1
|
Gibeaut DM, Hulett J, Cramer GR, Seemann JR. Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditions. PLANT PHYSIOLOGY 1997; 115:317-9. [PMID: 9342857 PMCID: PMC158488 DOI: 10.1104/pp.115.2.317] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
|
Letter |
28 |
206 |
2
|
Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK. Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 110:70-81. [PMID: 27470120 DOI: 10.1016/j.plaphy.2016.06.026] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/17/2016] [Accepted: 06/17/2016] [Indexed: 05/19/2023]
Abstract
The role of silicon (Si) in alleviating biotic as well as abiotic stresses is well known. However, the potential of silicon nanoparticle (SiNP) in regulating abiotic stress and associated mechanisms have not yet been explored. Therefore, in the present study hydroponic experiments were conducted to investigate whether Si or SiNp are more effective in the regulation of UV-B stress. UV-B (ambient and enhanced) radiation caused adverse effect on growth of wheat (Triticum aestivum) seedlings, which was accompanied by declined photosynthetic performance and altered vital leaf structures. Levels of superoxide radical and H2O2 were enhanced by UV-B as also evident from their histochemical stainings, which was accompanied by increased lipid peroxidation (LPO) and electrolyte leakage. Activities of superoxide dismutase and ascorbate peroxidase were inhibited by UV-B while catalase and guaiacol peroxidase, and all non-enzymatic antioxidants were stimulated by UV-B. Although, nitric oxide (NO) content was increased at all tested combinations, but its maximum content was observed under SiNps together with UV-B enhanced treatment. Pre-additions of SiNp as well as Si protected wheat seedlings against UV-B by regulating oxidative stress through enhanced antioxidants. Data indicate that SiNp might have protected wheat seedlings through NO-mediated triggering of antioxidant defense system, which subsequently counterbalance reactive oxygen species-induced damage to photosynthesis. Further, SiNp appear to be more effective in reducing UV-B stress than Si, which is related to its greater availability to wheat seedlings.
Collapse
|
|
8 |
169 |
3
|
Xu W, Jia L, Shi W, Liang J, Zhou F, Li Q, Zhang J. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. THE NEW PHYTOLOGIST 2013; 197:139-150. [PMID: 23106247 DOI: 10.1111/nph.12004] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/16/2012] [Indexed: 05/18/2023]
Abstract
Maintenance of root growth is essential for plant adaptation to soil drying. Here, we tested the hypothesis that auxin transport is involved in mediating ABA's modulation by activating proton secretion in the root tip to maintain root growth under moderate water stress. Rice and Arabidopsis plants were raised under a hydroponic system and subjected to moderate water stress (-0.47 MPa) with polyethylene glycol (PEG). ABA accumulation, auxin transport and plasma membrane H(+)-ATPase activity at the root tip were monitored in addition to the primary root elongation and root hair density. We found that moderate water stress increases ABA accumulation and auxin transport in the root apex. Additionally, ABA modulation is involved in the regulation of auxin transport in the root tip. The transported auxin activates the plasma membrane H(+)-ATPase to release more protons along the root tip in its adaption to moderate water stress. The proton secretion in the root tip is essential in maintaining or promoting primary root elongation and root hair development under moderate water stress. These results suggest that ABA accumulation modulates auxin transport in the root tip, which enhances proton secretion for maintaining root growth under moderate water stress.
Collapse
|
|
12 |
169 |
4
|
Tocquin P, Corbesier L, Havelange A, Pieltain A, Kurtem E, Bernier G, Périlleux C. A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana. BMC PLANT BIOLOGY 2003; 3:2. [PMID: 12556248 PMCID: PMC150571 DOI: 10.1186/1471-2229-3-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Accepted: 01/30/2003] [Indexed: 05/18/2023]
Abstract
BACKGROUND Arabidopsis thaliana is now the model organism for genetic and molecular plant studies, but growing conditions may still impair the significance and reproducibility of the experimental strategies developed. Besides the use of phytotronic cabinets, controlling plant nutrition may be critical and could be achieved in hydroponics. The availability of such a system would also greatly facilitate studies dealing with root development. However, because of its small size and rosette growth habit, Arabidopsis is hardly grown in standard hydroponic devices and the systems described in the last years are still difficult to transpose at a large scale. Our aim was to design and optimize an up-scalable device that would be adaptable to any experimental conditions. RESULTS An hydroponic system was designed for Arabidopsis, which is based on two units: a seed-holder and a 1-L tank with its cover. The original agar-containing seed-holder allows the plants to grow from sowing to seed set, without transplanting step and with minimal waste. The optimum nitrate supply was determined for vegetative growth, and the flowering response to photoperiod and vernalization was characterized to show the feasibility and reproducibility of experiments extending over the whole life cycle. How this equipment allowed to overcome experimental problems is illustrated by the analysis of developmental effects of nitrate reductase deficiency in nia1nia2 mutants. CONCLUSION The hydroponic device described in this paper allows to drive small and large scale cultures of homogeneously growing Arabidopsis plants. Its major advantages are its flexibility, easy handling, fast maintenance and low cost. It should be suitable for many experimental purposes.
