1
|
Augé RM, Toler HD, Saxton AM. Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis. FRONTIERS IN PLANT SCIENCE 2014; 5:562. [PMID: 25368626 PMCID: PMC4201091 DOI: 10.3389/fpls.2014.00562] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/30/2014] [Indexed: 05/03/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis can enhance plant resistance to NaCl stress in several ways. Two fundamental roles involve osmotic and ionic adjustment. By stimulating accumulation of solutes, the symbiosis can help plants sustain optimal water balance and diminish Na(+) toxicity. The size of the AM effect on osmolytes has varied widely and is unpredictable. We conducted a meta-analysis to determine the size of the AM effect on 22 plant solute characteristics after exposure to NaCl and to examine how experimental conditions have influenced the AM effect. Viewed across studies, AM symbioses have had marked effects on plant K(+), increasing root and shoot K(+) concentrations by an average of 47 and 42%, respectively, and root and shoot K(+)/Na(+) ratios by 47 and 58%, respectively. Among organic solutes, soluble carbohydrates have been most impacted, with AM-induced increases of 28 and 19% in shoots and roots. The symbiosis has had no consistent effect on several characteristics, including root glycine betaine concentration, root or shoot Cl(-) concentrations, leaf Ψπ, or shoot proline or polyamine concentrations. The AM effect has been very small for shoot Ca(++) concentration and root concentrations of Na(+), Mg(++) and proline. Interpretations about AM-conferred benefits regarding these compounds may be best gauged within the context of the individual studies. Shoot and root K(+)/Na(+) ratios and root proline concentration showed significant between-study heterogeneity, and we examined nine moderator variables to explore what might explain the differences in mycorrhizal effects on these parameters. Moderators with significant impacts included AM taxa, host type, presence or absence of AM growth promotion, stress severity, and whether NaCl constituted part or all of the experimental saline stress treatment. Meta-regression of shoot K(+)/Na(+) ratio showed a positive response to root colonization, and root K(+)/Na(+) ratio a negative response to time of exposure to NaCl.
Collapse
|
research-article |
11 |
42 |
2
|
Sun TJ, Fan L, Yang J, Cao RZ, Yang CY, Zhang J, Wang DM. A Glycine max sodium/hydrogen exchanger enhances salt tolerance through maintaining higher Na + efflux rate and K +/Na + ratio in Arabidopsis. BMC PLANT BIOLOGY 2019; 19:469. [PMID: 31690290 PMCID: PMC6833268 DOI: 10.1186/s12870-019-2084-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/17/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Soybean (Glycine max (L.)) is one the most important oil-yielding cash crops. However, the soybean production has been seriously restricted by salinization. It is therefore crucial to identify salt tolerance-related genes and reveal molecular mechanisms underlying salt tolerance in soybean crops. A better understanding of how plants resist salt stress provides insights in improving existing soybean varieties as well as cultivating novel salt tolerant varieties. In this study, the biological function of GmNHX1, a NHX-like gene, and the molecular basis underlying GmNHX1-mediated salt stress resistance have been revealed. RESULTS We found that the transcription level of GmNHX1 was up-regulated under salt stress condition in soybean, reaching its peak at 24 h after salt treatment. By employing the virus-induced gene silencing technique (VIGS), we also found that soybean plants became more susceptible to salt stress after silencing GmNHX1 than wild-type and more silenced plants wilted than wild-type under salt treatment. Furthermore, Arabidopsis thaliana expressing GmNHX1 grew taller and generated more rosette leaves under salt stress condition compared to wild-type. Exogenous expression of GmNHX1 resulted in an increase of Na+ transportation to leaves along with a reduction of Na+ absorption in roots, and the consequent maintenance of a high K+/Na+ ratio under salt stress condition. GmNHX1-GFP-transformed onion bulb endothelium cells showed fluorescent pattern in which GFP fluorescence signals enriched in vacuolar membranes. Using the non-invasive micro-test technique (NMT), we found that the Na+ efflux rate of both wild-type and transformed plants after salt treatment were significantly higher than that of before salt treatment. Additionally, the Na+ efflux rate of transformed plants after salt treatment were significantly higher than that of wild-type. Meanwhile, the transcription levels of three osmotic stress-related genes, SKOR, SOS1 and AKT1 were all up-regulated in GmNHX1-expressing plants under salt stress condition. CONCLUSION Vacuolar membrane-localized GmNHX1 enhances plant salt tolerance through maintaining a high K+/Na+ ratio along with inducing the expression of SKOR, SOS1 and AKT1. Our findings provide molecular insights on the roles of GmNHX1 and similar sodium/hydrogen exchangers in regulating salt tolerance.
