1
|
Choi YH, Yu AM. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr Pharm Des 2014; 20:793-807. [PMID: 23688078 PMCID: PMC6341993 DOI: 10.2174/138161282005140214165212] [Citation(s) in RCA: 430] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 05/09/2013] [Indexed: 12/18/2022]
Abstract
Multidrug resistance (MDR) is a serious problem that hampers the success of cancer pharmacotherapy. A common mechanism is the overexpression of ATP-binding cassette (ABC) efflux transporters in cancer cells such as P-glycoprotein (P-gp/ABCB1), multidrug resistance-associated protein 1 (MRP1/ABCC1) and breast cancer resistance protein (BCRP/ABCG2) that limit the exposure to anticancer drugs. One way to overcome MDR is to develop ABC efflux transporter inhibitors to sensitize cancer cells to chemotherapeutic drugs. The complete clinical trials thus far have showen that those tested chemosensitizers only add limited or no benefits to cancer patients. Some MDR modulators are merely toxic, and others induce unwanted drug-drug interactions. Actually, many ABC transporters are also expressed abundantly in the gastrointestinal tract, liver, kidney, brain and other normal tissues, and they largely determine drug absorption, distribution and excretion, and affect the overall pharmacokinetic properties of drugs in humans. In addition, ABC transporters such as P-gp, MRP1 and BCRP co-expressed in tumors show a broad and overlapped specificity for substrates and MDR modulators. Thus reliable preclinical assays and models are required for the assessment of transporter-mediated flux and potential effects on pharmacokinetics in drug development. In this review, we provide an overview of the role of ABC efflux transporters in MDR and pharmacokinetics. Preclinical assays for the assessment of drug transport and development of MDR modulators are also discussed.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
430 |
2
|
Kaneko Y, Szallasi A. Transient receptor potential (TRP) channels: a clinical perspective. Br J Pharmacol 2014; 171:2474-507. [PMID: 24102319 PMCID: PMC4008995 DOI: 10.1111/bph.12414] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/28/2013] [Accepted: 08/31/2013] [Indexed: 12/14/2022] Open
Abstract
Transient receptor potential (TRP) channels are important mediators of sensory signals with marked effects on cellular functions and signalling pathways. Indeed, mutations in genes encoding TRP channels are the cause of several inherited diseases in humans (the so-called 'TRP channelopathies') that affect the cardiovascular, renal, skeletal and nervous systems. TRP channels are also promising targets for drug discovery. The initial focus of research was on TRP channels that are expressed on nociceptive neurons. Indeed, a number of potent, small-molecule TRPV1, TRPV3 and TRPA1 antagonists have already entered clinical trials as novel analgesic agents. There has been a recent upsurge in the amount of work that expands TRP channel drug discovery efforts into new disease areas such as asthma, cancer, anxiety, cardiac hypertrophy, as well as obesity and metabolic disorders. A better understanding of TRP channel functions in health and disease should lead to the discovery of first-in-class drugs for these intractable diseases. With this review, we hope to capture the current state of this rapidly expanding and changing field.
Collapse
|
Review |
11 |
294 |
3
|
Nobili S, Landini I, Giglioni B, Mini E. Pharmacological strategies for overcoming multidrug resistance. Curr Drug Targets 2006; 7:861-79. [PMID: 16842217 DOI: 10.2174/138945006777709593] [Citation(s) in RCA: 268] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multidrug resistance (MDR) is a major obstacle to the effective treatment of cancer. One of the underlying mechanisms of MDR is cellular overproduction of P-glycoprotein (P-gp) which acts as an efflux pump for various anticancer drugs. P-gp is encoded by the MDR1 gene and its overexpression in cancer cells has become a therapeutic target for circumventing multidrug resistance. A potential strategy is to co-administer efflux pump inhibitors, although such reversal agents might actually increase the side effects of chemotherapy by blocking physiological anticancer drug efflux from normal cells. Although many efforts to overcome MDR have been made using first and second generation reversal agents comprising drugs already in current clinical use for other indications (e.g. verapamil, cyclosporine A, quinidine) or analogues of the first-generation drugs (e.g. dexverapamil, valspodar, cinchonine), few significant advances have been made. Clinical trials with third generation modulators (e.g. biricodar, zosuquidar, and laniquidar) specifically developed for MDR reversal are ongoing. The results however are not encouraging and it may be that the perfect reverser does not exist. Other approaches to multidrug resistance reversal have also been considered: encapsulation of anthracyclines in liposomes or other carriers which deliver these drugs selectively to tumor tissues, the use of P-gp targeted antibodies such as UIC2 or the use of antisense strategies targeting the MDR1 messenger RNA. More recently, the development