie R, Robinet F, Rocchi A, Rolland L, Rollins JG, Roma VJ, Romano JD, Romano R, Romanov G, Romie JH, Rosińska D, Rowan S, Rüdiger A, Ruggi P, Ryan K, Sachdev S, Sadecki T, Sadeghian L, Salconi L, Saleem M, Salemi F, Samajdar A, Sammut L, Sampson LM, Sanchez EJ, Sandberg V, Sandeen B, Sanders GH, Sanders JR, Sassolas B, Sathyaprakash BS, Saulson PR, Sauter O, Savage RL, Sawadsky A, Schale P, Schilling R, Schmidt J, Schmidt P, Schnabel R, Schofield RMS, Schönbeck A, Schreiber E, Schuette D, Schutz BF, Scott J, Scott SM, Sellers D, Sengupta AS, Sentenac D, Sequino V, Sergeev A, Serna G, Setyawati Y, Sevigny A, Shaddock DA, Shaffer T, Shah S, Shahriar MS, Shaltev M, Shao Z, Shapiro B, Shawhan P, Sheperd A, Shoemaker DH, Shoemaker DM, Siellez K, Siemens X, Sigg D, Silva AD, Simakov D, Singer A, Singer LP, Singh A, Singh R, Singhal A, Sintes AM, Slagmolen BJJ, Smith JR, Smith MR, Smith ND, Smith RJE, Son EJ, Sorazu B, Sorrentino F, Souradeep T, Srivastava AK, Staley A, Steinke M, Steinlechner J, Steinlechner S, Steinmeyer D, Stephens BC, Stevenson SP, Stone R, Strain KA, Straniero N, Stratta G, Strauss NA, Strigin S, Sturani R, Stuver AL, Summerscales TZ, Sun L, Sutton PJ, Swinkels BL, Szczepańczyk MJ, Tacca M, Talukder D, Tanner DB, Tápai M, Tarabrin SP, Taracchini A, Taylor R, Theeg T, Thirugnanasambandam MP, Thomas EG, Thomas M, Thomas P, Thorne KA, Thorne KS, Thrane E, Tiwari S, Tiwari V, Tokmakov KV, Tomlinson C, Tonelli M, Torres CV, Torrie CI, Töyrä D, Travasso F, Traylor G, Trifirò D, Tringali MC, Trozzo L, Tse M, Turconi M, Tuyenbayev D, Ugolini D, Unnikrishnan CS, Urban AL, Usman SA, Vahlbruch H, Vajente G, Valdes G, Vallisneri M, van Bakel N, van Beuzekom M, van den Brand JFJ, Van Den Broeck C, Vander-Hyde DC, van der Schaaf L, van Heijningen JV, van Veggel AA, Vardaro M, Vass S, Vasúth M, Vaulin R, Vecchio A, Vedovato G, Veitch J, Veitch PJ, Venkateswara K, Verkindt D, Vetrano F, Viceré A, Vinciguerra S, Vine DJ, Vinet JY, Vitale S, Vo T, Vocca H, Vorvick C, Voss D, Vousden WD, Vyatchanin SP, Wade AR, Wade LE, Wade M, Waldman SJ, Walker M, Wallace L, Walsh S, Wang G, Wang H, Wang M, Wang X, Wang Y, Ward H, Ward RL, Warner J, Was M, Weaver B, Wei LW, Weinert M, Weinstein AJ, Weiss R, Welborn T, Wen L, Weßels P, Westphal T, Wette K, Whelan JT, Whitcomb SE, White DJ, Whiting BF, Wiesner K, Wilkinson C, Willems PA, Williams L, Williams RD, Williamson AR, Willis JL, Willke B, Wimmer MH, Winkelmann L, Winkler W, Wipf CC, Wiseman AG, Wittel H, Woan G, Worden J, Wright JL, Wu G, Yablon J, Yakushin I, Yam W, Yamamoto H, Yancey CC, Yap MJ, Yu H, Yvert M, Zadrożny A, Zangrando L, Zanolin M, Zendri JP, Zevin M, Zhang F, Zhang L, Zhang M, Zhang Y, Zhao C, Zhou M, Zhou Z, Zhu XJ, Zucker ME, Zuraw SE, Zweizig J. Observation of Gravitational Waves from a Binary Black Hole Merger. PHYSICAL REVIEW LETTERS 2016; 116:061102. [PMID: 26918975 DOI: 10.1103/physrevlett.116.061102] [Show More Authors] [Citation(s) in RCA: 1443] [Impact Index Per Article: 160.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 05/04/2023]
Abstract
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
Collapse
|
|
9 |
1443 |
7
|
Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 1994; 265:1237-40. [PMID: 7520605 DOI: 10.1126/science.7520605] [Citation(s) in RCA: 1424] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a cell-mediated autoimmune disease that serves as an animal model for multiple sclerosis. Oral administration of myelin basic protein (MBP) suppresses EAE by inducing peripheral tolerance. T cell clones were isolated from the mesenteric lymph nodes of SJL mice that had been orally tolerized to MBP. These clones were CD4+ and were structurally identical to T helper cell type 1 (TH1) encephalitogenic CD4+ clones in T cell receptor usage, major histocompatibility complex restriction, and epitope recognition. However, they produced transforming growth factor-beta with various amounts of interleukin-4 and interleukin-10 and suppressed EAE induced with either MBP or proteolipid protein. Thus, mucosally derived TH2-like clones induced by oral antigen can actively regulate immune responses in vivo and may represent a different subset of T cells.
