1
|
Yang H, Yang L, Wang H, Xu Z, Zhao Y, Luo Y, Nasir N, Song Y, Wu H, Pan F, Jiang Z. Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nat Commun 2019; 10:2101. [PMID: 31068595 PMCID: PMC6506600 DOI: 10.1038/s41467-019-10157-5] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 04/24/2019] [Indexed: 11/14/2022] Open
Abstract
Covalent organic frameworks (COFs) hold great promise in molecular separations owing to their robust, ordered and tunable porous network structures. Currently, the pore size of COFs is usually much larger than most small molecules. Meanwhile, the weak interlamellar interaction between COF nanosheets impedes the preparation of defect-free membranes. Herein, we report a series of COF membranes through a mixed-dimensional assembly of 2D COF nanosheets and 1D cellulose nanofibers (CNFs). The pore size of 0.45-1.0 nm is acquired from the sheltering effect of CNFs, rendering membranes precise molecular sieving ability, besides the multiple interactions between COFs and CNFs elevate membrane stability. Accordingly, the membranes exhibit a flux of 8.53 kg m-2 h-1 with a separation factor of 3876 for n-butanol dehydration, and high permeance of 42.8 L m-2 h-1 bar-1 with a rejection of 96.8% for Na2SO4 removal. Our mixed-dimensional design may inspire the fabrication and application of COF membranes.
Collapse
|
research-article |
6 |
183 |
2
|
Kweon DH, Okyay MS, Kim SJ, Jeon JP, Noh HJ, Park N, Mahmood J, Baek JB. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nat Commun 2020; 11:1278. [PMID: 32152312 PMCID: PMC7062887 DOI: 10.1038/s41467-020-15069-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/12/2020] [Indexed: 11/09/2022] Open
Abstract
Developing efficient and stable electrocatalysts is crucial for the electrochemical production of pure and clean hydrogen. For practical applications, an economical and facile method of producing catalysts for the hydrogen evolution reaction (HER) is essential. Here, we report ruthenium (Ru) nanoparticles uniformly deposited on multi-walled carbon nanotubes (MWCNTs) as an efficient HER catalyst. The catalyst exhibits the small overpotentials of 13 and 17 mV at a current density of 10 mA cm-2 in 0.5 M aq. H2SO4 and 1.0 M aq. KOH, respectively, surpassing the commercial Pt/C (16 mV and 33 mV). Moreover, the catalyst has excellent stability in both media, showing almost "zeroloss" during cycling. In a real device, the catalyst produces 15.4% more hydrogen per power consumed, and shows a higher Faradaic efficiency (92.28%) than the benchmark Pt/C (85.97%). Density functional theory calculations suggest that Ru-C bonding is the most plausible active site for the HER.
Collapse
|
research-article |
5 |
178 |
3
|
Fan H, Peng M, Strauss I, Mundstock A, Meng H, Caro J. MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nat Commun 2021; 12:38. [PMID: 33397939 PMCID: PMC7782778 DOI: 10.1038/s41467-020-20298-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/13/2020] [Indexed: 01/22/2023] Open
Abstract
Covalent organic frameworks (COFs) are promising materials for advanced molecular-separation membranes, but their wide nanometer-sized pores prevent selective gas separation through molecular sieving. Herein, we propose a MOF-in-COF concept for the confined growth of metal-organic framework (MOFs) inside a supported COF layer to prepare MOF-in-COF membranes. These membranes feature a unique MOF-in-COF micro/nanopore network, presumably due to the formation of MOFs as a pearl string-like chain of unit cells in the 1D channel of 2D COFs. The MOF-in-COF membranes exhibit an excellent hydrogen permeance (>3000 GPU) together with a significant enhancement of separation selectivity of hydrogen over other gases. The superior separation performance for H2/CO2 and H2/CH4 surpasses the Robeson upper bounds, benefiting from the synergy combining precise size sieving and fast molecular transport through the MOF-in-COF channels. The synthesis of different combinations of MOFs and COFs in robust MOF-in-COF membranes demonstrates the versatility of our design strategy.