Collapse
|
research-article |
6 |
35 |
3
|
Wang L, Liu Y, Li D, Feng S, Yang J, Zhang J, Zhang J, Wang D, Gan Y. Improving salt tolerance in potato through overexpression of AtHKT1 gene. BMC PLANT BIOLOGY 2019; 19:357. [PMID: 31419943 PMCID: PMC6697938 DOI: 10.1186/s12870-019-1963-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 08/06/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Survival of plants in response to salinity stress is typically related to Na+ toxicity, but little is known about how heterologous high-affinity potassium transporter (HKT) may help alleviate salt-induced damages in potato (Solanum tuberosum L.). RESULTS In this study, we used the Arabidopsis thaliana high-affinity potassium transporter gene (AtHKT1) to enhance the capacity of potato plants to tolerate salinity stress by decreasing Na+ content and improving K+/Na+ ratio in plant leaves, while maintaining osmotic balance. Seven AtHKT1 transformed potato lines (namely T1, T2, T3, T5, T11, T13 and T15) were compared with non-transgenic control plant at molecule and whole-plant levels. The lines T3 and T13 had the highest AtHKT1 expression with the tolerance index (an quantitative assessment) being 6.8 times that of the control. At 30 days under 100 and 150 mmol L- 1 NaCl stress treatments, the T3 and T13 lines had least reductions in net photosynthetic rate, stomatal conductance and transpiration rate among the seven lines, leading to the increased water use efficiency and decreased yield loss. CONCLUSIONS We conclude that the constitutive overexpression of AtHKT1 reduces Na+ accumulation in potato leaves and promotes the K+/Na+ homeostasis that minimizes osmotic imbalance, maintains photosynthesis and stomatal conductance, and increases plant productivity.
Collapse
|
research-article |
6 |
28 |
4
|
Malekzadeh P. Influence of exogenous application of glycinebetaine on antioxidative system and growth of salt-stressed soybean seedlings (Glycine max L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:225-32. [PMID: 25964715 PMCID: PMC4411384 DOI: 10.1007/s12298-015-0292-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/09/2015] [Indexed: 05/03/2023]
Abstract
Glycinebetaine is one of the most competitive compounds which play an important role in salt stress in plants. In this study, the enhanced salt tolerance in soybean (Glycine max L.) by exogenous application of glycinebetaine was evaluated. To improve salt tolerance at the seedling stage, GB was applied in four different concentrations (0, 5, 25 and 50 mM) as a pre-sowing seed treatment. Salinity stress in the form of a final concentration of 150 mM sodium chloride (NaCl) over a 15 day period drastically affected the plants as indicated by increased proline, MDA and Na(+) content of soybean plants. In contrast, supplementation with 50 mM GB improved growth of soybean plants under NaCl as evidenced by a decrease in proline, MDA and Na(+) content of soybean plants. Further analysis showed that treatments with GB, resulted in increasing of CAT and SOD activity of soybean seedlings in salt stress. We propose that the role of GB in increasing tolerance to salinity stress in soybean may result from either its antioxidant capacity by direct scavenging of H2O2 or its role in activating CAT activity which is mandatory in scavenging H2O2.
Collapse
|
research-article |
10 |
25 |
5
|
Khalid M, Bilal M, Hassani D, Iqbal HMN, Wang H, Huang D. Mitigation of salt stress in white clover (Trifolium repens) by Azospirillum brasilense and its inoculation effect. BOTANICAL STUDIES 2017; 58:5. [PMID: 28510188 PMCID: PMC5432925 DOI: 10.1186/s40529-016-0160-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/27/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Salinity is one of the increasingly serious environmental problems worldwide for cultivating agricultural crops. The present study was aimed to ascertain the potential of beneficial soil bacterium Azospirillum brasilense to alleviate saline stress in Trifolium repens. Experimental plants (white clover) were grown from seeds and inoculated with or without A. brasilense bacterial strain supplemented with 0, 40, 80, or 120 mM NaCl into soil. RESULTS The growth attributes including, shoot heights, root lengths, fresh and dry weights, leaf area and chlorophyll content were significantly enhanced in T. repens plants grown in A. brasilense inoculated soil than un-inoculated controls, particularly under elevated salinity conditions (40, 80 and 120 mM NaCl). Malondialdehyde content of leaf was recorded to be declined under saline conditions. Moreover, the K+/Na+ ratio was also improved in bacterium-inoculated plants, since A. brasilense significantly reduced the root and shoot Na+ level under high salty environment. CONCLUSIONS Results revealed that soil inoculation with A. brasilense could significantly promote T. repens growth under both non-saline and saline environments, and this study might be extended to other vegetables and crops for the germination and growth enhancement.