of transcriptional regulators appears promising. Also anticancer drugs that belong structurally to classes of drugs extruded from cells by P-gp but that are not substrates of this drug transporter may act as potent inhibitors of MDR tumors (e.g. epothilones, second generation taxanes). Taking advantage of MDR has also been studied. Bone marrow suppression, one of the major side effects of cancer chemotherapy, can compromise the potential of curative and palliative chemotherapy. It is conceivable that drug resistance gene transfer into bone marrow stem cells may be able to reduce or abolish chemotherapy-induced myelosuppression and facilitate the use of high dose chemotherapy. Clinical trials of retroviral vectors containing drug resistance genes have established that the approach is safe and are now being designed to address the therapeutically relevant issues.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Clinical Trials as Topic
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Humans
- Membrane Transport Modulators/chemistry
- Membrane Transport Modulators/pharmacology
- Membrane Transport Modulators/therapeutic use
- Molecular Structure
- Neoplasms/drug therapy
- Neoplasms/genetics
Collapse
|
Review |
19 |
268 |
4
|
Teodori E, Dei S, Martelli C, Scapecchi S, Gualtieri F. The functions and structure of ABC transporters: implications for the design of new inhibitors of Pgp and MRP1 to control multidrug resistance (MDR). Curr Drug Targets 2006; 7:893-909. [PMID: 16842220 DOI: 10.2174/138945006777709520] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multidrug resistance (MDR) is a kind of acquired resistance of microorganisms and cancer cells to chemotherapic drugs that are characterized by different chemical structure and different mechanism of action. Classic MDR is the consequence of the over-expression of a variety of proteins that extrude the chemotherapic from the cell, lowering its concentration below the effective one. The ABC (ATP Binding Cassette) is a ubiquitous and important family of such transporter proteins. Members of this super family are present in mammals as well as in prokaryotic organisms and use ATP as the energy source to activate the extrusion process. P-glycoprotein (Pgp) and Multidrug Resistance Proteins (MRP1 and sister proteins) are the most important and widely studied members of ABC super family. Our knowledge about the structures and functions of transporter proteins has definitely improved in recent years, following the resolution of the structure of bacterial pumps which opened the way to the building of homology models for the more complex Pgp and MRP. It can be anticipated that these results will have a strong impact on the design of more potent and safer MDR reverters. A huge number of small molecules, many of natural origin, are able to reverse multidrug resistance by inhibiting the functions of Pgp, MRP1 and sister proteins and their action has been considered a possible way to reverse MDR. However, while a few compounds have reached clinical trials, none of them has, so far, been cleared for therapeutic use. Two main reasons are at the base of this difficulty: i) MDR is a complex phenomenon that may arise from several different biochemical mechanisms, with the consequence that inhibition of transporter proteins may be insufficient to reverse it; ii) the physiological role of Pgp and sister proteins requires more potent modulators with proper selectivity and pharmacokinetic in order to avoid unwanted side effects. This paper first reviews the most recent discoveries on the structures and functions of the ABC super family, in particular Pgp and MRP. Then, the medicinal chemistry of MDR reverters, in light of these findings, is discussed and the molecules that are presently in development are reviewed.
Collapse
|
Review |
19 |
166 |
5
|
Wess J, Nakajima K, Jain S. Novel designer receptors to probe GPCR signaling and physiology. Trends Pharmacol Sci 2013; 34:385-92. [PMID: 23769625 PMCID: PMC3758874 DOI: 10.1016/j.tips.2013.04.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/09/2013] [Accepted: 04/29/2013] [Indexed: 12/21/2022]
Abstract
Muscarinic receptor-based designer receptors have emerged as powerful novel tools to study G-protein-coupled receptor (GPCR) signaling and physiology. These new designer GPCRs, which are most frequently referred to as DREADDs (designer receptors exclusively activated by designer drug), are unable to bind acetylcholine, the endogenous muscarinic receptor agonist, but can be activated by clozapine-N-oxide (CNO), an otherwise pharmacologically inert compound, with high potency and efficacy. The various DREADDs differ primarily in their G protein coupling preference. More recently, an arrestin-biased DREADD has also been developed. The expression of DREADDs in distinct tissues or cell types has enabled researchers to study the outcome of selective stimulation of distinct GPCR (or arrestin) signaling pathways in a temporally and spatially controlled fashion in vivo. In this review, we provide an up-to-date snapshot of where this field currently stands and which important novel insights have been gained using this new technology.