Collapse
|
research-article |
4 |
107 |
4
|
He Y, Li Q, Chen P, Duan Q, Zhan J, Cai X, Wang L, Hou H, Qiu X. A smart adhesive Janus hydrogel for non-invasive cardiac repair and tissue adhesion prevention. Nat Commun 2022; 13:7666. [PMID: 36509756 PMCID: PMC9744843 DOI: 10.1038/s41467-022-35437-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Multifunctional hydrogel with asymmetric and reversible adhesion characteristics is essential to handle the obstructions towards bioapplications of trauma removal and postoperative tissue synechia. Herein, we developed a responsively reversible and asymmetrically adhesive Janus hydrogel that enables on-demand stimuli-triggered detachment for efficient myocardial infarction (MI) repair, and synchronously prevents tissue synechia and inflammatory intrusion after surgery. In contrast with most irreversibly and hard-to-removable adhesives, this Janus hydrogel exhibited a reversible adhesion capability and can be noninvasively detached on-demand just by slight biologics. It is interesting that the adhesion behaves exhibited a molecularly encoded adhesion-adaptive stiffening feature similar to the self-protective stress-strain effect of biological tissues. In vitro and in vivo experiments demonstrated that Janus hydrogel can promote the maturation and functions of cardiomyocytes, and facilitate MI repair by reducing oxidative damage and inflammatory response, reconstructing electrical conduction and blood supply in infarcted area. Furthermore, no secondary injury and tissue synechia were triggered after transplantation of Janus hydrogel. This smart Janus hydrogel reported herein offers a potential strategy for clinically transformable cardiac patch and anti-postoperative tissue synechia barrier.
Collapse
|
research-article |
3 |
103 |
5
|
Choi SH, Yun SJ, Won YS, Oh CS, Kim SM, Kim KK, Lee YH. Large-scale synthesis of graphene and other 2D materials towards industrialization. Nat Commun 2022; 13:1484. [PMID: 35304474 PMCID: PMC8933535 DOI: 10.1038/s41467-022-29182-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
The industrial application of two-dimensional (2D) materials strongly depends on the large-scale manufacturing of high-quality 2D films and powders. Here, the authors analyze three state-of-the art mass production techniques, discussing the recent progress and remaining challenges for future improvements.
Collapse
|
brief-report |
3 |
89 |
6
|
Dong J, Zhang L, Dai X, Ding F. The epitaxy of 2D materials growth. Nat Commun 2020; 11:5862. [PMID: 33203853 PMCID: PMC7672100 DOI: 10.1038/s41467-020-19752-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Two dimensional (2D) materials consist of one to a few atomic layers, where the intra-layer atoms are chemically bonded and the atomic layers are weakly bonded. The high bonding anisotropicity in 2D materials make their growth on a substrate substantially different from the conventional thin film growth. Here, we proposed a general theoretical framework for the epitaxial growth of a 2D material on an arbitrary substrate. Our extensive density functional theory (DFT) calculations show that the propagating edge of a 2D material tends to align along a high symmetry direction of the substrate and, as a conclusion, the interplay between the symmetries of the 2D material and the substrate plays a critical role in the epitaxial growth of the 2D material. Based on our results, we have outlined that orientational uniformity of 2D material islands on a substrate can be realized only if the symmetry group of the substrate is a subgroup of that of the 2D material. Our predictions are in perfect agreement with most experimental observations on 2D materials' growth on various substrates known up to now. We believe that this general guideline will lead to the large-scale synthesis of wafer-scale single crystals of various 2D materials in the near future.
Collapse
|
research-article |
5 |
82 |
7
|
Yan J, Dong K, Zhang Y, Wang X, Aboalhassan AA, Yu J, Ding B. Multifunctional flexible membranes from sponge-like porous carbon nanofibers with high conductivity. Nat Commun 2019; 10:5584. [PMID: 31811181 PMCID: PMC6897989 DOI: 10.1038/s41467-019-13430-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/08/2019] [Indexed: 11/24/2022] Open
Abstract
Conductive porous carbon nanofibers are promising for environmental, energy, and catalysis applications. However, increasing their porosity and conductivity simultaneously remains challenging. Here we report chemical crosslinking electrospinning, a macro-micro dual-phase separation method, to synthesize continuous porous carbon nanofibers with ultrahigh porosity of >80% and outstanding conductivity of 980 S cm-1. With boric acid as the crosslinking agent, poly(tetrafluoroethylene) and poly(vinyl alcohol) are crosslinked together to form water-sol webs, which are then electrospun into fibrous films. After oxidation and pyrolysis, the as-spun fibers are converted into B-F-N triply doped porous carbon nanofibers with well-controlled macro-meso-micro pores and large surface areas of ~750 m2 g-1. The sponge-like porous carbon nanofibers with substantially reduced mass transfer resistances exhibit multifunction in terms of gas adsorption, sewage disposal, liquid storage, supercapacitors, and batteries. The reported approach allows green synthesis of high-performance porous carbon nanofibers as a new platform material for numerous applications.
