1
|
Cappello V, Marchetti L, Parlanti P, Landi S, Tonazzini I, Cecchini M, Piazza V, Gemmi M. Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease. Sci Rep 2016; 6:1. [PMID: 28442746 PMCID: PMC5431369 DOI: 10.1038/s41598-016-0001-8] [Citation(s) in RCA: 6744] [Impact Index Per Article: 749.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 08/15/2016] [Indexed: 02/08/2023] Open
Abstract
Krabbe disease (KD) is a neurodegenerative disorder caused by the lack of β- galactosylceramidase enzymatic activity and by widespread accumulation of the cytotoxic galactosyl-sphingosine in neuronal, myelinating and endothelial cells. Despite the wide use of Twitcher mice as experimental model for KD, the ultrastructure of this model is partial and mainly addressing peripheral nerves. More details are requested to elucidate the basis of the motor defects, which are the first to appear during KD onset. Here we use transmission electron microscopy (TEM) to focus on the alterations produced by KD in the lower motor system at postnatal day 15 (P15), a nearly asymptomatic stage, and in the juvenile P30 mouse. We find mild effects on motorneuron soma, severe ones on sciatic nerves and very severe effects on nerve terminals and neuromuscular junctions at P30, with peripheral damage being already detectable at P15. Finally, we find that the gastrocnemius muscle undergoes atrophy and structural changes that are independent of denervation at P15. Our data further characterize the ultrastructural analysis of the KD mouse model, and support recent theories of a dying-back mechanism for neuronal degeneration, which is independent of demyelination.
Collapse
|
research-article |
9 |
6744 |
2
|
|
Review |
20 |
6284 |
3
|
Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989; 20:84-91. [PMID: 2643202 DOI: 10.1161/01.str.20.1.84] [Citation(s) in RCA: 5729] [Impact Index Per Article: 159.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To develop a simple, relatively noninvasive small-animal model of reversible regional cerebral ischemia, we tested various methods of inducing infarction in the territory of the right middle cerebral artery (MCA) by extracranial vascular occlusion in rats. In preliminary studies, 60 rats were anesthetized with ketamine and different combinations of vessels were occluded; blood pressure and arterial blood gases were monitored. Neurologic deficit, mortality rate, gross pathology, and in some instances, electroencephalogram and histochemical staining results were evaluated in all surviving rats. The principal procedure consisted of introducing a 4-0 nylon intraluminal suture into the cervical internal carotid artery (ICA) and advancing it intracranially to block blood flow into the MCA; collateral blood flow was reduced by interrupting all branches of the external carotid artery (ECA) and all extracranial branches of the ICA. In some groups of rats, bilateral vertebral or contralateral carotid artery occlusion was also performed. India ink perfusion studies in 20 rats documented blockage of MCA blood flow in 14 rats subjected to permanent occlusion and the restoration of blood flow to the MCA territory in six rats after withdrawal of the suture from the ICA. The best method of MCA occlusion was then selected for further confirmatory studies, including histologic examination, in five additional groups of rats anesthetized with halothane. Seven of eight rats that underwent permanent occlusion of the MCA had resolving moderately severe neurologic deficits (Grade 2 of 4) and unilateral infarcts averaging 37.6 +/- 5.5% of the coronal sectional area at 72 hours after the onset of occlusion.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
36 |
5729 |
4
|
Abstract
Hypoxia-inducible factor 1 (HIF-1) activates the transcription of genes that are involved in crucial aspects of cancer biology, including angiogenesis, cell survival, glucose metabolism and invasion. Intratumoral hypoxia and genetic alterations can lead to HIF-1alpha overexpression, which has been associated with increased patient mortality in several cancer types. In preclinical studies, inhibition of HIF-1 activity has marked effects on tumour growth. Efforts are underway to identify inhibitors of HIF-1 and to test their efficacy as anticancer therapeutics.