Collapse
|
|
31 |
1424 |
8
|
Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu YG. A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants. MOLECULAR PLANT 2015; 8:1274-84. [PMID: 25917172 DOI: 10.1016/j.molp.2015.04.007] [Citation(s) in RCA: 1394] [Impact Index Per Article: 139.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 04/10/2015] [Accepted: 04/15/2015] [Indexed: 05/18/2023]
Abstract
CRISPR/Cas9 genome targeting systems have been applied to a variety of species. However, most CRISPR/Cas9 systems reported for plants can only modify one or a few target sites. Here, we report a robust CRISPR/Cas9 vector system, utilizing a plant codon optimized Cas9 gene, for convenient and high-efficiency multiplex genome editing in monocot and dicot plants. We designed PCR-based procedures to rapidly generate multiple sgRNA expression cassettes, which can be assembled into the binary CRISPR/Cas9 vectors in one round of cloning by Golden Gate ligation or Gibson Assembly. With this system, we edited 46 target sites in rice with an average 85.4% rate of mutation, mostly in biallelic and homozygous status. We reasoned that about 16% of the homozygous mutations in rice were generated through the non-homologous end-joining mechanism followed by homologous recombination-based repair. We also obtained uniform biallelic, heterozygous, homozygous, and chimeric mutations in Arabidopsis T1 plants. The targeted mutations in both rice and Arabidopsis were heritable. We provide examples of loss-of-function gene mutations in T0 rice and T1 Arabidopsis plants by simultaneous targeting of multiple (up to eight) members of a gene family, multiple genes in a biosynthetic pathway, or multiple sites in a single gene. This system has provided a versatile toolbox for studying functions of multiple genes and gene families in plants for basic research and genetic improvement.
Collapse
|
|
10 |
1394 |
9
|
Huang X, Zhao Z, Cao L, Chen Y, Zhu E, Lin Z, Li M, Yan A, Zettl A, Wang YM, Duan X, Mueller T, Huang Y. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015; 348:1230-4. [DOI: 10.1126/science.aaa8765] [Citation(s) in RCA: 1345] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/04/2015] [Indexed: 11/02/2022]
|
|
10 |
1345 |
10
|
Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I, Barsh GS. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 1997; 278:135-8. [PMID: 9311920 DOI: 10.1126/science.278.5335.135] [Citation(s) in RCA: 1340] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Expression of Agouti protein is normally limited to the skin where it affects pigmentation, but ubiquitous expression causes obesity. An expressed sequence tag was identified that encodes Agouti-related protein, whose RNA is normally expressed in the hypothalamus and whose levels were increased eightfold in ob/ob mice. Recombinant Agouti-related protein was a potent, selective antagonist of Mc3r and Mc4r, melanocortin receptor subtypes implicated in weight regulation. Ubiquitous expression of human AGRP complementary DNA in transgenic mice caused obesity without altering pigmentation. Thus, Agouti-related protein is a neuropeptide implicated in the normal control of body weight downstream of leptin signaling.
Collapse
MESH Headings
- Adrenal Glands/metabolism
- Amino Acid Sequence
- Animals
- Female
- Humans
- Hypothalamus/metabolism
- Male
- Melanocyte-Stimulating Hormones/antagonists & inhibitors
- Melanocyte-Stimulating Hormones/pharmacology
- Melanophores/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Obese
- Mice, Transgenic
- Molecular Sequence Data
- Obesity/etiology
- Organophosphorus Compounds/pharmacology
- Proteins/chemistry
- Proteins/genetics
- Proteins/pharmacology
- Proteins/physiology
- RNA/genetics
- RNA/metabolism
- Receptor, Melanocortin, Type 3
- Receptor, Melanocortin, Type 4
- Receptors, Corticotropin/antagonists & inhibitors
- Receptors, Corticotropin/metabolism
- Receptors, Peptide/antagonists & inhibitors
- Receptors, Peptide/metabolism
- Recombinant Proteins/metabolism
- Signal Transduction
- Xenopus
Collapse
|
|
28 |
1340 |
11
|
Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, Meyers J, Leitch CC, Katsanis N, Sharifi N, Xu FL, Myers LA, Spevak PJ, Cameron DE, De Backer J, Hellemans J, Chen Y, Davis EC, Webb CL, Kress W, Coucke P, Rifkin DB, De Paepe AM, Dietz HC. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 2005; 37:275-81. [PMID: 15731757 DOI: 10.1038/ng1511] [Citation(s) in RCA: 1229] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 12/27/2004] [Indexed: 12/13/2022]
Abstract
We report heterozygous mutations in the genes encoding either type I or type II transforming growth factor beta receptor in ten families with a newly described human phenotype that includes widespread perturbations in cardiovascular, craniofacial, neurocognitive and skeletal development. Despite evidence that receptors derived from selected mutated alleles cannot support TGFbeta signal propagation, cells derived from individuals heterozygous with respect to these mutations did not show altered kinetics of the acute phase response to administered ligand. Furthermore, tissues derived from affected individuals showed increased expression of both collagen and connective tissue growth factor, as well as nuclear enrichment of phosphorylated Smad2, indicative of increased TGFbeta signaling. These data definitively implicate perturbation of TGFbeta signaling in many common human phenotypes, including craniosynostosis, cleft palate, arterial aneurysms, congenital heart disease and mental retardation, and suggest that comprehensive mechanistic insight will require consideration of both primary and compensatory events.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
1229 |
12
|
Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Lueders J, Glatfelter A, Pollock P, Carpten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, Alberts D, Sondak V. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 2000; 406:536-40. [PMID: 10952317 DOI: 10.1038/35020115] [Citation(s) in RCA: 1190] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The most common human cancers are malignant neoplasms of the skin. Incidence of cutaneous melanoma is rising especially steeply, with minimal progress in non-surgical treatment of advanced disease. Despite significant effort to identify independent predictors of melanoma outcome, no accepted histopathological, molecular or immunohistochemical marker defines subsets of this neoplasm. Accordingly, though melanoma is thought to present with different 'taxonomic' forms, these are considered part of a continuous spectrum rather than discrete entities. Here we report the discovery of a subset of melanomas identified by mathematical analysis of gene expression in a series of samples. Remarkably, many genes underlying the classification of this subset are differentially regulated in invasive melanomas that form primitive tubular networks in vitro, a feature of some highly aggressive metastatic melanomas. Global transcript analysis can identify unrecognized subtypes of cutaneous melanoma and predict experimentally verifiable phenotypic characteristics that may be of importance to disease progression.
