1
|
Mahdavi SS, Abdekhodaie MJ, Mashayekhan S, Baradaran-Rafii A, Djalilian AR. Bioengineering Approaches for Corneal Regenerative Medicine. Tissue Eng Regen Med 2020; 17:567-593. [PMID: 32696417 PMCID: PMC7373337 DOI: 10.1007/s13770-020-00262-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Since the cornea is responsible for transmitting and focusing light into the eye, injury or pathology affecting any layer of the cornea can cause a detrimental effect on visual acuity. Aging is also a reason for corneal degeneration. Depending on the level of the injury, conservative therapies and donor tissue transplantation are the most common treatments for corneal diseases. Not only is there a lack of donor tissue and risk of infection/rejection, but the inherent ability of corneal cells and layers to regenerate has led to research in regenerative approaches and treatments. METHODS In this review, we first discussed the anatomy of the cornea and the required properties for reconstructing layers of the cornea. Regenerative approaches are divided into two main categories; using direct cell/growth factor delivery or using scaffold-based cell delivery. It is expected delivered cells migrate and integrate into the host tissue and restore its structure and function to restore vision. Growth factor delivery also has shown promising results for corneal surface regeneration. Scaffold-based approaches are categorized based on the type of scaffold, since it has a significant impact on the efficiency of regeneration, into the hydrogel and non-hydrogel based scaffolds. Various types of cells, biomaterials, and techniques are well covered. RESULTS The most important characteristics to be considered for biomaterials in corneal regeneration are suitable mechanical properties, biocompatibility, biodegradability, and transparency. Moreover, a curved shape structure and spatial arrangement of the fibrils have been shown to mimic the corneal extracellular matrix for cells and enhance cell differentiation. CONCLUSION Tissue engineering and regenerative medicine approaches showed to have promising outcomes for corneal regeneration. However, besides proper mechanical and optical properties, other factors such as appropriate sterilization method, storage, shelf life and etc. should be taken into account in order to develop an engineered cornea for clinical trials.
Collapse
|
Review |
5 |
64 |
2
|
Namdari P, Daraee H, Eatemadi A. Recent Advances in Silicon Nanowire Biosensors: Synthesis Methods, Properties, and Applications. NANOSCALE RESEARCH LETTERS 2016; 11:406. [PMID: 27639579 PMCID: PMC5026984 DOI: 10.1186/s11671-016-1618-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/07/2016] [Indexed: 05/28/2023]
Abstract
The application of silicon nanowire (SiNW) biosensor as a subtle, label-free, and electrical tool has been extensively demonstrated by several researchers over the past few decades. Human ability to delicately fabricate and control its chemical configuration, morphology, and arrangement either separately or in combination with other materials as lead to the development of a nanomaterial with specific and efficient electronic and catalytic properties useful in the fields of biological sciences and renewable energy. This review illuminates on the various synthetic methods of SiNW, with its optical and electrical properties that make them one of the most applicable nanomaterials in the field of biomolecule sensing, photoelectrochemical conversion, and diseases diagnostics.
Collapse
|
Review |
9 |
52 |
3
|
Rabiee N, Bagherzadeh M, Ghadiri AM, Salehi G, Fatahi Y, Dinarvand R. ZnAl nano layered double hydroxides for dual functional CRISPR/Cas9 delivery and enhanced green fluorescence protein biosensor. Sci Rep 2020; 10:20672. [PMID: 33244160 PMCID: PMC7693303 DOI: 10.1038/s41598-020-77809-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Evaluation of the effect of different parameters for designing a non-viral vector in gene delivery systems has great importance. In this manner, 2D crystals, precisely layered double hydroxides, have attracted the attention of scientists due to their significant adjustability and low-toxicity and low-cost preparation procedure. In this work, the relationship between different physicochemical properties of LDH, including pH, size, zeta potential, and synthesis procedure, was investigated and optimized for CRISPR/Cas9 delivery and reverse fluorescence response to the EGFP. In this manner, ZnAl LDH and ZnAl HMTA LDH were synthesized and characterized and applied in the HEK-293 cell line to deliver CRISPR/Cas9. The results were optimized by different characterizations as well as Gel Electrophoresis and showed acceptable binding ability with the DNA that could be considered as a promising and also new gold-standard for the delivery of CRISPR/Cas9. Also, the relationship of the presence of tertiary amines (in this case, hexamethylenetetramine (HMTA) as the templates) in the structure of the ZnAl LDH, as well as the gene delivery application, was evaluated. The results showed more than 79% of relative cell viability in most of the weight ratios of LDH to CRISPR/Cas9; fully quenching the fluorescence intensity of the EGFP/LDH in the presence of 15 µg mL-1 of the protoporphyrins along with the detection limit of below 2.1 µg mL-1, the transfection efficiency of around 33% of the GFP positive cell for ZnAl LDH and more than 38% for the ZnAl LDH in the presence of its tertiary amine template.