Collapse
|
research-article |
22 |
151 |
5
|
Gupta DK, Nicoloso FT, Schetinger MRC, Rossato LV, Pereira LB, Castro GY, Srivastava S, Tripathi RD. Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. JOURNAL OF HAZARDOUS MATERIALS 2009; 172:479-84. [PMID: 19625122 DOI: 10.1016/j.jhazmat.2009.06.141] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 06/16/2009] [Accepted: 06/25/2009] [Indexed: 05/22/2023]
Abstract
The present study was designed to study the process of stress adaptation in roots and shoot of Zea mays seedlings grown under hydroponic conditions during exposure to lead (Pb) (0-200 microM) for 1-7 d. The alterations in growth and in the level of various biochemical parameters were accessed vis-à-vis Pb accumulation. The accumulation of Pb increased in a concentration-duration-dependent manner, however its translocation from root to shoot was low. At the same time, the level of malondialdehyde (MDA) increased with increasing Pb concentration. However, growth parameters, such as dry weight and root length did not show a significant decline to any of the Pb concentrations. In addition, the level of photosynthetic pigments decreased only upon exposure to high Pb concentrations. These results suggested an alleviation of the stress that was presumably being achieved by antioxidants viz., superoxide dismutase (SOD) and catalase (CAT) as well as ascorbic acid (AsA), which increased linearly with increasing Pb levels and exposure time. However, the level of non-protein thiols (NP-SH) in roots, in general, showed a decline beyond 4d that could be attributed to their consumption for the purpose of Pb detoxification. In conclusion, Zea mays can be used as an indicator species for Pb, and the various antioxidants might play a key role in the detoxification of Pb induced toxic effects.
Collapse
|
|
16 |
145 |
6
|
Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, Sahi SV. Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 110:118-127. [PMID: 27622847 DOI: 10.1016/j.plaphy.2016.09.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 07/24/2016] [Accepted: 09/03/2016] [Indexed: 05/21/2023]
Abstract
This report focuses on application of zinc oxide nanoparticles (ZnONPs) carrying phycomolecule ligands as a novel plant growth promoter aimed at increasing the crop productivity. The present investigation examined the effect of ZnONPs on plant growth characteristics, and associated biochemical changes in cotton (Gossypium hirsutum L.) following growth in a range of concentrations (25-200 mg L-l ZnONPs) in combination with 100 mM P in a hydroponic system. Treated plants registered an increase in growth and total biomass by 130.6% and 131%, respectively, over control. Results demonstrated a significant increase in the level of chlorophyll a (141.6%), b (134.7%), carotenoids (138.6%), and total soluble protein contents (179.4%); at the same time, a significant reduction (68%) in the level of malondialdehyde (MDA) in leaves with respect to control. Interestingly, a significant increase in superoxide dismutase (SOD, 264.2%), and peroxidase (POX, 182.8%) enzyme activities followed by a decrease in the catalase (CAT) activity, in response to above treatments. These results suggest that bioengineered ZnONPs interact with meristematic cells triggering biochemical pathways conducive to an accumulation of biomass. Further investigations will map out the mode of action involved in growth promotion.
Collapse
|
|
8 |
143 |
7
|
Yu C, Sun C, Shen C, Wang S, Liu F, Liu Y, Chen Y, Li C, Qian Q, Aryal B, Geisler M, Jiang DA, Qi Y. The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:818-30. [PMID: 26140668 DOI: 10.1111/tpj.12929] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/17/2015] [Accepted: 06/26/2015] [Indexed: 05/22/2023]
Abstract
Auxin and cadmium (Cd) stress play critical roles during root development. There are only a few reports on the mechanisms by which Cd stress influences auxin homeostasis and affects primary root (PR) and lateral root (LR) development, and almost nothing is known about how auxin and Cd interfere with root hair (RH) development. Here, we characterize rice osaux1 mutants that have a longer PR and shorter RHs in hydroponic culture, and that are more sensitive to Cd stress compared to wild-type (Dongjin). OsAUX1 expression in root hair cells is different from that of its paralogous gene, AtAUX1, which is expressed in non-hair cells. However, OsAUX1, like AtAUX1, localizes at the plasma membrane and appears to function as an auxin tranporter. Decreased auxin distribution and contents in the osaux1 mutant result in reduction of OsCyCB1;1 expression and shortened PRs, LRs and RHs under Cd stress, but may be rescued by treatment with the membrane-permeable auxin 1-naphthalene acetic acid. Treatment with the auxin transport inhibitors 1-naphthoxyacetic acid and N-1-naphthylphthalamic acid increased the Cd sensitivity of WT rice. Cd contents in the osaux1 mutant were not altered, but reactive oxygen species-mediated damage was enhanced, further increasing the sensitivity of the osaux1 mutant to Cd stress. Taken together, our results indicate that OsAUX1 plays an important role in root development and in responses to Cd stress.
