1
|
Salleo S, Gullo MAL, DE Paoli D, Zippo M. Xylem recovery from cavitation-induced embolism in young plants of Laurus nobilis: a possible mechanism. THE NEW PHYTOLOGIST 1996; 132:47-56. [PMID: 33863062 DOI: 10.1111/j.1469-8137.1996.tb04507.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Xylem recovery from cavitation-induced embolism was studied in l-yr-old twigs of Laurus mibilis L. Cavitation was induced by applying pre-established pressure differentials (AP0,1 ) across the pit membranes of xylem conduits. ΔP0 ) were 1.13, 1.75 and 2.26 MPa, corresponding to about 50, 77 und 100% of the measured leaf water potential at the rurgor loss point ΔP0,1 were obtained either by increasing xylem tensions or by applying positive pressures from outside, or by a combination of the two. The percentage loss of hydraulic conductivity (PLC) did not change, regardless of how the ΔP0-1 were obtained. This confirmed that xylem cavitation was nucleated by microbubbles from outside the vessels. Positive pressures, however, amplified (up to 75%) and sped up the xylem refilling (20 min) in comparison with that measured in unpressurized twigs (c.50% in 15 h). Twigs girdled proximally to their pressurized segment 1 nun after the desired pressure value had been reached, did not recover from embolism. The later the twigs were girdled with respect to when they were tested for PLC, the higher was their recovery from embolism, suggesting that some messenger was transported in the phloem which stimulated xylem refilling. Indol-3-acetic acid (1AA] applied to the exposed cortex of both pressurized and unpressurized twigs, induced an almost complete recovery from PLC. We hypothesize that the refilling of cavitated xylem might be a result of an auxin-induced increase in the phloem loading with solutes. This would cause radial transport of solutes to cavitated xylem conduits via the rays, thus decreasing their osmotic potential and making them refill. No positive xylem pressure potentials were measured during xylem recovery from PLC.
Collapse
|
|
29 |
135 |
2
|
Bezrutczyk M, Hartwig T, Horschman M, Char SN, Yang J, Yang B, Frommer WB, Sosso D. Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays. THE NEW PHYTOLOGIST 2018; 218:594-603. [PMID: 29451311 DOI: 10.1111/nph.15021] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/28/2017] [Indexed: 05/02/2023]
Abstract
Crop yield depends on efficient allocation of sucrose from leaves to seeds. In Arabidopsis, phloem loading is mediated by a combination of SWEET sucrose effluxers and subsequent uptake by SUT1/SUC2 sucrose/H+ symporters. ZmSUT1 is essential for carbon allocation in maize, but the relative contribution to apoplasmic phloem loading and retrieval of sucrose leaking from the translocation path is not known. Here we analysed the contribution of SWEETs to phloem loading in maize. We identified three leaf-expressed SWEET sucrose transporters as key components of apoplasmic phloem loading in Zea mays L. ZmSWEET13 paralogues (a, b, c) are among the most highly expressed genes in the leaf vasculature. Genome-edited triple knock-out mutants were severely stunted. Photosynthesis of mutants was impaired and leaves accumulated high levels of soluble sugars and starch. RNA-seq revealed profound transcriptional deregulation of genes associated with photosynthesis and carbohydrate metabolism. Genome-wide association study (GWAS) analyses may indicate that variability in ZmSWEET13s correlates with agronomical traits, especifically flowering time and leaf angle. This work provides support for cooperation of three ZmSWEET13s with ZmSUT1 in phloem loading in Z. mays.
Collapse
|
|
7 |
117 |
3
|
Wu Y, Lee SK, Yoo Y, Wei J, Kwon SY, Lee SW, Jeon JS, An G. Rice Transcription Factor OsDOF11 Modulates Sugar Transport by Promoting Expression of Sucrose Transporter and SWEET Genes. MOLECULAR PLANT 2018; 11:833-845. [PMID: 29656028 DOI: 10.1016/j.molp.2018.04.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 05/07/2023]
Abstract
Sucrose is produced in mesophyll cells and transferred into phloem cells before it is delivered long-distance to sink tissues. However, little is known about how sucrose transport is regulated in plants. Here, we identified a T-DNA insertional mutant of Oryza sativa DNA BINDING WITH ONE FINGER 11 (OsDOF11), which is expressed in the vascular cells of photosynthetic organs and in various sink tissues. The osdof11 mutant plants are semi-dwarf and have fewer tillers and smaller panicles as compared with wild-type (WT) plants. Although sucrose enhanced root elongation in young WT seedlings, this enhancement did not occur in osdof11 seedlings due to reduced sucrose uptake. Sugar transport rate analyses revealed that less sugar was transported in osdof11 plants than in the WT. Expression of four Sucrose Transporter (SUT) genes-OsSUT1, OsSUT3, OsSUT4, and OsSUT5-as well as two Sugars Will Eventually be Exported Transporters (SWEET) genes, OsSWEET11 and OsSWEET14, was altered in various organs of the mutant, including the leaves. Chromatin immunoprecipitation assays showed that OsDOF11 directly binds the promoter regions of SUT1, OsSWEET11, and OsSWEET14, indicating that the expression of these transporters responsible for sucrose transport via apoplastic loading is coordinately controlled by OsDOF11. We also observed that osdof11 mutant plants were less susceptible to infection by Xanthomonas oryzae pathovar oryzae, suggesting that OsDOF11 participates in sugar distribution during pathogenic invasion. Collectively, these results suggest that OsDOF11 modulates sugar transport by regulating the expression of both SUT and SWEET genes in rice.