Collapse
|
research-article |
8 |
18 |
6
|
Banik S, Dutta D. Membrane Proteins in Plant Salinity Stress Perception, Sensing, and Response. J Membr Biol 2023; 256:109-124. [PMID: 36757456 DOI: 10.1007/s00232-023-00279-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/28/2023] [Indexed: 02/10/2023]
Abstract
Plants have several mechanisms to endure salinity stress. The degree of salt tolerance varies significantly among different terrestrial crops. Proteins at the plant's cell wall and membrane mediate different physiological roles owing to their critical positioning between two distinct environments. A specific membrane protein is responsible for a single type of activity, such as a specific group of ion transport or a similar group of small molecule binding to exert multiple cellular effects. During salinity stress in plants, membrane protein functions: ion homeostasis, signal transduction, redox homeostasis, and solute transport are essential for stress perception, signaling, and recovery. Therefore, comprehensive knowledge about plant membrane proteins is essential to modulate crop salinity tolerance. This review gives a detailed overview of the membrane proteins involved in plant salinity stress highlighting the recent findings. Also, it discusses the role of solute transporters, accessory polypeptides, and proteins in salinity tolerance. Finally, some aspects of membrane proteins are discussed with potential applications to developing salt tolerance in crops.
Collapse
|
Review |
2 |
14 |
7
|
An M, Wang X, Chang D, Wang S, Hong D, Fan H, Wang K. Application of compound material alleviates saline and alkaline stress in cotton leaves through regulation of the transcriptome. BMC PLANT BIOLOGY 2020; 20:462. [PMID: 33032521 PMCID: PMC7542905 DOI: 10.1186/s12870-020-02649-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/14/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Soil salinization and alkalinization are the main factors that affect the agricultural productivity. Evaluating the persistence of the compound material applied in field soils is an important part of the regulation of the responses of cotton to saline and alkaline stresses. RESULT To determine the molecular effects of compound material on the cotton's responses to saline stress and alkaline stress, cotton was planted in the salinized soil (NaCl 8 g kg- 1) and alkalized soil (Na2CO3 8 g kg- 1) after application of the compound material, and ion content, physiological characteristics, and transcription of new cotton leaves at flowering and boll-forming stage were analyzed. The results showed that compared with saline stress, alkaline stress increased the contents of Na+, K+, SOD, and MDA in leaves. The application of the compound material reduced the content of Na+ but increased the K+/Na+ ratio, the activities of SOD, POD, and CAT, and REC. Transcriptome analysis revealed that after the application of the compound material, the Na+/H+ exchanger gene in cotton leaves was down-regulated, while the K+ transporter, K+ channel, and POD genes were up-regulated. Besides, the down-regulation of genes related to lignin synthesis in phenylalanine biosynthesis pathway had a close relationship with the ion content and physiological characteristics in leaves. The quantitative analysis with PCR proved the reliability of the results of RNA sequencing. CONCLUSION These findings suggest that the compound material alleviated saline stress and alkaline stress on cotton leaves by regulating candidate genes in key biological pathways, which improves our understanding of the molecular mechanism of the compound material regulating the responses of cotton to saline stress and alkaline stress.
Collapse
|
research-article |
5 |
8 |
8
|
Li Y, Hu J, Qi J, Zhao F, Liu J, Chen L, Chen L, Gu J, Wu H, Li Z. Improvement of leaf K + retention is a shared mechanism behind CeO 2 and Mn 3O 4 nanoparticles improved rapeseed salt tolerance. STRESS BIOLOGY 2022; 2:46. [PMID: 37676336 PMCID: PMC10441935 DOI: 10.1007/s44154-022-00065-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/10/2022] [Indexed: 09/01/2023]
Abstract
Salinity is a global issue limiting efficient agricultural production. Nanobiotechnology has been emerged as an effective approach to improve plant salt tolerance. However, little known is about the shared mechanisms between different nanomaterials-enabled plant salt tolerance. In this study, we found that both PNC [polyacrylic acid coated nanoceria (CeO2 nanoparticles)] and PMO (polyacrylic acid coated Mn3O4 nanoparticles) nanozymes improved rapeseed salt tolerance. PNC and PMO treated rapeseed plants showed significantly fresh weight, dry weight, higher chlorophyll content, Fv/Fm, and carbon assimilation rate than control plants under salt stress. Results from confocal imaging with reactive oxygen species (ROS) fluorescent dye and histochemical staining experiments showed that the ROS over-accumulation level in PNC and PMO treated rapeseed was significantly lower than control plants under salt stress. Confocal imaging results with K+ fluorescent dye showed that significantly higher cytosolic and vacuolar K+ signals were observed in PNC and PMO treated rapeseed than control plants under salt stress. This is further confirmed by leaf K+ content data. Furthermore, we found that PNC and PMO treated rapeseed showed significantly lower cytosolic Na+ signals than control plants under salt stress. While, compared with significantly higher vacuolar Na+ signals in PNC treated plants, PMO treated rapeseed showed significantly lower vacuolar Na+ signals than control plants under salt stress. These results are further supported by qPCR results of genes of Na+ and K+ transport. Overall, our results suggest that besides maintaining ROS homeostasis, improvement of leaf K+ retention could be a shared mechanism in nano-improved plant salt tolerance.