Collapse
|
Research Support, N.I.H., Intramural |
12 |
120 |
6
|
Stroebel D, Buhl DL, Knafels JD, Chanda PK, Green M, Sciabola S, Mony L, Paoletti P, Pandit J. A Novel Binding Mode Reveals Two Distinct Classes of NMDA Receptor GluN2B-selective Antagonists. Mol Pharmacol 2016; 89:541-51. [PMID: 26912815 PMCID: PMC4859819 DOI: 10.1124/mol.115.103036] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/22/2016] [Indexed: 01/07/2023] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are glutamate-gated ion channels that play key roles in brain physiology and pathology. Because numerous pathologic conditions involve NMDAR overactivation, subunit-selective antagonists hold strong therapeutic potential, although clinical successes remain limited. Among the most promising NMDAR-targeting drugs are allosteric inhibitors of GluN2B-containing receptors. Since the discovery of ifenprodil, a range of GluN2B-selective compounds with strikingly different structural motifs have been identified. This molecular diversity raises the possibility of distinct binding sites, although supporting data are lacking. Using X-ray crystallography, we show that EVT-101, a GluN2B antagonist structurally unrelated to the classic phenylethanolamine pharmacophore, binds at the same GluN1/GluN2B dimer interface as ifenprodil but adopts a remarkably different binding mode involving a distinct subcavity and receptor interactions. Mutagenesis experiments demonstrate that this novel binding site is physiologically relevant. Moreover, in silico docking unveils that GluN2B-selective antagonists broadly divide into two distinct classes according to binding pose. These data widen the allosteric and pharmacological landscape of NMDARs and offer a renewed structural framework for designing next-generation GluN2B antagonists with therapeutic value for brain disorders.
Collapse
|
research-article |
9 |
86 |
7
|
Abstract
The glycine receptor (GlyR) Cl(-) channel belongs to the cysteine-loop family of ligand-gated ion channel receptors. It is best known for mediating inhibitory neurotransmission in motor and sensory reflex circuits of the spinal cord, although glycinergic synapses are also present in the brain stem, cerebellum and retina. Extrasynaptic GlyRs are widely distributed throughout the central nervous system and they are also found in sperm and macrophages. A total of 5 GlyR subunits (alpha1-4 and beta) have been identified. Embryonic receptors comprise alpha2 homomers whereas adult receptors comprise predominantly alpha beta heteromers in a 2:3 stoichiometry. Notably, the alpha3 subunit is present in synaptic GlyRs that mediate inhibitory neurotransmission onto spinal nociceptive neurons. These receptors are specifically inhibited by inflammatory mediators, implying a role for alpha3-containing GlyRs in inflammatory pain sensitisation. Because molecules that increase GlyR current may have clinical potential as muscle relaxant and peripheral analgesic drugs, this review focuses on the molecular pharmacology of GlyR potentiating substances. Of all GlyR potentiating substances identified to date, we conclude that 5HT(3)R antagonists such as tropisetron offer the most promise as therapeutic lead compounds. However, one problem is that that virtually all known GlyR potentiating compounds, including tropisetron analogues, lack specificity for the GlyR. Another is that almost nothing is known about the pharmacological properties of alpha3-containing GlyRs, which is the subtype of choice for targeting by novel antinociceptive agents. These issues need to be addressed before GlyR-specific therapeutics can be developed.
Collapse
|
Review |
18 |
85 |
8
|
González-Muñiz R, Bonache MA, Martín-Escura C, Gómez-Monterrey I. Recent Progress in TRPM8 Modulation: An Update. Int J Mol Sci 2019; 20:ijms20112618. [PMID: 31141957 PMCID: PMC6600640 DOI: 10.3390/ijms20112618] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/30/2022] Open
Abstract
The transient receptor potential melastatin subtype 8 (TRPM8) is a nonselective, multimodal ion channel, activated by low temperatures (<28 °C), pressure, and cooling compounds (menthol, icilin). Experimental evidences indicated a role of TRPM8 in cold thermal transduction, different life-threatening tumors, and other pathologies, including migraine, urinary tract dysfunction, dry eye disease, and obesity. Hence, the modulation of the TRPM8 channel could be essential in order to understand its implications in these pathologies and for therapeutic intervention. This short review will cover recent progress on the TRPM8 agonists and antagonists, describing newly reported chemotypes, and their application in the pharmacological characterization of TRPM8 in health and disease. The recently described structures of the TRPM8 channel alone or complexed with known agonists and PIP2 are also discussed.
Collapse
|
Review |
6 |
75 |
9
|
Guinamard R, Hof T, Del Negro CA. The TRPM4 channel inhibitor 9-phenanthrol. Br J Pharmacol 2014; 171:1600-13. [PMID: 24433510 PMCID: PMC3966741 DOI: 10.1111/bph.12582] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/17/2013] [Accepted: 01/08/2014] [Indexed: 01/06/2023] Open
Abstract
The phenanthrene-derivative 9-phenanthrol is a recently identified inhibitor of the transient receptor potential melastatin (TRPM) 4 channel, a Ca(2+) -activated non-selective cation channel whose mechanism of action remains to be determined. Subsequent studies performed on other ion channels confirm the specificity of the drug for TRPM4. In addition, 9-phenanthrol modulates a variety of physiological processes through TRPM4 current inhibition and thus exerts beneficial effects in several pathological conditions. 9-Phenanthrol modulates smooth muscle contraction in bladder and cerebral arteries, affects spontaneous activity in neurons and in the heart, and reduces lipopolysaccharide-induced cell death. Among promising potential applications, 9-phenanthrol exerts cardioprotective effects against ischaemia-reperfusion injuries and reduces ischaemic stroke injuries. In addition to reviewing the biophysical effects of 9-phenanthrol, here we present information about its appropriate use in physiological studies and possible clinical applications.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
73 |
10
|
Schoenberger M, Damijonaitis A, Zhang Z, Nagel D, Trauner D. Development of a new photochromic ion channel blocker via azologization of fomocaine. ACS Chem Neurosci 2014; 5:514-8. [PMID: 24856540 PMCID: PMC4102962 DOI: 10.1021/cn500070w] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Photochromic blockers of voltage gated ion channels are powerful tools for the control of neuronal systems with high spatial and temporal precision. We now introduce fotocaine, a new type of photochromic channel blocker based on the long-lasting anesthetic fomocaine. Fotocaine is readily taken up by neurons in brain slices and enables the optical control of action potential firing by switching between 350 and 450 nm light. It also provides an instructive example for "azologization", that is, the systematic conversion of an established drug into a photoswitchable one.