Collapse
|
|
7 |
98 |
4
|
Gebauer P, Korn M, Engelsdorf T, Sonnewald U, Koch C, Voll LM. Sugar Accumulation in Leaves of Arabidopsis sweet11/sweet12 Double Mutants Enhances Priming of the Salicylic Acid-Mediated Defense Response. FRONTIERS IN PLANT SCIENCE 2017; 8:1378. [PMID: 28848581 PMCID: PMC5550771 DOI: 10.3389/fpls.2017.01378] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/24/2017] [Indexed: 05/21/2023]
Abstract
In compatible interactions, biotrophic microbial phytopathogens rely on the supply of assimilates by the colonized host tissue. It has been found in rice that phloem localized SWEET sucrose transporters can be reprogrammed by bacterial effectors to establish compatibility. We observed that sweet11/sweet12 double mutants, but not single mutants, exhibited increased resistance toward the fungal hemibiotroph Colletotrichum higginsianum (Ch), both in the biotrophic and the necrotrophic colonization phase. We therefore investigated if the phloem localized transporters AtSWEET11 and AtSWEET12 represent additive susceptibility factors in the interaction of Arabidopsis with Ch. AtSWEET12-YFP fusion protein driven by the endogenous promoter strongly accumulated at Ch infection sites and in the vasculature upon challenge with Ch. However, susceptibility of sweet12 single mutants to Ch was comparable to wild type, indicating that the accumulation of AtSWEET12 at Ch infection sites does not play a major role for compatibility. AtSWEET12-YFP reporter protein was not detectable at the plant-pathogen interface, suggesting that AtSWEET12 is not targeted by Ch effectors. AtSWEET11-YFP accumulation in pAtSWEET11:AtSWEET11-YFP plants were similar in Ch infected and mock control leaves. A close inspection of major carbohydrate metabolism in non-infected control plants revealed that soluble sugar and starch content were substantially elevated in sweet11/sweet12 double mutants during the entire diurnal cycle, that diurnal soluble sugar turnover was increased more than twofold in sweet11/sweet12, and that accumulation of free hexoses and sucrose was strongly expedited in double mutant leaves compared to wild type and both single mutants during the course of Ch infection. After 2 days of treatment, free and conjugated SA levels were significantly increased in infected and mock control leaves of sweet11/sweet12 relative to all other genotypes, respectively. Induced genes in mock treated sweet11/sweet12 leaves were highly significantly enriched for several GO terms associated with SA signaling and response compared to mock treated wild-type leaves, indicating sugar-mediated priming of the SA pathway in the double mutant. Infection assays with salicylic acid deficient sweet11/sweet12/sid2 triple mutants demonstrated that reduced susceptibility observed in sweet11/sweet12 was entirely dependent on the SA pathway. We suggest a model how defects in phloem loading of sucrose can influence SA priming and hence, compatibility.
Collapse
|
research-article |
8 |
75 |
5
|
Carbon export from leaves is controlled via ubiquitination and phosphorylation of sucrose transporter SUC2. Proc Natl Acad Sci U S A 2020; 117:6223-6230. [PMID: 32123097 PMCID: PMC7084081 DOI: 10.1073/pnas.1912754117] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plants depend on strict regulation of carbon transport to keep the activities of different parts in balance under various environmental conditions. In most crops and the model plant Arabidopsis thaliana, sucrose transporters (SUCs) that are strategically positioned in the leaf veins are responsible for carbon export from photosynthetically active leaves. Despite their central role, relatively little is known about the regulation of SUCs. This study identified two regulatory proteins of Arabidopsis SUC2 and investigated how they modulate sucrose transport activity. Both proteins proved important for the environmental acclimation of leaf carbon export. Furthermore, the increased biomass and yield of plants lacking a regulator observed here demonstrate that manipulation of SUC regulation can be a viable path to enhance plant productivity. All multicellular organisms keep a balance between sink and source activities by controlling nutrient transport at strategic positions. In most plants, photosynthetically produced sucrose is the predominant carbon and energy source, whose transport from leaves to carbon sink organs depends on sucrose transporters. In the model plant Arabidopsis thaliana, transport of sucrose into the phloem vascular tissue by SUCROSE TRANSPORTER 2 (SUC2) sets the rate of carbon export from source leaves, just like the SUC2 homologs of most crop plants. Despite their importance, little is known about the proteins that regulate these sucrose transporters. Here, identification and characterization of SUC2-interaction partners revealed that SUC2 activity is regulated via its protein turnover rate and phosphorylation state. UBIQUITIN-CONJUGATING ENZYME 34 (UBC34) was found to trigger turnover of SUC2 in a light-dependent manner. The E2 enzyme UBC34 could ubiquitinate SUC2 in vitro, a function generally associated with E3 ubiquitin ligases. ubc34 mutants showed increased phloem loading, as well as increased biomass and yield. In contrast, mutants of another SUC2-interaction partner, WALL-ASSOCIATED KINASE LIKE 8 (WAKL8), showed decreased phloem loading and growth. An in vivo assay based on a fluorescent sucrose analog confirmed that SUC2 phosphorylation by WAKL8 can increase transport activity. Both proteins are required for the up-regulation of phloem loading in response to increased light intensity. The molecular mechanism of SUC2 regulation elucidated here provides promising targets for the biotechnological enhancement of source strength.