Collapse
|
research-article |
5 |
23 |
4
|
Hosseini S, Daneshvar e Asl S, Vossoughi M, Simchi A, Sadrzadeh M. Green Electrospun Membranes Based on Chitosan/Amino-Functionalized Nanoclay Composite Fibers for Cationic Dye Removal: Synthesis and Kinetic Studies. ACS OMEGA 2021; 6:10816-10827. [PMID: 34056236 PMCID: PMC8153774 DOI: 10.1021/acsomega.1c00480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/30/2021] [Indexed: 05/13/2023]
Abstract
Chitosan/poly(vinyl alcohol)/amino-functionalized montmorillonite nanocomposite electrospun membranes with enhanced adsorption capacity and thermomechanical properties were fabricated and utilized for the removal of a model cationic dye (Basic Blue 41). Effects of nanofiller concentrations (up to 3.0 wt %) on the morphology and size of the nanofibers as well as the porosity and thermomechanical properties of the nanocomposite membranes are studied. It is shown that the incorporation of the nanoclay particles with ∼10 nm lateral sizes into the polymer increases the size of the pores by about 80%. To demonstrate the efficiency of the adsorbents, the dye removal rate is investigated as a function of pH, adsorbent dosage, dye concentration, and nanofiller loading. The highest and fastest dye removal occurs for the nanofibrous membranes containing 2 wt % nanofiller, where about 80% of the cationic dye is removed after 15 min. This performance is at least 20% better than the pristine chitosan/poly(vinyl alcohol) membrane. The thermal stability and compression resistance of the nanocomposite membranes are found to be higher than those of the pristine membrane. In addition, reusability studies show that the dye removal performance of this nanocomposite membrane reduces by only about 5% over four cycles. The adsorption kinetics is explained by the Langmuir isotherm model and is expressed by a pseudo-second-order kinetic mechanism that determines a spontaneous chemisorption process. The results of this study provide a valuable perspective on the fabrication of high-performance, reusable, and efficient electrospun fibrous nanocomposite adsorbents.
Collapse
|
research-article |
4 |
15 |
5
|
Sovizi S, Angizi S, Ahmad Alem SA, Goodarzi R, Taji Boyuk MRR, Ghanbari H, Szoszkiewicz R, Simchi A, Kruse P. Plasma Processing and Treatment of 2D Transition Metal Dichalcogenides: Tuning Properties and Defect Engineering. Chem Rev 2023; 123:13869-13951. [PMID: 38048483 PMCID: PMC10756211 DOI: 10.1021/acs.chemrev.3c00147] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/31/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) offer fascinating opportunities for fundamental nanoscale science and various technological applications. They are a promising platform for next generation optoelectronics and energy harvesting devices due to their exceptional characteristics at the nanoscale, such as tunable bandgap and strong light-matter interactions. The performance of TMD-based devices is mainly governed by the structure, composition, size, defects, and the state of their interfaces. Many properties of TMDs are influenced by the method of synthesis so numerous studies have focused on processing high-quality TMDs with controlled physicochemical properties. Plasma-based methods are cost-effective, well controllable, and scalable techniques that have recently attracted researchers' interest in the synthesis and modification of 2D TMDs. TMDs' reactivity toward plasma offers numerous opportunities to modify the surface of TMDs, including functionalization, defect engineering, doping, oxidation, phase engineering, etching, healing, morphological changes, and altering the surface energy. Here we comprehensively review all roles of plasma in the realm of TMDs. The fundamental science behind plasma processing and modification of TMDs and their applications in different fields are presented and discussed. Future perspectives and challenges are highlighted to demonstrate the prominence of TMDs and the importance of surface engineering in next-generation optoelectronic applications.