Collapse
|
|
25 |
1190 |
13
|
DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M, Chen Y, Su YA, Trent JM. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 1996; 14:457-60. [PMID: 8944026 DOI: 10.1038/ng1296-457] [Citation(s) in RCA: 1148] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The development and progression of cancer and the experimental reversal of tumorigenicity are accompanied by complex changes in patterns of gene expression. Microarrays of cDNA provide a powerful tool for studying these complex phenomena. The tumorigenic properties of a human melanoma cell line, UACC-903, can be suppressed by introduction of a normal human chromosome 6, resulting in a reduction of growth rate, restoration of contact inhibition, and suppression of both soft agar clonogenicity and tumorigenicity in nude mice. We used a high density microarray of 1,161 DNA elements to search for differences in gene expression associated with tumour suppression in this system. Fluorescent probes for hybridization were derived from two sources of cellular mRNA [UACC-903 and UACC-903(+6)] which were labelled with different fluors to provide a direct and internally controlled comparison of the mRNA levels corresponding to each arrayed gene. The fluorescence signals representing hybridization to each arrayed gene were analysed to determine the relative abundance in the two samples of mRNAs corresponding to each gene. Previously unrecognized alterations in the expression of specific genes provide leads for further investigation of the genetic basis of the tumorigenic phenotype of these cells.
Collapse
|
|
29 |
1148 |
14
|
Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC. Solution properties of single-walled carbon nanotubes. Science 1998; 282:95-8. [PMID: 9756485 DOI: 10.1126/science.282.5386.95] [Citation(s) in RCA: 1117] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Naked metallic and semiconducting single-walled carbon nanotubes (SWNTs) were dissolved in organic solutions by derivatization with thionychloride and octadecylamine. Both ionic (charge transfer) and covalent solution-phase chemistry with concomitant modulation of the SWNT band structure were demonstrated. Solution-phase near-infrared spectroscopy was used to study the effects of chemical modifications on the band gaps of the SWNTs. Reaction of soluble SWNTs with dichlorocarbene led to functionalization of the nanotube walls.
Collapse
|
|
27 |
1117 |
15
|
Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, Bergeron R, Kim JK, Cushman SW, Cooney GJ, Atcheson B, White MF, Kraegen EW, Shulman GI. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 2002; 277:50230-6. [PMID: 12006582 DOI: 10.1074/jbc.m200958200] [Citation(s) in RCA: 1108] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recent studies have demonstrated that fatty acids induce insulin resistance in skeletal muscle by blocking insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase (PI3-kinase). To examine the mechanism by which fatty acids mediate this effect, rats were infused with either a lipid emulsion (consisting mostly of 18:2 fatty acids) or glycerol. Intracellular C18:2 CoA increased in a time-dependent fashion, reaching an approximately 6-fold elevation by 5 h, whereas there was no change in the concentration of any other fatty acyl-CoAs. Diacylglycerol (DAG) also increased transiently after 3-4 h of lipid infusion. In contrast there was no increase in intracellular ceramide or triglyceride concentrations during the lipid infusion. Increases in intracellular C18:2 CoA and DAG concentration were associated with protein kinase C (PKC)-theta activation and a reduction in both insulin-stimulated IRS-1 tyrosine phosphorylation and IRS-1 associated PI3-kinase activity, which were associated with an increase in IRS-1 Ser(307) phosphorylation. These data support the hypothesis that an increase in plasma fatty acid concentration results in an increase in intracellular fatty acyl-CoA and DAG concentrations, which results in activation of PKC-theta leading to increased IRS-1 Ser(307) phosphorylation. This in turn leads to decreased IRS-1 tyrosine phosphorylation and decreased activation of IRS-1-associated PI3-kinase activity resulting in decreased insulin-stimulated glucose transport activity.
Collapse
|
|
23 |
1108 |
16
|
Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J, Curwen V, Down T, Durbin R, Eyras E, Gilbert J, Hammond M, Huminiecki L, Kasprzyk A, Lehvaslaiho H, Lijnzaad P, Melsopp C, Mongin E, Pettett R, Pocock M, Potter S, Rust A, Schmidt E, Searle S, Slater G, Smith J, Spooner W, Stabenau A, Stalker J, Stupka E, Ureta-Vidal A, Vastrik I, Clamp M. The Ensembl genome database project. Nucleic Acids Res 2002; 30:38-41. [PMID: 11752248 PMCID: PMC99161 DOI: 10.1093/nar/30.1.38] [Citation(s) in RCA: 1096] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organise biology around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of the human genome sequence, with confirmed gene predictions that have been integrated with external data sources, and is available as either an interactive web site or as flat files. It is also an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements from sequence analysis to data storage and visualisation. The Ensembl site is one of the leading sources of human genome sequence annotation and provided much of the analysis for publication by the international human genome project of the draft genome. The Ensembl system is being installed around the world in both companies and academic sites on machines ranging from supercomputers to laptops.
Collapse
|
research-article |
23 |
1096 |
17
|
Rossi A, Kapahi P, Natoli G, Takahashi T, Chen Y, Karin M, Santoro MG. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature 2000; 403:103-8. [PMID: 10638762 DOI: 10.1038/47520] [Citation(s) in RCA: 1078] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
NF-kappaB is a critical activator of genes involved in inflammation and immunity. Pro-inflammatory cytokines activate the IkappaB kinase (IKK) complex that phosphorylates the NF-kappaB inhibitors, triggering their conjugation with ubiquitin and subsequent degradation. Freed NF-kappaB dimers translocate to the nucleus and induce target genes, including the one for cyclo-oxygenase 2 (COX2), which catalyses the synthesis of pro-inflammatory prostaglandins, in particular PGE. At late stages of inflammatory episodes, however, COX2 directs the synthesis of anti-inflammatory cyclopentenone prostaglandins, suggesting a role for these molecules in the resolution of inflammation. Cyclopentenone prostaglandins have been suggested to exert anti-inflammatory activity through the activation of peroxisome proliferator-activated receptor-gamma. Here we demonstrate a novel mechanism of antiinflammatory activity which is based on the direct inhibition and modification of the IKKbeta subunit of IKK. As IKKbeta is responsible for the activation of NF-kappaB by pro-inflammatory stimuli, our findings explain how cyclopentenone prostaglandins function and can be used to improve the utility of COX2 inhibitors.