Collapse
|
rapid-communication |
11 |
65 |
11
|
Novella Romanelli M, Sartiani L, Masi A, Mannaioni G, Manetti D, Mugelli A, Cerbai E. HCN Channels Modulators: The Need for Selectivity. Curr Top Med Chem 2016; 16:1764-91. [PMID: 26975509 PMCID: PMC5374843 DOI: 10.2174/1568026616999160315130832] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/27/2022]
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, the molecular correlate of the hyperpolarization-activated current (If/Ih), are membrane proteins which play an important role in several physiological processes and various pathological conditions. In the Sino Atrial Node (SAN) HCN4 is the target of ivabradine, a bradycardic agent that is, at the moment, the only drug which specifically blocks If. Nevertheless, several other pharmacological agents have been shown to modulate HCN channels, a property that may contribute to their therapeutic activity and/or to their side effects. HCN channels are considered potential targets for developing drugs to treat several important pathologies, but a major issue in this field is the discovery of isoform-selective compounds, owing to the wide distribution of these proteins into the central and peripheral nervous systems, heart and other peripheral tissues. This survey is focused on the compounds that have been shown, or have been designed, to interact with HCN channels and on their binding sites, with the aim to summarize current knowledge and possibly to unveil useful information to design new potent and selective modulators.
Collapse
|
Review |
9 |
58 |
12
|
Levin MH, de la Fuente R, Verkman AS. Urearetics: a small molecule screen yields nanomolar potency inhibitors of urea transporter UT-B. FASEB J 2007; 21:551-63. [PMID: 17202246 DOI: 10.1096/fj.06-6979com] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Functional studies in knockout mice indicate a critical role for urea transporters (UTs) in the urinary concentrating mechanism and in renal urea clearance. However, potent and specific urea transport blockers have not been available. Here, we used high-throughput screening to discover high-affinity, small molecule inhibitors of the UT-B urea transporter. A collection of 50,000 diverse, drug-like compounds was screened using a human erythrocyte lysis assay based on UT-B-facilitated acetamide transport. Primary screening yielded approximately 30 UT-B inhibitors belonging to the phenylsulfoxyoxazole, benzenesulfonanilide, phthalazinamine, and aminobenzimidazole chemical classes. Screening of approximately 700 structurally similar analogs gave many active compounds, the most potent of which inhibited UT-B urea transport with an EC50 of approximately 10 nM, and approximately 100% inhibition at higher concentrations. Phenylsulfoxyoxazoles and phthalazinamines also blocked rodent UT-B and had good UT-B vs. UT-A specificity. The UT-B inhibitors did not reduce aquaporin-1 (AQP1)-facilitated water transport. In AQP1-null erythrocytes, "chemical UT-B knockout" by UT-B inhibitors reduced by approximately 3-fold UT-B-mediated water transport, supporting an aqueous pore pathway through UT-B. UT-B inhibitors represent a new class of diuretics, "urearetics," which are predicted to increase renal water and solute clearance in water-retaining states.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
54 |
13
|
Kumar M, Reed N, Liu R, Aizenman E, Wipf P, Tzounopoulos T. Synthesis and Evaluation of Potent KCNQ2/3-Specific Channel Activators. Mol Pharmacol 2016; 89:667-77. [PMID: 27005699 DOI: 10.1124/mol.115.103200] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/21/2016] [Indexed: 12/14/2022] Open
Abstract
KQT-like subfamily (KCNQ) channels are voltage-gated, noninactivating potassium ion channels, and their down-regulation has been implicated in several hyperexcitability-related disorders, including epilepsy, neuropathic pain, and tinnitus. Activators of these channels reduce the excitability of central and peripheral neurons, and, as such, have therapeutic utility. Here, we synthetically modified several moieties of the KCNQ2-5 channel activator retigabine, an anticonvulsant approved by the U.S. Food and Drug Administration. By introducing a CF3-group at the 4-position of the benzylamine moiety, combined with a fluorine atom at the 3-position of the aniline ring, we generated Ethyl (2-amino-3-fluoro-4-((4-(trifluoromethyl)benzyl)amino)phenyl)carbamate (RL648_81), a new KCNQ2/3-specific activator that is >15 times more potent and also more selective than retigabine. We suggest that RL648_81 is a promising clinical candidate for treating or preventing neurologic disorders associated with neuronal hyperexcitability.