Collapse
|
research-article |
3 |
7 |
9
|
Shamaya NJ, Shavrukov Y, Langridge P, Roy SJ, Tester M. Genetics of Na + exclusion and salinity tolerance in Afghani durum wheat landraces. BMC PLANT BIOLOGY 2017; 17:209. [PMID: 29157217 PMCID: PMC5697363 DOI: 10.1186/s12870-017-1164-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 11/08/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Selecting for low concentration of Na+ in the shoot provides one approach for tackling salinity stress that adversely affects crop production. Novel alleles for Na+ exclusion can be identified and then introduced into elite crop cultivars. RESULTS We have identified loci associated with lower Na+ concentration in leaves of durum wheat landraces originating from Afghanistan. Seedlings of two F2 populations derived from crossings between Australian durum wheat (Jandaroi) and two Afghani landraces (AUS-14740 and AUS-14752) were grown hydroponically and evaluated for Na+ and K+ concentration in the third leaf. High heritability was found for both third leaf Na+ concentration and the K+/Na+ ratio in both populations. Further work focussed on line AUS-14740. Bulk segregant analysis using 9 K SNP markers identified two loci significantly associated with third leaf Na+ concentration. Marker regression analysis showed a strong association between all traits studied and a favourable allele originating from AUS-14740 located on the long arm of chromosome 4B. CONCLUSIONS The candidate gene in the relevant region of chromosome 4B is likely to be the high affinity K+ transporter B1 (HKT1;5-B1). A second locus associated with third leaf Na+ concentration was located on chromosome 3BL, with the favourable allele originating from Jandaroi; however, no candidate gene can be identified.
Collapse
|
research-article |
8 |
6 |
10
|
Guo S, Ma X, Cai W, Wang Y, Gao X, Fu B, Li S. Exogenous Proline Improves Salt Tolerance of Alfalfa through Modulation of Antioxidant Capacity, Ion Homeostasis, and Proline Metabolism. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212994. [PMID: 36365447 PMCID: PMC9657615 DOI: 10.3390/plants11212994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 05/24/2023]
Abstract
Alfalfa (Medicago sativa L.) is an important forage crop, and its productivity is severely affected by salt stress. Although proline is a compatible osmolyte that plays an important role in regulating plant abiotic stress resistance, the basic mechanism of proline requires further clarification regarding the effect of proline in mitigating the harmful effects of salinity. Here, we investigate the protective effects and regulatory mechanisms of proline on salt tolerance of alfalfa. The results show that exogenous proline obviously promotes seed germination and seedling growth of salt-stressed alfalfa. Salt stress results in stunted plant growth, while proline application alleviates this phenomenon by increasing photosynthetic capacity and antioxidant enzyme activities and decreasing cell membrane damage and reactive oxygen species (ROS) accumulation. Plants with proline treatment maintain a better K+/Na+ ratio by reducing Na+ accumulation and increasing K+ content under salt stress. Additionally, proline induces the expression of genes related to antioxidant biosynthesis (Cu/Zn-SOD and APX) and ion homeostasis (SOS1, HKT1, and NHX1) under salt stress conditions. Proline metabolism is mainly regulated by ornithine-δ-aminotransferase (OAT) and proline dehydrogenase (ProDH) activities and their transcription levels, with the proline-treated plants displaying an increase in proline content under salt stress. In addition, OAT activity in the ornithine (Orn) pathway rather than Δ1-pyrroline-5-carboxylate synthetase (P5CS) activity in the glutamate (Glu) pathway is strongly increased under salt stress, made evident by the sharp increase in the expression level of the OAT gene compared to P5CS1 and P5CS2. Our study provides new insight into how exogenous proline improves salt tolerance in plants and that it might be used as a significant practical strategy for cultivating salt-tolerant alfalfa.