Collapse
|
|
10 |
121 |
8
|
Radzki W, Gutierrez Mañero FJ, Algar E, Lucas García JA, García-Villaraco A, Ramos Solano B. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 2013; 104:321-30. [PMID: 23812968 PMCID: PMC3739868 DOI: 10.1007/s10482-013-9954-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/15/2013] [Indexed: 11/29/2022]
Abstract
Iron is one of the essential elements for a proper plant development. Providing plants with an accessible form of iron is crucial when it is scant or unavailable in soils. Chemical chelates are the only current alternative and are highly stable in soils, therefore, posing a threat to drinking water. The aim of this investigation was to quantify siderophores produced by two bacterial strains and to determine if these bacterial siderophores would palliate chlorotic symptoms of iron-starved tomato plants. For this purpose, siderophore production in MM9 medium by two selected bacterial strains was quantified, and the best was used for biological assay. Bacterial culture media free of bacteria (S) and with bacterial cells (BS), both supplemented with Fe were delivered to 12-week-old plants grown under iron starvation in hydroponic conditions; controls with full Hoagland solution, iron-free Hoagland solution and water were also conducted. Treatments were applied twice along the experiment, with a week in between. At harvest, plant yield, chlorophyll content and nutritional status in leaves were measured. Both the bacterial siderophore treatments significantly increased plant yield, chlorophyll and iron content over the positive controls with full Hoagland solution, indicating that siderophores are effective in providing Fe to the plant, either with or without the presence of bacteria. In summary, siderophores from strain Chryseobacterium C138 are effective in supplying Fe to iron-starved tomato plants by the roots, either with or without the presence of bacteria. Based on the amount of siderophores produced, an effective and economically feasible organic Fe chelator could be developed.
Collapse
|
research-article |
12 |
100 |
9
|
Baxter I, Hermans C, Lahner B, Yakubova E, Tikhonova M, Verbruggen N, Chao DY, Salt DE. Biodiversity of mineral nutrient and trace element accumulation in Arabidopsis thaliana. PLoS One 2012; 7:e35121. [PMID: 22558123 PMCID: PMC3338729 DOI: 10.1371/journal.pone.0035121] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/13/2012] [Indexed: 11/19/2022] Open
Abstract
In order to grow on soils that vary widely in chemical composition, plants have evolved mechanisms for regulating the elemental composition of their tissues to balance the mineral nutrient and trace element bioavailability in the soil with the requirements of the plant for growth and development. The biodiversity that exists within a species can be utilized to investigate how regulatory mechanisms of individual elements interact and to identify genes important for these processes. We analyzed the elemental composition (ionome) of a set of 96 wild accessions of the genetic model plant Arabidopsis thaliana grown in hydroponic culture and soil using inductively coupled plasma mass spectrometry (ICP-MS). The concentrations of 17-19 elements were analyzed in roots and leaves from plants grown hydroponically, and leaves and seeds from plants grown in artificial soil. Significant genetic effects were detected for almost every element analyzed. We observed very few correlations between the elemental composition of the leaves and either the roots or seeds. There were many pairs of elements that were significantly correlated with each other within a tissue, but almost none of these pairs were consistently correlated across tissues and growth conditions, a phenomenon observed in several previous studies. These results suggest that the ionome of a plant tissue is variable, yet tightly controlled by genes and gene × environment interactions. The dataset provides a valuable resource for mapping studies to identify genes regulating elemental accumulation. All of the ionomic data is available at www.ionomicshub.org.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
13 |
72 |
10
|
Zou Y, Hu Z, Zhang J, Xie H, Guimbaud C, Fang Y. Effects of pH on nitrogen transformations in media-based aquaponics. BIORESOURCE TECHNOLOGY 2016; 210:81-87. [PMID: 26783143 DOI: 10.1016/j.biortech.2015.12.079] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
To investigate the effects of pH on performance and nitrogen transformations in aquaponics, media-based aquaponics operated at pH 6.0, 7.5 and 9.0 were systematically examined and compared in this study. Results showed that nitrogen utilization efficiency (NUE) reached its maximum of 50.9% at pH 6.0, followed by 47.3% at pH 7.5 and 44.7% at pH 9.0. Concentrations of nitrogen compounds (i.e., TAN, NO2(-)-N and NO3(-)-N) in three pH systems were all under tolerable levels. pH had significant effect on N2O emission and N2O conversion ratio decreased from 2.0% to 0.6% when pH increased from 6.0 to 9.0, mainly because acid environment would inhibit denitrifiers and lead to higher N2O emission. 75.2-78.5% of N2O emission from aquaponics was attributed to denitrification. In general, aquaponics was suggested to maintain pH at 6.0 for high NUE, and further investigations on N2O mitigation strategy are needed.
