1
|
Wang X, Gao J, Zhu Z, Dong X, Wang X, Ren G, Zhou X, Kuai B. TCP transcription factors are critical for the coordinated regulation of isochorismate synthase 1 expression in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:151-62. [PMID: 25702611 DOI: 10.1111/tpj.12803] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 05/10/2023]
Abstract
Salicylic acid (SA) plays an important role in various aspects of plant development and responses to stresses. To elucidate the sophisticated regulatory mechanism of SA synthesis and signaling, we used a yeast one-hybrid system to screen for regulators of isochorismate synthase 1 (ICS1), a gene encoding the key enzyme in SA biosynthesis in Arabidopsis thaliana. A TCP family transcription factor AtTCP8 was initially identified as a candidate regulator of ICS1. The regulation of ICS1 by TCP proteins is supported by the presence of a typical TCP binding site in the ICS1 promoter. The binding of TCP8 to this site was confirmed by in vitro and in vivo assays. Expression patterns of TCP8 and its corresponding gene TCP9 largely overlapped with ICS1 under pathogen attack. A significant reduction in the expression of ICS1 during immune responses was observed in the tcp8 tcp9 double mutant. We also detected strong interactions between TCP8 and SAR deficient 1 (SARD1), WRKY family transcription factor 28 (WRKY28), NAC (NAM/ATAF1,ATAF2/CUC2) family transcription factor 019 (NAC019), as well as among TCP8, TCP9 and TCP20, suggesting a complex coordinated regulatory mechanism underlying ICS1 expression. Our results collectively demonstrate that TCP proteins are involved in the orchestrated regulation of ICS1 expression, with TCP8 and TCP9 being verified as major representatives.
Collapse
|
|
10 |
96 |
2
|
Wang M, Wang Q, Zhang B. Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.). Gene 2013; 530:26-32. [PMID: 23948080 DOI: 10.1016/j.gene.2013.08.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/15/2013] [Accepted: 08/03/2013] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are an important gene regulator, controlling almost all biological and metabolic processes, in both plants and animals. In this study, we investigated the effect of drought and salinity stress on the expression of miRNAs and their targets in cotton (Gossypium hirsutum L.). Our results show that the expression change of miRNAs and their targets were dose-dependent and tissue-dependent under salinity and drought conditions. The expression of miRNAs in leaf was down-regulated under higher salinity stress while shows variable patterns in other conditions. The highest fold-changes of miRNAs were miR398 in roots with 28.9 fold down-regulation under 0.25% NaCl treatment and miR395 in leaves with 7.6 fold down-regulation under 1% PEG treatment. The highest up-regulation of miRNA targets was AST in roots with 4.7 fold-change under 2.5% PEG and the gene with highest down-regulation was CUC1 in leaves with 25.6 fold-change under 0.25% NaCl treatment. Among seven miRNA-target pairs we studied, five pairs, miR156-SPL2, miR162-DCL1, miR159-TCP3, miR395-APS1 and miR396-GRF1, show significant regulation relationship in roots and leaves under salinity stress concentration.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
87 |
3
|
Lucero LE, Uberti-Manassero NG, Arce AL, Colombatti F, Alemano SG, Gonzalez DH. TCP15 modulates cytokinin and auxin responses during gynoecium development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:267-82. [PMID: 26303297 DOI: 10.1111/tpj.12992] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 08/10/2015] [Accepted: 08/13/2015] [Indexed: 05/08/2023]
Abstract
We studied the role of Arabidopsis thaliana TCP15, a member of the TEOSINTE BRANCHED1-CYCLOIDEA-PCF (TCP) transcription factor family, in gynoecium development. Plants that express TCP15 from the 35S CaMV promoter (35S:TCP15) develop flowers with defects in carpel fusion and a reduced number of stigmatic papillae. In contrast, the expression of TCP15 fused to a repressor domain from its own promoter causes the development of outgrowths topped with stigmatic papillae from the replum. 35S:TCP15 plants show lower levels of the auxin indoleacetic acid and reduced expression of the auxin reporter DR5 and the auxin biosynthesis genes YUCCA1 and YUCCA4, suggesting that TCP15 is a repressor of auxin biosynthesis. Treatment of plants with cytokinin enhances the developmental effects of expressing TCP15 or its repressor form. In addition, treatment of a knock-out double mutant in TCP15 and the related gene TCP14 with cytokinin causes replum enlargement, increased development of outgrowths, and the induction of the auxin biosynthesis genes YUCCA1 and YUCCA4. A comparison of the phenotypes observed after cytokinin treatment of plants with altered expression levels of TCP15 and auxin biosynthesis genes suggests that TCP15 modulates gynoecium development by influencing auxin homeostasis. We propose that the correct development of the different tissues of the gynoecium requires a balance between auxin levels and cytokinin responses, and that TCP15 participates in a feedback loop that helps to adjust this balance.