Collapse
|
research-article |
6 |
80 |
8
|
Yang J, Zhang Y, Wu X, Dai W, Chen D, Shi J, Tong B, Peng Q, Xie H, Cai Z, Dong Y, Zhang X. Rational design of pyrrole derivatives with aggregation-induced phosphorescence characteristics for time-resolved and two-photon luminescence imaging. Nat Commun 2021; 12:4883. [PMID: 34385449 PMCID: PMC8361132 DOI: 10.1038/s41467-021-25174-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
Pure organic room-temperature phosphorescent (RTP) materials have been suggested to be promising bioimaging materials due to their good biocompatibility and long emission lifetime. Herein, we report a class of RTP materials. These materials are developed through the simple introduction of an aromatic carbonyl to a tetraphenylpyrrole molecule and also exhibit aggregation-induced emission (AIE) properties. These molecules show non-emission in solution and purely phosphorescent emission in the aggregated state, which are desirable properties for biological imaging. Highly crystalline nanoparticles can be easily fabricated with a long emission lifetime (20 μs), which eliminate background fluorescence interference from cells and tissues. The prepared nanoparticles demonstrate two-photon absorption characteristics and can be excited by near infrared (NIR) light, making them promising materials for deep-tissue optical imaging. This integrated aggregation-induced phosphorescence (AIP) strategy diversifies the existing pool of bioimaging agents to inspire the development of bioprobes in the future.
Collapse
|
research-article |
4 |
76 |
9
|
Lin YC, Liu C, Yu Y, Zarkadoula E, Yoon M, Puretzky AA, Liang L, Kong X, Gu Y, Strasser A, Meyer HM, Lorenz M, Chisholm MF, Ivanov IN, Rouleau CM, Duscher G, Xiao K, Geohegan DB. Low Energy Implantation into Transition-Metal Dichalcogenide Monolayers to Form Janus Structures. ACS NANO 2020; 14:3896-3906. [PMID: 32150384 DOI: 10.1021/acsnano.9b10196] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atomically thin two-dimensional (2D) materials face significant energy barriers for synthesis and processing into functional metastable phases such as Janus structures. Here, the controllable implantation of hyperthermal species from pulsed laser deposition (PLD) plasmas is introduced as a top-down method to compositionally engineer 2D monolayers. The kinetic energies of Se clusters impinging on suspended monolayer WS2 crystals were controlled in the <10 eV/atom range with in situ plasma diagnostics to determine the thresholds for selective top layer replacement of sulfur by selenium for the formation of high quality WSSe Janus monolayers at low (300 °C) temperatures and bottom layer replacement for complete conversion to WSe2. Atomic-resolution electron microscopy and spectroscopy in tilted geometry confirm the WSSe Janus monolayer. Molecular dynamics simulations reveal that Se clusters implant to form disordered metastable alloy regions, which then recrystallize to form highly ordered structures, demonstrating low-energy implantation by PLD for the synthesis of 2D Janus layers and alloys of variable composition.
Collapse
|
|
5 |
76 |
10
|
Reiser A, Lindén M, Rohner P, Marchand A, Galinski H, Sologubenko AS, Wheeler JM, Zenobi R, Poulikakos D, Spolenak R. Multi-metal electrohydrodynamic redox 3D printing at the submicron scale. Nat Commun 2019; 10:1853. [PMID: 31015443 PMCID: PMC6479051 DOI: 10.1038/s41467-019-09827-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/17/2019] [Indexed: 12/27/2022] Open
Abstract
An extensive range of metals can be dissolved and re-deposited in liquid solvents using electrochemistry. We harness this concept for additive manufacturing, demonstrating the focused electrohydrodynamic ejection of metal ions dissolved from sacrificial anodes and their subsequent reduction to elemental metals on the substrate. This technique, termed electrohydrodynamic redox printing (EHD-RP), enables the direct, ink-free fabrication of polycrystalline multi-metal 3D structures without the need for post-print processing. On-the-fly switching and mixing of two metals printed from a single multichannel nozzle facilitates a chemical feature size of <400 nm with a spatial resolution of 250 nm at printing speeds of up to 10 voxels per second. As shown, the additive control of the chemical architecture of materials provided by EHD-RP unlocks the synthesis of 3D bi-metal structures with programmed local properties and opens new avenues for the direct fabrication of chemically architected materials and devices.