Collapse
|
Review |
2 |
14 |
6
|
Gheysari H, Mohandes F, Mazaheri M, Dolatyar B, Askari M, Simchi A. Extraction of Hydroxyapatite Nanostructures from Marine Wastes for the Fabrication of Biopolymer-Based Porous Scaffolds. Mar Drugs 2019; 18:E26. [PMID: 31892123 PMCID: PMC7024202 DOI: 10.3390/md18010026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional porous nanocomposites consisting of gelatin-carboxymethylcellulose (CMC) cross-linked by carboxylic acids biopolymers and monophasic hydroxyapatite (HA) nanostructures were fabricated by lyophilization, for soft-bone-tissue engineering. The bioactive ceramic nanostructures were prepared by a novel wet-chemical and low-temperature procedure from marine wastes containing calcium carbonates. The effect of surface-active molecules, including sodium dodecyl sulfate (SDS) and hexadecyltrimethylammonium bromide (CTAB), on the morphology of HA nanostructures is shown. It is demonstrated that highly bioactive and monophasic HA nanorods with an aspect ratio > 10 can be synthesized in the presence of SDS. In vitro studies on the bioactive biopolymer composite scaffolds with varying pore sizes, from 100 to 300 μm, determine the capacity of the developed procedure to convert marine wastes to profitable composites for tissue engineering.
Collapse
|
research-article |
6 |
11 |
7
|
Salehi G, Bagherzadeh M, Abazari R, Hajilo M, Taherinia D. Visible Light-Driven Photocatalytic Degradation of Methylene Blue Dye Using a Highly Efficient Mg-Al LDH@g-C 3N 4@Ag 3PO 4 Nanocomposite. ACS OMEGA 2024; 9:4581-4593. [PMID: 38313520 PMCID: PMC10831848 DOI: 10.1021/acsomega.3c07326] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024]
Abstract
The issue of water resource pollution resulting from the discharge of dyes is a matter of great concern for the environment. In this investigation, a new ternary heterogeneous Mg-Al LDH@g-C3N4X@Ag3PO4Y (X = wt % of g-C3N4 with respect to Mg-Al layered double hydroxide (LDH) and Y = wt % of Ag3PO4 loaded on Mg-Al LDH@g-C3N430) nanocomposite was prepared with the aim of increasing charge carrier separation and enhancement of photocatalytic performance to degrade methylene blue (MB) dye. The prepared samples were subjected to characterization via Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray, transmission electron microscopy, X-ray diffraction, UV-vis diffuse reflectance spectroscopy, photoluminescence, and photoelectrochemical analysis. It was observed that in the presence of the composite of Mg-Al LDH and g-C3N4, the photocatalytic decomposition of MB under 150 W mercury lamp illumination increases significantly as opposed to Mg-Al LDH alone, and the Mg-Al LDH@g-C3N4 level with Ag3PO4 coating causes the complete degradation of MB to occur in less time. The outcomes show that the Mg-Al LDH@g-C3N430@Ag3PO45 nanocomposite demonstrated the highest photodegradation activity (99%). Scavenger tests showed that the two most effective agents in the photodegradation of MB are holes and hydroxyl radicals, respectively. Finally, a type II heterojunction photocatalytic degradation mechanism for MB by Mg-Al LDH@g-C3N430@Ag3PO45 was proposed.
Collapse
|
research-article |
1 |
7 |
8
|
Deep Learning-Based Proarrhythmia Analysis Using Field Potentials Recorded From Human Pluripotent Stem Cells Derived Cardiomyocytes. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2019. [PMCID: PMC6570462 DOI: 10.1109/jtehm.2019.2907945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
|
6 |
6 |
9
|
Safarkhani M, Moghaddam SS, Taghavimandi F, Bagherzadeh M, Fatahi Y, Park U, Radmanesh F, Huh YS, Rabiee N. Bioengineered Smart Nanocarriers for Breast Cancer Treatment: Adorned Carbon-Based Nanocomposites with Silver and Palladium Complexes for Efficient Drug Delivery. ACS OMEGA 2024; 9:1183-1195. [PMID: 38222665 PMCID: PMC10785617 DOI: 10.1021/acsomega.3c07432] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Biocompatible and bioactive carbon-based nanocomposites are ingeniously designed and fabricated with the aim of enhancing drug delivery applicability in breast cancer treatment. Reduced graphene oxide (rGO) and multiwalled carbon nanotubes (MWCNTs) are utilized as nanocarriers for increasing penetrability into cells and the loading capacity. What sets our study apart is the strategic incorporation of the two different complexes of silver (AgL2) and palladium (PdL2) with the carboxamide-based ligand C9H7N3OS (L), which have been synthesized and decorated on nanocarriers alongside doxorubicin (DOX) for stabilizing DOX by π-π interactions and hydrogen bonding. Although DOX is a well-known cancer therapy agent, the efficacy of DOX is hindered owing to drug resistance, poor internalization, and limited site specificity. Aside from stabilizing DOX on nanocarriers, our carbon-based nanocarriers are tailored to act as a precision-guided missile, strategically by adorning with target-sensitive complexes. Based on the literature, carboxamide ligands can connect to overexpressed receptors on cancerous cells and inhibit them from proliferation signaling. Also, the complexes have an antibacterial activity that can control the infection caused by decreasing white blood cells and necrosis of cancerous cells. A high-concentration cytotoxicity assay revealed that decorating PdL2 on a DOX-containing nanocarrier not only increased cytotoxicity to breast cancerous cell lines (MDA-MB-231 and MCF-7) but also revealed higher cell viability on a normal cell line (MCF-10A). The drug release screening results showed that the presence of PdL2 led to 72 h correlate release behavior in acidic and physiological pH profiles, while the AgL2-containing nanocomposite showed an analogue behavior for just 6 h and the release of DOX continued and after about 100 h hit the top.