Collapse
|
Review |
22 |
4983 |
5
|
Abstract
Interleukin-10 (IL-10), first recognized for its ability to inhibit activation and effector function of T cells, monocytes, and macrophages, is a multifunctional cytokine with diverse effects on most hemopoietic cell types. The principal routine function of IL-10 appears to be to limit and ultimately terminate inflammatory responses. In addition to these activities, IL-10 regulates growth and/or differentiation of B cells, NK cells, cytotoxic and helper T cells, mast cells, granulocytes, dendritic cells, keratinocytes, and endothelial cells. IL-10 plays a key role in differentiation and function of a newly appreciated type of T cell, the T regulatory cell, which may figure prominently in control of immune responses and tolerance in vivo. Uniquely among hemopoietic cytokines, IL-10 has closely related homologs in several virus genomes, which testify to its crucial role in regulating immune and inflammatory responses. This review highlights findings that have advanced our understanding of IL-10 and its receptor, as well as its in vivo function in health and disease.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Clinical Trials as Topic
- Clinical Trials, Phase II as Topic
- Dendritic Cells/immunology
- Diabetes Mellitus, Type 1/immunology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Gene Expression Regulation
- Herpesviridae/physiology
- Humans
- Infections
- Inflammation
- Interleukin-10/genetics
- Interleukin-10/physiology
- Interleukin-10/therapeutic use
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lymphocyte Subsets/immunology
- Mice
- Mice, Inbred NOD
- Mice, Inbred NZB
- Mice, Knockout
- Neoplasms/immunology
- Neutrophils/immunology
- Primates
- Protein-Tyrosine Kinases/physiology
- Receptors, Interleukin/genetics
- Receptors, Interleukin/physiology
- Receptors, Interleukin-10
- Signal Transduction
- Transcription Factors/physiology
- Transcription, Genetic
- Viral Proteins/physiology
Collapse
|
Review |
24 |
4917 |
6
|
Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3:730-7. [PMID: 9212098 DOI: 10.1038/nm0797-730] [Citation(s) in RCA: 4823] [Impact Index Per Article: 172.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
On the subject of acute myeloid leukemia (AML), there is little consensus about the target cell within the hematopoietic stem cell hierarchy that is susceptible to leukemic transformation, or about the mechanism that underlies the phenotypic, genotypic and clinical heterogeneity. Here we demonstrate that the cell capable of initiating human AML in non-obese diabetic mice with severe combined immunodeficiency disease (NOD/SCID mice) - termed the SCID leukemia-initiating cell, or SL-IC - possesses the differentiative and proliferative capacities and the potential for self-renewal expected of a leukemic stem cell. The SL-ICs from all subtypes of AML analyzed, regardless of the heterogeneity in maturation characteristics of the leukemic blasts, were exclusively CD34++ CD38-, similar to the cell-surface phenotype of normal SCID-repopulating cells, suggesting that normal primitive cells, rather than committed progenitor cells, are the target for leukemic transformation. The SL-ICs were able to differentiate in vivo into leukemic blasts, indicating that the leukemic clone is organized as a hierarchy.
Collapse
MESH Headings
- ADP-ribosyl Cyclase
- ADP-ribosyl Cyclase 1
- Acute Disease
- Aged
- Animals
- Antigens, CD
- Antigens, CD34
- Antigens, Differentiation
- Cell Differentiation
- Cell Division
- Cell Transformation, Neoplastic
- Clone Cells
- Disease Models, Animal
- Female
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/pathology
- Humans
- Immunophenotyping
- Leukemia, Monocytic, Acute/pathology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myelomonocytic, Acute/pathology
- Male
- Membrane Glycoproteins
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Middle Aged
- N-Glycosyl Hydrolases
- Neoplasm Transplantation
Collapse
|
|
28 |
4823 |
7
|
|
Review |
23 |
4562 |
8
|
Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126:1121-33. [PMID: 16990136 DOI: 10.1016/j.cell.2006.07.035] [Citation(s) in RCA: 4096] [Impact Index Per Article: 215.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 06/30/2006] [Accepted: 07/24/2006] [Indexed: 11/24/2022]
Abstract
IL-17-producing T lymphocytes have been recently shown to comprise a distinct lineage of proinflammatory T helper cells, termed Th17 cells, that are major contributors to autoimmune disease. We show here that the orphan nuclear receptor RORgammat is the key transcription factor that orchestrates the differentiation of this effector cell lineage. RORgammat induces transcription of the genes encoding IL-17 and the related cytokine IL-17F in naïve CD4(+) T helper cells and is required for their expression in response to IL-6 and TGF-beta, the cytokines known to induce IL-17. Th17 cells are constitutively present throughout the intestinal lamina propria, express RORgammat, and are absent in mice deficient for RORgammat or IL-6. Mice with RORgammat-deficient T cells have attenuated autoimmune disease and lack tissue-infiltrating Th17 cells. Together, these studies suggest that RORgammat is a key regulator of immune homeostasis and highlight its potential as a therapeutic target in inflammatory diseases.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- CD4 Antigens/genetics
