1
|
Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 2006; 114:100-9. [PMID: 16831482 DOI: 10.1016/j.jconrel.2006.04.014] [Citation(s) in RCA: 1679] [Impact Index Per Article: 88.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 04/26/2006] [Indexed: 12/16/2022]
Abstract
Gene therapy, as a promising therapeutics to treat genetic or acquired diseases, has achieved exciting development in the past two decades. Appropriate gene vectors can be crucial for gene transfer. Cationic lipids and polymers, the most important non-viral vectors, have many advantages over viral ones as non-immunogenic, easy to produce and not oncogenic. They hold the promise to replace viral vectors to be used in clinic. However, the toxicity is still an obstacle to the application of non-viral vectors to gene therapy. For overcoming the problem, many new cationic compounds have been developed. This article provides a review with respect to toxicity of cationic lipids and polymers in gene delivery. We evaluate the structural features of cationic compounds and summarize the relationship of toxicity and structure and hope to provide available suggestions on the development of these cationic compounds.
Collapse
|
Review |
19 |
1679 |
2
|
Abstract
A constant supply of oxygen is indispensable for cardiac viability and function. However, the role of oxygen and oxygen-associated processes in the heart is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death. As oxygen is a major determinant of cardiac gene expression, and a critical participant in the formation of ROS and numerous other cellular processes, consideration of its role in the heart is essential in understanding the pathogenesis of cardiac dysfunction.
Collapse
|
Review |
20 |
497 |
3
|
Kedmi R, Ben-Arie N, Peer D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials 2010; 31:6867-75. [PMID: 20541799 DOI: 10.1016/j.biomaterials.2010.05.027] [Citation(s) in RCA: 385] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 05/16/2010] [Indexed: 11/19/2022]
Abstract
Delivery of nucleic acids with positively charged lipid nanoparticles ((+)NPs) is widely used as research reagents and potentially for therapeutics due to their ability to deliver nucleic acids into the cell cytoplasm. However, in most reports little attention has been made to their toxic effects. In the present study, we performed comprehensive analyses of the potential toxicity associated with (+)NPs. Mice treated with (+)NPs showed increased liver enzyme release and body weight loss compared to mice treated with neutral or negatively charged NPs ((-)NPs), suggesting hepatotoxicity. Intravenous administration of (+)NPs induced interferon type I response and elevated mRNA levels of interferon responsive genes 15-25-fold higher than neutral and (-)NPs in different subsets of leukocytes. Moreover, treatment with (+)NPs provoked a dramatic pro-inflammatory response by inducing Th1 cytokines expression (IL-2, IFN gamma and TNF alpha) 10-75-fold higher than treatment with control particles. Finally, we showed that activation of TLR4 might serve as the underlying mechanism for induction of an immune response when (+)NPs are used. These results suggest that a careful attention must be made when different types of (+)NPs are being developed as nanotherapeutics.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
385 |
4
|
Li J, Chen YC, Tseng YC, Mozumdar S, Huang L. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J Control Release 2009; 142:416-21. [PMID: 19919845 DOI: 10.1016/j.jconrel.2009.11.008] [Citation(s) in RCA: 358] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/22/2009] [Accepted: 11/11/2009] [Indexed: 11/18/2022]
Abstract
A lipid coated calcium phosphate (LCP) nanoparticle (NP) formulation was developed for efficient delivery of small interfering RNA (siRNA) to a xenograft tumor model by intravenous administration. Based on the previous formulation, liposome-polycation-DNA (LPD), which was a DNA-protamine complex wrapped by cationic liposome followed by post-insertion of PEG, LCP was similar to LPD NP except that the core was replaced by a biodegradable nano-sized calcium phosphate precipitate prepared by using water-in-oil micro-emulsions in which siRNA was entrapped. We hypothesized that after entering the cells, LCP would de-assemble at low pH in the endosome, which would cause endosome swelling and bursting to release the entrapped siRNA. Such a mechanism was demonstrated by the increase of intracellular Ca(2+) concentration as shown by using a calcium specific dye Fura-2. The LCP NP was further modified by post-insertion of polyethylene glycol (PEG) with or without anisamide, a sigma-1 receptor ligand for systemic administration. Luciferase siRNA was used to evaluate the gene silencing effect in H-460 cells which were stably transduced with a luciferase gene. The anisamide modified LCP NP silenced about 70% and 50% of luciferase activity for the tumor cells in culture and those grown in a xenograft model, respectively. The untargeted NP showed a very low silencing effect. The new formulation improved the in vitro silencing effect 3-4 folds compared to the previous LPD formulation, but had a negligible immunotoxicity.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Phosphates/chemistry