Collapse
|
Journal Article |
5 |
73 |
6
|
Eom JS, Choi SB, Ward JM, Jeon JS. The mechanism of phloem loading in rice (Oryza sativa). Mol Cells 2012; 33:431-8. [PMID: 22453778 PMCID: PMC3887736 DOI: 10.1007/s10059-012-0071-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 01/03/2023] Open
Abstract
Carbohydrates, mainly sucrose, that are synthesized in source organs are transported to sink organs to support growth and development. Phloem loading of sucrose is a crucial step that drives long-distance transport by elevating hydrostatic pressure in the phloem. Three phloem loading strategies have been identified, two active mechanisms, apoplastic loading via sucrose transporters and symplastic polymer trapping, and one passive mechanism. The first two active loading mechanisms require metabolic energy, carbohydrate is loaded into the phloem against a concentration gradient. The passive process, diffusion, involves equilibration of sucrose and other metabolites between cells through plasmodesmata. Many higher plant species including Arabidopsis utilize the active loading mechanisms to increase carbohydrate in the phloem to higher concentrations than that in mesophyll cells. In contrast, recent data revealed that a large number of plants, especially woody species, load sucrose passively by maintaining a high concentration in mesophyll cells. However, it still remains to be determined how the worldwide important cereal crop, rice, loads sucrose into the phloem in source organs. Based on the literature and our results, we propose a potential strategy of phloem loading in rice. Elucidation of the phloem loading mechanism should improve our understanding of rice development and facilitate its manipulation towards the increase of crop productivity.
Collapse
|
Review |
13 |
72 |
7
|
Bilska A, Sowiński P. Closure of plasmodesmata in maize (Zea mays) at low temperature: a new mechanism for inhibition of photosynthesis. ANNALS OF BOTANY 2010; 106:675-86. [PMID: 20880933 PMCID: PMC2958785 DOI: 10.1093/aob/mcq169] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Photosynthesis is one of the processes most susceptible to low-temperature inhibition in maize, a tropical C4 crop not yet fully adapted to a temperate climate. C4 photosynthesis relies on symplasmic exchange of large amounts of photosynthetic intermediates between Kranz mesophyll (KMS) and bundle sheath (BS) cells. The aim of this study was to test the hypothesis that the slowing of maize photosynthesis at low temperature is related to ultrastructural changes in the plasmodesmata between KM and BS as well as BS and vascular parenchyma (VP) cells. METHODS Chilling-tolerant (CT) KW 1074 and chilling-sensitive (CS) CM 109 maize (Zea mays) lines were studied. The effect of moderate chilling (14 °C) on the rate of photosynthesis, photosynthate transport kinetics, and the ultrastructure of plasmodesmata linking the KMS, BS and VP cells were analysed. Additionally, the accumulation of callose and calreticulin was studied by the immunogold method. KEY RESULTS Chilling inhibited photosynthesis, photosynthate transfer to the phloem and photosynthate export from leaves in both lines. This inhibition was reversible upon cessation of chilling in the CT line but irreversible in the CS line. Simultaneously to physiological changes, chilling induced swelling of the sphincters of plasmodesmata linking KMS and BS cells and a decreased lumen of the cytoplasmic sleeve of plasmodesmata at the BS/VP interface in the CS line but not in the CT line. Accumulation of calreticulin, which occurred near the neck region of the closed plasmodesmata was observed after just 4 h of chilling and over-accumulation of callose at the KMS/BS and BS/VP interfaces occurred after 28 h of chilling. CONCLUSIONS Stronger chilling sensitivity of the CM 109 maize line compared with the KW 1074 line, shown by decreased photosynthesis and assimilate export from a leaf, is related to changes in the ultrastructure of leaf plasmodesmata at low temperature. The chain of reactions to chilling is likely to include calreticulin action resulting in rapid and efficient closure of the plasmodesmata at both KMS/BS and BS/VP interfaces. Callose deposition in a leaf was a secondary effect of chilling.
Collapse
|
research-article |
15 |
69 |
8
|
Slewinski TL, Zhang C, Turgeon R. Structural and functional heterogeneity in phloem loading and transport. FRONTIERS IN PLANT SCIENCE 2013; 4:244. [PMID: 23847646 PMCID: PMC3701861 DOI: 10.3389/fpls.2013.00244] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/18/2013] [Indexed: 05/05/2023]
Abstract
The phloem is often regarded as a relatively straightforward transport system composed of loading (collection), long-distance (transport), and unloading (release) zones. While this simple view is necessary and useful in many contexts, it belies the reality, which is that the phloem is inherently complex. At least three types of sieve element-companion cell complexes are found in minor veins of leaves. Individual species may have more than one type, indicating that they employ multiple loading strategies, even in the same vein. Gene expression data in particular point to heterogeneity in sieve element-companion cell complexes of minor veins, perhaps in all flowering plants. Phloem heterogeneity in the transport phloem is also evident in many species based on anatomical, biochemical and gene expression data. In this regard, members of the Cucurbitaceae are especially complex and interesting. We conclude that a hidden world of specialized phloem function awaits discovery.
Collapse
|
research-article |
12 |
57 |
9
|
Amino Acid Transporters in Plant Cells: A Brief Review. PLANTS 2020; 9:plants9080967. [PMID: 32751704 PMCID: PMC7464682 DOI: 10.3390/plants9080967] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
Amino acids are not only a nitrogen source that can be directly absorbed by plants, but also the major transport form of organic nitrogen in plants. A large number of amino acid transporters have been identified in different plant species. Despite belonging to different families, these amino acid transporters usually exhibit some general features, such as broad expression pattern and substrate selectivity. This review mainly focuses on transporters involved in amino acid uptake, phloem loading and unloading, xylem-phloem transfer, import into seed and intracellular transport in plants. We summarize the other physiological roles mediated by amino acid transporters, including development regulation, abiotic stress tolerance and defense response. Finally, we discuss the potential applications of amino acid transporters for crop genetic improvement.