Collapse
|
|
9 |
67 |
11
|
Guerrieri E, Poppy GM, Powell W, Rao R, Pennacchio F. Plant-to-plant communication mediating in-flight orientation of Aphidius ervi. J Chem Ecol 2002; 28:1703-15. [PMID: 12449500 DOI: 10.1023/a:1020553531658] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Broad bean plants (Viciafaba) infested by the pea aphid, Acyrthosiphonpisum, play akey role in the in-flightorientation of the parasitoidAphidius ervi, by producing host-induced synomones (HIS). These volatiles are herbivore-specific and are systemically released from insect-free parts of an infested plant, suggesting the existence of an elicitor circulating throughout the plant. This study was designed to investigate whether the plant metabolic changes, leading to HIS biosynthesis and emission, can in some way trigger similar responses in neighboring plants through aerial and/or root communication. Uninfested broad bean plants maintained in the same pot together with plants infested by A. pisum became more attractive towards A. ervi females when tested in a wind-tunnel bioassay. This change was not observed when root contact was prevented among plants that had their aerial parts in close proximity, suggesting that an exudate from the roots of the infested plant may cause the induction of the attractive volatiles in uninfested plants. Broad bean plants grown hydroponically also produce pea aphid induced signals that attract A. ervi. When an intact (uninfested) plant was placed in a hydroponic solution previously used to grow a pea aphid-infested plant, it became attractive to parasitoids, while an intact plant placed in a solution previously used to grow an intact plant did not undergo such a change. These results indicate that plant-to-plant signaling in this tritrophic system may occur at the rhizosphere level and is most likely mediated by a systemically translocated elicitor.
Collapse
|
|
23 |
66 |
12
|
Cerozi BDS, Fitzsimmons K. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution. BIORESOURCE TECHNOLOGY 2016; 219:778-781. [PMID: 27575336 DOI: 10.1016/j.biortech.2016.08.079] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 08/19/2016] [Accepted: 08/21/2016] [Indexed: 05/22/2023]
Abstract
The interaction between the main ions in aquaponics nutrient solutions affects chemical composition and availability of nutrients, and nutrient uptake by plant roots. This study determined the effect of pH on phosphorus (P) speciation and availability in an aquaponics nutrient solution and used Visual MINTEQ to simulate P species and P activity. In both experimental and simulated results, P availability decreased with increase in pH of aquaponics nutrient solutions. According to simulations, P binds to several cations leaving less free phosphate ions available in solution. High pH values resulted in the formation of insoluble calcium phosphate species. The study also demonstrated the importance of organic matter and alkalinity in keeping free phosphate ions in solution at high pH ranges. It is recommended though that pH in aquaponics systems is maintained at a 5.5-7.2 range for optimal availability and uptake by plants.
Collapse
|
|
9 |
63 |
13
|
Ferentinos KP. Biological engineering applications of feedforward neural networks designed and parameterized by genetic algorithms. Neural Netw 2005; 18:934-50. [PMID: 15963690 DOI: 10.1016/j.neunet.2005.03.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 03/03/2005] [Accepted: 03/03/2005] [Indexed: 11/26/2022]
Abstract
Two neural network (NN) applications in the field of biological engineering are developed, designed and parameterized by an evolutionary method based on the evolutionary process of genetic algorithms. The developed systems are a fault detection NN model and a predictive modeling NN system. An indirect or 'weak specification' representation was used for the encoding of NN topologies and training parameters into genes of the genetic algorithm (GA). Some a priori knowledge of the demands in network topology for specific application cases is required by this approach, so that the infinite search space of the problem is limited to some reasonable degree. Both one-hidden-layer and two-hidden-layer network architectures were explored by the GA. Except for the network architecture, each gene of the GA also encoded the type of activation functions in both hidden and output nodes of the NN and the type of minimization algorithm that was used by the backpropagation algorithm for the training of the NN. Both models achieved satisfactory performance, while the GA system proved to be a powerful tool that can successfully replace the problematic trial-and-error approach that is usually used for these tasks.