- Calcium Phosphates/toxicity
- Cell Line, Tumor
- Coated Materials, Biocompatible/chemistry
- Coated Materials, Biocompatible/toxicity
- Cytokines/immunology
- Drug Carriers/chemistry
- Drug Carriers/toxicity
- Drug Compounding
- Female
- Gene Silencing/drug effects
- Injections, Intravenous
- Lipids/chemistry
- Lipids/toxicity
- Luciferases/genetics
- Mice
- Mice, Nude
- Nanoparticles/chemistry
- Nanoparticles/toxicity
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Polyethylene Glycols/chemistry
- Polyethylene Glycols/toxicity
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- Xenograft Model Antitumor Assays
Collapse
|
Research Support, N.I.H., Extramural |
16 |
358 |
5
|
Guttenplan KA, Weigel MK, Prakash P, Wijewardhane PR, Hasel P, Rufen-Blanchette U, Münch AE, Blum JA, Fine J, Neal MC, Bruce KD, Gitler AD, Chopra G, Liddelow SA, Barres BA. Neurotoxic reactive astrocytes induce cell death via saturated lipids. Nature 2021; 599:102-107. [PMID: 34616039 PMCID: PMC12054010 DOI: 10.1038/s41586-021-03960-y] [Citation(s) in RCA: 349] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/26/2021] [Indexed: 01/14/2023]
Abstract
Astrocytes regulate the response of the central nervous system to disease and injury and have been hypothesized to actively kill neurons in neurodegenerative disease1-6. Here we report an approach to isolate one component of the long-sought astrocyte-derived toxic factor5,6. Notably, instead of a protein, saturated lipids contained in APOE and APOJ lipoparticles mediate astrocyte-induced toxicity. Eliminating the formation of long-chain saturated lipids by astrocyte-specific knockout of the saturated lipid synthesis enzyme ELOVL1 mitigates astrocyte-mediated toxicity in vitro as well as in a model of acute axonal injury in vivo. These results suggest a mechanism by which astrocytes kill cells in the central nervous system.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
349 |
6
|
Johnston NR, Mitchell RK, Haythorne E, Pessoa MP, Semplici F, Ferrer J, Piemonti L, Marchetti P, Bugliani M, Bosco D, Berishvili E, Duncanson P, Watkinson M, Broichhagen J, Trauner D, Rutter GA, Hodson DJ. Beta Cell Hubs Dictate Pancreatic Islet Responses to Glucose. Cell Metab 2016; 24:389-401. [PMID: 27452146 PMCID: PMC5031557 DOI: 10.1016/j.cmet.2016.06.020] [Citation(s) in RCA: 346] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/17/2016] [Accepted: 06/23/2016] [Indexed: 12/02/2022]
Abstract
The arrangement of β cells within islets of Langerhans is critical for insulin release through the generation of rhythmic activity. A privileged role for individual β cells in orchestrating these responses has long been suspected, but not directly demonstrated. We show here that the β cell population in situ is operationally heterogeneous. Mapping of islet functional architecture revealed the presence of hub cells with pacemaker properties, which remain stable over recording periods of 2 to 3 hr. Using a dual optogenetic/photopharmacological strategy, silencing of hubs abolished coordinated islet responses to glucose, whereas specific stimulation restored communication patterns. Hubs were metabolically adapted and targeted by both pro-inflammatory and glucolipotoxic insults to induce widespread β cell dysfunction. Thus, the islet is wired by hubs, whose failure may contribute to type 2 diabetes mellitus.
Collapse
|
research-article |
9 |
346 |
7
|
Ma B, Zhang S, Jiang H, Zhao B, Lv H. Lipoplex morphologies and their influences on transfection efficiency in gene delivery. J Control Release 2007; 123:184-94. [PMID: 17913276 DOI: 10.1016/j.jconrel.2007.08.022] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 08/09/2007] [Indexed: 01/05/2023]
Abstract
Cationic lipid-mediated gene transfer is widely used for their advantages over viral gene transfer because it is non-immunogenic, easy to produce and not oncogenic. The main drawback of the application of cationic lipids is their low transfection efficiency. Many reports about transfection efficiency of cationic lipids have been published in recent years. In this review, the current status and prospects for transfection efficiency of different morphologies of lipoplexes are discussed. High transfection activity will be acquired for H(C)(II) structure when membrane fusion is dominant, but when serum is present L(C)(alpha) lipoplexes show great superiority for their inhibition dissociation by serum during lipoplexes transporting. Increasing DOPE often gains high activity for the H(C)(II) structure promoted by DOPE. High lipofection will be gained from large lipoplexes when endocytosis is dominant, because large particles facilitate membrane contact and fusion. We suggest morphologies of lipoplex should be characterized at two levels, lipoplex size and self-assemble structures of lipoplexes, and understanding these would be very important for scientists to prepare novel cationic lipids and design novel formulations with high transfection efficiency.