Collapse
|
research-article |
6 |
67 |
11
|
He H, Li H, Pu A, Li W, Ban K, Xu L. Hybrid assembly of polymeric nanofiber network for robust and electronically conductive hydrogels. Nat Commun 2023; 14:759. [PMID: 36765072 PMCID: PMC9918487 DOI: 10.1038/s41467-023-36438-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Electroconductive hydrogels have been applied in implantable bioelectronics, tissue engineering platforms, soft actuators, and other emerging technologies. However, achieving high conductivity and mechanical robustness remains challenging. Here we report an approach to fabricating electroconductive hydrogels based on the hybrid assembly of polymeric nanofiber networks. In these hydrogels, conducting polymers self-organize into highly connected three dimensional nanostructures with an ultralow threshold (~1 wt%) for electrical percolation, assisted by templating effects from aramid nanofibers, to achieve high electronic conductivity and structural robustness without sacrificing porosity or water content. We show that a hydrogel composed of polypyrrole, aramid nanofibers and polyvinyl alcohol achieves conductivity of ~80 S cm-1, mechanical strength of ~9.4 MPa and stretchability of ~36%. We show that patterned conductive nanofiber hydrogels can be used as electrodes and interconnects with favorable electrochemical impedance and charge injection capacity for electrophysiological applications. In addition, we demonstrate that cardiomyocytes cultured on soft and conductive nanofiber hydrogel substrates exhibit spontaneous and synchronous beating, suggesting opportunities for the development of advanced implantable devices and tissue engineering technologies.
Collapse
|
research-article |
2 |
65 |
12
|
Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers. Nat Commun 2021; 12:112. [PMID: 33397969 PMCID: PMC7782480 DOI: 10.1038/s41467-020-20300-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/19/2020] [Indexed: 01/30/2023] Open
Abstract
Four-dimensional (4D) printing of shape memory polymer (SMP) imparts time responsive properties to 3D structures. Here, we explore 4D printing of a SMP in the submicron length scale, extending its applications to nanophononics. We report a new SMP photoresist based on Vero Clear achieving print features at a resolution of ~300 nm half pitch using two-photon polymerization lithography (TPL). Prints consisting of grids with size-tunable multi-colours enabled the study of shape memory effects to achieve large visual shifts through nanoscale structure deformation. As the nanostructures are flattened, the colours and printed information become invisible. Remarkably, the shape memory effect recovers the original surface morphology of the nanostructures along with its structural colour within seconds of heating above its glass transition temperature. The high-resolution printing and excellent reversibility in both microtopography and optical properties promises a platform for temperature-sensitive labels, information hiding for anti-counterfeiting, and tunable photonic devices.
Collapse
|
research-article |
4 |
64 |
13
|
Ma ZC, Zhang YL, Han B, Hu XY, Li CH, Chen QD, Sun HB. Femtosecond laser programmed artificial musculoskeletal systems. Nat Commun 2020; 11:4536. [PMID: 32913189 PMCID: PMC7484797 DOI: 10.1038/s41467-020-18117-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022] Open
Abstract
Natural musculoskeletal systems have been widely recognized as an advanced robotic model for designing robust yet flexible microbots. However, the development of artificial musculoskeletal systems at micro-nanoscale currently remains a big challenge, since it requires precise assembly of two or more materials of distinct properties into complex 3D micro/nanostructures. In this study, we report femtosecond laser programmed artificial musculoskeletal systems for prototyping 3D microbots, using relatively stiff SU-8 as the skeleton and pH-responsive protein (bovine serum albumin, BSA) as the smart muscle. To realize the programmable integration of the two materials into a 3D configuration, a successive on-chip two-photon polymerization (TPP) strategy that enables structuring two photosensitive materials sequentially within a predesigned configuration was proposed. As a proof-of-concept, we demonstrate a pH-responsive spider microbot and a 3D smart micro-gripper that enables controllable grabbing and releasing. Our strategy provides a universal protocol for directly printing 3D microbots composed of multiple materials.