Collapse
|
research-article |
3 |
5 |
11
|
Gao Y, Sun Y, Ou Y, Zheng X, Feng Q, Zhang H, Fei Y, Luo J, Resco de Dios V, Yao Y. Pretreating poplar cuttings with low nitrogen ameliorates salt stress responses by increasing stored carbohydrates and priming stress signaling pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112801. [PMID: 34560614 DOI: 10.1016/j.ecoenv.2021.112801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Soil salinity is a widespread stress in semi-arid forests worldwide, but how to manage nitrogen (N) nutrition to improve plant saline tolerance remains unclear. Here, the cuttings of a widely distributed poplar from central Asia, Populus russikki Jabl., were exposed to either normal or low nitrogen (LN) concentrations for two weeks in semi-controlled greenhouse, and then they were added with moderate salt solution or not for another two weeks to evaluate their physiological, biochemical, metabolites and transcriptomic profile changes. LN-pretreating alleviated the toxicity caused by the subsequent salt stress in the poplar plants, demonstrated by a significant reduction in the influx of Na+ and Cl- and improvement of the K+/Na+ ratio. The other salt-stressed traits were also ameliarated, indicated by the variations of chlorophyll content, PSII photochemical activity and lipid peroxidation. Stress alleviation resulted from two different processes. First, LN pretreatment caused a significant increase of non-structural carbohydrates (NSC), allowed for an increased production of osmolytes and a higher potential fueling ion transport under subsequent salt condition, along with increased transcript levels of the cation/H+ ATPase. Second, LN pretreatment enhanced the transcript levels of stress signaling components and phytohormones pathway as well as antioxidant enzyme activities. The results indicate that early restrictions of N supply could enhance posterior survival under saline stress in poplar plants, which is important for plantation programs and restoration activities in semi-arid areas.
Collapse
|
|
4 |
5 |
12
|
Wang X, An M, Wang K, Fan H, Shi J, Chen K. Effects of Organic Polymer Compound Material on K + and Na + Distribution and Physiological Characteristics of Cotton Under Saline and Alkaline Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:636536. [PMID: 34122466 PMCID: PMC8194489 DOI: 10.3389/fpls.2021.636536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/29/2021] [Indexed: 05/05/2023]
Abstract
Soil salinization and alkalization greatly restrict crop growth and yield. In this study, NaCl (8 g kg-1) and Na2CO3 (8 g kg-1) were used to create saline stress and alkaline stress on cotton in pot cultivation in the field, and organic polymer compound material (OPCM) and stem girdling were applied before cotton sowing and at flowering and boll-forming stage, respectively, aiming to determine the effects of OPCM on K+ and Na+ absorption and transport and physiological characteristics of cotton leaf and root. The results showed that after applying the OPCM, the Na+ content in leaf of cotton under saline stress and alkaline stress were decreased by 7.72 and 6.49%, respectively, the K+/Na+ ratio in leaf were increased by 5.65 and 19.10%, respectively, the Na+ content in root were decreased by 9.57 and 0.53%, respectively, the K+/Na+ ratio in root were increased by 65.77 and 55.84%, respectively, and the transport coefficients of K+ and Na+ from leaf to root were increased by 39.59 and 21.38%, respectively. The activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), and the relative electrical conductivity (REC) in cotton leaf were significantly increased, while the content of malondialdehyde (MDA) was decreased; but the changes in those in root were not significant. The boll weights were increased by 11.40 and 13.37%, respectively, compared with those for the control. After stem girdling, the application of OPCM still promoted the ion transport of cotton organs; moreover, the CAT activity in root was increased by 25.09% under saline stress, and the SOD activity in leaf and CAT in root were increased by 42.22 and 6.91%, respectively under alkaline stress. Therefore, OPCM can significantly change the transport of K+ and Na+ to maintain the K+ and Na+ homeostasis in leaf and root, and regulate physiological and biochemical indicators to alleviate the stress-induced damage. Besides, the regulation effect of OPCM on saline stress was better than that on alkaline stress.