Collapse
|
Review |
18 |
237 |
8
|
Wang H, Kouri G, Wollheim CB. ER stress and SREBP-1 activation are implicated in beta-cell glucolipotoxicity. J Cell Sci 2005; 118:3905-15. [PMID: 16091421 DOI: 10.1242/jcs.02513] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The reduction in insulin secretory capacity and beta-cell mass observed in type 2 diabetes is thought to be caused by glucolipotoxicity secondary to hyperglycemia and hyperlipidemia. Our aim in this study was to elucidate the underlying molecular mechanisms. We found a strong correlation between chronic high-glucose treatment and SREBP-1c activation in INS-1 cells and rat islets. Both high-glucose treatment and SREBP-1c activation in INS-1 cells resulted in lipid accumulation, impaired glucose-stimulated insulin secretion, apoptosis, and strikingly similar gene expression patterns, including upregulation of lipogenic and pro-apoptotic genes and downregulation of IRS2, Bclxl and Pdx1. These lipotoxic effects of high glucose were largely prevented by induction of a dominant-negative mutant of SREBP-1c, suggesting SREBP-1c is a major factor responsible for beta cell glucolipotoxicity. Moreover, overexpression of another lipogenic transcription factor, ChREBP, in INS-1 cells did not cause lipotoxicity. Intriguingly, chronic high glucose treatment in INS-1 cells led to pronounced induction of the ER stress marker genes, BIP and Chop10. Treatment of rat islets with both chronic high glucose and two ER stress inducers, thapsigargin and tunicamycin, enhanced SREBP-1 binding to the human IRS2 promoter. These results suggest that SREBP-1 activation caused by ER stress is implicated in beta-cell glucolipotoxicity.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
209 |
9
|
Müller RH, Rühl D, Runge S, Schulze-Forster K, Mehnert W. Cytotoxicity of solid lipid nanoparticles as a function of the lipid matrix and the surfactant. Pharm Res 1997; 14:458-62. [PMID: 9144731 DOI: 10.1023/a:1012043315093] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE Assessment of the in vitro cytotoxicity of solid lipid nanoparticles (SLNs) as a function of lipid matrix (Dynasan 114, Compritol ATO 888), and stabilizing surfactant (poloxamers, Tween 80, soya lecithin, and sodium dodecyl sulphate). Comparison with other colloidal carriers should determine their potential use in the clinic. METHODS SLNs were produced by high pressure homogenisation. Cytotoxicity was assessed by measuring the viability of HL60 cells and human granulocytes after incubation with SLNs. Particle internalisation was quantified by chemiluminescence measurements. RESULTS The nature of the lipid had no effect on viability; distinct differences were found for the surfactants. Binding to the SLN surface reduced markedly the cytotoxic effect of the surfactants, e.g., up to a factor of 65 for poloxamer 184. The permanent HL60 cell line-differentiated from cells with granulocyte characteristics by retinoic acid treatment-yielded results identical to freshly isolated human granulocytes. In general, the SLNs showed a lower cytotoxicity compared to polyalkylcyanoacrylate and polylactic/glycolic acid (PLA/ GA) nanoparticles. CONCLUSIONS Because the results are identical when using human granulocytes, differentiated HL60 cells can be used as an easily accessible in vitro test system for i.v. injectable SLN formulations. The SLNs appear suitable as a drug carrier system for potential intravenous use due to their very low cytotoxicity in vitro.
Collapse
|
|
28 |
179 |
10
|
Alméras E, Stolz S, Vollenweider S, Reymond P, Mène-Saffrané L, Farmer EE. Reactive electrophile species activate defense gene expression in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:205-16. [PMID: 12694595 DOI: 10.1046/j.1365-313x.2003.01718.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Compounds containing alpha,beta-unsaturated carbonyl groups are increasingly implicated as potent regulators of gene expression; some are powerful cytotoxins known to accumulate at the site of lesion formation in host-pathogen interactions. We used a robust measurement of photosynthetic efficiency to quantify the toxicity of a variety of lipid derivatives in Arabidopsis leaves. Small alpha,beta-unsaturated carbonyl compounds (e.g. acrolein and methyl vinyl ketone) were highly active and proved to be potent stimulators of expression of the pathogenesis-related gene HEL (PR4). These small volatile electrophiles were far more active than larger alkenal homologs like 2(E)-hexenal, and activated HEL expression in a manner independent of salicylate, ethylene, and jasmonate production/perception. Electrophile treatment massively increased the levels of unesterified cyclopentenone jasmonates, which themselves are electrophiles. Patterns of gene expression in response to electrophile treatment and in response to avirulent bacteria were compared, which revealed strikingly similar transcript profiles. The results broaden the range of known biologic effects of reactive electrophile species to include the activation of a pathogenesis-related gene (HEL) and genes involved in metabolism. Electrophiles can act as mediators of both genetic and biochemical effects on core defense signal transduction.