Collapse
|
Review |
5 |
50 |
10
|
Gautam T, Dutta M, Jaiswal V, Zinta G, Gahlaut V, Kumar S. Emerging Roles of SWEET Sugar Transporters in Plant Development and Abiotic Stress Responses. Cells 2022; 11:cells11081303. [PMID: 35455982 PMCID: PMC9031177 DOI: 10.3390/cells11081303] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Sugars are the major source of energy in living organisms and play important roles in osmotic regulation, cell signaling and energy storage. SWEETs (Sugars Will Eventually be Exported Transporters) are the most recent family of sugar transporters that function as uniporters, facilitating the diffusion of sugar molecules across cell membranes. In plants, SWEETs play roles in multiple physiological processes including phloem loading, senescence, pollen nutrition, grain filling, nectar secretion, abiotic (drought, heat, cold, and salinity) and biotic stress regulation. In this review, we summarized the role of SWEET transporters in plant development and abiotic stress. The gene expression dynamics of various SWEET transporters under various abiotic stresses in different plant species are also discussed. Finally, we discuss the utilization of genome editing tools (TALENs and CRISPR/Cas9) to engineer SWEET genes that can facilitate trait improvement. Overall, recent advancements on SWEETs are highlighted, which could be used for crop trait improvement and abiotic stress tolerance.
Collapse
|
Review |
3 |
44 |
11
|
Zhang Y, Fu L, Li S, Yan J, Sun M, Giraldo JP, Matyjaszewski K, Tilton RD, Lowry GV. Star Polymer Size, Charge Content, and Hydrophobicity Affect their Leaf Uptake and Translocation in Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10758-10768. [PMID: 34283571 DOI: 10.1021/acs.est.1c01065] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Determination of how the properties of nanocarriers of agrochemicals affect their uptake and translocation in plants would enable more efficient agent delivery. Here, we synthesized star polymer nanocarriers poly(acrylic acid)-block-poly(2-(methylsulfinyl)ethyl acrylate) (PAA-b-PMSEA) and poly(acrylic acid)-block-poly((2-(methylsulfinyl)ethyl acrylate)-co-(2-(methylthio)ethyl acrylate)) (PAA-b-P(MSEA-co-MTEA)) with well-controlled sizes (from 6 to 35 nm), negative charge content (from 17% to 83% PAA), and hydrophobicity and quantified their leaf uptake, phloem loading, and distribution in tomato (Solanum lycopersicum) plants 3 days after foliar application of 20 μL of a 1g L-1 star polymer solution. In spite of their property differences, ∼30% of the applied star polymers translocated to other plant organs, higher than uptake of conventional foliar applied agrochemicals (<5%). The property differences affected their distribution in the plant. The ∼6 nm star polymers exhibited 3 times higher transport to younger leaves than larger ones, while the ∼35 nm star polymer had over 2 times higher transport to roots than smaller ones, suggesting small star polymers favor symplastic unloading in young leaves, while larger polymers favor apoplastic unloading in roots. For the same sized star polymer, a smaller negative charge content (yielding ζ ∼ -12 mV) enhanced translocation to young leaves and roots, whereas a larger negative charge (ζ < -26 mV) had lower mobility. Hydrophobicity only affected leaf uptake pathways, but not translocation. This study can help design agrochemical nanocarriers for efficient foliar uptake and targeting to desired plant organs, which may decrease agrochemical use and environmental impacts of agriculture.
Collapse
|
|
4 |
41 |
12
|
Li M, Wang F, Li S, Yu G, Wang L, Li Q, Zhu X, Li Z, Yuan L, Liu P. Importers Drive Leaf-to-Leaf Jasmonic Acid Transmission in Wound-Induced Systemic Immunity. MOLECULAR PLANT 2020; 13:1485-1498. [PMID: 32889174 DOI: 10.1016/j.molp.2020.08.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/06/2020] [Accepted: 08/29/2020] [Indexed: 05/22/2023]
Abstract
The transmission of mobile wound signals along the phloem pathway is essential to the activation of wound-induced systemic response/resistance, which requires an upsurge of jasmonic acid (JA) in the distal undamaged leaves. Among these mobile signals, the electrical signal mediated by the glutamate-dependent activation of several clade three GLUTAMATE RECEPTOR-LIKE (GLR3) proteins is involved in the stimulation of JA production in distal leaves. However, whether JA acts as a mobile wound signal and, if so, how it is transmitted and interacts with the electrical signal remain unclear. Here, we show that JA was translocated from the local to distal leaves in Arabidopsis, and this process was predominantly regulated by two phloem-expressed and plasma membrane-localized jasmonate transporters, AtJAT3 and AtJAT4. In addition to the cooperation between AtJAT3/4 and GLR3.3 in the regulation of long-distance JA translocation, our findings indicate that importer-mediated cell-cell JA transport is important for driving the loading and translocation of JA in the phloem pathway in a self-propagating manner.