Collapse
|
|
9 |
49 |
14
|
Vinayagam D, Quentin D, Yu-Strzelczyk J, Sitsel O, Merino F, Stabrin M, Hofnagel O, Yu M, Ledeboer MW, Nagel G, Malojcic G, Raunser S. Structural basis of TRPC4 regulation by calmodulin and pharmacological agents. eLife 2020; 9:e60603. [PMID: 33236980 PMCID: PMC7735759 DOI: 10.7554/elife.60603] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Canonical transient receptor potential channels (TRPC) are involved in receptor-operated and/or store-operated Ca2+ signaling. Inhibition of TRPCs by small molecules was shown to be promising in treating renal diseases. In cells, the channels are regulated by calmodulin (CaM). Molecular details of both CaM and drug binding have remained elusive so far. Here, we report structures of TRPC4 in complex with three pyridazinone-based inhibitors and CaM. The structures reveal that all the inhibitors bind to the same cavity of the voltage-sensing-like domain and allow us to describe how structural changes from the ligand-binding site can be transmitted to the central ion-conducting pore of TRPC4. CaM binds to the rib helix of TRPC4, which results in the ordering of a previously disordered region, fixing the channel in its closed conformation. This represents a novel CaM-induced regulatory mechanism of canonical TRP channels.
Collapse
|
research-article |
5 |
46 |
15
|
Abstract
The intracellular hydric balance is an essential process of mammalian cells. The water movement across cell membranes is driven by osmotic and hydrostatic forces and the speed of this process is dependent on the presence of specific aquaporin water channels. Since the molecular identification of the first water channel, AQP1, by Peter Agre's group, 13 homologous members have been found in mammals with varying degree of homology. The fundamental importance of these proteins in all living cells is suggested by their genetic conservation in eukaryotic organisms through plants to mammals. A number of recent studies have revealed the importance of mammalian AQPs in both physiology and pathophysiology and have suggested that pharmacological modulation of aquaporins expression and activity may provide new tools for the treatment of variety of human disorders, such as brain edema, glaucoma, tumour growth, congestive heart failure and obesity in which water and small solute transport may be involved. This review will highlight the physiological role and the pathological involvement of AQPs in mammals and the potential use of some recent therapeutic approaches, such as RNAi and immunotherapy, for AQP-related diseases. Furthermore, strategies that can be developed for the discovery of selective AQP-drugs will be introduced and discussed.
Collapse
|
Review |
18 |
40 |
16
|
St Aubin CN, Zhou JJ, Linsdell P. Identification of a second blocker binding site at the cytoplasmic mouth of the cystic fibrosis transmembrane conductance regulator chloride channel pore. Mol Pharmacol 2007; 71:1360-8. [PMID: 17293558 DOI: 10.1124/mol.106.031732] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chloride transport by the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is inhibited by a broad range of substances that bind within a wide inner vestibule in the pore and physically occlude Cl(-) permeation. Binding of many of these so-called open-channel blockers involves electrostatic interactions with a positively charged lysine residue (Lys95) located in the pore. Here, we use site-directed mutagenesis to identify a second blocker binding site located at the cytoplasmic mouth of the pore. Mutagenesis of a positively charged arginine at the cytoplasmic mouth of the pore, Arg303, leads to significant weakening of the blocking effects of suramin, a large negatively charged organic molecule. Apparent suramin affinity is correlated with the side chain charge at this position, consistent with an electrostatic interaction. In contrast, block by suramin is unaffected by mutagenesis of Lys95, suggesting that it does not approach close to this important pore-forming lysine residue. We propose that the CFTR pore inner vestibule contains two distinct blocker binding sites. Relatively small organic anions enter deeply into the pore to interact with Lys95, causing an open-channel block that is sensitive to both the membrane potential and the extracellular Cl(-) concentration. Larger anionic molecules can become lodged in the cytoplasmic mouth of the pore where they interact with Arg303, causing a distinct type of open-channel block that is insensitive to membrane potential or extracellular Cl(-) ions. The pore may narrow significantly between the locations of these two blocker binding sites.