Collapse
|
|
20 |
61 |
14
|
Deng DM, Shu WS, Zhang J, Zou HL, Lin Z, Ye ZH, Wong MH. Zinc and cadmium accumulation and tolerance in populations of Sedum alfredii. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2007; 147:381-6. [PMID: 16828210 DOI: 10.1016/j.envpol.2006.05.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 05/24/2006] [Indexed: 05/10/2023]
Abstract
To investigate the variation of Zn and Cd accumulation and tolerance of Sedum alfredii (a newly reported Zn/Cd hyperaccumulator), field surveys and hydroponic experiments were conducted among three populations of this species: two originating from old Pb/Zn mines in Zhejiang (ZJ) and Hunan (HN) Provinces and one from a "clean" site in Guangdong (GD) Province, China. Under field conditions, up to 12,524 and 12,253 mg kg(-1) Zn, and 1400 and 97 mg kg(-1) Cd in shoots of ZJ and HN plants were recorded respectively. Under hydroponic conditions, ZJ and HN plants accumulated significantly higher Zn and Cd in their leaves and stems, and possessed significantly higher Zn and Cd tolerance than GD plants. Among the two contaminated populations, ZJ plants showed higher Cd tolerance and accumulation (in leaves) than HN plants. The present results indicate that significant differences in Zn and Cd accumulation and tolerance exist in populations of S. alfredii.
Collapse
|
|
18 |
60 |
15
|
Tsanuo MK, Hassanali A, Hooper AM, Khan Z, Kaberia F, Pickett JA, Wadhams LJ. Isoflavanones from the allelopathic aqueous root exudate of Desmodium uncinatum. PHYTOCHEMISTRY 2003; 64:265-273. [PMID: 12946425 DOI: 10.1016/s0031-9422(03)00324-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Three isoflavanones, 5,7,2',4'-tetrahydroxy-6-(3-methylbut-2-enyl)isoflavanone (1), 4",5"-dihydro-5,2',4'-trihydroxy-5"-isopropenylfurano-(2",3";7,6)-isoflavanone (2) and 4",5"-dihydro-2'-methoxy-5,4'-dihydroxy-5"-isopropenylfurano-(2",3";7,6)-isoflavanone (3) and a previously known isoflavone 5,7,4'-trihydroxyisoflavone [genistein (4)] were isolated and characterised spectroscopically from the root exudate of the legume Desmodium uncinatum (Jacq.) DC. We propose the names uncinanone A, B, and C for compounds 1, 2 and 3, respectively. Isolated fractions containing uncinanone B (2) induced germination of seeds from the parasitic weed Striga hermonthica (Del.) Benth. and fractions containing uncinanone C (3) moderately inhibited radical growth, the first example of a newly identified potential allelopathic mechanism to prevent S. hermonthica parasitism.
Collapse
|
|
22 |
55 |
16
|
Krauss S, Schnitzler WH, Grassmann J, Woitke M. The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:441-8. [PMID: 16417302 DOI: 10.1021/jf051930a] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Irrigation with saline water affects tomato fruit quality. While total fruit yield decreases with salinity, inner quality characterized by taste and health-promoting compounds can be improved. For a detailed description of this relationship, the influence of three different salt levels [electrical conductivity (EC) 3, 6.5, and 10] in hydroponically grown tomatoes was investigated. Rising salinity levels in the nutrient solution significantly increased vitamin C, lycopene, and beta-carotene in fresh fruits up to 35%. The phenol concentration was tendentiously enhanced, and the antioxidative capacity of phenols and carotenoids increased on a fresh weight basis. Additionally, the higher EC values caused an increase of total soluble solids and organic acids, parameters determining the taste of tomatoes. Total fruit yield, single fruit weight, and firmness significantly decreased with rising EC levels. Regression analyses revealed significant correlations between the EC level and the dependent variables single fruit weight, total soluble solids, titrable acids, lycopene, and antioxidative capacities of carotenoids and phenols, whereas vitamin C and phenols correlated best with truss number, and beta-carotene correlated best with temperature. Only pressure firmness showed no correlation with any of the measured parameters. As all desirable characteristics in the freshly produced tomato increased when exposed to salinity, salinity itself constitutes an alternative method of quality improvement. Moreover, it can compensate for the loss of yield by the higher inner quality due to changing demands by the market and the consumer. This investigation is to our knowledge the first comprehensive overview regarding parameters of outer quality (yield and firmness), taste (total soluble solids and acids), nutritional value (vitamin C, carotenoids, and phenolics), as well as antioxidative capacity in tomatoes grown under saline conditions.