Collapse
|
research-article |
5 |
64 |
14
|
Zhang S, Liu H, Tang N, Ge J, Yu J, Ding B. Direct electronetting of high-performance membranes based on self-assembled 2D nanoarchitectured networks. Nat Commun 2019; 10:1458. [PMID: 30926802 PMCID: PMC6441005 DOI: 10.1038/s41467-019-09444-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/11/2019] [Indexed: 12/26/2022] Open
Abstract
There is an increasing demand worldwide on advanced two-dimensional (2D) nanofibrous networks with applications ranging from environmental protection and electrical devices to bioengineering. Design of such nanoarchitectured materials has been considered a long-standing challenge. Herein, we report a direct electronetting technology for the fabrication of self-assembled 2D nanoarchitectured networks (nano-nets) from various materials. Tailoring of the precursor solution and of the microelectric field allows charged droplets, which are ejected from a Taylor cone, to levitate, deform and phase separate before they self-assemble a 2D nanofibre network architecture. The fabricated nano-nets show mechanical robustness and benefit from nanostructural properties such as enhanced surface wettability, high transparency, separation and improved air filtration properties. Calcination of the nano-nets results in the formation of carbon nano-nets with electric conductivity and titanium dioxide nano-nets with bioprotective properties.
Collapse
|
research-article |
6 |
61 |
15
|
Yu J, Ruengkajorn K, Crivoi DG, Chen C, Buffet JC, O'Hare D. High gas barrier coating using non-toxic nanosheet dispersions for flexible food packaging film. Nat Commun 2019; 10:2398. [PMID: 31186407 PMCID: PMC6560082 DOI: 10.1038/s41467-019-10362-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/03/2019] [Indexed: 11/12/2022] Open
Abstract
One of the major challenges in the circular economy relating to food packaging is the elimination of metallised film which is currently the industry standard approach to achieve the necessary gas barrier performance. Here, we report the synthesis of high aspect ratio 2D non-toxic layered double hydroxide (LDH) nanosheet dispersions using a non-toxic exfoliation method in aqueous amino acid solution. High O2 and water vapour barrier coating films can be prepared using food safe liquid dispersions through a bar coating process. The oxygen transmission rate (OTR) of 12 μm PET coated film can be reduced from 133.5 cc·m-2·day-1 to below the instrument detection limit (<0.005 cc·m-2·day-1). The water vapour transmission rate (WVTR) of the PET film can be reduced from 8.99 g·m-2·day-1 to 0.04 g·m-2·day-1 after coating. Most importantly, these coated films are also transparent and mechanically robust, making them suitable for flexible food packing while also offering new recycling opportunities.
Collapse
|
research-article |
6 |
60 |
16
|
Quellmalz A, Wang X, Sawallich S, Uzlu B, Otto M, Wagner S, Wang Z, Prechtl M, Hartwig O, Luo S, Duesberg GS, Lemme MC, Gylfason KB, Roxhed N, Stemme G, Niklaus F. Large-area integration of two-dimensional materials and their heterostructures by wafer bonding. Nat Commun 2021; 12:917. [PMID: 33568669 PMCID: PMC7876008 DOI: 10.1038/s41467-021-21136-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/14/2021] [Indexed: 01/31/2023] Open
Abstract
Integrating two-dimensional (2D) materials into semiconductor manufacturing lines is essential to exploit their material properties in a wide range of application areas. However, current approaches are not compatible with high-volume manufacturing on wafer level. Here, we report a generic methodology for large-area integration of 2D materials by adhesive wafer bonding. Our approach avoids manual handling and uses equipment, processes, and materials that are readily available in large-scale semiconductor manufacturing lines. We demonstrate the transfer of CVD graphene from copper foils (100-mm diameter) and molybdenum disulfide (MoS2) from SiO2/Si chips (centimeter-sized) to silicon wafers (100-mm diameter). Furthermore, we stack graphene with CVD hexagonal boron nitride and MoS2 layers to heterostructures, and fabricate encapsulated field-effect graphene devices, with high carrier mobilities of up to [Formula: see text]. Thus, our approach is suited for backend of the line integration of 2D materials on top of integrated circuits, with potential to accelerate progress in electronics, photonics, and sensing.