Collapse
|
|
25 |
1078 |
18
|
Senftleben U, Cao Y, Xiao G, Greten FR, Krähn G, Bonizzi G, Chen Y, Hu Y, Fong A, Sun SC, Karin M. Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science 2001; 293:1495-9. [PMID: 11520989 DOI: 10.1126/science.1062677] [Citation(s) in RCA: 1077] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In mammals, the canonical nuclear factor kappaB (NF-kappaB) signaling pathway activated in response to infections is based on degradation of IkappaB inhibitors. This pathway depends on the IkappaB kinase (IKK), which contains two catalytic subunits, IKKalpha and IKKbeta. IKKbeta is essential for inducible IkappaB phosphorylation and degradation, whereas IKKalpha is not. Here we show that IKKalpha is required for B cell maturation, formation of secondary lymphoid organs, increased expression of certain NF-kappaB target genes, and processing of the NF-kappaB2 (p100) precursor. IKKalpha preferentially phosphorylates NF-kappaB2, and this activity requires its phosphorylation by upstream kinases, one of which may be NF-kappaB-inducing kinase (NIK). IKKalpha is therefore a pivotal component of a second NF-kappaB activation pathway based on regulated NF-kappaB2 processing rather than IkappaB degradation.
Collapse
|
|
24 |
1077 |
19
|
Postic C, Shiota M, Niswender KD, Jetton TL, Chen Y, Moates JM, Shelton KD, Lindner J, Cherrington AD, Magnuson MA. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J Biol Chem 1999; 274:305-15. [PMID: 9867845 DOI: 10.1074/jbc.274.1.305] [Citation(s) in RCA: 1076] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucokinase (GK) gene mutations cause diabetes mellitus in both humans and mouse models, but the pathophysiological basis is only partially defined. We have used cre-loxP technology in combination with gene targeting to perform global, beta cell-, and hepatocyte-specific gene knock-outs of this enzyme in mice. Gene targeting was used to create a triple-loxed gk allele, which was converted by partial or total Cre-mediated recombination to a conditional allele lacking neomycin resistance, or to a null allele, respectively. beta cell- and hepatocyte-specific expression of Cre was achieved using transgenes that contain either insulin or albumin promoter/enhancer sequences. By intercrossing the transgenic mice that express Cre in a cell-specific manner with mice containing a conditional gk allele, we obtained animals with either a beta cell or hepatocyte-specific knock-out of GK. Animals either globally deficient in GK, or lacking GK just in beta cells, die within a few days of birth from severe diabetes. Mice that are heterozygous null for GK, either globally or just in the beta cell, survive but are moderately hyperglycemic. Mice that lack GK only in the liver are only mildly hyperglycemic but display pronounced defects in both glycogen synthesis and glucose turnover rates during a hyperglycemic clamp. Interestingly, hepatic GK knock-out mice also have impaired insulin secretion in response to glucose. These studies indicate that deficiencies in both beta cell and hepatic GK contribute to the hyperglycemia of MODY-2.
Collapse
|
|
26 |
1076 |
20
|
Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White TC, Mutus J, Fowler AG, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, O’Malley P, Roushan P, Vainsencher A, Wenner J, Korotkov AN, Cleland AN, Martinis JM. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 2014; 508:500-3. [DOI: 10.1038/nature13171] [Citation(s) in RCA: 1057] [Impact Index Per Article: 96.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/24/2014] [Indexed: 11/09/2022]
|
|
11 |
1057 |
21
|
Zhang L, Zhu F, Xie L, Wang C, Wang J, Chen R, Jia P, Guan HQ, Peng L, Chen Y, Peng P, Zhang P, Chu Q, Shen Q, Wang Y, Xu SY, Zhao JP, Zhou M. Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan, China. Ann Oncol 2020; 31:894-901. [PMID: 32224151 PMCID: PMC7270947 DOI: 10.1016/j.annonc.2020.03.296] [Citation(s) in RCA: 1008] [Impact Index Per Article: 201.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background Cancer patients are regarded as a highly vulnerable group in the current Coronavirus Disease 2019 (COVID-19) pandemic. To date, the clinical characteristics of COVID-19-infected cancer patients remain largely unknown. Patients and methods In this retrospective cohort study, we included cancer patients with laboratory-confirmed COVID-19 from three designated hospitals in Wuhan, China. Clinical data were collected from medical records from 13 January 2020 to 26 February 2020. Univariate and multivariate analyses were carried out to assess the risk factors associated with severe events defined as a condition requiring admission to an intensive care unit, the use of mechanical ventilation, or death. Results A total of 28 COVID-19-infected cancer patients were included; 17 (60.7%) patients were male. Median (interquartile range) age was 65.0 (56.0–70.0) years. Lung cancer was the most frequent cancer type (n = 7; 25.0%). Eight (28.6%) patients were suspected to have hospital-associated transmission. The following clinical features were shown in our cohort: fever (n = 23, 82.1%), dry cough (n = 22, 81%), and dyspnoea (n = 14, 50.0%), along with lymphopaenia (n = 23, 82.1%), high level of high-sensitivity C-reactive protein (n = 23, 82.1%), anaemia (n = 21, 75.0%), and hypoproteinaemia (n = 25, 89.3%). The common chest computed tomography (CT) findings were ground-glass opacity (n = 21, 75.0%) and patchy consolidation (n = 13, 46.3%). A total of 15 (53.6%) patients had severe events and the mortality rate was 28.6%. If the last antitumour treatment was within 14 days, it significantly increased the risk of developing severe events [hazard ratio (HR) = 4.079, 95% confidence interval (CI) 1.086–15.322, P = 0.037]. Furthermore, patchy consolidation on CT on admission was associated with a higher risk of developing severe events (HR = 5.438, 95% CI 1.498–19.748, P = 0.010). Conclusions Cancer patients show deteriorating conditions and poor outcomes from the COVID-19 infection. It is recommended that cancer patients receiving antitumour treatments should have vigorous screening for COVID-19 infection and should avoid treatments causing immunosuppression or have their dosages decreased in case of COVID-19 coinfection.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
1008 |
22
|
Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R, Meltzer P, Gusterson B, Esteller M, Kallioniemi OP, Wilfond B, Borg A, Trent J, Raffeld M, Yakhini Z, Ben-Dor A, Dougherty E, Kononen J, Bubendorf L, Fehrle W, Pittaluga S, Gruvberger S, Loman N, Johannsson O, Olsson H, Sauter G. Gene-expression profiles in hereditary breast cancer. N Engl J Med 2001; 344:539-48. [PMID: 11207349 DOI: 10.1056/nejm200102223440801] [Citation(s) in RCA: 992] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Many cases of hereditary breast cancer are due to mutations in either the BRCA1 or the BRCA2 gene. The histopathological changes in these cancers are often characteristic of the mutant gene. We hypothesized that the genes expressed by these two types of tumors are also distinctive, perhaps allowing us to identify cases of hereditary breast cancer on the basis of gene-expression profiles. METHODS RNA from samples of primary tumor from seven carriers of the BRCA1 mutation, seven carriers of the BRCA2 mutation, and seven patients with sporadic cases of breast cancer was compared with a microarray of 6512 complementary DNA clones of 5361 genes. Statistical analyses were used to identify a set of genes that could distinguish the BRCA1 genotype from the BRCA2 genotype. RESULTS Permutation analysis of multivariate classification functions established that the gene-expression profiles of tumors with BRCA1 mutations, tumors with BRCA2 mutations, and sporadic tumors differed significantly from each other. An analysis of variance between the levels of gene expression and the genotype of the samples identified 176 genes that were differentially expressed in tumors with BRCA1 mutations and tumors with BRCA2 mutations. Given the known properties of some of the genes in this panel, our findings indicate that there are functional differences between breast tumors with BRCA1 mutations and those with BRCA2 mutations. CONCLUSIONS Significantly different groups of genes are expressed by breast cancers with BRCA1 mutations and breast cancers with BRCA2 mutations. Our results suggest that a heritable mutation influences the gene-expression profile of the cancer.