Collapse
|
|
19 |
54 |
17
|
Soudek P, Valenová S, Vavríková Z, Vanek T. (137)Cs and (90)Sr uptake by sunflower cultivated under hydroponic conditions. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2006; 88:236-50. [PMID: 16630674 DOI: 10.1016/j.jenvrad.2006.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 01/24/2006] [Accepted: 02/22/2006] [Indexed: 05/08/2023]
Abstract
The (90)Sr and (137)Cs uptake by the plant Helianthus annuus L. was studied during cultivation in a hydroponic medium. The accumulation of radioactivity in plants was measured after 2, 4, 8, 16 and 32 days of cultivation. About 12% of (137)Cs and 20% of (90)Sr accumulated during the experiments. We did not find any differences between the uptake of radioactive and stable caesium and strontium isotopes. Radioactivity distribution within the plant was determined by autoradiography. (137)Cs was present mainly in nodal segments, leaf veins and young leaves. High activity of (90)Sr was localized in leaf veins, stem, central root and stomata. The influence of stable elements or analogues on the transfer behaviour was investigated. The percentage of non-active caesium and strontium concentration in plants decreased with the increasing initial concentration of Cs or Sr in the medium. The percentage of (90)Sr activity in plants decreased with increasing initial activity of the nuclide in the medium, but the activity of (137)Cs in plants increased. The influence of K(+) and NH(4)(+) on the uptake of (137)Cs and the influence of Ca(2+) on the uptake of (90)Sr was tested. The highest accumulation of (137)Cs (24-27% of the initial activity of (137)Cs) was found in the presence of 10 mM potassium and 12 mM ammonium ions. Accumulation of about 22% of initial activity of (90)Sr was determined in plants grown on the medium with 8 mM calcium ions.
Collapse
|
|
19 |
51 |
18
|
Pidatala VR, Li K, Sarkar D, Ramakrishna W, Datta R. Identification of Biochemical Pathways Associated with Lead Tolerance and Detoxification in Chrysopogon zizanioides L. Nash (Vetiver) by Metabolic Profiling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2530-7. [PMID: 26843403 DOI: 10.1021/acs.est.5b04725] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Lead (Pb) is a major urban pollutant, due to deteriorating lead-based paint in houses built before 1978. Phytoremediation is an inexpensive and effective technique for remediation of Pb-contaminated homes. Vetiver (Chrysopogon zizanioides), a noninvasive, fast-growing grass with high biomass, can tolerate and accumulate large quantities of Pb in its tissues. Lead is known to induce phytochelatins and antioxidative enzymes in vetiver; however, the overall impact of Pb stress on metabolic pathways of vetiver is unknown. In the current study, vetiver plants were treated with different concentrations of Pb in a hydroponic setup. Metabolites were extracted and analyzed using LC/MS/MS. Multivariate analysis of metabolites in both root and shoot tissue showed tremendous induction in key metabolic pathways including sugar metabolism, amino acid metabolism, and an increase in production of osmoprotectants, such as betaine and polyols, and metal-chelating organic acids. The data obtained provide a comprehensive insight into the overall stress response mechanisms in vetiver.
Collapse
|
|
9 |
47 |
19
|
Ruan L, Wei K, Wang L, Cheng H, Zhang F, Wu L, Bai P, Zhang C. Characteristics of NH 4+ and NO 3- fluxes in tea (Camellia sinensis) roots measured by scanning ion-selective electrode technique. Sci Rep 2016; 6:38370. [PMID: 27918495 PMCID: PMC5137579 DOI: 10.1038/srep38370] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/08/2016] [Indexed: 11/09/2022] Open
Abstract
As a vital beverage crop, tea has been extensively planted in tropical and subtropical regions. Nitrogen (N) levels and forms are closely related to tea quality. Based on different N levels and forms, we studied changes in NO3- and NH4+ fluxes in tea roots utilizing scanning ion-selective electrode technique. Our results showed that under both single and mixed N forms, influx rates of NO3- were much lower than those of NH4+, suggesting a preference for NH4+ in tea. With the increase in N concentration, the influx rate of NO3- increased more than that of NH4+. The NH4+ influx rates in a solution without NO3- were much higher than those in a solution with NO3-, while the NO3- influx rates in a solution without NH4+ were much lower than those in a solution with NH4+. We concluded that (1) tea roots showed a preference for NH4+, (2) presence of NO3- had a negative effect on NH4+ influx, and (3) NH4+ had a positive effect on NO3- influx. Our findings not only may help advance hydroponic tea experiments but also may be used to develop efficient fertilization protocols for soil-grown tea in the future.