- CD4 Antigens/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Disease Models, Animal
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/metabolism
- Homeostasis/genetics
- Homeostasis/immunology
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Interleukin-6/immunology
- Interleukin-6/metabolism
- Intestinal Mucosa/cytology
- Intestinal Mucosa/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Nuclear Receptor Subfamily 1, Group F, Member 3
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
4096 |
9
|
Abstract
Parkinson's disease (PD) results primarily from the death of dopaminergic neurons in the substantia nigra. Current PD medications treat symptoms; none halt or retard dopaminergic neuron degeneration. The main obstacle to developing neuroprotective therapies is a limited understanding of the key molecular events that provoke neurodegeneration. The discovery of PD genes has led to the hypothesis that misfolding of proteins and dysfunction of the ubiquitin-proteasome pathway are pivotal to PD pathogenesis. Previously implicated culprits in PD neurodegeneration, mitochondrial dysfunction and oxidative stress, may also act in part by causing the accumulation of misfolded proteins, in addition to producing other deleterious events in dopaminergic neurons. Neurotoxin-based models (particularly MPTP) have been important in elucidating the molecular cascade of cell death in dopaminergic neurons. PD models based on the manipulation of PD genes should prove valuable in elucidating important aspects of the disease, such as selective vulnerability of substantia nigra dopaminergic neurons to the degenerative process.
Collapse
|
Review |
22 |
3951 |
10
|
Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440:237-41. [PMID: 16407889 DOI: 10.1038/nature04516] [Citation(s) in RCA: 3949] [Impact Index Per Article: 207.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Accepted: 12/12/2005] [Indexed: 12/12/2022]
Abstract
Development of the acute and chronic inflammatory responses known as gout and pseudogout are associated with the deposition of monosodium urate (MSU) or calcium pyrophosphate dihydrate (CPPD) crystals, respectively, in joints and periarticular tissues. Although MSU crystals were first identified as the aetiological agent of gout in the eighteenth century and more recently as a 'danger signal' released from dying cells, little is known about the molecular mechanisms underlying MSU- or CPPD-induced inflammation. Here we show that MSU and CPPD engage the caspase-1-activating NALP3 (also called cryopyrin) inflammasome, resulting in the production of active interleukin (IL)-1beta and IL-18. Macrophages from mice deficient in various components of the inflammasome such as caspase-1, ASC and NALP3 are defective in crystal-induced IL-1beta activation. Moreover, an impaired neutrophil influx is found in an in vivo model of crystal-induced peritonitis in inflammasome-deficient mice or mice deficient in the IL-1beta receptor (IL-1R). These findings provide insight into the molecular processes underlying the inflammatory conditions of gout and pseudogout, and further support a pivotal role of the inflammasome in several autoinflammatory diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
3949 |
11
|
Abstract
Endophenotypes, measurable components unseen by the unaided eye along the pathway between disease and distal genotype, have emerged as an important concept in the study of complex neuropsychiatric diseases. An endophenotype may be neurophysiological, biochemical, endocrinological, neuroanatomical, cognitive, or neuropsychological (including configured self-report data) in nature. Endophenotypes represent simpler clues to genetic underpinnings than the disease syndrome itself, promoting the view that psychiatric diagnoses can be decomposed or deconstructed, which can result in more straightforward-and successful-genetic analysis. However, to be most useful, endophenotypes for psychiatric disorders must meet certain criteria, including association with a candidate gene or gene region, heritability that is inferred from relative risk for the disorder in relatives, and disease association parameters. In addition to furthering genetic analysis, endophenotypes can clarify classification and diagnosis and foster the development of animal models. The authors discuss the etymology and strategy behind the use of endophenotypes in neuropsychiatric research and, more generally, in research on other diseases with complex genetics.