Collapse
|
|
10 |
76 |
4
|
An JP, Liu YJ, Zhang XW, Bi SQ, Wang XF, You CX, Hao YJ. Dynamic regulation of anthocyanin biosynthesis at different light intensities by the BT2-TCP46-MYB1 module in apple. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3094-3109. [PMID: 31996900 PMCID: PMC7475178 DOI: 10.1093/jxb/eraa056] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/29/2020] [Indexed: 05/20/2023]
Abstract
Teosinte branched1/cycloidea/proliferating (TCP) transcription factors play a broad role in plant growth and development, but their involvement in the regulation of anthocyanin biosynthesis is currently unclear. In this study, anthocyanin biosynthesis induced by different light intensities in apple (Malus domestica) was found to be largely dependent on the functions of the MdMYB1 and MdTCP46 transcription factors. The expression of MdTCP46 was responsive to high light intensity, and under these conditions it promoted anthocyanin biosynthesis by direct interactions with MdMYB1 that enhanced the binding of the latter to its target genes. MdTCP46 also interacted with a bric-a-brac/tramtrack/broad (BTB) protein, MdBT2, that is responsive to high light intensity, which ubiquitinated MdTCP46 and mediated its degradation via the 26S proteasome pathway. Our results demonstrate that the dynamic regulatory module MdBT2-MdTCP46-MdMYB1 plays a key role in modulating anthocyanin biosynthesis at different light intensities in apple, and provides new insights into the post-transcriptional regulation of TCP proteins.
Collapse
|
research-article |
5 |
70 |
5
|
Wang S, Yang X, Xu M, Lin X, Lin T, Qi J, Shao G, Tian N, Yang Q, Zhang Z, Huang S. A Rare SNP Identified a TCP Transcription Factor Essential for Tendril Development in Cucumber. MOLECULAR PLANT 2015; 8:1795-808. [PMID: 26597500 DOI: 10.1016/j.molp.2015.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/14/2015] [Accepted: 10/19/2015] [Indexed: 05/08/2023]
Abstract
Rare genetic variants are abundant in genomes but less tractable in genome-wide association study. Here we exploit a strategy of rare variation mapping to discover a gene essential for tendril development in cucumber (Cucumis sativus L.). In a collection of >3000 lines, we discovered a unique tendril-less line that forms branches instead of tendrils and, therefore, loses its climbing ability. We hypothesized that this unusual phenotype was caused by a rare variation and subsequently identified the causative single nucleotide polymorphism. The affected gene TEN encodes a TCP transcription factor conserved within the cucurbits and is expressed specifically in tendrils, representing a new organ identity gene. The variation occurs within a protein motif unique to the cucurbits and impairs its function as a transcriptional activator. Analyses of transcriptomes from near-isogenic lines identified downstream genes required for the tendril's capability to sense and climb a support. This study provides an example to explore rare functional variants in plant genomes.
Collapse
|
|
10 |
38 |
6
|
Liu MM, Wang MM, Yang J, Wen J, Guo PC, Wu YW, Ke YZ, Li PF, Li JN, Du H. Evolutionary and Comparative Expression Analyses of TCP Transcription Factor Gene Family in Land Plants. Int J Mol Sci 2019; 20:E3591. [PMID: 31340456 PMCID: PMC6679135 DOI: 10.3390/ijms20143591] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 01/01/2023] Open
Abstract
The plant-specific Teosinte-branched 1/Cycloidea/Proliferating (TCP) transcription factor genes are involved in plants' development, hormonal pathways, and stress response but their evolutionary history is uncertain. The genome-wide analysis performed here for 47 plant species revealed 535 TCP candidates in terrestrial plants and none in aquatic plants, and that TCP family genes originated early in the history of land plants. Phylogenetic analysis divided the candidate genes into Classes I and II, and Class II was further divided into CYCLOIDEA (CYC) and CINCINNATA (CIN) clades; CYC is more recent and originated from CIN in angiosperms. Protein architecture, intron pattern, and sequence characteristics were conserved in each class or clade supporting this classification. The two classes significantly expanded through whole-genome duplication during evolution. Expression analysis revealed the conserved expression of TCP genes from lower to higher plants. The expression patterns of Class I and CIN genes in different stages of the same tissue revealed their function in plant development and their opposite effects in the same biological process. Interaction network analysis showed that TCP proteins tend to form protein complexes, and their interaction networks were conserved during evolution. These results contribute to further functional studies on TCP family genes.
Collapse
|
Comparative Study |
6 |
37 |
7
|
Ferrero L, Viola IL, Ariel FD, Gonzalez DH. Class I TCP Transcription Factors Target the Gibberellin Biosynthesis Gene GA20ox1 and the Growth-Promoting Genes HBI1 and PRE6 during Thermomorphogenic Growth in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:1633-1645. [PMID: 31292642 DOI: 10.1093/pcp/pcz137] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/04/2019] [Indexed: 05/03/2023]
Abstract
Plants respond to a rise in ambient temperature by increasing the growth of petioles and hypocotyls. In this work, we show that Arabidopsis thaliana class I TEOSINTE BRANCHED 1, CYCLOIDEA, PCF (TCP) transcription factors TCP14 and TCP15 are required for optimal petiole and hypocotyl elongation under high ambient temperature. These TCPs influence the levels of the DELLA protein RGA and the expression of growth-related genes, which are induced in response to an increase in temperature. However, the class I TCPs are not required for the induction of the auxin biosynthesis gene YUCCA8 or for auxin-dependent gene expression responses. TCP15 directly targets the gibberellin biosynthesis gene GA20ox1 and the growth regulatory genes HBI1 and PRE6. Several of the genes regulated by TCP15 are also targets of the growth regulator PIF4 and show an enrichment of PIF4- and TCP-binding motifs in their promoters. PIF4 binding to GA20ox1 and HBI1 is enhanced in the presence of the TCPs, indicating that TCP14 and TCP15 directly participate in the induction of genes involved in gibberellin biosynthesis and cell expansion by high temperature functionally interacting with PIF4. In addition, overexpression of HBI1 rescues the growth defects of tcp14 tcp15 double mutants, suggesting that this gene is a major outcome of regulation by both class I TCPs during thermomorphogenesis.