Collapse
|
research-article |
1 |
5 |
10
|
Samadi M, Moshfegh AZ. Recent Developments of Electrospinning-Based Photocatalysts in Degradation of Organic Pollutants: Principles and Strategies. ACS OMEGA 2022; 7:45867-45881. [PMID: 36570210 PMCID: PMC9773183 DOI: 10.1021/acsomega.2c05624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Electrospinning is a simple and cheap process for forming one-dimensional (1D) nanofibers with controllable size, morphology, and chemistry. Besides these, the ultrahigh surface area with industrialization capability has attracted extensive interest in the research community. On the other hand, a photocatalytic process is a promising method for degrading organic pollutants that cannot be removed by conventional wastewater treatment. This review focuses on the recent progress of electrospun nanofibers for the photocatalytic degradation of water pollutants. The linkage between the electrospinning technique and the photocatalytic process is classified into two main categories: (1) polymeric electrospun nanofibers as a sacrificed template to form 1D photocatalysts and (2) polymeric electrospun nanofibers as a carrier of photocatalyst materials. We have thoroughly discussed the principles and fundamental issues of electrospinning as well as two main strategies to design and fabricate nanofiber-based photocatalysts for the ideal photodegradation of organics pollutants. The results of data mapping using VOSviewer demonstrated the recent trend and the importance of this field among researchers and engineers. Moreover, we have elaborated on the limitations and potential benefits of the two categories of electrospinning-based photocatalyst fabrication and practical application that will open new directions for future research.
Collapse
|
Review |
3 |
4 |
11
|
Bagherzadeh M, Chegeni M, Bayrami A, Amini M. Superior and efficient performance of cost-effective MIP-202 catalyst over UiO-66-(CO 2H) 2 in epoxide ring opening reactions. Sci Rep 2024; 14:17730. [PMID: 39085363 PMCID: PMC11291889 DOI: 10.1038/s41598-024-68497-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
This study explored the catalytic performance of two robust zirconium-based metal-organic frameworks (MOFs), MIP-202(Zr) and UiO-66-(CO2H)2 in the ring-opening of epoxides using alcohols and amines as nucleophilic reagents. The MOFs were characterized by techniques such as FT-IR, PXRD, FE-SEM, and EDX. Through systematic optimization of key parameters (catalyst amount, time, temperature, solvent), MIP-202(Zr) achieved 99% styrene oxide conversion in 25 min with methanol at room temperature using 5 mg catalyst. In contrast, UiO-66-(CO2H)2 required drastically harsher conditions of 120 min, 60 °C, and four times the catalyst loading to reach 98% conversion. A similar trend was observed for ring-opening with aniline -MIP-202(Zr) gave 93% conversion in one hour at room temperature, while UiO-66-(CO2H)2 needed two hours at 60 °C for 95% conversion. The superior performance of MIP-202(Zr) likely stems from cooperative Brønsted/Lewis acid sites and higher proton conductivity enabling more efficient epoxide activation. Remarkably, MIP-202(Zr) maintained consistent activity over five recycles in the ring-opening of styrene oxide by methanol and over three recycles in the ring-opening of styrene oxide by aniline. Testing various epoxide substrates and nucleophiles revealed trends in reactivity governed by electronic and steric effects. The results provide useful insights into tuning Zr-MOF-based catalysts and highlight the promise of the cost-effective and sustainable MIP-202(Zr) for diverse epoxide ring-opening reactions on an industrial scale.