Collapse
|
Comparative Study |
24 |
992 |
23
|
Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, Cummins LB, Arthur LO, Peeters M, Shaw GM, Sharp PM, Hahn BH. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 1999; 397:436-41. [PMID: 9989410 DOI: 10.1038/17130] [Citation(s) in RCA: 930] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human AIDS viruses human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) represent cross-species (zoonotic) infections. Although the primate reservoir of HIV-2 has been clearly identified as the sooty mangabey (Cercocebus atys), the origin of HIV-1 remains uncertain. Viruses related to HIV-1 have been isolated from the common chimpanzee (Pan troglodytes), but only three such SIVcpz infections have been documented, one of which involved a virus so divergent that it might represent a different primate lentiviral lineage. In a search for the HIV-1 reservoir, we have now sequenced the genome of a new SIVcpzstrain (SIVcpzUS) and have determined, by mitochondrial DNA analysis, the subspecies identity of all known SIVcpz-infected chimpanzees. We find that two chimpanzee subspecies in Africa, the central P. t. troglodytes and the eastern P. t. schweinfurthii, harbour SIVcpz and that their respective viruses form two highly divergent (but subspecies-specific) phylogenetic lineages. All HIV-1 strains known to infect man, including HIV-1 groups M, N and O, are closely related to just one of these SIVcpz lineages, that found in P. t. troglodytes. Moreover, we find that HIV-1 group N is a mosaic of SIVcpzUS- and HIV-1-related sequences, indicating an ancestral recombination event in a chimpanzee host. These results, together with the observation that the natural range of P. t. troglodytes coincides uniquely with areas of HIV-1 group M, N and O endemicity, indicate that P. t. troglodytes is the primary reservoir for HIV-1 and has been the source of at least three independent introductions of SIVcpz into the human population.
Collapse
|
|
26 |
930 |
24
|
Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM. Expression profiling using cDNA microarrays. Nat Genet 1999; 21:10-4. [PMID: 9915494 DOI: 10.1038/4434] [Citation(s) in RCA: 886] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
cDNA microarrays are capable of profiling gene expression patterns of tens of thousands of genes in a single experiment. DNA targets, in the form of 3' expressed sequence tags (ESTs), are arrayed onto glass slides (or membranes) and probed with fluorescent- or radioactively-labelled cDNAs. Here, we review technical aspects of cDNA microarrays, including the general principles, fabrication of the arrays, target labelling, image analysis and data extraction, management and mining.
Collapse
|
Review |
26 |
886 |
25
|
Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB, Affeldt C, Afrough M, Agarwal B, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aiello L, Ain A, Ajith P, Allen B, Allen G, Allocca A, Altin PA, Amato A, Ananyeva A, Anderson SB, Anderson WG, Angelova SV, Antier S, Appert S, Arai K, Araya MC, Areeda JS, Arnaud N, Arun KG, Ascenzi S, Ashton G, Ast M, Aston SM, Astone P, Atallah DV, Aufmuth P, Aulbert C, AultONeal K, Austin C, Avila-Alvarez A, Babak S, Bacon P, Bader MKM, Bae S, Bailes M, Baker PT, Baldaccini F, Ballardin G, Ballmer SW, Banagiri S, Barayoga JC, Barclay SE, Barish BC, Barker D, Barkett K, Barone F, Barr B, Barsotti L, Barsuglia M, Barta D, Barthelmy SD, Bartlett J, Bartos I, Bassiri R, Basti A, Batch JC, Bawaj M, Bayley JC, Bazzan M, Bécsy B, Beer C, Bejger M, Belahcene I, Bell AS, Berger BK, Bergmann G, Bernuzzi S, Bero JJ, Berry CPL, Bersanetti D, Bertolini A, Betzwieser J, Bhagwat S, Bhandare R, Bilenko IA, Billingsley G, Billman CR, Birch J, Birney R, Birnholtz O, Biscans S, Biscoveanu S, Bisht A, et alAbbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB, Affeldt C, Afrough M, Agarwal B, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aiello L, Ain A, Ajith P, Allen B, Allen G, Allocca A, Altin PA, Amato A, Ananyeva A, Anderson SB, Anderson WG, Angelova SV, Antier S, Appert S, Arai K, Araya MC, Areeda JS, Arnaud N, Arun KG, Ascenzi S, Ashton