Collapse
|
|
18 |
35 |
17
|
Thompson CH, Olivetti PR, Fuller MD, Freeman CS, McMaster D, French RJ, Pohl J, Kubanek J, McCarty NA. Isolation and characterization of a high affinity peptide inhibitor of ClC-2 chloride channels. J Biol Chem 2009; 284:26051-62. [PMID: 19574231 PMCID: PMC2758005 DOI: 10.1074/jbc.m109.031724] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 06/26/2009] [Indexed: 11/06/2022] Open
Abstract
The ClC protein family includes voltage-gated chloride channels and chloride/proton exchangers. In eukaryotes, ClC proteins regulate membrane potential of excitable cells, contribute to epithelial transport, and aid in lysosomal acidification. Although structure/function studies of ClC proteins have been aided greatly by the available crystal structures of a bacterial ClC chloride/proton exchanger, the availability of useful pharmacological tools, such as peptide toxin inhibitors, has lagged far behind that of their cation channel counterparts. Here we report the isolation, from Leiurus quinquestriatus hebraeus venom, of a peptide toxin inhibitor of the ClC-2 chloride channel. This toxin, GaTx2, inhibits ClC-2 channels with a voltage-dependent apparent K(D) of approximately 20 pm, making it the highest affinity inhibitor of any chloride channel. GaTx2 slows ClC-2 activation by increasing the latency to first opening by nearly 8-fold but is unable to inhibit open channels, suggesting that this toxin inhibits channel activation gating. Finally, GaTx2 specifically inhibits ClC-2 channels, showing no inhibitory effect on a battery of other major classes of chloride channels and voltage-gated potassium channels. GaTx2 is the first peptide toxin inhibitor of any ClC protein. The high affinity and specificity displayed by this toxin will make it a very powerful pharmacological tool to probe ClC-2 structure/function.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
35 |
18
|
Zeng X, Deng M, Lin Y, Yuan C, Pi J, Liang S. Isolation and characterization of Jingzhaotoxin-V, a novel neurotoxin from the venom of the spider Chilobrachys jingzhao. Toxicon 2007; 49:388-99. [PMID: 17157888 DOI: 10.1016/j.toxicon.2006.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 10/08/2006] [Accepted: 10/24/2006] [Indexed: 11/18/2022]
Abstract
Jingzhaotoxin-V (JZTX-V), a 29-residue polypeptide, is derived from the venom of the spider Chilobrachys jingzhao. Its cDNA determined by rapid amplification of 3' and 5'-cDNA ends encoded an 83-residue precursor with a pro-region of 16 residues. JZTX-V inhibits tetrodotoxin-resistant and tetrodotoxin-sensitive sodium currents in rat dorsal root ganglion neurons with IC50 values of 27.6 and 30.2 nM, respectively. Moreover, the toxin exhibits high affinity to the resting closed states of the channels. JZTX-V also inhibits Kv4.2 potassium currents expressed in Xenpus Laevis oocytes (IC50=604.2 nM), but has no effects on outward delay-rectified potassium channels expressed in Xenopus laevis oocytes. JZTX-V alters the gating properties of sodium channels by shifting the activation curves to the depolarizing direction and the inactivation curves to the hyperpolarizing direction. Small unilamellar vesicles binding assays show that the partitioning of JZTX-V into lipid bilayer requires negatively charged phospholipids. The phospholipid membrane binding activity of JZTX-V is also verified using intrinsic tryptophan fluorescence analysis as well as acrylamide-quenching assays. Importantly, human multiple sodium channel subtypes are attractive targets for treatment of pain, highlighting the importance of JZTX-V as potential lead for drug development.
Collapse
|
|
18 |
30 |
19
|
Xue Y, Li H, Zhang Y, Han X, Zhang G, Li W, Zhang H, Lin Y, Chen P, Sun X, Liu Y, Chu L, Zhang J, Zhang M, Zhang X. Natural and synthetic flavonoids, novel blockers of the volume-regulated anion channels, inhibit endothelial cell proliferation. Pflugers Arch 2018; 470:1473-1483. [PMID: 29961148 DOI: 10.1007/s00424-018-2170-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022]
Abstract
Natural flavonoids are ubiquitous in dietary plants and vegetables and have been proposed to have antiviral, antioxidant, cardiovascular protective, and anticancer effects. Volume-regulated anion channels (VRACs), which are essential for cell volume regulation, have been proposed to play a key role in cell proliferation and migration, apoptosis, transepithelial transport, and cancer development. In this study, we screened a group of 53 structurally related natural flavonoids and three synthetic flavonoids for their inhibitory activities on VRAC currents. A whole-cell patch technique was used to record VRAC currents in the human embryonic kidney (HEK) 293 and human umbilical vein endothelial (HUVEC) cells. The 5'-bromo-2-deoxyuridine (BrdU) assay technique was used to investigate cell proliferation. At 100 μM, 34 of 53 compounds significantly inhibited hypotonic extrasolution-induced VRAC currents by > 50% in HEK293 cells. Among these compounds, luteolin, baicalein, eupatorin, galangin, quercetin, fisetin, karanjin, Dh-morin, genistein, irisolidone, and prunetin exhibited the highest efficacy for VRAC blockade (the mean inhibition > 80%) with IC50s of 5-13 μM and Emaxs of about 87-99%. We also studied the effects of three synthetic flavonoids on VRAC currents in HEK293 cells. Flavoxate showed high inhibition efficacy toward VRAC currents (IC50 = 2.3 ± 0.3 μM; Emax = 91.8% ± 2.7%). Finally, these flavonoids inhibited endogenous VRAC currents and cell proliferation in endothelial cells. This study demonstrates that natural and synthetic flavonoids are potent VRAC current inhibitors, and VRAC inhibition by flavonoids might be responsible for their anti-angiogenic effects.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