Collapse
|
|
6 |
34 |
8
|
Ferrero LV, Gastaldi V, Ariel FD, Viola IL, Gonzalez DH. Class I TCP proteins TCP14 and TCP15 are required for elongation and gene expression responses to auxin. PLANT MOLECULAR BIOLOGY 2021; 105:147-159. [PMID: 32935297 DOI: 10.1007/s11103-020-01075-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/10/2020] [Indexed: 05/24/2023]
Abstract
Two class I TCP transcription factors are required for an efficient elongation of hypocotyls in response to auxin and for the correct expression of a subset of auxin-inducible genes In this work, we analyzed the response to auxin of plants with altered function of the class I TEOSINTE BRANCHED 1, CYCLOIDEA, PCF (TCP) transcription factors TCP14 and TCP15. Several SMALL AUXIN UP RNA (SAUR) genes showed decreased expression in mutant plants defective in these TCPs after an increase in ambient temperature to 29 °C, a condition that causes an increase in endogenous auxin levels. Overexpression of SAUR63 caused a more pronounced elongation response in the mutant than in the wild-type at 29 °C, suggesting that the decreased expression of SAUR genes is partly responsible for the defective elongation at warm temperature. Notably, several SAUR genes and the auxin response gene IAA19 also showed reduced expression in the mutant after auxin treatment, while the expression of other SAUR genes and of IAA29 was not affected or was even higher. Expression of the auxin reporter DR5::GUS was also higher in a tcp15 mutant than in a wild-type background after auxin treatment. However, the elongation of hypocotyls in response to auxin was impaired in the mutant. Remarkably, a significant proportion of auxin inducible genes and of targets of the AUXIN RESPONSE FACTOR 6 are regulated by TCP15 and often contain putative TCP recognition motifs in their promoters. Furthermore, we demonstrated that several among them are recognized by TCP15 in vivo. Our results indicate that TCP14 and TCP15 are required for an efficient elongation response to auxin, most likely by regulating a subset of auxin inducible genes related to cell expansion.
Collapse
|
|
4 |
25 |
9
|
Shim S, Ha J, Kim MY, Choi MS, Kang ST, Jeong SC, Moon JK, Lee SH. GmBRC1 is a Candidate Gene for Branching in Soybean ( Glycine max (L.) Merrill). Int J Mol Sci 2019; 20:E135. [PMID: 30609682 PMCID: PMC6337253 DOI: 10.3390/ijms20010135] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 11/16/2022] Open
Abstract
Branch number is one of the main factors affecting the yield of soybean (Glycine max (L.)). In this study, we conducted a genome-wide association study combined with linkage analysis for the identification of a candidate gene controlling soybean branching. Five quantitative trait nucleotides (QTNs) were associated with branch numbers in a soybean core collection. Among these QTNs, a linkage disequilibrium (LD) block qtnBR6-1 spanning 20 genes was found to overlap a previously identified major quantitative trait locus qBR6-1. To validate and narrow down qtnBR6-1, we developed a set of near-isogenic lines (NILs) harboring high-branching (HB) and low-branching (LB) alleles of qBR6-1, with 99.96% isogenicity and different branch numbers. A cluster of single nucleotide polymorphisms (SNPs) segregating between NIL-HB and NIL-LB was located within the qtnBR6-1 LD block. Among the five genes showing differential expression between NIL-HB and NIL-LB, BRANCHED1 (BRC1; Glyma.06G210600) was down-regulated in the shoot apex of NIL-HB, and one missense mutation and two SNPs upstream of BRC1 were associated with branch numbers in 59 additional soybean accessions. BRC1 encodes TEOSINTE-BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTORS 1 and 2 transcription factor and functions as a regulatory repressor of branching. On the basis of these results, we propose BRC1 as a candidate gene for branching in soybean.
Collapse
|
research-article |
6 |
22 |
10
|
Zhang T, Qu Y, Wang H, Wang J, Song A, Hu Y, Chen S, Jiang J, Chen F. The heterologous expression of a chrysanthemum TCP-P transcription factor CmTCP14 suppresses organ size and delays senescence in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:239-248. [PMID: 28395169 DOI: 10.1016/j.plaphy.2017.03.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/23/2017] [Accepted: 03/31/2017] [Indexed: 05/24/2023]
Abstract
TCP transcription factors are important for plant growth and development, but their activity in chrysanthemum (Chrysanthemum morifolium) has not been thoroughly explored. Here, a chrysanthemum TCP-P sequence, which encodes a protein harboring the conserved basic helix-loop-helix (bHLH) motif, was shown to be related phylogenetically to the Arabidopsis thaliana gene AtTCP14. A yeast-one hybrid assay showed that the encoding protein had no transcriptional activation ability, and a localization experiment indicated that it was localized in the nucleus. Transcription profiling established that the gene was most active in the stem and leaf. Its heterologous expression in A. thaliana down-regulated certain cell cycle-related genes, reduced the size of various organs and increased the chlorophyll and carotenoid contents of the leaf which led to delayed senescence and a prolonged flowering period. Moreover, by screening the cDNA library of chrysanthemum, we found that the CmTCP14 can interact with CmFTL2 and some CmDELLAs.