G, Ast M, Aston SM, Astone P, Atallah DV, Aufmuth P, Aulbert C, AultONeal K, Austin C, Avila-Alvarez A, Babak S, Bacon P, Bader MKM, Bae S, Bailes M, Baker PT, Baldaccini F, Ballardin G, Ballmer SW, Banagiri S, Barayoga JC, Barclay SE, Barish BC, Barker D, Barkett K, Barone F, Barr B, Barsotti L, Barsuglia M, Barta D, Barthelmy SD, Bartlett J, Bartos I, Bassiri R, Basti A, Batch JC, Bawaj M, Bayley JC, Bazzan M, Bécsy B, Beer C, Bejger M, Belahcene I, Bell AS, Berger BK, Bergmann G, Bernuzzi S, Bero JJ, Berry CPL, Bersanetti D, Bertolini A, Betzwieser J, Bhagwat S, Bhandare R, Bilenko IA, Billingsley G, Billman CR, Birch J, Birney R, Birnholtz O, Biscans S, Biscoveanu S, Bisht A, Bitossi M, Biwer C, Bizouard MA, Blackburn JK, Blackman J, Blair CD, Blair DG, Blair RM, Bloemen S, Bock O, Bode N, Boer M, Bogaert G, Bohe A, Bondu F, Bonilla E, Bonnand R, Boom BA, Bork R, Boschi V, Bose S, Bossie K, Bouffanais Y, Bozzi A, Bradaschia C, Brady PR, Branchesi M, Brau JE, Briant T, Brillet A, Brinkmann M, Brisson V, Brockill P, Broida JE, Brooks AF, Brown DA, Brown DD, Brunett S, Buchanan CC, Buikema A, Bulik T, Bulten HJ, Buonanno A, Buskulic D, Buy C, Byer RL, Cabero M, Cadonati L, Cagnoli G, Cahillane C, Calderón Bustillo J, Callister TA, Calloni E, Camp JB, Canepa M, Canizares P, Cannon KC, Cao H, Cao J, Capano CD, Capocasa E, Carbognani F, Caride S, Carney MF, Carullo G, Casanueva Diaz J, Casentini C, Caudill S, Cavaglià M, Cavalier F, Cavalieri R, Cella G, Cepeda CB, Cerdá-Durán P, Cerretani G, Cesarini E, Chamberlin SJ, Chan M, Chao S, Charlton P, Chase E, Chassande-Mottin E, Chatterjee D, Chatziioannou K, Cheeseboro BD, Chen HY, Chen X, Chen Y, Cheng HP, Chia H, Chincarini A, Chiummo A, Chmiel T, Cho HS, Cho M, Chow JH, Christensen N, Chu Q, Chua AJK, Chua S, Chung AKW, Chung S, Ciani G, Ciolfi R, Cirelli CE, Cirone A, Clara F, Clark JA, Clearwater P, Cleva F, Cocchieri C, Coccia E, Cohadon PF, Cohen D, Colla A, Collette CG, Cominsky LR, Constancio M, Conti L, Cooper SJ, Corban P, Corbitt TR, Cordero-Carrión I, Corley KR, Cornish N, Corsi A, Cortese S, Costa CA, Coughlin MW, Coughlin SB, Coulon JP, Countryman ST, Couvares P, Covas PB, Cowan EE, Coward DM, Cowart MJ, Coyne DC, Coyne R, Creighton JDE, Creighton TD, Cripe J, Crowder SG, Cullen TJ, Cumming A, Cunningham L, Cuoco E, Dal Canton T, Dálya G, Danilishin SL, D'Antonio S, Danzmann K, Dasgupta A, Da Silva Costa CF, Dattilo V, Dave I, Davier M, Davis D, Daw EJ, Day B, De S, DeBra D, Degallaix J, De Laurentis M, Deléglise S, Del Pozzo W, Demos N, Denker T, Dent T, De Pietri R, Dergachev V, De Rosa R, DeRosa RT, De Rossi C, DeSalvo R, de Varona O, Devenson J, Dhurandhar S, Díaz MC, Dietrich T, Di Fiore L, Di Giovanni M, Di Girolamo T, Di Lieto A, Di Pace S, Di Palma I, Di Renzo F, Doctor Z, Dolique V, Donovan F, Dooley KL, Doravari S, Dorrington I, Douglas R, Dovale Álvarez M, Downes TP, Drago M, Dreissigacker C, Driggers JC, Du Z, Ducrot M, Dudi R, Dupej P, Dwyer SE, Edo TB, Edwards MC, Effler A, Eggenstein HB, Ehrens P, Eichholz J, Eikenberry SS, Eisenstein RA, Essick RC, Estevez D, Etienne ZB, Etzel T, Evans M, Evans TM, Factourovich M, Fafone V, Fair H, Fairhurst S, Fan X, Farinon S, Farr B, Farr WM, Fauchon-Jones EJ, Favata M, Fays M, Fee C, Fehrmann H, Feicht J, Fejer MM, Fernandez-Galiana A, Ferrante I, Ferreira EC, Ferrini F, Fidecaro F, Finstad D, Fiori I, Fiorucci D, Fishbach M, Fisher RP, Fitz-Axen M, Flaminio R, Fletcher M, Fong H, Font JA, Forsyth PWF, Forsyth SS, Fournier JD, Frasca S, Frasconi F, Frei Z, Freise A, Frey R, Frey V, Fries EM, Fritschel P, Frolov VV, Fulda P, Fyffe M, Gabbard H, Gadre BU, Gaebel SM, Gair JR, Gammaitoni L, Ganija MR, Gaonkar SG, Garcia-Quiros C, Garufi F, Gateley B, Gaudio S, Gaur G, Gayathri V, Gehrels N, Gemme G, Genin E, Gennai A, George D, George J, Gergely L, Germain V, Ghonge S, Ghosh A, Ghosh A, Ghosh S, Giaime JA, Giardina KD, Giazotto A, Gill K, Glover L, Goetz E, Goetz R, Gomes S, Goncharov B, González G, Gonzalez Castro JM, Gopakumar A, Gorodetsky ML, Gossan SE, Gosselin M, Gouaty R, Grado A, Graef C, Granata M, Grant A, Gras S, Gray C, Greco G, Green AC, Gretarsson EM, Groot P, Grote H, Grunewald