Collapse
|
|
5 |
38 |
13
|
Demmig-Adams B, Stewart JJ, Adams WW. Multiple feedbacks between chloroplast and whole plant in the context of plant adaptation and acclimation to the environment. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130244. [PMID: 24591724 DOI: 10.1098/rstb.2013.0244] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This review focuses on feedback pathways that serve to match plant energy acquisition with plant energy utilization, and thereby aid in the optimization of chloroplast and whole-plant function in a given environment. First, the role of source-sink signalling in adjusting photosynthetic capacity (light harvesting, photochemistry and carbon fixation) to meet whole-plant carbohydrate demand is briefly reviewed. Contrasting overall outcomes, i.e. increased plant growth versus plant growth arrest, are described and related to respective contrasting environments that either do or do not present opportunities for plant growth. Next, new insights into chloroplast-generated oxidative signals, and their modulation by specific components of the chloroplast's photoprotective network, are reviewed with respect to their ability to block foliar phloem-loading complexes, and, thereby, affect both plant growth and plant biotic defences. Lastly, carbon export capacity is described as a newly identified tuning point that has been subjected to the evolution of differential responses in plant varieties (ecotypes) and species from different geographical origins with contrasting environmental challenges.
Collapse
|
Review |
11 |
36 |
14
|
Wippel K, Sauer N. Arabidopsis SUC1 loads the phloem in suc2 mutants when expressed from the SUC2 promoter. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:669-79. [PMID: 22021573 PMCID: PMC3254675 DOI: 10.1093/jxb/err255] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/18/2011] [Accepted: 07/27/2011] [Indexed: 05/18/2023]
Abstract
Active loading of sucrose into phloem companion cells (CCs) is an essential process in apoplastic loaders, such as Arabidopsis or tobacco (Nicotiana sp.), and is even used by symplastic loaders such as melon (Cucumis melo) under certain stress conditions. Reduction of the amount or complete removal of the transporters catalysing this transport step results in severe developmental defects. Here we present analyses of two Arabidopsis lines, suc2-4 and suc2-5, that carry a null allele of the SUC2 gene which encodes the Arabidopsis phloem loader. These lines were complemented with constructs expressing either the Arabidopsis SUC1 or the Ustilago maydis srt1 cDNA from the SUC2 promoter. Both SUC1 and Srt1 are energy-dependent sucrose/H(+) symporters and differ in specific kinetic properties from the SUC2 protein. Transgene expression was confirmed by RT-PCRs, the subcellular localization of Srt1 in planta with an Srt1-RFP fusion, and the correct CC-specific localization of the recombinant proteins by immunolocalization with anti-Srt1 and anti-SUC1 antisera. The transport capacity of Srt1 was studied in Srt1-GFP expressing Arabidopsis protoplasts. Although both proteins were found exclusively in CCs, only SUC1 complemented the developmental defects of suc2-4 and suc2-5 mutants. As SUC1 and Srt1 are well characterized, this result provides an insight into the properties that are essential for sucrose transporters to load the phloem successfully.
Collapse
|
research-article |
13 |
33 |
15
|
Singh J, Das S, Jagadis Gupta K, Ranjan A, Foyer CH, Thakur JK. Physiological implications of SWEETs in plants and their potential applications in improving source-sink relationships for enhanced yield. PLANT BIOTECHNOLOGY JOURNAL 2022. [PMID: 36529911 PMCID: PMC10363763 DOI: 10.1111/pbi.13982] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The sugars will eventually be exported transporters (SWEET) family of transporters in plants is identified as a novel class of sugar carriers capable of transporting sugars, sugar alcohols and hormones. Functioning in intercellular sugar transport, SWEETs influence a wide range of physiologically important processes. SWEETs regulate the development of sink organs by providing nutritional support from source leaves, responses to abiotic stresses by maintaining intracellular sugar concentrations, and host-pathogen interactions through the modulation of apoplastic sugar levels. Many bacterial and fungal pathogens activate the expression of SWEET genes in species such as rice and Arabidopsis to gain access to the nutrients that support virulence. The genetic manipulation of SWEETs has led to the generation of bacterial blight (BB)-resistant rice varieties. Similarly, while the overexpression of the SWEETs involved in sucrose export from leaves and pathogenesis led to growth retardation and yield penalties, plants overexpressing SWEETs show improved disease resistance. Such findings demonstrate the complex functions of SWEETs in growth and stress tolerance. Here, we review the importance of SWEETs in plant-pathogen and source-sink interactions and abiotic stress resistance. We highlight the possible applications of SWEETs in crop improvement programmes aimed at improving sink and source strengths important for enhancing the sustainability of yield. We discuss how the adverse effects of the overexpression of SWEETs on plant growth may be overcome.
Collapse
|
Review |
3 |
32 |
16
|
Yan W, Wu X, Li Y, Liu G, Cui Z, Jiang T, Ma Q, Luo L, Zhang P. Cell Wall Invertase 3 Affects Cassava Productivity via Regulating Sugar Allocation From Source to Sink. FRONTIERS IN PLANT SCIENCE 2019; 10:541. [PMID: 31114601 PMCID: PMC6503109 DOI: 10.3389/fpls.2019.00541] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/09/2019] [Indexed: 05/28/2023]
Abstract
Storage roots are the main sink for photo-assimilate accumulation and reflect cassava yield and productivity. Regulation of sugar partitioning from leaves to storage roots has not been elucidated. Cell wall invertases are involved in the hydrolysis of sugar during phloem unloading of vascular plants to control plant development and sink strength but have rarely been studied in root crops like cassava. MeCWINV3 encodes a typical cell wall invertase in cassava and is mainly expressed in vascular bundles. The gene is highly expressed in leaves, especially mature leaves, in response to diurnal rhythm. When MeCWINV3 was overexpressed in cassava, sugar export from leaves to storage roots was largely inhibited and sucrose hydrolysis in leaves was accelerated, leading to increased transient starch accumulation by blocking starch degradation and reduced overall plant growth. The progress of leaf senescence was promoted in the MeCWINV3 over-expressed cassava plants with increased expression of senescence-related genes. Storage root development was also delayed because of dramatically reduced sugar allocation from leaves. As a result, the transcriptional expression of starch biosynthetic genes such as small subunit ADP-glucose pyrophosphorylase, granule-bound starch synthase I, and starch branching enzyme I was reduced in accordance with insufficient sugar supply in the storage roots of the transgenic plants. These results show that MeCWINV3 regulates sugar allocation from source to sink and maintains sugar balance in cassava, thus affecting yield of cassava storage roots.