Collapse
|
|
8 |
20 |
11
|
Shang Y, Yuan L, Di Z, Jia Y, Zhang Z, Li S, Xing L, Qi Z, Wang X, Zhu J, Hua W, Wu X, Zhu M, Li G, Li C. A CYC/TB1-type TCP transcription factor controls spikelet meristem identity in barley. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7118-7131. [PMID: 32915968 DOI: 10.1093/jxb/eraa416] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/09/2020] [Indexed: 05/08/2023]
Abstract
Barley possesses a branchless, spike-shaped inflorescence where determinate spikelets attach directly to the main axis, but the developmental mechanism of spikelet identity remains largely unknown. Here we report the functional analysis of the barley gene BRANCHED AND INDETERMINATE SPIKELET 1 (BDI1), which encodes a TCP transcription factor and plays a crucial role in determining barley inflorescence architecture and spikelet development. The bdi1 mutant exhibited indeterminate spikelet meristems that continued to grow and differentiate after producing a floret meristem; some spikelet meristems at the base of the spike formed two fully developed seeds or converted to branched spikelets, producing a branched inflorescence. Map-based cloning analysis showed that this mutant has a deletion of ~600 kb on chromosome 5H containing three putative genes. Expression analysis and virus-induced gene silencing confirmed that the causative gene, BDI1, encodes a CYC/TB1-type TCP transcription factor and is highly conserved in both wild and cultivated barley. Transcriptome and regulatory network analysis demonstrated that BDI1 may integrate regulation of gene transcription cell wall modification and known trehalose-6-phosphate homeostasis to control spikelet development. Together, our findings reveal that BDI1 represents a key regulator of inflorescence architecture and meristem determinacy in cereal crop plants.
Collapse
|
|
5 |
20 |
12
|
Qin W, Wang N, Yin Q, Li H, Wu AM, Qin G. Activation tagging identifies WRKY14 as a repressor of plant thermomorphogenesis in Arabidopsis. MOLECULAR PLANT 2022; 15:1725-1743. [PMID: 36155833 DOI: 10.1016/j.molp.2022.09.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/06/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Increases in recorded high temperatures around the world are causing plant thermomorphogenesis and decreasing crop productivity. PHYTOCHROME INTERACTING FACTOR 4 (PIF4) is a central positive regulator of plant thermomorphogenesis. However, the molecular mechanisms underlying PIF4-regulated thermomorphogenesis remain largely unclear. In this study, we identified ABNORMAL THERMOMORPHOGENESIS 1 (ABT1) as an important negative regulator of PIF4 and plant thermomorphogenesis. Overexpression of ABT1 in the activation tagging mutant abt1-D caused shorter hypocotyls and petioles under moderately high temperature (HT). ABT1 encodes WRKY14, which belongs to subgroup II of the WRKY transcription factors. Overexpression of ABT1/WRKY14 or its close homologs, including ABT2/WRKY35, ABT3/WRKY65, and ABT4/WRKY69in transgenic plants caused insensitivity to HT, whereas the quadruple mutant abt1 abt2 abt3 abt4 exhibited greater sensitivity to HT. ABTs were expressed in hypocotyls, cotyledons, shoot apical meristems, and leaves, but their expression were suppressed by HT. Biochemical assays showed that ABT1 can interact with TCP5, a known positive regulator of PIF4, and interrupt the formation of the TCP5-PIF4 complex and repress its transcriptional activation activity. Genetic analysis showed that ABT1 functioned antagonistically with TCP5, BZR1, and PIF4 in plant thermomorphogenesis. Taken together, our results identify ABT1/WRKY14 as a critical repressor of plant thermomorphogenesis and suggest that ABT1/WRKY14, TCP5, and PIF4 may form a sophisticated regulatory module to fine-tune PIF4 activity and temperature-dependent plant growth.
Collapse
|
|
3 |
17 |
13
|
Urano K, Maruyama K, Koyama T, Gonzalez N, Inzé D, Yamaguchi-Shinozaki K, Shinozaki K. CIN-like TCP13 is essential for plant growth regulation under dehydration stress. PLANT MOLECULAR BIOLOGY 2022; 108:257-275. [PMID: 35050466 PMCID: PMC8873074 DOI: 10.1007/s11103-021-01238-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/23/2021] [Indexed: 05/17/2023]
Abstract
A dehydration-inducible Arabidopsis CIN-like TCP gene, TCP13, acts as a key regulator of plant growth in leaves and roots under dehydration stress conditions. Plants modulate their shape and growth in response to environmental stress. However, regulatory mechanisms underlying the changes in shape and growth under environmental stress remain elusive. The CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) family of transcription factors (TFs) are key regulators for limiting the growth of leaves through negative effect of auxin response. Here, we report that stress-inducible CIN-like TCP13 plays a key role in inducing morphological changes in leaves and growth regulation in leaves and roots that confer dehydration stress tolerance in Arabidopsis thaliana. Transgenic Arabidopsis plants overexpressing TCP13 (35Spro::TCP13OX) exhibited leaf rolling, and reduced leaf growth under osmotic stress. The 35Spro::TCP13OX transgenic leaves showed decreased water loss from leaves, and enhanced dehydration tolerance compared with their control counterparts. Plants overexpressing a chimeric repressor domain SRDX-fused TCP13 (TCP13pro::TCP13SRDX) showed severely serrated leaves and enhanced root growth. Transcriptome analysis of TCP13pro::TCP13SRDX transgenic plants revealed that TCP13 affects the expression of dehydration- and abscisic acid (ABA)-regulated genes. TCP13 is also required for the expression of dehydration-inducible auxin-regulated genes, INDOLE-3-ACETIC ACID5 (IAA5) and LATERAL ORGAN BOUNDARIES (LOB) DOMAIN 1 (LBD1). Furthermore, tcp13 knockout mutant plants showed ABA-insensitive root growth and reduced dehydration-inducible gene expression. Our findings provide new insight into the molecular mechanism of CIN-like TCP that is involved in both auxin and ABA response under dehydration stress.