S, Gruning P, Guidi GM, Guo X, Gupta A, Gupta MK, Gushwa KE, Gustafson EK, Gustafson R, Halim O, Hall BR, Hall ED, Hamilton EZ, Hammond G, Haney M, Hanke MM, Hanks J, Hanna C, Hannam MD, Hannuksela OA, Hanson J, Hardwick T, Harms J, Harry GM, Harry IW, Hart MJ, Haster CJ, Haughian K, Healy J, Heidmann A, Heintze MC, Heitmann H, Hello P, Hemming G, Hendry M, Heng IS, Hennig J, Heptonstall AW, Heurs M, Hild S, Hinderer T, Ho WCG, Hoak D, Hofman D, Holt K, Holz DE, Hopkins P, Horst C, Hough J, Houston EA, Howell EJ, Hreibi A, Hu YM, Huerta EA, Huet D, Hughey B, Husa S, Huttner SH, Huynh-Dinh T, Indik N, Inta R, Intini G, Isa HN, Isac JM, Isi M, Iyer BR, Izumi K, Jacqmin T, Jani K, Jaranowski P, Jawahar S, Jiménez-Forteza F, Johnson WW, Johnson-McDaniel NK, Jones DI, Jones R, Jonker RJG, Ju L, Junker J, Kalaghatgi CV, Kalogera V, Kamai B, Kandhasamy S, Kang G, Kanner JB, Kapadia SJ, Karki S, Karvinen KS, Kasprzack M, Kastaun W, Katolik M, Katsavounidis E, Katzman W, Kaufer S, Kawabe K, Kéfélian F, Keitel D, Kemball AJ, Kennedy R, Kent C, Key JS, Khalili FY, Khan I, Khan S, Khan Z, Khazanov EA, Kijbunchoo N, Kim C, Kim JC, Kim K, Kim W, Kim WS, Kim YM, Kimbrell SJ, King EJ, King PJ, Kinley-Hanlon M, Kirchhoff R, Kissel JS, Kleybolte L, Klimenko S, Knowles TD, Koch P, Koehlenbeck SM, Koley S, Kondrashov V, Kontos A, Korobko M, Korth WZ, Kowalska I, Kozak DB, Krämer C, Kringel V, Krishnan B, Królak A, Kuehn G, Kumar P, Kumar R, Kumar S, Kuo L, Kutynia A, Kwang S, Lackey BD, Lai KH, Landry M, Lang RN, Lange J, Lantz B, Lanza RK, Larson SL, Lartaux-Vollard A, Lasky PD, Laxen M, Lazzarini A, Lazzaro C, Leaci P, Leavey S, Lee CH, Lee HK, Lee HM, Lee HW, Lee K, Lehmann J, Lenon A, Leon E, Leonardi M, Leroy N, Letendre N, Levin Y, Li TGF, Linker SD, Littenberg TB, Liu J, Liu X, Lo RKL, Lockerbie NA, London LT, Lord JE, Lorenzini M, Loriette V, Lormand M, Losurdo G, Lough JD, Lousto CO, Lovelace G, Lück H, Lumaca D, Lundgren AP, Lynch R, Ma Y, Macas R, Macfoy S, Machenschalk B, MacInnis M, Macleod DM, Magaña Hernandez I, Magaña-Sandoval F, Magaña Zertuche L, Magee RM, Majorana E, Maksimovic I, Man N, Mandic V, Mangano V, Mansell GL, Manske M, Mantovani M, Marchesoni F, Marion F, Márka S, Márka Z, Markakis C, Markosyan AS, Markowitz A, Maros E, Marquina A, Marsh P, Martelli F, Martellini L, Martin IW, Martin RM, Martynov DV, Marx JN, Mason K, Massera E, Masserot A, Massinger TJ, Masso-Reid M, Mastrogiovanni S, Matas A, Matichard F, Matone L, Mavalvala N, Mazumder N, McCarthy R, McClelland DE, McCormick S, McCuller L, McGuire SC, McIntyre G, McIver J, McManus DJ, McNeill L, McRae T, McWilliams ST, Meacher D, Meadors GD, Mehmet M, Meidam J, Mejuto-Villa E, Melatos A, Mendell G, Mercer RA, Merilh EL, Merzougui M, Meshkov S, Messenger C, Messick C, Metzdorff R, Meyers PM, Miao H, Michel C, Middleton H, Mikhailov EE, Milano L, Miller AL, Miller BB, Miller J, Millhouse M, Milovich-Goff MC, Minazzoli O, Minenkov Y, Ming J, Mishra C, Mitra S, Mitrofanov VP, Mitselmakher G, Mittleman R, Moffa D, Moggi A, Mogushi K, Mohan M, Mohapatra SRP, Molina I, Montani M, Moore CJ, Moraru D, Moreno G, Morisaki S, Morriss SR, Mours B, Mow-Lowry CM, Mueller G, Muir AW, Mukherjee A, Mukherjee D, Mukherjee S, Mukund N, Mullavey A, Munch J, Muñiz EA, Muratore M, Murray PG, Nagar A, Napier K, Nardecchia I, Naticchioni L, Nayak RK, Neilson J, Nelemans G, Nelson TJN, Nery M, Neunzert A, Nevin L, Newport JM, Newton G, Ng KKY, Nguyen P, Nguyen TT, Nichols D, Nielsen AB, Nissanke S, Nitz A, Noack A, Nocera F, Nolting D, North C, Nuttall LK, Oberling J, O'Dea GD, Ogin GH, Oh JJ, Oh SH, Ohme F, Okada MA, Oliver M, Oppermann P, Oram RJ, O'Reilly B, Ormiston R, Ortega LF, O'Shaughnessy R, Ossokine S, Ottaway DJ, Overmier H, Owen BJ, Pace AE, Page J, Page MA, Pai A, Pai SA, Palamos JR, Palashov O, Palomba C, Pal-Singh A, Pan H, Pan HW, Pang B, Pang PTH, Pankow C, Pannarale F, Pant BC, Paoletti F, Paoli A, Papa MA, Parida A, Parker W, Pascucci D, Pasqualetti A, Passaquieti R, Passuello D, Patil M, Patricelli B, Pearlstone BL, Pedraza M, Pedurand R, Pekowsky L, Pele A, Penn S, Perez CJ, Perreca A, Perri LM, Pfeiffer HP, Phelps M, Piccinni OJ, Pichot M, Piergiovanni