Collapse
|
research-article |
4 |
58 |
17
|
Lei Z, Cai W, Rao Y, Wang K, Jiang Y, Liu Y, Jin X, Li J, Lv Z, Jiao S, Zhang W, Yan P, Zhang S, Cao R. Coordination modulation of iridium single-atom catalyst maximizing water oxidation activity. Nat Commun 2022; 13:24. [PMID: 35013202 PMCID: PMC8748886 DOI: 10.1038/s41467-021-27664-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022] Open
Abstract
Single-atom catalysts (SACs) have attracted tremendous research interests in various energy-related fields because of their high activity, selectivity and 100% atom utilization. However, it is still a challenge to enhance the intrinsic and specific activity of SACs. Herein, we present an approach to fabricate a high surface distribution density of iridium (Ir) SAC on nickel-iron sulfide nanosheet arrays substrate (Ir1/NFS), which delivers a high water oxidation activity. The Ir1/NFS catalyst offers a low overpotential of ~170 mV at a current density of 10 mA cm-2 and a high turnover frequency of 9.85 s-1 at an overpotential of 300 mV in 1.0 M KOH solution. At the same time, the Ir1/NFS catalyst exhibits a high stability performance, reaching a lifespan up to 350 hours at a current density of 100 mA cm-2. First-principles calculations reveal that the electronic structures of Ir atoms are significantly regulated by the sulfide substrate, endowing an energetically favorable reaction pathway. This work represents a promising strategy to fabricate high surface distribution density single-atom catalysts with high activity and durability for electrochemical water splitting.
Collapse
|
research-article |
3 |
55 |
18
|
Wan Y, Li E, Yu Z, Huang JK, Li MY, Chou AS, Lee YT, Lee CJ, Hsu HC, Zhan Q, Aljarb A, Fu JH, Chiu SP, Wang X, Lin JJ, Chiu YP, Chang WH, Wang H, Shi Y, Lin N, Cheng Y, Tung V, Li LJ. Low-defect-density WS 2 by hydroxide vapor phase deposition. Nat Commun 2022; 13:4149. [PMID: 35851038 PMCID: PMC9293887 DOI: 10.1038/s41467-022-31886-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Two-dimensional (2D) semiconducting monolayers such as transition metal dichalcogenides (TMDs) are promising channel materials to extend Moore's Law in advanced electronics. Synthetic TMD layers from chemical vapor deposition (CVD) are scalable for fabrication but notorious for their high defect densities. Therefore, innovative endeavors on growth reaction to enhance their quality are urgently needed. Here, we report that the hydroxide W species, an extremely pure vapor phase metal precursor form, is very efficient for sulfurization, leading to about one order of magnitude lower defect density compared to those from conventional CVD methods. The field-effect transistor (FET) devices based on the proposed growth reach a peak electron mobility ~200 cm2/Vs (~800 cm2/Vs) at room temperature (15 K), comparable to those from exfoliated flakes. The FET device with a channel length of 100 nm displays a high on-state current of ~400 µA/µm, encouraging the industrialization of 2D materials.
Collapse
|
research-article |
3 |
47 |
19
|
Jang EH, Pack SP, Kim I, Chung S. A systematic study of hexavalent chromium adsorption and removal from aqueous environments using chemically functionalized amorphous and mesoporous silica nanoparticles. Sci Rep 2020; 10:5558. [PMID: 32221311 PMCID: PMC7101345 DOI: 10.1038/s41598-020-61505-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/27/2020] [Indexed: 11/08/2022] Open
Abstract
We report on the synthesis and characterization of highly monodisperse amorphous silica nanoparticles (ASNs) and mesoporous silica nanoparticles (MSNs) with particle sizes of 15-60 nm. We demonstrate adsorption of Cr(VI) ions on amino-functionalized ASNs (NH2-ASNs) and MSNs (NH2-MSNs) and their removal from aqueous environments and show the specific surface area (SSA) of NH2-MSNs is four times as larger as that of NH2-ASNs and that more than 70% of the total SSA of NH2-MSNs is due to the presence of nanopores. Analyses of Cr(VI) adsorption kinetics on NH2-ASNs and NH2-MSNs exhibited relatively rapid adsorption behavior following pseudo-second order kinetics as determined by nonlinear fitting. NH2-ASNs and NH2-MSNs exhibited significantly higher Cr(VI) adsorption capacities of 34.0 and 42.2 mg·g-1 and removal efficiencies of 61.9 and 76.8% than those of unfunctionalized ASNs and MSNs, respectively. The Langmuir model resulted in best fits to the adsorption isotherms of NH2-ASNs and NH2-MSNs. The adsorption of Cr(VI) on NH2-ASNs and NH2-MSNs was an endothermic and spontaneous process according to the thermodynamic analyses of temperature-dependent adsorption isotherms. The removal efficiencies of NH2-ASNs and NH2-MSNs exhibited a moderate reduction of less than 25% of the maximum values after five regeneration cycles. Furthermore, NH2-MSNs were also found to reduce adsorbed Cr(VI) into less harmful Cr(III).