Collapse
|
|
22 |
179 |
11
|
Tousignant JD, Gates AL, Ingram LA, Johnson CL, Nietupski JB, Cheng SH, Eastman SJ, Scheule RK. Comprehensive analysis of the acute toxicities induced by systemic administration of cationic lipid:plasmid DNA complexes in mice. Hum Gene Ther 2000; 11:2493-513. [PMID: 11119421 DOI: 10.1089/10430340050207984] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A major limitation associated with systemic administration of cationic lipid:plasmid DNA (pDNA) complexes is the vector toxicity at the doses necessary to produce therapeutically relevant levels of transgene expression. Systematic evaluation of these toxicities has revealed that mice injected intravenously with cationic lipid:pDNA complexes develop significant, dose-dependent hematologic and serologic changes typified by profound leukopenia, thrombocytopenia, and elevated levels of serum transaminases indicative of hepatocellular necrosis. Vector administration also induced a potent inflammatory response characterized by complement activation and the induction of the cytokines IFN-gamma, TNF-alpha, IL-6, and IL-12. These toxicities were found to be transient, resolving with different kinetics to pretreatment levels by 14 days posttreatment. The toxic syndrome observed was independent of the cationic lipid:pDNA ratio, the cationic lipid species, and the level of transgene expression attained. Mechanistic studies determined that neither the complement cascade nor TNF-alpha were key mediators in the development of these characteristic toxicities. Administration of equivalent doses of the individual vector components revealed that cationic liposomes or pDNA alone did not generate the toxic responses observed with cationic lipid:pDNA complexes. Only moderate leukopenia was associated with administration of cationic liposomes or pDNA alone, while only mild thrombocytopenia was noted in pDNA-treated animals. These results establish a panel of objective parameters that can be used to quantify the acute toxicities resulting from systemic administration of cationic lipid:pDNA complexes, which in turn provides a means to compare the therapeutic indices of these vectors.
Collapse
|
|
25 |
175 |
12
|
Scheule RK, St George JA, Bagley RG, Marshall J, Kaplan JM, Akita GY, Wang KX, Lee ER, Harris DJ, Jiang C, Yew NS, Smith AE, Cheng SH. Basis of pulmonary toxicity associated with cationic lipid-mediated gene transfer to the mammalian lung. Hum Gene Ther 1997; 8:689-707. [PMID: 9113509 DOI: 10.1089/hum.1997.8.6-689] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Studies have indicated that although abundant levels of transgene expression could be achieved in the lungs of mice instilled with cationic lipid:pDNA complexes, the efficiency of gene transfer is low. As a consequence, a relatively large amount of the complex will need to be administered to the human lungs to achieve therapeutic efficacy for indications such as cystic fibrosis. Because all cationic lipids exhibit some level of cytotoxicity in vitro, we assessed the safety profile of one such cationic lipid, GL-67, following administration into the lungs of BALB/c mice. Dose-dependent pulmonary inflammation was observed that was characterized by infiltrates of neutrophils, and, to a lesser extent, macrophages and lymphocytes. The lesions in the lung were multifocal in nature and were manifested primarily at the junction of the terminal bronchioles and alveolar ducts. The degree of inflammation abated with time and there were no apparent permanent fibrotic lesions, even in animals that were treated at the highest doses. Analysis of the individual components of the complex revealed that the pulmonary inflammation was primarily cationic lipid-mediated with a minor contribution from the neutral co-lipid DOPE. Associated with the lesions in the lungs were elevated levels of the pro-inflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), and interferon-gamma (IFN-gamma) that peaked at days 1-2 post-instillation but resolved to normal limits by day 14. Total cell counts, primarily of neutrophils, were also significantly elevated in the bronchoalveolar lavage fluids of GL-67:pDNA-treated mice between days 1 and 3 but returned to normal limits by day 14. No specific immune responses were detected against the cationic lipid or plasmid DNA in mice that had been either instilled or immunized with the individual components or complex, nor was there any evidence of complement activation. These studies indicate that a significant improvement in the potency of cationic lipid:pDNA formulations is desirable to minimize the toxicity associated with cationic lipids.
Collapse
|
|
28 |
167 |
13
|
Giacca A, Xiao C, Oprescu AI, Carpentier AC, Lewis GF. Lipid-induced pancreatic β-cell dysfunction: focus on in vivo studies. Am J Physiol Endocrinol Metab 2011; 300:E255-62. [PMID: 21119027 DOI: 10.1152/ajpendo.00416.2010] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The phenomenon of lipid-induced pancreatic β-cell dysfunction ("lipotoxicity") has been very well documented in numerous in vitro experimental systems and has become widely accepted. In vivo demonstration of β-cell lipotoxicity, on the other hand, has not been consistently demonstrated, and there remains a lack of consensus regarding the in vivo effects of chronically elevated free fatty acids (FFA) on β-cell function. Much of the disagreement relates to how insulin secretion is quantified in vivo and in particular whether insulin secretion is assessed in relation to whole body insulin sensitivity, which is clearly reduced by elevated FFA. By correcting for changes in in vivo insulin sensitivity, we and others have shown that prolonged elevation of FFA impairs β-cell secretory function. Prediabetic animal models and humans with a positive family history of type 2 diabetes are more susceptible to this impairment, whereas those with severe impairment of β-cell function (such as individuals with type 2 diabetes) demonstrate no additional impairment of β-cell function when FFA are experimentally raised. Glucolipotoxicity (i.e., the combined β-cell toxicity of elevated glucose and FFA) has been amply demonstrated in vitro and in some animal studies but not in humans, perhaps because there are limitations in experimentally raising plasma glucose to sufficiently high levels for prolonged periods of time. We and others have shown that therapies directed toward diminishing oxidative stress and ER stress have the potential to reduce lipid-induced β-cell dysfunction in animals and humans. In conclusion, lipid-induced pancreatic β-cell dysfunction is likely to be one contributor to the complex array of genetic and metabolic insults that result in the relentless decline in pancreatic β-cell function in those destined to develop type 2 diabetes, and mechanisms involved in this lipotoxicity are promising therapeutic targets.