Collapse
|
Review |
22 |
3802 |
12
|
Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007; 117:175-84. [PMID: 17200717 PMCID: PMC1716210 DOI: 10.1172/jci29881] [Citation(s) in RCA: 3531] [Impact Index Per Article: 196.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 10/05/2006] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue macrophages (ATMs) infiltrate adipose tissue during obesity and contribute to insulin resistance. We hypothesized that macrophages migrating to adipose tissue upon high-fat feeding may differ from those that reside there under normal diet conditions. To this end, we found a novel F4/80(+)CD11c(+) population of ATMs in adipose tissue of obese mice that was not seen in lean mice. ATMs from lean mice expressed many genes characteristic of M2 or "alternatively activated" macrophages, including Ym1, arginase 1, and Il10. Diet-induced obesity decreased expression of these genes in ATMs while increasing expression of genes such as those encoding TNF-alpha and iNOS that are characteristic of M1 or "classically activated" macrophages. Interestingly, ATMs from obese C-C motif chemokine receptor 2-KO (Ccr2-KO) mice express M2 markers at levels similar to those from lean mice. The antiinflammatory cytokine IL-10, which was overexpressed in ATMs from lean mice, protected adipocytes from TNF-alpha-induced insulin resistance. Thus, diet-induced obesity leads to a shift in the activation state of ATMs from an M2-polarized state in lean animals that may protect adipocytes from inflammation to an M1 proinflammatory state that contributes to insulin resistance.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
3531 |
13
|
Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, Kadel EE, Koeppen H, Astarita JL, Cubas R, Jhunjhunwala S, Banchereau R, Yang Y, Guan Y, Chalouni C, Ziai J, Şenbabaoğlu Y, Santoro S, Sheinson D, Hung J, Giltnane JM, Pierce AK, Mesh K, Lianoglou S, Riegler J, Carano RAD, Eriksson P, Hoglund M, Somarriba L, Halligan DL, van der Heijden M, Loriot Y, Rosenberg JE, Fong L, Mellman I, Chen DS, Green M, Derleth C, Fine GD, Hegde PS, Bourgon R, Powles T. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018; 554:544-548. [PMID: 29443960 PMCID: PMC6028240 DOI: 10.1038/nature25501] [Citation(s) in RCA: 3525] [Impact Index Per Article: 503.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/08/2018] [Indexed: 02/08/2023]
Abstract
Therapeutic antibodies that block the programmed death-1 (PD-1)-programmed death-ligand 1 (PD-L1) pathway can induce robust and durable responses in patients with various cancers, including metastatic urothelial cancer. However, these responses only occur in a subset of patients. Elucidating the determinants of response and resistance is key to improving outcomes and developing new treatment strategies. Here we examined tumours from a large cohort of patients with metastatic urothelial cancer who were treated with an anti-PD-L1 agent (atezolizumab) and identified major determinants of clinical outcome. Response to treatment was associated with CD8+ T-effector cell phenotype and, to an even greater extent, high neoantigen or tumour mutation burden. Lack of response was associated with a signature of transforming growth factor β (TGFβ) signalling in fibroblasts. This occurred particularly in patients with tumours, which showed exclusion of CD8+ T cells from the tumour parenchyma that were instead found in the fibroblast- and collagen-rich peritumoural stroma; a common phenotype among patients with metastatic urothelial cancer. Using a mouse model that recapitulates this immune-excluded phenotype, we found that therapeutic co-administration of TGFβ-blocking and anti-PD-L1 antibodies reduced TGFβ signalling in stromal cells, facilitated T-cell penetration into the centre of tumours, and provoked vigorous anti-tumour immunity and tumour regression. Integration of these three independent biological features provides the best basis for understanding patient outcome in this setting and suggests that TGFβ shapes the tumour microenvironment to restrain anti-tumour immunity by restricting T-cell infiltration.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
3525 |
14
|
Abstract
The protein product of the human Duchenne muscular dystrophy locus (DMD) and its mouse homolog (mDMD) have been identified by using polyclonal antibodies directed against fusion proteins containing two distinct regions of the mDMD cDNA. The DMD protein is shown to be approximately 400 kd and to represent approximately 0.002% of total striated muscle protein. This protein is also detected in smooth muscle (stomach). Muscle tissue isolated from both DMD-affected boys and mdx mice contained no detectable DMD protein, suggesting that these genetic disorders are homologous. Since mdx mice present no obvious clinical abnormalities, the identification of the mdx mouse as an animal model for DMD has important implications with regard to the etiology of the lethal DMD phenotype. We have named the protein dystrophin because of its identification via the isolation of the Duchenne muscular dystrophy locus.