Collapse
|
research-article |
1 |
3 |
12
|
Behbahani Nezhad A, Bastan F, Panjehshahin A, Zamani M. Adsorptive Desulfurization of Condensate Contains Aromatic Compounds Using a Commercial Molecular Sieve. ACS OMEGA 2023; 8:10365-10372. [PMID: 36969445 PMCID: PMC10034830 DOI: 10.1021/acsomega.2c08051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
This study is undertaken to evaluate the potential of a commercial molecular sieve to remove diverse sulfur compounds from condensate with high aromatic on an industrial scale. For the first part of this study, the adsorbent is characterized in detail using inductively coupled plasma optical emission spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, and Brunauer-Emmett-Teller analysis. For the second part, dynamic breakthrough experiments on an industrial scale are performed to assess the dynamic adsorption performance of a commercial molecular sieve. Dynamic experiments show that the adsorbent effectively removes the sulfur compound from condensate that has approximately 900 ppmw S. In more detail, this commercial molecular sieve selectively desulfurizes condensate to about 12 ppmw S, and this is achieved when the concentration of non-sulfur aromatic is greater than 15 times higher than the total sulfur. As regeneration is a crucial part of the continuous adsorption-regeneration cycling process, the final part of this study is focused on finding a desorption method to avoid a sulfur concentration peak in tail gas.
Collapse
|
research-article |
2 |
3 |
13
|
Safavi SM, Outokesh M, Vosoughi N, Yahyazadeh A, Mohammadi A, Kiani MA, Jabalamelian SS. Preparation and characterization of a new Gd 2O 3-epoxy composite for neutron shielding applications. Sci Rep 2024; 14:25663. [PMID: 39463381 PMCID: PMC11514267 DOI: 10.1038/s41598-024-77070-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
The current study aims to introduce a new polymeric composite consisting of epoxy resin as the matrix and gadolinium oxide (Gd2O3) as the neutron adsorption ingredient. The shielding performance of the composite was assessed by neutron attenuation experiments with an Am-Be source and polyethylene moderator. The results of these experiments showed an appreciable agreement with the Monte Carlo simulations. Other characteristics of the composite, including mechanical strength, thermal stability, microtexture, and its chemical compositions, were examined using standard tensile test, thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, static light scattering analyses, and Fourier-transform infrared spectroscopy (FTIR). The results indicated that the new composites offer appreciable neutron absorption properties so that samples with 0.5%, 2%, 5%, and 10% Gd2O3 content could reduce the neutron beam intensity by 54%, 63%, 66%, and 70% at a thickness of 4 cm.
Collapse
|
research-article |
1 |
|
14
|
Zandi N, Mostafavi E, Shokrgozar MA, Tamjid E, Webster TJ, Annabi N, Simchi A. Correction: Biomimetic proteoglycan nanoparticles for growth factor immobilization and delivery. Biomater Sci 2025; 13:1858-1860. [PMID: 40029177 PMCID: PMC11874909 DOI: 10.1039/d5bm90019k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 03/05/2025]
Abstract
Correction for 'Biomimetic proteoglycan nanoparticles for growth factor immobilization and delivery' by Nooshin Zandi et al., Biomater. Sci., 2020, 8, 1127-1136, https://doi.org/10.1039/C9BM00668K.
Collapse
|
Published Erratum |
1 |
|
15
|
Rouyin A, Einafshar MM, Arjmand N. A novel personalized homogenous finite element model to predict the pull-out strength of cancellous bone screws. J Orthop Surg Res 2024; 19:732. [PMID: 39506782 PMCID: PMC11542241 DOI: 10.1186/s13018-024-05169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/13/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Orthopedic surgeries often involve the insertion of bone screws for various fixation systems. The risk of postoperative screw loosening is usually assessed through experimental or finite element (FE) evaluations of the screw pull-out strength. FE simulations are based on either personalized complex but accurate heterogeneous modeling or non-personalized simple but relatively less accurate homogeneous modeling. This study aimed to develop and validate a novel personalized computed tomography (CT)-based homogeneous FE simulation approach to predict the pull-out force of cancellous bone screws. METHODS Twenty FE simulations of L1-L5 vertebral screw pull-out tests were conducted, i.e., 10 heterogeneous and 10 homogenous models. Screws were inserted into the lower-middle region of vertebrae. In our novel homogeneous model, the region around approximately twice the diameter of the screw was used as a bone material reference volume. Subsequently, the overall material property of this region was homogeneously attributed to the entire vertebra, and pull-out simulations were conducted. RESULTS The mean error of the predicted pull-out forces by our novel homogenous simulations was ~ 7.9% with respect to our heterogeneous model. When solely the cancellous bone was involved during the pull-out process (i.e., for L1, L2, and L3 vertebral bodies whose cortical bone in the inferior region is thin), the novel homogenous model yielded small mean error of < 6.0%. This error, however, increased to ~ 11% when the screw got involved to the cortical bone (for L4 and L5 vertebrae whose cortical bone in the inferior region is thick). CONCLUSION The proposed personalized CT-based homogenous model was highly accurate in estimating the pull-out force especially when only the cancellous bone was involved with the screw.