Collapse
|
research-article |
6 |
26 |
17
|
Liesche J, Schulz A. Modeling the parameters for plasmodesmal sugar filtering in active symplasmic phloem loaders. FRONTIERS IN PLANT SCIENCE 2013; 4:207. [PMID: 23802006 PMCID: PMC3685819 DOI: 10.3389/fpls.2013.00207] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/31/2013] [Indexed: 05/05/2023]
Abstract
Plasmodesmata (PD) play a key role in loading of sugars into the phloem. In plant species that employ the so-called active symplasmic loading strategy, sucrose that diffuses into their unique intermediary cells (ICs) is converted into sugar oligomers. According to the prevalent hypothesis, the oligomers are too large to pass back through PD on the bundle sheath side, but can pass on into the sieve element to be transported in the phloem. Here, we investigate if the PD at the bundle sheath-IC interface can indeed fulfill the function of blocking transport of sugar oligomers while still enabling efficient diffusion of sucrose. Hindrance factors are derived via theoretical modeling for different PD substructure configurations: sub-nano channels, slit, and hydrogel. The results suggest that a strong discrimination could only be realized when the PD opening is almost as small as the sugar oligomers. In order to find model parameters that match the in vivo situation, we measured the effective diffusion coefficient across the interface in question in Cucurbita pepo with 3D-photoactivation microscopy. Calculations indicate that a PD substructure of several sub-nano channels with a radius around 7 Å, a 10.4 Å-wide slit or a hydrogel with 49% polymer fraction would be compatible with the effective diffusion coefficient. If these configurations can accommodate sufficient flux of sucrose into the IC, while blocking raffinose and stachyose movement was assessed using literature data. While the slit-configuration would efficiently prevent the sugar oligomers from "leaking" from the IC, none of the configurations could enable a diffusion-driven sucrose flux that matches the reported rates at a physiologically relevant concentration potential. The presented data provides a first insight on how the substructure of PD could enable selective transport, but indicates that additional factors are involved in efficient phloem loading in active symplasmic loading species.
Collapse
|
research-article |
12 |
26 |
18
|
Yao D, Gonzales-Vigil E, Mansfield SD. Arabidopsis sucrose synthase localization indicates a primary role in sucrose translocation in phloem. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1858-1869. [PMID: 31805187 PMCID: PMC7242074 DOI: 10.1093/jxb/erz539] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/05/2019] [Indexed: 05/24/2023]
Abstract
Sucrose synthase (SuSy) is one of two enzyme families capable of catalyzing the first degradative step in sucrose utilization. Several earlier studies examining SuSy mutants in Arabidopsis failed to identify obvious phenotypic abnormalities compared with wild-type plants in normal growth environments, and as such a functional role for SuSy in the previously proposed cellulose biosynthetic process remains unclear. Our study systematically evaluated the precise subcellular localization of all six isoforms of Arabidopsis SuSy via live-cell imaging. We showed that yellow fluorescent protein (YFP)-labeled SuSy1 and SuSy4 were expressed exclusively in phloem companion cells, and the sus1/sus4 double mutant accumulated sucrose under hypoxic conditions. SuSy5 and SuSy6 were found to be parietally localized in sieve elements and restricted only to the cytoplasm. SuSy2 was present in the endosperm and embryo of developing seeds, and SuSy3 was localized to the embryo and leaf stomata. No single isoform of SuSy was detected in developing xylem tissue of elongating stem, the primary site of cellulose deposition in plants. SuSy1 and SuSy4 were also undetectable in the protoxylem tracheary elements, which were induced by the vascular-related transcription factor VND7 during secondary cell wall formation. These findings implicate SuSy in the biological events related to sucrose translocation in phloem.
Collapse
|
research-article |
5 |
26 |
19
|
Slewinski TL, Garg A, Johal GS, Braun DM. Maize SUT1 functions in phloem loading. PLANT SIGNALING & BEHAVIOR 2010; 5:687-90. [PMID: 20404497 PMCID: PMC3001560 DOI: 10.4161/psb.5.6.11575] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 02/16/2010] [Indexed: 05/18/2023]
Abstract
The functions of dicot sucrose transporters (SUTs) in apoplastic phloem loading of sucrose are well established; however, whether SUTs similarly function in monocots was unresolved. To address this question, we recently provided genetic evidence that ZmSUT1 from maize (Zea mays) is required for efficient phloem loading. sut1-m1 mutant plants hyperaccumulate carbohydrates in leaves, are defective in loading sucrose into the phloem, and have altered biomass partitioning. Presumably due to the hyperaccumulation of soluble sugars in leaves, mutations in ZmSUT1 lead to downregulation of chlorophyll accumulation, photosynthesis and stomatal conductance. However, because we had identified only a single mutant allele, we were not able to exclude the possibility that the mutant phenotypes were instead caused by a closely linked mutation. Based on a novel aspect of the sut1 mutant phenotype, secretion of a concentrated sugar solution from leaf hydathodes, we identified an additional mutant allele, sut1-m4. This confirms that the mutation of SUT1 is responsible for the impairment in phloem loading. In addition, the sut1-m4 mutant does not accumulate transcripts, supporting the findings reported previously that the original mutant allele is also a null mutation. Collectively, these data demonstrate that ZmSUT1 functions to phloem load sucrose in maize leaves.