Collapse
|
|
38 |
3433 |
15
|
|
Review |
39 |
3404 |
16
|
Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature 1977; 266:730-2. [PMID: 559941 DOI: 10.1038/266730a0] [Citation(s) in RCA: 3261] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
|
48 |
3261 |
17
|
Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 1994; 264:1772-5. [PMID: 8209258 DOI: 10.1126/science.8209258] [Citation(s) in RCA: 3142] [Impact Index Per Article: 101.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mutations of human Cu,Zn superoxide dismutase (SOD) are found in about 20 percent of patients with familial amyotrophic lateral sclerosis (ALS). Expression of high levels of human SOD containing a substitution of glycine to alanine at position 93--a change that has little effect on enzyme activity--caused motor neuron disease in transgenic mice. The mice became paralyzed in one or more limbs as a result of motor neuron loss from the spinal cord and died by 5 to 6 months of age. The results show that dominant, gain-of-function mutations in SOD contribute to the pathogenesis of familial ALS.
Collapse
|
|
31 |
3142 |
18
|
|
Review |
24 |
3133 |
19
|
Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, Jordan TX, Oishi K, Panis M, Sachs D, Wang TT, Schwartz RE, Lim JK, Albrecht RA, tenOever BR. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 2020; 181:1036-1045.e9. [PMID: 32416070 PMCID: PMC7227586 DOI: 10.1016/j.cell.2020.04.026] [Citation(s) in RCA: 3124] [Impact Index Per Article: 624.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 11/25/2022]
Abstract
Viral pandemics, such as the one caused by SARS-CoV-2, pose an imminent threat to humanity. Because of its recent emergence, there is a paucity of information regarding viral behavior and host response following SARS-CoV-2 infection. Here we offer an in-depth analysis of the transcriptional response to SARS-CoV-2 compared with other respiratory viruses. Cell and animal models of SARS-CoV-2 infection, in addition to transcriptional and serum profiling of COVID-19 patients, consistently revealed a unique and inappropriate inflammatory response. This response is defined by low levels of type I and III interferons juxtaposed to elevated chemokines and high expression of IL-6. We propose that reduced innate antiviral defenses coupled with exuberant inflammatory cytokine production are the defining and driving features of COVID-19.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
3124 |
20
|
Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996; 272:872-7. [PMID: 8629022 DOI: 10.1126/science.272.5263.872] [Citation(s) in RCA: 3120] [Impact Index Per Article: 107.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A cofactor for HIV-1 (human immunodeficiency virus-type 1) fusion and entry was identified with the use of a novel functional complementary DNA (cDNA) cloning strategy. This protein, designated "fusin," is a putative G protein-coupled receptor with seven transmembrane segments. Recombinant fusin enabled CD4-expressing nonhuman cell types to support HIV-1 Env-mediated cell fusion and HIV-1 infection. Antibodies to fusin blocked cell fusion and infection with normal CD4-positive human target cells. Fusin messenger RNA levels correlated with HIV-1 permissiveness in diverse human cell types. Fusin acted preferentially for T cell line-tropic isolates, in comparison to its activity with macrophagetropic HIV-1 isolates.
Collapse
|
|
29 |
3120 |
21
|
Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 2003; 39:409-21. [PMID: 12895417 DOI: 10.1016/s0896-6273(03)00434-3] [Citation(s) in RCA: 3105] [Impact Index Per Article: 141.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neuropathological correlates of Alzheimer's disease (AD) include amyloid-beta (Abeta) plaques and neurofibrillary tangles. To study the interaction between Abeta and tau and their effect on synaptic function, we derived a triple-transgenic model (3xTg-AD) harboring PS1(M146V), APP(Swe), and tau(P301L) transgenes. Rather than crossing independent lines, we microinjected two transgenes into single-cell embryos from homozygous PS1(M146V) knockin mice, generating mice with the same genetic background. 3xTg-AD mice progressively develop plaques and tangles. Synaptic dysfunction, including LTP deficits, manifests in an age-related manner, but before plaque and tangle pathology. Deficits in long-term synaptic plasticity correlate with the accumulation of intraneuronal Abeta. These studies suggest a novel pathogenic role for intraneuronal Abeta with regards to synaptic plasticity. The recapitulation of salient features of AD in these mice clarifies the relationships between Abeta, synaptic dysfunction, and tangles and provides a valuable model for evaluating potential AD therapeutics as the impact on both lesions can be assessed.