Collapse
|
research-article |
9 |
47 |
20
|
Małkowski E, Sitko K, Szopiński M, Gieroń Ż, Pogrzeba M, Kalaji HM, Zieleźnik-Rusinowska P. Hormesis in Plants: The Role of Oxidative Stress, Auxins and Photosynthesis in Corn Treated with Cd or Pb. Int J Mol Sci 2020; 21:ijms21062099. [PMID: 32204316 PMCID: PMC7139973 DOI: 10.3390/ijms21062099] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Hormesis, which describes the stimulatory effect of low doses of toxic substances on growth, is a well-known phenomenon in the plant and animal kingdoms. However, the mechanisms that are involved in this phenomenon are still poorly understood. We performed preliminary studies on corn coleoptile sections, which showed a positive correlation between the stimulation of growth by Cd or Pb and an increase in the auxin and H2O2 content in the coleoptile sections. Subsequently, we grew corn seedlings in hydroponic culture and tested a wide range of Cd or Pb concentrations in order to determine hormetic growth stimulation. In these seedlings the gas exchange and the chlorophyll a fluorescence, as well as the content of chlorophyll, flavonol, auxin and hydrogen peroxide, were measured. We found that during the hormetic stimulation of growth, the response of the photosynthetic apparatus to Cd and Pb differed significantly. While the application of Cd mostly caused a decrease in various photosynthetic parameters, the application of Pb stimulated some of them. Nevertheless, we discovered that the common features of the hormetic stimulation of shoot growth by heavy metals are an increase in the auxin and flavonol content and the maintenance of hydrogen peroxide at the same level as the control plants.
Collapse
|
Journal Article |
5 |
46 |
21
|
Mertens J, Degryse F, Springael D, Smolders E. Zinc toxicity to nitrification in soil and soilless culture can be predicted with the same biotic ligand model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:2992-7. [PMID: 17533869 DOI: 10.1021/es061995+] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The inhibitory effect of Zn on the nitrification process in ZnCl2 spiked soils (12 soils, pH range 4.8-7.5) was compared to toxic effects of Zn on the nitrification by Nitrosospira sp. in soilless solutions with varying pH (pH 6-8) and ionic composition. The nitrification was reduced by 20% at Zn solution concentrations (EC20) ranging between 7 and 1200 microM Zn in the soil pore water and between 5 and 150 microM Zn in the soilless solutions. Protective effects of H+, Ca2+, and Mg2+ against Zn2+ toxicity were observed in both systems. Zinc speciation was determined, and 60-90% of the Zn in the soils and 35-80% of the Zn in the soilless solutions was present as Zn2+. A biotic ligand model and a Freundlich-type model, incorporating the competition of Zn2+ ions with H+, Ca2+, and Mg2+ for binding on the biotic ligands, were used to model the results. The Zn2+ activities resulting in 20% reduction of the nitrification were well predicted using the same parameters for both (soil and soilless) systems, indicating that microorganisms in soil are exposed to zinc through the free zinc ion in soil pore water.
Collapse
|
|
18 |
45 |
22
|
Endut A, Jusoh A, Ali N, Wan Nik WB, Hassan A. A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. BIORESOURCE TECHNOLOGY 2010; 101:1511-7. [PMID: 19819130 DOI: 10.1016/j.biortech.2009.09.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 09/10/2009] [Accepted: 09/10/2009] [Indexed: 05/03/2023]
Abstract
The growths of the African catfish (Clarias gariepinus) and water spinach (Ipomoea aquatica) were evaluated in recirculation aquaponic system (RAS). Fish production performance, plant growth and nutrient removal were measured and their dependence on hydraulic loading rate (HLR) was assessed. Fish production did not differ significantly between hydraulic loading rates. In contrast to the fish production, the water spinach yield was significantly higher in the lower hydraulic loading rate. Fish production, plant growth and percentage nutrient removal were highest at hydraulic loading rate of 1.28 m/day. The ratio of fish to plant production has been calculated to balance nutrient generation from fish with nutrient removal by plants and the optimum ratio was 15-42 gram of fish feed/m(2) of plant growing area. Each unit in RAS was evaluated in terms of oxygen demand. Using specified feeding regime, mass balance equations were applied to quantify the waste discharges from rearing tanks and treatment units. The waste discharged was found to be strongly dependent on hydraulic loading rate.
Collapse
|
|
15 |
44 |
23
|
Kumar A, Prasad MNV, Mohan Murali Achary V, Panda BB. Elucidation of lead-induced oxidative stress in Talinum triangulare roots by analysis of antioxidant responses and DNA damage at cellular level. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:4551-61. [PMID: 23263755 DOI: 10.1007/s11356-012-1354-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/21/2012] [Indexed: 05/20/2023]
Abstract
Hydroponic experiments were performed with Talinum triangulare (Jacq.) Willd. focusing the root cellular biochemistry with special emphasis on DNA damage, structural, and elemental analyses in Pb(NO3)2 exposed with 0, 0.25, 0.5, 0.75, 1.0, and 1.25 mM for 7 days. Lead (Pb) increased reactive oxygen species production, lipid peroxidation, protein oxidation, cell death, and DNA damage and decreased the protein content in a dose-dependent manner. Likewise, a dose-dependent induction of antioxidative enzymes superoxide dismutase and catalase by Pb was evident. Ascorbate peroxidase on the other hand responded biphasically to Pb treatments by showing induction at low (0.25 and 0.50) and repression at high (0.75-1.25 mM) concentrations. The estimation of proline content also indicated a similar biphasic trend. Scanning electron microscope and energy-dispersive X-ray spectroscopy analysis showed that 1.25 mM Pb treatment resulted in ultrastructural modifications in roots and stem tissue that was marked by the change in the elemental profile. The findings pointed to the role of oxidative stress in the underlying Pb phytotoxicity and genotoxicity in T. triangulare.