24 |
20
|
Heo J, Han SK, Vaidehi N, Wendel J, Kekenes-Huskey P, Goddard WA. Prediction of the 3D Structure of FMRF-amide Neuropeptides Bound to the Mouse MrgC11 GPCR and Experimental Validation. Chembiochem 2007; 8:1527-39. [PMID: 17647204 DOI: 10.1002/cbic.200700188] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report the 3D structure predicted for the mouse MrgC11 (mMrgC11) receptor by using the MembStruk computational protocol, and the predicted binding site for the F-M-R-F-NH(2) neuropeptide together with four singly chirally modified ligands. We predicted that the R-F-NH(2) part of the tetrapeptide sticks down into the protein between the transmembrane (TM) domains 3, 4, 5, and 6. The Phe (F-NH(2)) interacted favorably with Tyr110 (TM3), while the Arg makes salt bridges to Asp161 (TM4) and Asp179 (TM5). We predicted that the Met extends from the binding site, but the terminal Phe residue sticks back into an aromatic/hydrophobic site flanked by Tyr237, Leu238, Leu240, and Tyr256 (TM6), and Trp162 (TM4). We carried out subsequent mutagenesis experiments followed by intracellular calcium-release assays that demonstrated the dramatic decrease in activity for the Tyr110Ala, Asp161Ala, and Asp179Ala substitutions, which was predicted by our model. These experiments provide strong evidence that our predicted G protein-coupled receptor (GPCR) structure is sufficiently accurate to identify binding sites for selective ligands. Similar studies were made with the mMrgA1 receptor, which did not bind the R-F-NH(2) dipeptide; we explain this to be due to the increased hydrophobic character of the binding pocket in mMrgA1.
Collapse
|
|
18 |
22 |
21
|
Homeyer N, Gohlke H. Extension of the free energy workflow FEW towards implicit solvent/implicit membrane MM-PBSA calculations. Biochim Biophys Acta Gen Subj 2014; 1850:972-982. [PMID: 25450172 DOI: 10.1016/j.bbagen.2014.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 01/12/2023]
Abstract
BACKGROUND The number of high-resolution structures of pharmacologically relevant membrane proteins has been strongly increasing. This makes computing relative affinities of chemically similar compounds binding to a membrane protein possible in order to guide decision making in drug design. However, the preparation step of such calculations is time-consuming and complex. METHODS We extended the free energy workflow tool FEW, available in AMBER, towards facilitating the setup of molecular dynamics simulations with explicit membrane, and the setup and execution of effective binding energy calculations according to a 1-trajectory implicit solvent/implicit membrane MM-PBSA approach for multiple ligands binding to the same membrane protein. RESULTS We validated the implemented protocol initially on two model systems, a sodium ion in the presence of an implicit membrane slab and a proton traversing the M2 proton-channel of the influenza A virus. For the latter, we found a good agreement for several important events along the proton pathway with those obtained in a recent computational study. Finally, we performed a case study on effective binding energy calculations for a set of inhibitors binding to the M2 proton-channel. CONCLUSIONS From the case study, we estimate a considerable speed up in the setup and analysis times for implicit solvent/implicit membrane MM-PBSA calculations by the extended version of FEW compared to a manual preparation. GENERAL SIGNIFICANCE Together with the overall runtime and the analysis results, this suggests that such type of calculations can be valuable in later stages of drug design projects on membrane proteins. This article is part of a Special Issue entitled Recent developments of molecular dynamics.
Collapse
|
Validation Study |
11 |
17 |
22
|
De Petrocellis L, Schiano Moriello A, Fontana G, Sacchetti A, Passarella D, Appendino G, Di Marzo V. Effect of chirality and lipophilicity in the functional activity of evodiamine and its analogues at TRPV1 channels. Br J Pharmacol 2014; 171:2608-20. [PMID: 23902373 PMCID: PMC4009003 DOI: 10.1111/bph.12320] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/18/2013] [Accepted: 07/26/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE Evodiamine, a racemic quinazolinocarboline alkaloid isolated from the traditional Chinese medicine Evodiae fructus, has been reported to act as an agonist of the transient receptor potential vanilloid type-1 (TRPV1) cation channel both in vitro and in vivo. Evodiamine is structurally different from all known TRPV1 activators, and has significant clinical potential as a thermogenic agent. Nevertheless, the molecular bases for its actions are still poorly understood. EXPERIMENTAL APPROACH To investigate the structure-activity relationships of evodiamine, the natural racemate was resolved, and a series of 23 synthetic analogues was prepared, using as the end point the intracellular Ca(2+) elevation in HEK-293 cells stably overexpressing either the human or the rat recombinant TRPV1. KEY RESULTS S-(+) evodiamine was more efficacious and potent than R-(-) evodiamine, and a new potent lead (Evo30) was identified, more potent than the reference TRPV1 agonist, capsaicin. In general, potency and efficacy correlated with the lipophilicity of the analogues. Like other TRPV1 agonists, several synthetic analogues could efficiently desensitize TRPV1 to activation by capsaicin. CONCLUSIONS AND IMPLICATIONS Evodiamine qualifies as structurally unique lead structure to develop new potent TRPV1 agonists/desensitizers.