Collapse
|
Review |
14 |
157 |
14
|
Galanos C, Rietschel ET, Lüderitz O, Westphal O, Kim YB, Watson DW. Biological activities of lipid A complexed with bovine-serum albumin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1972; 31:230-3. [PMID: 4567119 DOI: 10.1111/j.1432-1033.1972.tb02524.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
|
53 |
155 |
15
|
Müller RH, Maassen S, Weyhers H, Mehnert W. Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J Drug Target 1996; 4:161-70. [PMID: 8959488 DOI: 10.3109/10611869609015973] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Solid lipid nanoparticles (SLN) as alternative intravenous colloidal drug carriers were produced by high pressure homogenisation of melted lipids (glycerolbehenate, cetylpalmitate). Their surface was modified by using hydrophilic poloxamine 908 and poloxamer 407 blockcopolymers in order to reduce the phagocytic uptake by the reticuloendothelial system (RES) after i. v. injection. The phagocytosis reducing effect of the polymers was investigated in vitro in cultures of human granulocytes, uptake was quantified by chemiluminescence. Modification of the SLN with poloxamine 908 and poloxamer 407 reduced the phagocytic uptake to appr. 8-15% compared to the phagocytosis of hydrophobic polystyrene particles. The modified SLN proved more efficient in avoiding phagocytic uptake than polystyrene particles surface-modified with these blockcopolymers (48% and 38%, respectively). Viability determinations revealed the SLN to be 10 fold less cytotoxic than polylactide nanoparticles and 100 fold less than butylcyanoacrylate particles.
Collapse
|
|
29 |
131 |
16
|
Abstract
Like other hydrocarbon-oxidising bacteria, rhodococci respond to the presence of alkanes by producing biosurfactant molecules to improve their ability to utilise these hydrophobic compounds as growth substrates. In the rhodococci these surfactants are predominantly glycolipids, the majority of which remain cell-bound during unrestricted growth. Most work has been done on the trehalose mycolates formed by Rhodococcus erythropolis, but nitrogen-limited conditions lead to the production of anionic trehalose tetraesters also. As surfactants, these compounds, whether purified or in crude form, are able to reduce the surface tension of water from 72 mN m-1 to a low of 26, thus making them among the most potent biosurfactants known. They are also able to reduce the interfacial tension between water and a hydrophobic phase (e.g. n-hexadecane) from 43 mN m-1 to values less than one (Table 1). Biosurfactants have about a ten- to 40-fold lower critical micelle concentration than synthetic surfactants. Such properties suggest a range of industrial applications, where a variety of surface-active characteristics are appropriate. Interest in biosurfactants as industrial chemicals results from the toxicity of many petrochemical-derived surfactants. Currently world-wide surfactant production is on a very large scale, and the demand for them is increasing. However, the drive towards less environmentally damaging chemicals makes biosurfactants attractive as they have lower toxicity. The reason they have not achieved a significant market share is the cost of production, which is considerably higher than for synthetic surfactants. This problem is being addressed using several strategies. An approach where there is great scope for improvement with the rhodococci is an understanding of the genetic basis of glycolipid production, which is largely unknown. They may find applications in the near future in the environmental remediation industries, where the requirement for purified molecules is of less importance. This review summarises knowledge of the chemistry, biochemistry and production of Rhodococcus surface-active lipids. Where they have been used, or there is potential for use, in industrial applications is discussed.
Collapse
|
Review |
27 |
129 |
17
|
Elbaz A, Wu X, Rivas D, Gimble JM, Duque G. Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro. J Cell Mol Med 2010; 14:982-91. [PMID: 19382912 PMCID: PMC2891630 DOI: 10.1111/j.1582-4934.2009.00751.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 03/10/2009] [Indexed: 01/08/2023] Open
Abstract
Although increased bone marrow fat in age-related bone loss has been associated with lower trabecular mass, the underlying mechanism responsible remains unknown. We hypothesized that marrow adipocytes exert a lipotoxic effect on osteoblast function and survival through the reversible biosynthesis of fatty acids (FA) into the bone marrow microenvironment. We have used a two-chamber system to co-culture normal human osteoblasts (NHOst) with differentiating pre-adipocytes in the absence or presence of an inhibitor of FA synthase (cerulenin) and separated by an insert that allowed unidirectional trafficking of soluble factors only and prevented direct cell-cell contact. Supernatants were assayed for the presence of FA using mass spectophotometry. After 3 weeks in co-culture, NHOst showed significantly lower levels of differentiation and function based on lower mineralization and expression of alkaline phosphatase, osterix, osteocalcin and Runx2. In addition, NHOst survival was affected by the presence of adipocytes as determined by MTS-formazan and TUNEL assays as well as higher activation of caspases 3/7. These toxic effects were inhibited by addition of cerulenin. Furthermore, culture of NHOst with either adipocyte-conditioned media alone in the absence of adipocytes themselves or with the addition of the most predominant FA (stearate or palmitate) produced similar toxic results. Finally, Runx2 nuclear binding was affected by addition of either adipocyte conditioned media or FA into the osteogenic media. We conclude that the presence of FA within the marrow milieu can contribute to the age-related changes in bone mass and can be prevented by the inhibition of FA synthase.