Collapse
|
research-article |
3 |
16 |
14
|
Hao J, Lou P, Han Y, Chen Z, Chen J, Ni J, Yang Y, Jiang Z, Xu M. GrTCP11, a Cotton TCP Transcription Factor, Inhibits Root Hair Elongation by Down-Regulating Jasmonic Acid Pathway in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:769675. [PMID: 34880892 PMCID: PMC8646037 DOI: 10.3389/fpls.2021.769675] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/29/2021] [Indexed: 05/17/2023]
Abstract
TCP transcription factors play important roles in diverse aspects of plant development as transcriptional activators or repressors. However, the functional mechanisms of TCPs are not well understood, especially in cotton fibers. Here, we identified a total of 37 non-redundant TCP proteins from the diploid cotton (Gossypium raimondii), which showed great diversity in the expression profile. GrTCP11, an ortholog of AtTCP11, was preferentially expressed in cotton anthers and during fiber initiation and secondary cell wall synthesis stages. Overexpression of GrTCP11 in Arabidopsis thaliana reduced root hair length and delayed flowering. It was found that GrTCP11 negatively regulated genes involved in jasmonic acid (JA) biosynthesis and response, such as AtLOX4, AtAOS, AtAOC1, AtAOC3, AtJAZ1, AtJAZ2, AtMYC2, and AtERF1, which resulted in a decrease in JA concentration in the overexpressed transgenic lines. As with the JA-deficient mutant dde2-2, the transgenic line 4-1 was insensitive to 50 μM methyl jasmonate, compared with the wild-type plants. The results suggest that GrTCP11 may be an important transcription factor for cotton fiber development, by negatively regulating JA biosynthesis and response.
Collapse
|
research-article |
4 |
14 |
15
|
Bao S, Zhang Z, Lian Q, Sun Q, Zhang R. Evolution and expression of genes encoding TCP transcription factors in Solanum tuberosum reveal the involvement of StTCP23 in plant defence. BMC Genet 2019; 20:91. [PMID: 31801457 PMCID: PMC6892148 DOI: 10.1186/s12863-019-0793-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 11/22/2019] [Indexed: 11/20/2022] Open
Abstract
Background The plant-specific Teosinte branched1/Cycloidea/Proliferating cell factor (TCP) family of transcription factors is involved in the regulation of cell growth and proliferation, performing diverse functions in plant growth and development. In addition, TCP transcription factors have recently been shown to be targets of pathogenic effectors and are likely to play a vital role in plant immunity. No comprehensive analysis of the TCP family members in potato (Solanum tuberosum L.) has been undertaken, however, and whether their functions are conserved in potato remains unknown. Results To assess TCP gene evolution in potato, we identified TCP-like genes in several publicly available databases. A total of 23 non-redundant TCP transcription factor-encoding genes were identified in the potato genome and subsequently subjected to a systematic analysis that included determination of their phylogenetic relationships, gene structures and expression profiles in different potato tissues under basal conditions and after hormone treatments. These assays also confirmed the function of the class I TCP StTCP23 in the regulation of plant growth and defence. Conclusions This is the first genome-wide study including a systematic analysis of the StTCP gene family in potato. Identification of the possible functions of StTCPs in potato growth and defence provides valuable information for our understanding of the classification and functions of the TCP genes in potato.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
11 |
16
|
Shim S, Ha J, Kim MY, Choi MS, Kang ST, Jeong SC, Moon JK, Lee SH. GmBRC1 is a Candidate Gene for Branching in Soybean ( Glycine max (L.) Merrill). Int J Mol Sci 2019. [PMID: 30609682 DOI: 10.1007/s10681-017-2016-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Branch number is one of the main factors affecting the yield of soybean (Glycine max (L.)). In this study, we conducted a genome-wide association study combined with linkage analysis for the identification of a candidate gene controlling soybean branching. Five quantitative trait nucleotides (QTNs) were associated with branch numbers in a soybean core collection. Among these QTNs, a linkage disequilibrium (LD) block qtnBR6-1 spanning 20 genes was found to overlap a previously identified major quantitative trait locus qBR6-1. To validate and narrow down qtnBR6-1, we developed a set of near-isogenic lines (NILs) harboring high-branching (HB) and low-branching (LB) alleles of qBR6-1, with 99.96% isogenicity and different branch numbers. A cluster of single nucleotide polymorphisms (SNPs) segregating between NIL-HB and NIL-LB was located within the qtnBR6-1 LD block. Among the five genes showing differential expression between NIL-HB and NIL-LB, BRANCHED1 (BRC1; Glyma.06G210600) was down-regulated in the shoot apex of NIL-HB, and one missense mutation and two SNPs upstream of BRC1 were associated with branch numbers in 59 additional soybean accessions. BRC1 encodes TEOSINTE-BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTORS 1 and 2 transcription factor and functions as a regulatory repressor of branching. On the basis of these results, we propose BRC1 as a candidate gene for branching in soybean.