Collapse
|
research-article |
4 |
4 |
13
|
Xu Y, Wang L, Liu H, He W, Jiang N, Wu M, Xiang Y. Identification of TCP family in moso bamboo (Phyllostachys edulis) and salt tolerance analysis of PheTCP9 in transgenic Arabidopsis. PLANTA 2022; 256:5. [PMID: 35670871 DOI: 10.1007/s00425-022-03917-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Bioinformatic analysis of moso bamboo TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (TCP) transcription factors reveals their conservation and variation as well as the probable biological functions in abiotic stress response. Overexpressing PheTCP9 in Arabidopsis thaliana illustrates it may exhibit a new vision in different aspects of response to salt stress. Plant specific TCPs play important roles in plant growth, development and stress response, but studies of TCP in moso bamboo are limited. Therefore, in this study, a total of 40 TCP genes (PheTCP1 ~ 40) were identified and characterized from moso bamboo genome and divided into three different subfamilies, namely, 7 in TEOSINTE BRANCHED 1 / CYCLOIDEA (TB1/CYC), 14 in CINCINNATA (CIN) and 19 in PROLIFERATING CELL FACTOR (PCF). Subsequently, we analyzed the gene structures and conserved domain of these genes and found that the members from the same subfamilies exhibited similar exon/intron distribution patterns. Selection pressure and gene duplication analysis results indicated that PheTCP genes underwent strong purification selection during evolution. There were many cis-elements related to phytohermone and stress responsive existing in the upstream promoter regions of PheTCP genes, such as ABRE, CGTCA-motif and ARE. Subcellular localization experiments showed that PheTCP9 was a nuclear localized protein. As shown by β-glucuronidase (GUS) activity, the promoter of PheTCP9 was significantly indicated by salt stress. PheTCP9 was significantly induced in the roots, stems and leaves of moso bamboo. It was also significantly induced by NaCl solution. Overexpressing PheTCP9 increased the salt tolerance of transgenic Arabidopsis. Meanwhile, H2O2 and malondialdehyde (MDA) contents were significantly lower in PheTCP9 over expression (OE) transgenic Arabidopsis than WT. Catalase (CAT) activity, K+/Na+ ratio as well as CAT2 expression level was also much improved in transgenic Arabidopsis than WT under salt conditions. In addition, PheTCP9 OE transgenic Arabidopsis held higher survival rates of seedlings than WT under NaCl conditions. These results showed the positive regulation functions of PheTCP9 in plants under salt conditions.
Collapse
|
|
3 |
2 |
14
|
Arunachalam V, Fernandes CM, Salgaonkar DC. Quick Method to Quantify the Potassium and Sodium Content Variation in Leaves of Banana Varieties. ANAL SCI 2020; 36:1255-1260. [PMID: 32475894 DOI: 10.2116/analsci.20p096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The current study describes novel and quick methods for the quantification of K+ and Na+ in banana leaves using Horiba Laqua twin ion meters. Foliar K+ and Na+ content measured by ion meter significantly correlated with standard test values by coefficients of 0.83 and 0.46, respectively. About 48 absorbance values associated with potassium concentrations at wave numbers (1581 to 1583 and 3194 to 3410 cm-1) and 15 sodium associated wave numbers (3773 to 3996 cm-1) predicted potassium and sodium content with regression coefficients of 0.999 and 0.588, respectively. K+ and Na+ cations of fresh leaves in seven banana varieties were quantified using ion meters and new information of differences in the foliar potassium and sodium contents was found between banana varieties within the AAB group. The Rasbali (Silk subgroup) variety possessed greater potassium (5413 mg/L) and sodium (188 mg/L) ions than Amti (Mysore subgroup).