Collapse
|
research-article |
15 |
128 |
18
|
Guenoun JM, Baudouin C, Rat P, Pauly A, Warnet JM, Brignole-Baudouin F. In vitro study of inflammatory potential and toxicity profile of latanoprost, travoprost, and bimatoprost in conjunctiva-derived epithelial cells. Invest Ophthalmol Vis Sci 2005; 46:2444-50. [PMID: 15980234 DOI: 10.1167/iovs.04-1331] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Conjunctiva-derived epithelial cells were used to investigate, in vitro, the expression of various inflammation-associated markers known to be overexpressed in patients with glaucoma after contact with the three major commercially available eye drops containing prostaglandin analogues. The impact on cellular viability and apoptosis in the same cell line was evaluated, to address the possible proinflammatory and/or toxic origin of the most frequent clinical impairments induced by prostanoids (i.e., conjunctival hyperemia). METHODS Conjunctiva-derived cells were treated in vitro with the commercial solutions of latanoprost, travoprost, bimatoprost, prostaglandin (PG)F2alpha, tumor necrosis factor (TNF)-alpha, and different concentrations of benzalkonium chloride (BAC). Expressions of three inflammation- and immune-related markers, intercellular adhesion molecule (ICAM)-1, platelet-endothelial cell adhesion molecule (PECAM)-1 and HLA DR, were evaluated with flow cytometry after 24 to 72 hours of contact at low, subtoxic concentrations. Toxicological tests were also performed with cold-light cytofluorometry, in which cellular viability and apoptosis were evaluated with the neutral red and Hoechst/propidium iodide tests, respectively. RESULTS TNFalpha induced or stimulated expression of the three inflammatory markers, whereas the PGF2alpha, latanoprost, travoprost, and bimatoprost solutions did not induce an increase in these markers and even produced a marked reduction of ICAM-1 and PECAM-1 expression in those solutions most concentrated in BAC, thus suggesting a toxic phenomenon in cellular membranes induced by the preservative rather than the medication itself. Cytotoxic assays confirmed this hypothesis and showed significant toxicity with prostaglandin analogues after prolonged contact, proportional to the concentration of BAC in the solution and similar to that of the corresponding concentration of BAC alone, bimatoprost having both the least concentration of BAC and the least cytotoxic in these experimental conditions. CONCLUSIONS The comparison of latanoprost, travoprost, and bimatoprost, in their commercial formulations, showed that none of them appeared to induce direct stimulation of the inflammatory pathways involving adhesion molecules or class II antigens, although these markers have been found ex vivo in conjunctival specimens from patients treated with prostaglandins. In fact, their toxicity was mild and seemed to be primarily related to the concentration of BAC, their common preservative, which may be the major factor responsible for long-term ocular surface reactions in patients receiving topical prostaglandins, but most likely is not a factor in early and transient conjunctival hyperemia.
Collapse
|
Journal Article |
20 |
119 |
19
|
Unger RH. Longevity, lipotoxicity and leptin: the adipocyte defense against feasting and famine. Biochimie 2005; 87:57-64. [PMID: 15733738 DOI: 10.1016/j.biochi.2004.11.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Accepted: 11/23/2004] [Indexed: 10/26/2022]
Abstract
In this review, we propose that actions of the lipid-lowering, apoptosis-inhibiting effects of certain "longevity genes" oppose the life-shortening consequences of lipotoxicity and lipoapoptosis. We note that lipotoxicity occurs whenever leptin action is deficient, or whenever satiety is overridden, as in forced or voluntary overfeeding ("supersizing"). The role of hyperleptinemia, we suggest, is to extend survival during famine by permitting the storage of surplus calories in adipocytes without concomitant injury to nonadipose tissues from ectopic lipid deposits. It achieves this lipid partitioning by (1) restraining the level of overnutrition so as not to exceed the available adipocyte storage space and (2) enhancing oxidation of any ectopic lipid overflow: The mechanisms of lipoapoptosis are discussed, and the possibility that metabolic syndrome is the human equivalent of rodent lipotoxicity is suggested.