Collapse
|
research-article |
1 |
|
16
|
Hedayati-Azar A, Sadeghi H. Development and validation of practical membrane efficiency models for landfill liner systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:11921-11930. [PMID: 40240660 DOI: 10.1007/s11356-025-36412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Contaminant transport in landfills affects groundwater quality. As a result, compacted clay liners and bentonite-based clays are used as barriers in landfills due to their membrane behavior and low hydraulic conductivity. Membrane behavior is the restriction ability of clays owing to the overlap of the diffuse double layers of clay particles. This physico-chemical characteristic is quantified as the membrane efficiency coefficient. Membrane behavior impacts rates of contaminant transport through clay liners; therefore, the main goal of this study is to develop practical membrane efficiency models for salt-contaminated clays that can be used to design barriers. To show the reliability of models, experimental test results for membrane efficiency were adopted from the literature and used in this study. Afterward, two different modeling approaches were presented, both of which defined the membrane behavior as a function of void ratio and salt concentration. The first model is purely empirical and needs four material constants for each type of clay to be determined. The other one is a semi-analytical model being developed based on the combination of microscopic approach modeling for bentonite and experimental test results. The second model needs three constants. Although some discrepancies seem inevitable, both models show good agreements with the experimental data points. However, the results revealed that the first model is more applicable in dilute solute concentration. Finally, constants were presented for several types of clay reported in the experimental database of the current literature.
Collapse
|
|
1 |
|
17
|
Esfandbod A, Nourbala A, Rokhi Z, Meghdari AF, Taheri A, Alemi M. Design, Manufacture, and Acceptance Evaluation of APO: A Lip-syncing Social Robot Developed for Lip-reading Training Programs. Int J Soc Robot 2022:1-15. [PMID: 36320591 PMCID: PMC9614198 DOI: 10.1007/s12369-022-00933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/27/2022]
Abstract
Lack of educational facilities for the burgeoning world population, financial barriers, and the growing tendency in favor of inclusive education have all helped channel a general inclination toward using various educational assistive technologies, e.g., socially assistive robots. Employing social robots in diverse educational scenarios could enhance learners' achievements by motivating them and sustaining their level of engagement. This study is devoted to manufacturing and investigating the acceptance of a novel social robot named APO, designed to improve hearing-impaired individuals' lip-reading skills through an educational game. To accomplish the robot's objective, we proposed and implemented a lip-syncing system on the APO social robot. The proposed robot's potential with regard to its primary goals, tutoring and practicing lip-reading, was examined through two main experiments. The first experiment was dedicated to evaluating the clarity of the utterances articulated by the robot. The evaluation was quantified by comparing the robot's articulation of words with a video of a human teacher lip-syncing the same words. In this inspection, due to the adults' advanced skill in lip-reading compared to children, twenty-one adult participants were asked to identify the words lip-synced in the two scenarios (the articulation of the robot and the video recorded from the human teacher). Subsequently, the number of words that participants correctly recognized from the robot and the human teacher articulations was considered a metric to evaluate the caliber of the designed lip-syncing system. The outcome of this experiment revealed that no significant differences were observed between the participants' recognition of the robot and the human tutor's articulation of multisyllabic words. Following the validation of the proposed articulatory system, the acceptance of the robot by a group of hearing-impaired participants, eighteen adults and sixteen children, was scrutinized in the second experiment. The adults and the children were asked to fill in two standard questionnaires, UTAUT and SAM, respectively. Our findings revealed that the robot acquired higher scores than the lip-syncing video in most of the questionnaires' items, which could be interpreted as a greater intention of utilizing the APO robot as an assistive technology for lip-reading instruction among adults and children.
Collapse
|
research-article |
3 |
|