F, Pierro V, Pillant G, Pinard L, Pinto IM, Pirello M, Pitkin M, Poe M, Poggiani R, Popolizio P, Porter EK, Post A, Powell J, Prasad J, Pratt JWW, Pratten G, Predoi V, Prestegard T, Prijatelj M, Principe M, Privitera S, Prix R, Prodi GA, Prokhorov LG, Puncken O, Punturo M, Puppo P, Pürrer M, Qi H, Quetschke V, Quintero EA, Quitzow-James R, Raab FJ, Rabeling DS, Radkins H, Raffai P, Raja S, Rajan C, Rajbhandari B, Rakhmanov M, Ramirez KE, Ramos-Buades A, Rapagnani P, Raymond V, Razzano M, Read J, Regimbau T, Rei L, Reid S, Reitze DH, Ren W, Reyes SD, Ricci F, Ricker PM, Rieger S, Riles K, Rizzo M, Robertson NA, Robie R, Robinet F, Rocchi A, Rolland L, Rollins JG, Roma VJ, Romano JD, Romano R, Romel CL, Romie JH, Rosińska D, Ross MP, Rowan S, Rüdiger A, Ruggi P, Rutins G, Ryan K, Sachdev S, Sadecki T, Sadeghian L, Sakellariadou M, Salconi L, Saleem M, Salemi F, Samajdar A, Sammut L, Sampson LM, Sanchez EJ, Sanchez LE, Sanchis-Gual N, Sandberg V, Sanders JR, Sassolas B, Sathyaprakash BS, Saulson PR, Sauter O, Savage RL, Sawadsky A, Schale P, Scheel M, Scheuer J, Schmidt J, Schmidt P, Schnabel R, Schofield RMS, Schönbeck A, Schreiber E, Schuette D, Schulte BW, Schutz BF, Schwalbe SG, Scott J, Scott SM, Seidel E, Sellers D, Sengupta AS, Sentenac D, Sequino V, Sergeev A, Shaddock DA, Shaffer TJ, Shah AA, Shahriar MS, Shaner MB, Shao L, Shapiro B, Shawhan P, Sheperd A, Shoemaker DH, Shoemaker DM, Siellez K, Siemens X, Sieniawska M, Sigg D, Silva AD, Singer LP, Singh A, Singhal A, Sintes AM, Slagmolen BJJ, Smith B, Smith JR, Smith RJE, Somala S, Son EJ, Sonnenberg JA, Sorazu B, Sorrentino F, Souradeep T, Spencer AP, Srivastava AK, Staats K, Staley A, Steinke M, Steinlechner J, Steinlechner S, Steinmeyer D, Stevenson SP, Stone R, Stops DJ, Strain KA, Stratta G, Strigin SE, Strunk A, Sturani R, Stuver AL, Summerscales TZ, Sun L, Sunil S, Suresh J, Sutton PJ, Swinkels BL, Szczepańczyk MJ, Tacca M, Tait SC, Talbot C, Talukder D, Tanner DB, Tápai M, Taracchini A, Tasson JD, Taylor JA, Taylor R, Tewari SV, Theeg T, Thies F, Thomas EG, Thomas M, Thomas P, Thorne KA, Thorne KS, Thrane E, Tiwari S, Tiwari V, Tokmakov KV, Toland K, Tonelli M, Tornasi Z, Torres-Forné A, Torrie CI, Töyrä D, Travasso F, Traylor G, Trinastic J, Tringali MC, Trozzo L, Tsang KW, Tse M, Tso R, Tsukada L, Tsuna D, Tuyenbayev D, Ueno K, Ugolini D, Unnikrishnan CS, Urban AL, Usman SA, Vahlbruch H, Vajente G, Valdes G, Vallisneri M, van Bakel N, van Beuzekom M, van den Brand JFJ, Van Den Broeck C, Vander-Hyde DC, van der Schaaf L, van Heijningen JV, van Veggel AA, Vardaro M, Varma V, Vass S, Vasúth M, Vecchio A, Vedovato G, Veitch J, Veitch PJ, Venkateswara K, Venugopalan G, Verkindt D, Vetrano F, Viceré A, Viets AD, Vinciguerra S, Vine DJ, Vinet JY, Vitale S, Vo T, Vocca H, Vorvick C, Vyatchanin SP, Wade AR, Wade LE, Wade M, Walet R, Walker M, Wallace L, Walsh S, Wang G, Wang H, Wang JZ, Wang WH, Wang YF, Ward RL, Warner J, Was M, Watchi J, Weaver B, Wei LW, Weinert M, Weinstein AJ, Weiss R, Wen L, Wessel EK, Weßels P, Westerweck J, Westphal T, Wette K, Whelan JT, Whitcomb SE, Whiting BF, Whittle C, Wilken D, Williams D, Williams RD, Williamson AR, Willis JL, Willke B, Wimmer MH, Winkler W, Wipf CC, Wittel H, Woan G, Woehler J, Wofford J, Wong KWK, Worden J, Wright JL, Wu DS, Wysocki DM, Xiao S, Yamamoto H, Yancey CC, Yang L, Yap MJ, Yazback M, Yu H, Yu H, Yvert M, Zadrożny A, Zanolin M, Zelenova T, Zendri JP, Zevin M, Zhang L, Zhang M, Zhang T, Zhang YH, Zhao C, Zhou M, Zhou Z, Zhu SJ, Zhu XJ, Zimmerman AB, Zucker ME, Zweizig J. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. PHYSICAL REVIEW LETTERS 2017; 119:161101. [PMID: 29099225 DOI: 10.1103/physrevlett.119.161101] [Show More Authors] [Citation(s) in RCA: 883] [Impact Index Per Article: 110.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 05/21/2023]
Abstract
On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4} years. We infer the component masses of the binary to be between 0.86 and 2.26 M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28 deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8} Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.
Collapse
|
|
8 |
883 |