Collapse
|
|
12 |
43 |
24
|
Love DC, Fry JP, Genello L, Hill ES, Frederick JA, Li X, Semmens K. An international survey of aquaponics practitioners. PLoS One 2014; 9:e102662. [PMID: 25029125 PMCID: PMC4100909 DOI: 10.1371/journal.pone.0102662] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/20/2014] [Indexed: 11/23/2022] Open
Abstract
Aquaponics, a combination of fish farming and soilless plant farming, is growing in popularity and gaining attention as an important and potentially more sustainable method of food production. The aim of this study was to document and analyze the production methods, experiences, motivations, and demographics of aquaponics practitioners in the United States (US) and internationally. The survey was distributed online using a chain sampling method that relied on referrals from initial respondents, with 809 respondents meeting the inclusion criteria. The majority of respondents were from the US (80%), male (78%), and had at least a high school degree (91%). The mean age of respondents was 47±13 years old. Most respondents (52%) had three years or less of aquaponics experience. Respondents typically raised tilapia or ornamental fish and a variety of leafy green vegetables, herbs, and fruiting crops. Respondents were most often motivated to become involved in aquaponics to grow their own food, for environmental sustainability reasons, and for personal health reasons. Many respondents employed more than one method to raise crops, and used alternative or environmentally sustainable sources of energy, water, and fish feed. In general, our findings suggest that aquaponics is a dynamic and rapidly growing field with participants who are actively experimenting with and adopting new technologies. Additional research and outreach is needed to evaluate and communicate best practices within the field. This survey is the first large-scale effort to track aquaponics in the US and provides information that can better inform policy, research, and education efforts regarding aquaponics as it matures and possibly evolves into a mainstream form of agriculture.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
42 |
25
|
Muranaka LS, Giorgiano TE, Takita MA, Forim MR, Silva LFC, Coletta-Filho HD, Machado MA, de Souza AA. N-acetylcysteine in agriculture, a novel use for an old molecule: focus on controlling the plant-pathogen Xylella fastidiosa. PLoS One 2013; 8:e72937. [PMID: 24009716 PMCID: PMC3751844 DOI: 10.1371/journal.pone.0072937] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/15/2013] [Indexed: 11/18/2022] Open
Abstract
Xylella fastidiosa is a plant pathogen bacterium that causes diseases in many different crops. In citrus, it causes Citrus Variegated Chlorosis (CVC). The mechanism of pathogenicity of this bacterium is associated with its capacity to colonize and form a biofilm in the xylem vessels of host plants, and there is not yet any method to directly reduce populations of this pathogen in the field. In this study, we investigated the inhibitory effect of N-Acetylcysteine (NAC), a cysteine analogue used mainly to treat human diseases, on X. fastidiosa in different experimental conditions. Concentrations of NAC over 1 mg/mL reduced bacterial adhesion to glass surfaces, biofilm formation and the amount of exopolysaccharides (EPS). The minimal inhibitory concentration of NAC was 6 mg/mL. NAC was supplied to X. fastidiosa-infected plants in hydroponics, fertigation, and adsorbed to organic fertilizer (NAC-Fertilizer). HPLC analysis indicated that plants absorbed NAC at concentrations of 0.48 and 2.4 mg/mL but not at 6 mg/mL. Sweet orange plants with CVC symptoms treated with NAC (0.48 and 2.4 mg/mL) in hydroponics showed clear symptom remission and reduction in bacterial population, as analyzed by quantitative PCR and bacterial isolation. Experiments using fertigation and NAC-Fertilizer were done to simulate a condition closer to that normally is used in the field. For both, significant symptom remission and a reduced bacterial growth rate were observed. Using NAC-Fertilizer the lag for resurgence of symptoms on leaves after interruption of the treatment increased to around eight months. This is the first report of the anti-bacterial effect of NAC against a phytopathogenic bacterium. The results obtained in this work together with the characteristics of this molecule indicate that the use of NAC in agriculture might be a new and sustainable strategy for controlling plant pathogenic bacteria.
Collapse
|
research-article |
12 |
42 |