Collapse
|
Comparative Study |
22 |
3105 |
22
|
Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 2009; 30:293-342. [PMID: 19502515 PMCID: PMC2726844 DOI: 10.1210/er.2009-0002] [Citation(s) in RCA: 2862] [Impact Index Per Article: 178.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 04/17/2009] [Indexed: 12/11/2022]
Abstract
There is growing interest in the possible health threat posed by endocrine-disrupting chemicals (EDCs), which are substances in our environment, food, and consumer products that interfere with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction. In this first Scientific Statement of The Endocrine Society, we present the evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology. Results from animal models, human clinical observations, and epidemiological studies converge to implicate EDCs as a significant concern to public health. The mechanisms of EDCs involve divergent pathways including (but not limited to) estrogenic, antiandrogenic, thyroid, peroxisome proliferator-activated receptor gamma, retinoid, and actions through other nuclear receptors; steroidogenic enzymes; neurotransmitter receptors and systems; and many other pathways that are highly conserved in wildlife and humans, and which can be modeled in laboratory in vitro and in vivo models. Furthermore, EDCs represent a broad class of molecules such as organochlorinated pesticides and industrial chemicals, plastics and plasticizers, fuels, and many other chemicals that are present in the environment or are in widespread use. We make a number of recommendations to increase understanding of effects of EDCs, including enhancing increased basic and clinical research, invoking the precautionary principle, and advocating involvement of individual and scientific society stakeholders in communicating and implementing changes in public policy and awareness.
Collapse
|
Consensus Development Conference |
16 |
2862 |
23
|
He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM. A microRNA polycistron as a potential human oncogene. Nature 2005; 435:828-33. [PMID: 15944707 PMCID: PMC4599349 DOI: 10.1038/nature03552] [Citation(s) in RCA: 2819] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 03/16/2005] [Indexed: 12/12/2022]
Abstract
To date, more than 200 microRNAs have been described in humans; however, the precise functions of these regulatory, non-coding RNAs remains largely obscure. One cluster of microRNAs, the mir-17-92 polycistron, is located in a region of DNA that is amplified in human B-cell lymphomas. Here we compared B-cell lymphoma samples and cell lines to normal tissues, and found that the levels of the primary or mature microRNAs derived from the mir-17-92 locus are often substantially increased in these cancers. Enforced expression of the mir-17-92 cluster acted with c-myc expression to accelerate tumour development in a mouse B-cell lymphoma model. Tumours derived from haematopoietic stem cells expressing a subset of the mir-17-92 cluster and c-myc could be distinguished by an absence of apoptosis that was otherwise prevalent in c-myc-induced lymphomas. Together, these studies indicate that non-coding RNAs, specifically microRNAs, can modulate tumour formation, and implicate the mir-17-92 cluster as a potential human oncogene.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
2819 |
24
|
|
Review |
18 |
2806 |
25
|
Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O'Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435:677-81. [PMID: 15902208 DOI: 10.1038/nature03579] [Citation(s) in RCA: 2700] [Impact Index Per Article: 135.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 03/31/2005] [Indexed: 12/16/2022]
Abstract
Proteins in the Bcl-2 family are central regulators of programmed cell death, and members that inhibit apoptosis, such as Bcl-X(L) and Bcl-2, are overexpressed in many cancers and contribute to tumour initiation, progression and resistance to therapy. Bcl-X(L) expression correlates with chemo-resistance of tumour cell lines, and reductions in Bcl-2 increase sensitivity to anticancer drugs and enhance in vivo survival. The development of inhibitors of these proteins as potential anti-cancer therapeutics has been previously explored, but obtaining potent small-molecule inhibitors has proved difficult owing to the necessity of targeting a protein-protein interaction. Here, using nuclear magnetic resonance (NMR)-based screening, parallel synthesis and structure-based design, we have discovered ABT-737, a small-molecule inhibitor of the anti-apoptotic proteins Bcl-2, Bcl-X(L) and Bcl-w, with an affinity two to three orders of magnitude more potent than previously reported compounds. Mechanistic studies reveal that ABT-737 does not directly initiate the apoptotic process, but enhances the effects of death signals, displaying synergistic cytotoxicity with chemotherapeutics and radiation. ABT-737 exhibits single-agent-mechanism-based killing of cells from lymphoma and small-cell lung carcinoma lines, as well as primary patient-derived cells, and in animal models, ABT-737 improves survival, causes regression of established tumours, and produces cures in a high percentage of the mice.
Collapse
|
Journal Article |
20 |
2700 |