Collapse
|
Comparative Study |
11 |
17 |
23
|
Tran L, Choi SB, Al-Najjar BO, Yusuf M, Wahab HA, Le L. Discovery of potential M2 channel inhibitors based on the amantadine scaffold via virtual screening and pharmacophore modeling. Molecules 2011; 16:10227-55. [PMID: 22158591 PMCID: PMC6264534 DOI: 10.3390/molecules161210227] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 01/20/2023] Open
Abstract
The M2 channel protein on the influenza A virus membrane has become the main target of the anti-flu drugs amantadine and rimantadine. The structure of the M2 channel proteins of the H3N2 (PDB code 2RLF) and 2009-H1N1 (Genbank accession number GQ385383) viruses may help researchers to solve the drug-resistant problem of these two adamantane-based drugs and develop more powerful new drugs against influenza A virus. In the present study, we searched for new M2 channel inhibitors through a combination of different computational methodologies, including virtual screening with docking and pharmacophore modeling. Virtual screening was performed to calculate the free energies of binding between receptor M2 channel proteins and 200 new designed ligands. After that, pharmacophore analysis was used to identify the important M2 protein-inhibitor interactions and common features of top binding compounds with M2 channel proteins. Finally, the two most potential compounds were determined as novel leads to inhibit M2 channel proteins in both H3N2 and 2009-H1N1 influenza A virus.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
16 |
24
|
Liu Y, Ma J, DesJarlais RL, Hagan R, Rech J, Lin D, Liu C, Miller R, Schoellerman J, Luo J, Letavic M, Grasberger B, Maher M. Molecular mechanism and structural basis of small-molecule modulation of the gating of acid-sensing ion channel 1. Commun Biol 2021; 4:174. [PMID: 33564124 PMCID: PMC7873226 DOI: 10.1038/s42003-021-01678-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/07/2021] [Indexed: 01/07/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated cation channels critical for neuronal functions. Studies of ASIC1, a major ASIC isoform and proton sensor, have identified acidic pocket, an extracellular region enriched in acidic residues, as a key participant in channel gating. While binding to this region by the venom peptide psalmotoxin modulates channel gating, molecular and structural mechanisms of ASIC gating modulation by small molecules are poorly understood. Here, combining functional, crystallographic, computational and mutational approaches, we show that two structurally distinct small molecules potently and allosterically inhibit channel activation and desensitization by binding at the acidic pocket and stabilizing the closed state of rat/chicken ASIC1. Our work identifies a previously unidentified binding site, elucidates a molecular mechanism of small molecule modulation of ASIC gating, and demonstrates directly the structural basis of such modulation, providing mechanistic and structural insight into ASIC gating, modulation and therapeutic targeting.
Collapse
|
research-article |
4 |
14 |
25
|
Muñoz-Martínez F, Reyes CP, Pérez-Lomas AL, Jiménez IA, Gamarro F, Castanys S. Insights into the molecular mechanism of action of Celastraceae sesquiterpenes as specific, non-transported inhibitors of human P-glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:98-110. [PMID: 16455045 DOI: 10.1016/j.bbamem.2005.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/13/2005] [Accepted: 12/16/2005] [Indexed: 11/22/2022]
Abstract
Dihydro-beta-agarofuran sesquiterpenes from Celastraceae have been recently shown to bind to human P-glycoprotein (Pgp), functioning as specific, mixed-type inhibitors of its drug transport activity, as well as multidrug resistance (MDR) modulators in vitro. However, nothing is known about whether such compounds are themselves transported by Pgp, or whether they affect Pgp expression as well as its activity, or about the location of their binding site within the protein. We performed transport experiments with a newly synthesized fluorescent sesquiterpene derivative, which retains the anti-Pgp activity of its natural precursor. This probe was poorly transported by Pgp, MRP1, MRP2 and BCRP transporters, compared with classical MDR substrates. Moreover, Pgp did not confer cross-resistance to the most potent dihydro-beta-agarofurans, which did not affect Pgp expression levels in several MDR cell lines. Finally, we observed competitive and non-competitive interactions between one of such dihydro-beta-agarofurans (Mama12) and classical Pgp modulators such as cyclosporin A, verapamil, progesterone, vinblastine and GF120918. These findings suggest that multidrug ABC transporters do not confer resistance to dihydro-beta-agarofurans and could not affect their absorption and biodistribution in the body. Moreover, we mapped their binding site(s) within Pgp, which may prove useful for the rational design of improved modulators based on the structure of dihydro-beta-agarofurans.
Collapse
|
|
19 |
12 |