Collapse
|
research-article |
5 |
47 |
20
|
Li C, Wang Z, Liu M, Wang E, Wang B, Xu L, Jiang K, Fan S, Sun Y, Li J, Liu K. Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction. Nat Commun 2022; 13:3338. [PMID: 35680929 PMCID: PMC9184596 DOI: 10.1038/s41467-022-31077-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/31/2022] [Indexed: 01/22/2023] Open
Abstract
Designing cost-effective and high-efficiency catalysts to electrolyze water is an effective way of producing hydrogen. Practical applications require highly active and stable hydrogen evolution reaction catalysts working at high current densities (≥1000 mA cm-2). However, it is challenging to simultaneously enhance the catalytic activity and interface stability of these catalysts. Herein, we report a rapid, energy-saving, and self-heating method to synthesize high-efficiency Mo2C/MoC/carbon nanotube hydrogen evolution reaction catalysts by ultrafast heating and cooling. The experiments and density functional theory calculations reveal that numerous Mo2C/MoC hetero-interfaces offer abundant active sites with a moderate hydrogen adsorption free energy ΔGH* (0.02 eV), and strong chemical bonding between the Mo2C/MoC catalysts and carbon nanotube heater/electrode significantly enhances the mechanical stability owing to instantaneous high temperature. As a result, the Mo2C/MoC/carbon nanotube catalyst achieves low overpotentials of 233 and 255 mV at 1000 and 1500 mA cm-2 in 1 M KOH, respectively, and the overpotential shows only a slight change after working at 1000 mA cm-2 for 14 days, suggesting the excellent activity and stability of the high-current-density hydrogen evolution reaction catalyst. The promising activity, excellent stability, and high productivity of our catalyst can fulfil the demands of hydrogen production in various applications.
Collapse
|
research-article |
3 |
46 |
21
|
Kalayci K, Frisch H, Truong VX, Barner-Kowollik C. Green light triggered [2+2] cycloaddition of halochromic styrylquinoxaline-controlling photoreactivity by pH. Nat Commun 2020; 11:4193. [PMID: 32826921 PMCID: PMC7443129 DOI: 10.1038/s41467-020-18057-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Photochemical reactions are a powerful tool in (bio)materials design due to the spatial and temporal control light can provide. To extend their applications in biological setting, the use of low-energy, long wavelength light with high penetration propertiesis required. Further regulation of the photochemical process by additional stimuli, such as pH, will open the door for construction of highly regulated systems in nanotechnology- and biology-driven applications. Here we report the green light induced [2+2] cycloaddition of a halochromic system based on a styrylquinoxaline moiety, which allows for its photo-reactivity to be switched on and off by adjusting the pH of the system. Critically, the [2+2] photocycloaddition can be activated by green light (λ up to 550 nm), which is the longest wavelength employed to date in catalyst-free photocycloadditions in solution. Importantly, the pH-dependence of the photo-reactivity was mapped by constant photon action plots. The action plots further indicate that the choice of solvent strongly impacts the system's photo-reactivity. Indeed, higher conversion and longer activation wavelengths were observed in water compared to acetonitrile under identical reaction conditions. The wider applicability of the system was demonstrated in the crosslinking of an 8-arm PEG to form hydrogels (ca. 1 cm in thickness) with a range of mechanical properties and pH responsiveness, highlighting the potential of the system in materials science.
Collapse
|
research-article |
5 |
45 |
22
|
Chen L, Wang W, Tian J, Bu F, Zhao T, Liu M, Lin R, Zhang F, Lee M, Zhao D, Li X. Imparting multi-functionality to covalent organic framework nanoparticles by the dual-ligand assistant encapsulation strategy. Nat Commun 2021; 12:4556. [PMID: 34315880 PMCID: PMC8316466 DOI: 10.1038/s41467-021-24838-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/09/2021] [Indexed: 01/02/2023] Open
Abstract
The potential applications of covalent organic frameworks (COFs) can be further developed by encapsulating functional nanoparticles within the frameworks. However, the synthesis of monodispersed core@shell structured COF nanocomposites without agglomeration remains a significant challenge. Herein, we present a versatile dual-ligand assistant strategy for interfacial growth of COFs on the functional nanoparticles with abundant physicochemical properties. Regardless of the composition, geometry or surface properties of the core, the obtained core@shell structured nanocomposites with controllable shell-thickness are very uniform without agglomeration. The derived bowl-shape, yolk@shell, core@satellites@shell nanostructures can also be fabricated delicately. As a promising type of photosensitizer for photodynamic therapy (PDT), the porphyrin-based COFs were grown onto upconversion nanoparticles (UCNPs). With the assistance of the near-infrared (NIR) to visible optical property of UCNPs core and the intrinsic porosity of COF shell, the core@shell nanocomposites can be applied as a nanoplatform for NIR-activated PDT with deep tissue penetration and chemotherapeutic drug delivery.