Collapse
|
Comment |
15 |
26 |
20
|
Wang G, Wu Y, Ma L, Lin Y, Hu Y, Li M, Li W, Ding Y, Chen L. Phloem loading in rice leaves depends strongly on the apoplastic pathway. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3723-3738. [PMID: 33624763 DOI: 10.1093/jxb/erab085] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Phloem loading is the first step in sucrose transport from source leaves to sink organs. The phloem loading strategy in rice remains unclear. To determine the potential phloem loading mechanism in rice, yeast invertase (INV) was overexpressed by a 35S promoter specifically in the cell wall to block sugar transmembrane loading in rice. The transgenic lines exhibited obvious phloem loading suppression characteristics accompanied by the accumulation of sucrose and starch, restricted vegetative growth and decreased grain yields. The decreased sucrose exudation rate with p-chloromercuribenzenesulfonic acid (PCMBS) treatment also indicated that rice actively transported sucrose into the phloem. OsSUT1 (SUCROSE TRANSPORTER 1) showed the highest mRNA levels of the plasma membrane-localized OsSUTs in source leaves. Cross sections of the OsSUT::GUS transgenic plants showed that the expression of OsSUT1 and OsSUT5 occurred in the phloem companion cells. Rice ossut1 mutants showed reduced growth and grain yield, supporting the hypothesis of OsSUT1 acting in phloem loading. Based on these results, we conclude that apoplastic phloem loading plays a major role in the export of sugar from rice leaves.
Collapse
|
|
4 |
26 |
21
|
Nieberl P, Ehrl C, Pommerrenig B, Graus D, Marten I, Jung B, Ludewig F, Koch W, Harms K, Flügge UI, Neuhaus HE, Hedrich R, Sauer N. Functional characterisation and cell specificity of BvSUT1, the transporter that loads sucrose into the phloem of sugar beet (Beta vulgaris L.) source leaves. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:315-326. [PMID: 28075052 DOI: 10.1111/plb.12546] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/07/2017] [Indexed: 05/08/2023]
Abstract
Sugar beet (Beta vulgaris L.) is one of the most important sugar-producing plants worldwide and provides about one third of the sugar consumed by humans. Here we report on molecular characterisation of the BvSUT1 gene and on the functional characterisation of the encoded transporter. In contrast to the recently identified tonoplast-localised sucrose transporter BvTST2.1 from sugar beet taproots, which evolved within the monosaccharide transporter (MST) superfamily, BvSUT1 represents a classical sucrose transporter and is a typical member of the disaccharide transporter (DST) superfamily. Transgenic Arabidopsis plants expressing the β-GLUCURONIDASE (GUS) reporter gene under control of the BvSUT1-promoter showed GUS histochemical staining of their phloem; an anti-BvSUT1-antiserum identified the BvSUT1 transporter specifically in phloem companion cells. After expression of BvSUT1 cDNA in bakers' yeasts (Saccharomyces cerevisiae) uptake characteristics of the BvSUT1 protein were studied. Moreover, the sugar beet transporter was characterised as a proton-coupled sucrose symporter in Xenopus laevis oocytes. Our findings indicate that BvSUT1 is the sucrose transporter that is responsible for loading of sucrose into the phloem of sugar beet source leaves delivering sucrose to the storage tissue in sugar beet taproot sinks.
Collapse
|
|
8 |
24 |
22
|
Wei X, Nguyen STT, Collings DA, McCurdy DW. Sucrose regulates wall ingrowth deposition in phloem parenchyma transfer cells in Arabidopsis via affecting phloem loading activity. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4690-4702. [PMID: 32433727 DOI: 10.1093/jxb/eraa246] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/15/2020] [Indexed: 05/27/2023]
Abstract
In Arabidopsis thaliana, phloem parenchyma transfer cells (PPTCs) occur in leaf minor veins and play a pivotal role in phloem loading. Wall ingrowth formation in PPTCs is induced by the phloem loading activity of these cells, which is regulated by sucrose (Suc). The effects of endogenous versus exogenous Suc on wall ingrowth deposition, however, differ. Elevating endogenous Suc levels by increased light enhanced wall ingrowth formation, whereas lowering endogenous Suc levels by dark treatment or genetically in ch-1 resulted in lower levels of deposition. In contrast, exogenously applied Suc, or Suc derived from other organs, repressed wall ingrowth deposition. Analysis of pAtSUC2::GFP plants, used as a marker for phloem loading status, suggested that wall ingrowth formation is correlated with phloem loading activity. Gene expression analysis revealed that exogenous Suc down-regulated expression of AtSWEET11 and 12, whereas endogenous Suc up-regulated AtSWEET11 expression. Analysis of a TREHALOSE 6-PHOSPHATE (T6P) SYNTHASE overexpression line and the hexokinase (HXK)-null mutant, gin2-1, suggested that Suc signalling of wall ingrowth formation is independent of T6P and HXK. Collectively, these results are consistent with the conclusion that Suc regulates wall ingrowth formation via affecting Suc exporting activity in PPTCs.