Collapse
|
|
20 |
119 |
20
|
Hemmer MJ, Barron MG, Greene RM. Comparative toxicity of eight oil dispersants, Louisiana sweet crude oil (LSC), and chemically dispersed LSC to two aquatic test species. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2244-2252. [PMID: 21766318 DOI: 10.1002/etc.619] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/07/2011] [Accepted: 06/16/2011] [Indexed: 05/31/2023]
Abstract
The present study describes the acute toxicity of eight commercial oil dispersants, South Louisiana sweet crude oil (LSC), and chemically dispersed LSC. The approach used consistent test methodologies within a single laboratory in assessing the relative acute toxicity of the eight dispersants, including Corexit 9500A, the predominant dispersant applied during the DeepWater Horizon spill in the Gulf of Mexico. Static acute toxicity tests were performed using two Gulf of Mexico estuarine test species, the mysid shrimp (Americamysis bahia) and the inland silversides (Menidia beryllina). Dispersant-only test solutions were prepared with high-energy mixing, whereas water-accommodated fractions of LSC and chemically dispersed LSC were prepared with moderate energy followed by settling and testing of the aqueous phase. The median lethal concentration (LC50) values for the dispersant-only tests were calculated using nominal concentrations, whereas tests conducted with LSC alone and dispersed LSC were based on measured total petroleum hydrocarbon (TPH) concentrations. For all eight dispersants in both test species, the dispersants alone were less toxic (LC50s: 2.9 to >5,600 µl/L) than the dispersant-LSC mixtures (0.4-13 mg TPH/L). Louisiana sweet crude oil alone had generally similar toxicity to A. bahia (LC50: 2.7 mg TPH/L) and M. beryllina (LC50: 3.5 mg TPH/L) as the dispersant-LSC mixtures. The results of the present study indicate that Corexit 9500A had generally similar toxicity to other available dispersants when tested alone but was generally less toxic as a mixture with LSC.
Collapse
|
Comparative Study |
14 |
116 |
21
|
Judson RS, Martin MT, Reif DM, Houck KA, Knudsen TB, Rotroff DM, Xia M, Sakamuru S, Huang R, Shinn P, Austin CP, Kavlock RJ, Dix DJ. Analysis of eight oil spill dispersants using rapid, in vitro tests for endocrine and other biological activity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:5979-85. [PMID: 20602530 PMCID: PMC2930403 DOI: 10.1021/es102150z] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Deepwater Horizon oil spill has led to the use of >1 M gallons of oil spill dispersants, which are mixtures of surfactants and solvents. Because of this large scale use there is a critical need to understand the potential for toxicity of the currently used dispersant and potential alternatives, especially given the limited toxicity testing information that is available. In particular, some dispersants contain nonylphenol ethoxylates (NPEs), which can degrade to nonylphenol (NP), a known endocrine disruptor. Given the urgent need to generate toxicity data, we carried out a series of in vitro high-throughput assays on eight commercial dispersants. These assays focused on the estrogen and androgen receptors (ER and AR), but also included a larger battery of assays probing other biological pathways. Cytotoxicity in mammalian cells was also quantified. No activity was seen in any AR assay. Two dispersants showed a weak ER signal in one assay (EC50 of 16 ppm for Nokomis 3-F4 and 25 ppm for ZI-400). NPs and NPEs also had a weak signal in this same ER assay. Note that Corexit 9500, the currently used product, does not contain NPEs and did not show any ER activity. Cytotoxicity values for six of the dispersants were statistically indistinguishable, with median LC50 values approximately 100 ppm. Two dispersants, JD 2000 and SAF-RON GOLD, were significantly less cytotoxic than the others with LC50 values approaching or exceeding 1000 ppm.
Collapse
|
research-article |
15 |
109 |
22
|
Rico-Martínez R, Snell TW, Shearer TL. Synergistic toxicity of Macondo crude oil and dispersant Corexit 9500A(®) to the Brachionus plicatilis species complex (Rotifera). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013. [PMID: 23195520 DOI: 10.1016/j.envpol.2012.09.024] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Using the marine rotifer Brachionus plicatilis acute toxicity tests, we estimated the toxicity of Corexit 9500A(®), propylene glycol, and Macondo oil. Ratios of 1:10, 1:50 and 1:130 for Corexit 9500A(®):Macondo oil mixture represent: maximum exposure concentrations, recommended ratios for deploying Corexit (1:10-1:50), 1:130 the actual dispersant:oil ratio used in the Deep Water Horizon spill. Corexit 9500A(®) and oil are similar in their toxicity. However, when Corexit 9500A(®) and oil are mixed, toxicity to B. manjavacas increases up to 52-fold. Extrapolating these results to the oil released by the Macondo well, suggests underestimation of increased toxicity from Corexit application. We found small differences in sensitivity among species of the B. plicatilis species complex, likely reflecting phylogenetic similarity. Just 2.6% of the water-accommodated fraction of oil inhibited rotifer cyst hatching by 50%, an ecologically significant result because rotifer cyst in sediments are critical resources for the recolonization of populations each Spring.