Collapse
|
|
5 |
1 |
15
|
Mardani-Korrani F, Amooaghaie R, Ahadi A, Ghanadian M. RBOH-dependent signaling is involved in He-Ne laser-induced salt tolerance and production of rosmarinic acid and carnosol in Salvia officinalis. BMC PLANT BIOLOGY 2024; 24:798. [PMID: 39179969 PMCID: PMC11344448 DOI: 10.1186/s12870-024-05502-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND In the past two decades, the impacts of Helium-Neon (He-Ne) laser on stress resistance and secondary metabolism in plants have been studied, but the signaling pathway which by laser regulates this process remains unclear. Therefore, the current study sought to explore the role of RBOH-dependent signaling in He-Ne laser-induced salt tolerance and elicitation of secondary metabolism in Salvia officinalis. Seeds were primed with He-Ne laser (6 J cm- 2) and peroxide hydrogen (H2O2, 5 mM) and 15-old-day plants were exposed to two salinity levels (0, 75 mM NaCl). RESULTS Salt stress reduced growth parameters, chlorophyll content and relative water content (RWC) and increased malodialdehyde (MDA) and H2O2 contents in leaves of 45-old-day plants. After 48 h of salt exposure, higher transcription levels of RBOH (encoding NADPH oxidase), PAL (phenylalanine ammonia-lyase), and RAS (rosmarinic acid synthase) were recorded in leaves of plants grown from seeds primed with He-Ne laser and/or H2O2. Despite laser up-regulated RBOH gene in the early hours of exposing to salinity, H2O2 and MDA contents were lower in leaves of these plants after 30 days. Seed pretreatment with He-Ne laser and/or H2O2 augmented the accumulation of anthocyanins, total phenol, carnasol, and rosmarinic acid and increased total antioxidant capacity under non-saline and more extensively at saline conditions. Indeed, these treatments improved RWC, and K+/Na+ ratio, enhanced the activities of superoxide dismutase and ascorbate peroxidase and proline accumulation, and significantly decreased membrane injury and H2O2 content in leaves of 45-old-day plants under salt stress. However, applying diphenylene iodonium (DPI as an inhibitor of NADPH oxidase) and N, N-dimethyl thiourea (DMTU as a H2O2 scavenger) after laser priming reversed the aforementioned effects which in turn resulted in the loss of laser-induced salt tolerance and secondary metabolism. CONCLUSIONS These findings for the first time deciphered that laser can induce a transient RBOH-dependent H2O2 burst, which might act as a downstream signal to promote secondary metabolism and salt stress alleviation in S. officinalis plants.
Collapse
|
research-article |
1 |
|
16
|
Boussadia O, Zgallai H, Mzid N, Zaabar R, Braham M, Doupis G, Koubouris G. Physiological Responses of Two Olive Cultivars to Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:1926. [PMID: 37653843 PMCID: PMC10222188 DOI: 10.3390/plants12101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 09/02/2023]
Abstract
The olive tree (Olea europaea L.) is the main fruit tree in most of the arid and semi-arid regions of Tunisia, which is where the problem of salinity is more pronounced. Salinity is one of the main factors that affects the productivity of olive trees, so the objective of this experiment was to study the effects of salinity on the photosynthesis, water relations, mineral status, and enzymatic activity of two cultivars of Olea europaea L., 'Chemlali' and 'Koroneiki'. The trial was conducted under controlled conditions in a greenhouse for a period of 49 days and included two treatments: T0 control and T100 (irrigation with 100 mM of NaCl solution). Under salinity stress, the photosynthesis, stomatal conductance, and leaves of both cultivars were negatively affected. 'Chemlali' showed greater tolerance to NaCl salinity, based on a progressive decrease in osmotic potential (Ψπ) followed by a progressive and synchronous decrease in gs, without a comparable decrease in photosynthesis. The water use efficiency (WUE) improved as a result. In addition, the K+/Na+ ratio in 'Chemlali' rose. This appears to be crucial for managing stress. Conversely, enzymatic activity showed an accumulation of glutathione peroxidase (GPX) in stressed plants. The catalase (CAT) and ascorbate peroxidase (APX) content decreased in both stressed varieties. It can be concluded that the cultivar 'Koroneiki' is more susceptible to salt stress than the cultivar 'Chemlali', because the accumulation of GPX and the decreases in CAT and APX were more pronounced in this cultivar.
Collapse
|
research-article |
2 |
|
17
|
Fathalli N, Rajhi I, Jouini R, Abid G, Mejri S, Ghorbel A, Jansen RK, Ouertani RN. Effect of salt stress on K +/Na + homeostasis, osmotic adjustment, and expression profiles of high-affinity potassium transporter (HKT) genes. PROTOPLASMA 2025:10.1007/s00709-025-02070-0. [PMID: 40314792 DOI: 10.1007/s00709-025-02070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/23/2025] [Indexed: 05/03/2025]
Abstract
Salt stress is one of the major threats affecting crop yield. We assessed the behaviour of three barley genotypes, Ardhaoui, Manel, and Testour under 200 mM NaCl with the aim of evaluating the physiological and molecular mechanisms involved in barley salinity tolerance. Results revealed that salinity stress significantly decreases plant growth and water-holding capacity, particularly in the salt-sensitive genotype Testour. Tissue ionic content assessment demonstrated significantly distinct salinity-induced responses. The salt-tolerant genotype Ardhaoui accumulated more K+ and less Na+ content in both leaves and roots compared with the two other genotypes, leading to an increased K+/Na+ ratio. Furthermore, the genotype Ardhaoui exhibited a stronger selectivity transport capacity of K+ over Na+ from root to leaf compared to both Manel and Testour. This effect was due to enhanced K⁺ retention and Na⁺ exclusion, regulated by HvHKT expression. Indeed, higher HvHKT2;1 gene transcript abundance was detected in both leaves and roots of the Ardhaoui genotype, as well as an upregulation of HvHKT1;1 and HvHKT1, mainly in Ardhaoui roots. In view of the severe impact of salinity on plant development, these findings could be applied to the genetic improvement of plant salinity tolerance.