Collapse
|
|
6 |
11 |
17
|
Xie Q, Liu X, Zhang Y, Tang J, Yin D, Fan B, Zhu L, Han L, Song G, Li D. Identification and Characterization of microRNA319a and Its Putative Target Gene, PvPCF5, in the Bioenergy Grass Switchgrass ( Panicum virgatum). FRONTIERS IN PLANT SCIENCE 2017; 8:396. [PMID: 28424710 PMCID: PMC5371612 DOI: 10.3389/fpls.2017.00396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/08/2017] [Indexed: 05/20/2023]
Abstract
Due to its high biomass yield, low environmental impact, and widespread adaptability to poor soils and harsh conditions, switchgrass (Panicum virgatum L.), a warm-region perennial herbaceous plant, has attracted much attention in recent years. However, little is known about microRNAs (miRNAs) and their functions in this bioenergy grass. Here, we identified and characterized a miRNA gene, Pvi-MIR319a, encoding microRNA319a in switchgrass. Transgenic rice lines generated by overexpressing the Pvi-MIR319a precursor gene exhibited broader leaves and delayed flowering compared with the control. Gene expression analysis indicated at least four putative target genes were downregulated. Additionally, we cloned a putative target gene (PvPCF5) of Pvi-MIR319a from switchgrass. PvPCF5, a TCP transcription factor, is a nuclear-localized protein with transactivation activity and control the development of leaf. Our results suggest that Pvi-MIR319a and its target genes may be used as potential genetic regulators for future switchgrass genetic improvement.
Collapse
|
research-article |
8 |
10 |
18
|
Alem AL, Ariel FD, Cho Y, Hong JC, Gonzalez DH, Viola IL. TCP15 interacts with GOLDEN2-LIKE 1 to control cotyledon opening in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:748-763. [PMID: 35132717 DOI: 10.1111/tpj.15701] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/23/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
After germination, exposure to light promotes the opening and expansion of the cotyledons and the development of the photosynthetic apparatus in a process called de-etiolation. This process is crucial for seedling establishment and photoautotrophic growth. TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (TCP) transcription factors are important developmental regulators of plant responses to internal and external signals that are grouped into two main classes. In this study, we identified GOLDEN2-LIKE 1 (GLK1), a key transcriptional regulator of photomorphogenesis, as a protein partner of class I TCPs during light-induced cotyledon opening and expansion in Arabidopsis. The class I TCP TCP15 and GLK1 are mutually required for cotyledon opening and the induction of SAUR and EXPANSIN genes, involved in cell expansion. TCP15 also participates in the expression of photosynthesis-associated genes regulated by GLK1, like LHCB1.4 and LHCB2.2. Furthermore, GLK1 and TCP15 bind to the same promoter regions of different target genes containing either GLK or TCP binding motifs and binding of TCP15 is affected in a GLK1-deficient background, suggesting that a complex between TCP15 and GLK1 participates in the induction of these genes. We postulate that GLK1 helps to recruit TCP15 for the modulation of cell expansion genes in cotyledons and that the functional interaction between these transcription factors may serve to coordinate the expression of cell expansion genes with that of genes involved in the development of the photosynthetic apparatus.
Collapse
|
|
3 |
10 |
19
|
Mizuno S, Sonoda M, Tamura Y, Nishino E, Suzuki H, Sato T, Oizumi T. Chiba Tendril-Less locus determines tendril organ identity in melon (Cucumis melo L.) and potentially encodes a tendril-specific TCP homolog. JOURNAL OF PLANT RESEARCH 2015; 128:941-51. [PMID: 26275436 DOI: 10.1007/s10265-015-0747-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/30/2015] [Indexed: 05/10/2023]
Abstract
Tendrils are filamentous plant organs that coil on contact with an object, thereby providing mechanical support for climbing to reach more sunlight. Plant tendrils are considered to be modified structure of leaves, stems, or inflorescence, but the origin of cucurbit tendrils is still argued because of the complexity in the axillary organ patterning. We carried out morphological and genetic analyses of the Chiba Tendril-Less (ctl) melon (Cucumis melo) mutant, and found strong evidence that the melon tendril is a modified organ derived from a stem-leaf complex of a lateral shoot. Heterozygous (CTL/ctl) plants showed traits intermediate between tendril and shoot, and ontogenies of wild-type tendrils and mutant modified shoots coincided. We identified the CTL locus in a 200-kb region in melon linkage group IX. A single base deletion in a melon TCP transcription factor gene (CmTCP1) was detected in the mutant ctl sequence, and the expression of CmTCP1 was specifically high in wild-type tendrils. Phylogenetic analysis demonstrated the novelty of the CmTCP1 protein and the unique molecular evolution of its orthologs in the Cucurbitaceae. Our results move us closer to answering the long-standing question of which organ was modified to become the cucurbit tendril, and suggest a novel function of the TCP transcription factor in plant development.