Collapse
|
|
5 |
23 |
23
|
Dai H, Zhu Z, Wang Z, Zhang Z, Kong W, Miao M. Galactinol synthase 1 improves cucumber performance under cold stress by enhancing assimilate translocation. HORTICULTURE RESEARCH 2022; 9:uhab063. [PMID: 35048123 PMCID: PMC9015895 DOI: 10.1093/hr/uhab063] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
Cucumber (Cucumis sativus L.) predominately translocates raffinose family oligosaccharides (RFOs) in the phloem and accumulates RFOs in leaves. Galactinol synthase (GolS) catalyzes the critical step of RFO biosynthesis, and determining the functional diversity of multiple GolS isoforms in cucumber is of scientific significance. In this study, we found that all four isoforms of CsGolS in the cucumber genome were upregulated by different abiotic stresses. β-glucuronidase staining and tissue separation experiments suggested that CsGolS1 is expressed in vascular tissues, whereas the other three CsGolSs are located in mesophyll cells. Further investigation indicates that CsGolS1 plays double roles in both assimilate loading and stress response in minor veins, which could increase the RFO concentration in the phloem sap and then improve assimilate transport under adverse conditions. Cold-induced minor vein-specific overexpression of CsGolS1 enhanced the assimilate translocation efficiency and accelerated the growth rates of sink leaves, fruits and whole plants under cold stress. Finally, our results demonstrate a previously unknown response to adverse environments and provide a potential biotechnological strategy to improve the stress resistance of cucumber.
Collapse
|
research-article |
3 |
23 |
24
|
Öner-Sieben S, Rappl C, Sauer N, Stadler R, Lohaus G. Characterization, localization, and seasonal changes of the sucrose transporter FeSUT1 in the phloem of Fraxinus excelsior. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4807-19. [PMID: 26022258 PMCID: PMC4507781 DOI: 10.1093/jxb/erv255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Trees are generally assumed to be symplastic phloem loaders. A typical feature for most wooden species is an open minor vein structure with symplastic connections between mesophyll cells and phloem cells, which allow sucrose to move cell-to-cell through the plasmodesmata into the phloem. Fraxinus excelsior (Oleaceae) also translocates raffinose family oligosaccharides in addition to sucrose. Sucrose concentration was recently shown to be higher in the phloem sap than in the mesophyll cells. This suggests the involvement of apoplastic steps and the activity of sucrose transporters in addition to symplastic phloem-loading processes. In this study, the sucrose transporter FeSUT1 from F. excelsior was analysed. Heterologous expression in baker's yeast showed that FeSUT1 mediates the uptake of sucrose. Immunohistochemical analyses revealed that FeSUT1 was exclusively located in phloem cells of minor veins and in the transport phloem of F. excelsior. Further characterization identified these cells as sieve elements and possibly ordinary companion cells but not as intermediary cells. The localization and expression pattern point towards functions of FeSUT1 in phloem loading of sucrose as well as in sucrose retrieval. FeSUT1 is most likely responsible for the observed sucrose gradient between mesophyll and phloem. The elevated expression level of FeSUT1 indicated an increased apoplastic carbon export activity from the leaves during spring and late autumn. It is hypothesized that the importance of apoplastic loading is high under low-sucrose conditions and that the availability of two different phloem-loading mechanisms confers advantages for temperate woody species like F. excelsior.
Collapse
|
research-article |
10 |
22 |
25
|
Zhang Y, Martinez MR, Sun H, Sun M, Yin R, Yan J, Marelli B, Giraldo JP, Matyjaszewski K, Tilton RD, Lowry GV. Charge, Aspect Ratio, and Plant Species Affect Uptake Efficiency and Translocation of Polymeric Agrochemical Nanocarriers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37227395 DOI: 10.1021/acs.est.3c01154] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
An incomplete understanding of how agrochemical nanocarrier properties affect their uptake and translocation in plants limits their application for promoting sustainable agriculture. Herein, we investigated how the nanocarrier aspect ratio and charge affect uptake and translocation in monocot wheat (Triticum aestivum) and dicot tomato (Solanum lycopersicum) after foliar application. Leaf uptake and distribution to plant organs were quantified for polymer nanocarriers with the same diameter (∼10 nm) but different aspect ratios (low (L), medium (M), and high (H), 10-300 nm long) and charges (-50 to +15 mV). In tomato, anionic nanocarrier translocation (20.7 ± 6.7 wt %) was higher than for cationic nanocarriers (13.3 ± 4.1 wt %). In wheat, only anionic nanocarriers were transported (8.7 ± 3.8 wt %). Both low and high aspect ratio polymers translocated in tomato, but the longest nanocarrier did not translocate in wheat, suggesting a phloem transport size cutoff. Differences in translocation correlated with leaf uptake and interactions with mesophyll cells. The positive charge decreases nanocarrier penetration through the leaf epidermis and promotes uptake into mesophyll cells, decreasing apoplastic transport and phloem loading. These results suggest design parameters to provide agrochemical nanocarriers with rapid and complete leaf uptake and an ability to target agrochemicals to specific plant organs, with the potential to lower agrochemical use and the associated environmental impacts.
Collapse
|
|
2 |
20 |