Collapse
|
|
1 |
|
18
|
Hussin SA, Ali SH, Lotfy ME, El-Samad EHA, Eid MA, Abd-Elkader AM, Eisa SS. Morpho-physiological mechanisms of two different quinoa ecotypes to resist salt stress. BMC PLANT BIOLOGY 2023; 23:374. [PMID: 37518180 PMCID: PMC10388498 DOI: 10.1186/s12870-023-04342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/10/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Quinoa (Chenopodium quinoa Willd.) is a facultative halophyte showing various mechanisms of salt resistance among different ecotype cultivars. This study aimed to determine salt resistance limits for a Peruvian sea level ecotype "Hualhuas" and a Bolivian salar ecotype "Real" and elucidate individual mechanisms conferring differences in salt resistance between these cultivars. The plants were grown in sandy soil and irrigated with various saline solutions concentrations (0, 100, 200, 300, 400, and 500 mM NaCl) under controlled conditions. RESULTS High salinity treatment (500 mM NaCl) reduced the plant growth by 80% and 87% in Hualhuas and Real cultivars, respectively. EC50 (water salinity which reduces the maximum yield by 50%) was at a salinity of 300 mM NaCl for Hualhuas and between 100 and 200 mM NaCl for Real plants. Both cultivars were able to lower the osmotic potential of all organs due to substantial Na+ accumulation. However, Hualhuas plants exhibited distinctly lower Na+ contents and consequently a higher K+/Na+ ratio compared to Real plants, suggesting a more efficient control mechanism for Na+ loading and better K+ retention in Hualhuas plants. Net CO2 assimilation rates (Anet) were reduced, being only 22.4% and 36.2% of the control values in Hualhuas and Real, respectively, at the highest salt concentration. At this salinity level, Hualhuas plants showed lower stomatal conductance (gs) and transpiration rates (E), but higher photosynthetic water use efficiency (PWUE), indicative of an efficient control mechanism over the whole gas-exchange machinery. CONCLUSION These results reveal that Hualhuas is a promising candidate in terms of salt resistance and biomass production compared to Real.
Collapse
|
|
2 |
|
19
|
Yuan G, Nong T, Hunpatin OS, Shi C, Su X, Xu F, Wang Y, Zhang Z, Ning Y, Liu H, Wang Q. Genome-wide identification of Shaker K + channel family in Nicotiana tabacum and functional analysis of NtSKOR1B in response to salt stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1378738. [PMID: 38660442 PMCID: PMC11039879 DOI: 10.3389/fpls.2024.1378738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Soil salinization poses a mounting global ecological and environmental threat. The identification of genes responsible for negative regulation of salt tolerance and their utilization in crop improvement through gene editing technologies emerges as a swift strategy for the effective utilization of saline-alkali lands. One efficient mechanism of plant salt tolerance is maintaining the proper intracellular K+/Na+ ratio. The Shaker K+ channels play a crucial role in potassium absorption, transport, and intracellular potassium homeostasis in plant cells. Here, the study presents the first genome-wide identification of Shaker K+ channels in Nicotiana tabacum L., along with a detailed bioinformatic analysis of the 20 identified members. Transcriptome analysis revealed a significant up-regulation of NtSKOR1B, an outwardly-rectifying member predominantly expressed in the root tissue of tobacco seedlings, in response to salt stress. This finding was then confirmed by GUS staining of ProNtSKOR1B::GUS transgenic lines and RT-qPCR analysis. Subsequently, NtSKOR1B knockout mutants (ntskor1) were then generated and subjected to salt conditions. It was found that ntskor1 mutants exhibit enhanced salt tolerance, characterized by increased biomass, higher K+ content and elevated K+/Na+ ratios in both leaf and root tissues, compared to wild-type plants. These results indicate that NtSKOR1B knockout inhibits K+ efflux in root and leaf tissues of tobacco seedlings under salt stress, thereby maintaining higher K+/Na+ ratios within the cells. Thus, our study identifies NtSKOR1B as a negative regulator of salt tolerance in tobacco seedlings.
Collapse
|
research-article |
1 |
|