Collapse
|
|
10 |
8 |
20
|
van Es SW, van der Auweraert EB, Silveira SR, Angenent GC, van Dijk AD, Immink RG. Comprehensive phenotyping reveals interactions and functions of Arabidopsis thaliana TCP genes in yield determination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:316-328. [PMID: 30903633 PMCID: PMC6767503 DOI: 10.1111/tpj.14326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/06/2019] [Accepted: 03/15/2019] [Indexed: 05/17/2023]
Abstract
Members of the Arabidopsis thaliana TCP transcription factor (TF) family affect plant growth and development. We systematically quantified the effect of mutagenizing single or multiple TCP TFs and how altered vegetative growth or branching influences final seed yield. We monitored rosette growth over time and branching patterns and seed yield characteristics at the end of the lifecycle. Subsequently, an approach was developed to disentangle vegetative growth and to determine possible effects on seed yield. Analysis of growth parameters showed all investigated tcp mutants to be affected in certain growth aspects compared with wild-type plants, highlighting the importance of TCP TFs in plant development. Furthermore, we found evidence that all class II TCPs are involved in axillary branch outgrowth, either as inhibitors (BRANCHED-like genes) or enhancers (JAW- and TCP5-like genes). Comprehensive phenotyping of plants mutant for single or multiple TCP TFs reveals that the proposed opposite functions of class I and class II TCPs in plant growth needs revision and shows complex interactions between closely related TCP genes instead of full genetic redundancy. In various instances, the alterations in vegetative growth or in branching patterns result into negative trade-off effects on seed yield that were missed in previous studies, showing the importance of comprehensive and quantitative phenotyping.
Collapse
|
research-article |
6 |
8 |
21
|
Wang Z, Cui D, Liu C, Zhao J, Liu J, Liu N, Tang D, Hu Y. TCP transcription factors interact with ZED1-related kinases as components of the temperature-regulated immunity. PLANT, CELL & ENVIRONMENT 2019; 42:2045-2056. [PMID: 30652316 DOI: 10.1111/pce.13515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 12/28/2018] [Accepted: 12/30/2018] [Indexed: 06/09/2023]
Abstract
The elevation of ambient temperature generally inhibits plant immunity, but the molecular regulations of immunity by ambient temperature in plants are largely elusive. We previously reported that the Arabidopsis HOPZ-ETI-DEFICIENT 1 (ZED1)-related kinases (ZRKs) mediate the temperature-sensitive immunity by inhibiting the transcription of SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1). Here, we further demonstrate that the nucleus-localized ZED1 and ZRKs facilitate such inhibitory role in associating with the TEOSINTE BRANCHED1, CYCLOIDEA AND PROLIFERATING CELL FACTOR (TCP) transcription factors. We show that some of TCP members could physically interact with ZRKs and are induced by elevated temperature. Disruption of TCPs leads to a mild autoimmune phenotype, whereas overexpression of the TCP15 could suppress the autoimmunity activated by the overexpressed SNC1 in the snc1-2. These findings demonstrate that the TCP transcription factors associate with nuclear ZRK as components of the temperature-regulated immunity, which discloses a possible molecular mechanism underlying the regulation of immunity by ambient temperature in plants.
Collapse
|
|
6 |
8 |
22
|
Gao G, Kan J, Jiang C, Ahmar S, Zhang J, Yang P. Genome-wide diversity analysis of TCP transcription factors revealed cases of selection from wild to cultivated barley. Funct Integr Genomics 2020; 21:31-42. [PMID: 33169329 DOI: 10.1007/s10142-020-00759-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/15/2020] [Accepted: 11/03/2020] [Indexed: 11/28/2022]
Abstract
Plant-specific TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING CELL FACTORS 1/2 (TCP) transcription factors have known roles in inflorescence architecture. In barley, there are two family members INTERMEDIUM-C (INT-c/HvTB1-1) and COMPOSITUM 1 (COM1/HvTCP24) which are involved in the manipulation of spike architecture, whereas the participation of TCP family genes in selection from wild (Hordeum vulgare subsp. spontaneum, Hs) to cultivated barley (Hordeum vulgare subsp. vulgare, Hv) remains poorly investigated. Here, by conducting a genome-wide survey for TCP-like sequences in publicly-released datasets, 22 HsTCP and 20 HvTCP genes encoded for mature proteins were identified and assigned into two classes (I and II) based on their functional domains and the phylogenetic analysis. Each counterpart of the orthologous gene in wild and cultivated barley usually represented a similarity on the transcriptional profile across the tissues. The diversity analysis of TCPs in 90 wild barley accessions and 137 landraces with geographically-referenced passport information revealed the detectable selection at three loci including INT-c/HvTB1-1, HvPCF2, and HvPCF8. Especially, the HvPCF8 haplotypes in cultivated barley were found correlating with their geographical collection sites. There was no difference observed in either transactivation activity in yeast or subcellular localization in Nicotiana benthamiana among these haplotypes. Nevertheless, the genome-wide diversity analysis of barley TCP genes in wild and cultivated populations provided insight for future functional characterization in plant development such as spike architecture.