Collapse
|
|
12 |
109 |
23
|
Abdul-Ghani MA, Muller FL, Liu Y, Chavez AO, Balas B, Zuo P, Chang Z, Tripathy D, Jani R, Molina-Carrion M, Monroy A, Folli F, Van Remmen H, DeFronzo RA. Deleterious action of FA metabolites on ATP synthesis: possible link between lipotoxicity, mitochondrial dysfunction, and insulin resistance. Am J Physiol Endocrinol Metab 2008; 295:E678-85. [PMID: 18593850 DOI: 10.1152/ajpendo.90287.2008] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Insulin resistance is a characteristic feature of type 2 diabetes and obesity. Insulin-resistant individuals manifest multiple disturbances in free fatty acid (FFA) metabolism and have excessive lipid accumulation in insulin target tissues. Although much evidence supports a causal role for altered FFA metabolism in the development of insulin resistance, i.e., "lipotoxicity", the intracellular mechanisms by which elevated plasma FFA levels cause insulin resistance have yet to be completely elucidated. Recent studies have implicated a possible role for mitochondrial dysfunction in the pathogenesis of insulin resistance in skeletal muscle. We examined the effect of FFA metabolites [palmitoyl carnitine (PC), palmitoyl-coenzyme A (CoA), and oleoyl-CoA] on ATP synthesis in mitochondria isolated from mouse and human skeletal muscle. At concentrations ranging from 0.5 to 2 microM, these FFA metabolites stimulated ATP synthesis; however, above 5 microM, there was a dose-response inhibition of ATP synthesis. Furthermore, 10 microM PC inhibits ATP synthesis from pyruvate. Elevated PC concentrations (> or =10 microM) inhibit electron transport chain activity and decrease the mitochondrial inner membrane potential. These acquired mitochondrial defects, caused by a physiological increase in the concentration of FFA metabolites, provide a mechanistic link between lipotoxicity, mitochondrial dysfunction, and muscle insulin resistance.
Collapse
|
|
17 |
104 |
24
|
Schöler N, Hahn H, Müller RH, Liesenfeld O. Effect of lipid matrix and size of solid lipid nanoparticles (SLN) on the viability and cytokine production of macrophages. Int J Pharm 2002; 231:167-76. [PMID: 11755269 DOI: 10.1016/s0378-5173(01)00882-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Solid lipid nanoparticles (SLN) interact with mononuclear cells following intravenous injection. Little is known about the interaction of SLN with these cells, including cytotoxic effects and a possible up-regulation of pro-inflammatory cytokines. Therefore, we investigated the influence of lipid matrix, concentration, and size of SLN on murine peritoneal macrophages (mphi). mphi were incubated with SLN consisting of different lipid matrices and coated with the same surfactant. Cytotoxicity as assessed by MTT test was found to be concentration-dependent and was dramatically influenced by the lipid matrix. Marked cytotoxic effects were observed when cells were incubated with SLN consisting of stearic acid (STE) or dimethyl-dioctadecylammonium bromide (DDA) at concentrations of 0.01%, whereas SLN consisting of triglycerides, cetylpalmitate or paraffin did not exert major cytotoxic effects at the same concentrations. Cytotoxic effects were most likely caused by products of enzymatic degradation including free stearic acid. Analysis of cytokine production by mphi following incubation with SLN revealed concentration-dependent decreases in IL-6 production. These decreases seemed to be associated with cytotoxic effects. IL-12 and TNF-alpha production was neither detected in supernatants of mphi treated with SLN at any concentration nor in those of untreated cells. The size of SLN did neither affect cytotoxicity of SLN nor resulted in induction or digression of cytokine production by mphi. In conclusion, results of the present study revealed that the nature of the lipid matrix and the concentration of SLN dramatically impact cytotoxicity of SLN on mononuclear cells. Lipid matrices of SLN should therefore be carefully chosen and tested for later intravenous use.
Collapse
|
|
23 |
99 |
25
|
Zeng H, Guo M, Zhou T, Tan L, Chong CN, Zhang T, Dong X, Xiang JZ, Yu AS, Yue L, Qi Q, Evans T, Graumann J, Chen S. An Isogenic Human ESC Platform for Functional Evaluation of Genome-wide-Association-Study-Identified Diabetes Genes and Drug Discovery. Cell Stem Cell 2016; 19:326-40. [PMID: 27524441 PMCID: PMC5924691 DOI: 10.1016/j.stem.2016.07.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/08/2016] [Accepted: 07/01/2016] [Indexed: 12/28/2022]
Abstract
Genome-wide association studies (GWASs) have increased our knowledge of loci associated with a range of human diseases. However, applying such findings to elucidate pathophysiology and promote drug discovery remains challenging. Here, we created isogenic human ESCs (hESCs) with mutations in GWAS-identified susceptibility genes for type 2 diabetes. In pancreatic beta-like cells differentiated from these lines, we found that mutations in CDKAL1, KCNQ1, and KCNJ11 led to impaired glucose secretion in vitro and in vivo, coinciding with defective glucose homeostasis. CDKAL1 mutant insulin+ cells were also hypersensitive to glucolipotoxicity. A high-content chemical screen identified a candidate drug that rescued CDKAL1-specific defects in vitro and in vivo by inhibiting the FOS/JUN pathway. Our approach of a proof-of-principle platform, which uses isogenic hESCs for functional evaluation of GWAS-identified loci and identification of a drug candidate that rescues gene-specific defects, paves the way for precision therapy of metabolic diseases.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
93 |