Collapse
|
research-article |
4 |
45 |
23
|
Raisch M, Maftuhin W, Walter M, Sommer M. A mechanochromic donor-acceptor torsional spring. Nat Commun 2021; 12:4243. [PMID: 34244510 PMCID: PMC8270966 DOI: 10.1038/s41467-021-24501-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 06/17/2021] [Indexed: 11/09/2022] Open
Abstract
Mechanochromic polymers are intriguing materials that allow to sense force of specimens under load. Most mechanochromic systems rely on covalent bond scission and hence are two-state systems with optically distinct "on" and "off" states where correlating force with wavelength is usually not possible. Translating force of different magnitude with gradually different wavelength of absorption or emission would open up new possibilities to map and understand force distributions in polymeric materials. Here, we present a mechanochromic donor-acceptor (DA) torsional spring that undergoes force-induced planarization during uniaxial elongation leading to red-shifted absorption and emission spectra. The DA spring is based on ortho-substituted diketopyrrolopyrrole (o-DPP). Covalent incorporation of o-DPP into a rigid yet ductile polyphenylene matrix allows to transduce sufficiently large stress to the DA spring. The mechanically induced deflection from equilibrium geometry of the DA spring is theoretically predicted, in agreement with experiments, and is fully reversible upon stress release.
Collapse
|
research-article |
4 |
45 |
24
|
Li J, Sanz S, Merino-Díez N, Vilas-Varela M, Garcia-Lekue A, Corso M, de Oteyza DG, Frederiksen T, Peña D, Pascual JI. Topological phase transition in chiral graphene nanoribbons: from edge bands to end states. Nat Commun 2021; 12:5538. [PMID: 34545075 PMCID: PMC8452617 DOI: 10.1038/s41467-021-25688-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
Precise control over the size and shape of graphene nanostructures allows engineering spin-polarized edge and topological states, representing a novel source of non-conventional π-magnetism with promising applications in quantum spintronics. A prerequisite for their emergence is the existence of robust gapped phases, which are difficult to find in extended graphene systems. Here we show that semi-metallic chiral GNRs (chGNRs) narrowed down to nanometer widths undergo a topological phase transition. We fabricated atomically precise chGNRs of different chirality and size by on surface synthesis using predesigned molecular precursors. Combining scanning tunneling microscopy (STM) measurements and theory simulations, we follow the evolution of topological properties and bulk band gap depending on the width, length, and chirality of chGNRs. Our findings represent a new platform for producing topologically protected spin states and demonstrate the potential of connecting chiral edge and defect structure with band engineering.
Collapse
|
research-article |
4 |
44 |
25
|
Carbonell C, Valles D, Wong AM, Carlini AS, Touve MA, Korpanty J, Gianneschi NC, Braunschweig AB. Polymer brush hypersurface photolithography. Nat Commun 2020; 11:1244. [PMID: 32144265 PMCID: PMC7060193 DOI: 10.1038/s41467-020-14990-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 02/13/2020] [Indexed: 12/04/2022] Open
Abstract
Polymer brush patterns have a central role in established and emerging research disciplines, from microarrays and smart surfaces to tissue engineering. The properties of these patterned surfaces are dependent on monomer composition, polymer height, and brush distribution across the surface. No current lithographic method, however, is capable of adjusting each of these variables independently and with micrometer-scale resolution. Here we report a technique termed Polymer Brush Hypersurface Photolithography, which produces polymeric pixels by combining a digital micromirror device (DMD), an air-free reaction chamber, and microfluidics to independently control monomer composition and polymer height of each pixel. The printer capabilities are demonstrated by preparing patterns from combinatorial polymer and block copolymer brushes. Images from polymeric pixels are created using the light reflected from a DMD to photochemically initiate atom-transfer radical polymerization from initiators immobilized on Si/SiO2 wafers. Patterning is combined with high-throughput analysis of grafted-from polymerization kinetics, accelerating reaction discovery, and optimization of polymer coatings.
Collapse
|
research-article |
5 |
43 |