Collapse
|
Journal Article |
5 |
7 |
23
|
Willig J, Guarneri N, van Steenbrugge JJM, de Jong W, Chen J, Goverse A, Lozano Torres JL, Sterken MG, Bakker J, Smant G. The Arabidopsis transcription factor TCP9 modulates root architectural plasticity, reactive oxygen species-mediated processes, and tolerance to cyst nematode infections. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1070-1083. [PMID: 36181710 PMCID: PMC9828446 DOI: 10.1111/tpj.15996] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Infections by root-feeding nematodes have profound effects on root system architecture and consequently shoot growth of host plants. Plants harbor intraspecific variation in their growth responses to belowground biotic stresses by nematodes, but the underlying mechanisms are not well understood. Here, we show that the transcription factor TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR-9 (TCP9) modulates root system architectural plasticity in Arabidopsis thaliana in response to infections by the endoparasitic cyst nematode Heterodera schachtii. Young seedlings of tcp9 knock-out mutants display a significantly weaker primary root growth inhibition response to cyst nematodes than wild-type Arabidopsis. In older plants, tcp9 reduces the impact of nematode infections on the emergence and growth of secondary roots. Importantly, the altered growth responses by tcp9 are most likely not caused by less biotic stress on the root system, because TCP9 does not affect the number of infections, nematode development, and size of the nematode-induced feeding structures. RNA-sequencing of nematode-infected roots of the tcp9 mutants revealed differential regulation of enzymes involved in reactive oxygen species (ROS) homeostasis and responses to oxidative stress. We also found that root and shoot growth of tcp9 mutants is less sensitive to exogenous hydrogen peroxide and that ROS accumulation in nematode infection sites in these mutants is reduced. Altogether, these observations demonstrate that TCP9 modulates the root system architectural plasticity to nematode infections via ROS-mediated processes. Our study further points at a novel regulatory mechanism contributing to the tolerance of plants to root-feeding nematodes by mitigating the impact of belowground biotic stresses.
Collapse
|
research-article |
3 |
6 |
24
|
Heterologous Expression of GbTCP4, a Class II TCP Transcription Factor, Regulates Trichome Formation and Root Hair Development in Arabidopsis. Genes (Basel) 2019; 10:genes10090726. [PMID: 31546783 PMCID: PMC6771151 DOI: 10.3390/genes10090726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 12/17/2022] Open
Abstract
Two class I family teosinte branched1/cycloidea/proliferating cell factor1 (TCP) proteins from allotetraploid cotton are involved in cotton fiber cell differentiation and elongation and root hair development. However, the biological function of most class II TCP proteins is unclear. This study sought to reveal the characteristics and functions of the sea-island cotton class II TCP gene GbTCP4 by biochemical, genetic, and molecular biology methods. GbTCP4 protein localizes to nuclei, binding two types of TCP-binding cis-acting elements, including the one in its promoter. Expression pattern analysis revealed that GbTCP4 is widely expressed in tissues, with the highest level in flowers. GbTCP4 is expressed at different fiber development stages and has high transcription in fibers beginning at 5 days post anthesis (DPA). GbTCP4 overexpression increases primary root hair length and density and leaf and stem trichomes in transgenic Arabidopsis relative to wild-type plants (WT). GbTCP4 binds directly to the CAPRICE (CPC) promoter, increasing CPC transcript levels in roots and reducing them in leaves. Compared with WT plants, lignin content in the stems of transgenic Arabidopsis overexpressing GbTCP4 increased, and AtCAD5 gene transcript levels increased. These results suggest that GbTCP4 regulates trichome formation and root hair development in Arabidopsis and may be a candidate gene for regulating cotton fiber elongation.
Collapse
|
|
6 |
5 |
25
|
Yu L, Chen Q, Zheng J, Xu F, Ye J, Zhang W, Liao Y, Yang X. Genome-wide identification and expression pattern analysis of the TCP transcription factor family in Ginkgo biloba. PLANT SIGNALING & BEHAVIOR 2022; 17:1994248. [PMID: 35068346 PMCID: PMC9176236 DOI: 10.1080/15592324.2021.1994248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plant-specific TCP transcription factors play an essential role in plant growth and development. They can regulate leaf curvature, flower symmetry and the synthesis of secondary metabolites. The flavonoids in Ginkgo biloba leaf are one of the main medicinally bioactivate compounds, which have pharmacological and beneficial health effects for humans. In this study, a total of 13 TCP genes were identified in G. biloba, and 5 of them belonged to PCF subclades (GbTCP03, GbTCP07, GbTCP05, GbTCP13, GbTCP02) while others belonged to CIN (GbTCP01, GbTCP04, GbTCP06, GbTCP08, GbTCP09, GbTCP10, GbTCP11, GbTCP12) subclades according to phylogenetic analysis. Numerous cis-acting elements related to various biotic and abiotic signals were predicted on the promoters by cis-element analysis, suggesting that the expression of GbTCPs might be co-regulated by multiple signals. Transcript abundance analysis exhibited that most of GbTCPs responded to multiple phytohormones. Among them, the relative expression levels of GbTCP06, GbTCP11, and GbTCP13 were found to be significantly influenced by exogenous ABA, SA and MeJA application. In addition, a total of 126 miRNAs were predicted to target 9 TCPs (including GbTCP01, GbTCP02, GbTCP04, GbTCP05, GbTCP06, GbTCP08, GbTCP11, GbTCP12, GbTCP13). The correlation analysis between the expression level of GbTCPs and the flavonoid contents showed that GbTCP03, GbTCP04, GbTCP07 might involve in flavonoid biosynthesis in G. biloba. In short, this study mainly provided a theoretical foundation for better understanding the potential function of TCPs in G. biloba.
Collapse
|
research-article |
3 |
5 |