1
|
Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004; 104:293-346. [PMID: 14719978 DOI: 10.1021/cr030698+] [Citation(s) in RCA: 7477] [Impact Index Per Article: 356.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
Review |
21 |
7477 |
2
|
Abstract
Nanomaterials are engineered structures with at least one dimension of 100 nanometers or less. These materials are increasingly being used for commercial purposes such as fillers, opacifiers, catalysts, semiconductors, cosmetics, microelectronics, and drug carriers. Materials in this size range may approach the length scale at which some specific physical or chemical interactions with their environment can occur. As a result, their properties differ substantially from those bulk materials of the same composition, allowing them to perform exceptional feats of conductivity, reactivity, and optical sensitivity. Possible undesirable results of these capabilities are harmful interactions with biological systems and the environment, with the potential to generate toxicity. The establishment of principles and test procedures to ensure safe manufacture and use of nanomaterials in the marketplace is urgently required and achievable.
Collapse
|
Review |
19 |
5354 |
3
|
Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions at the nano-bio interface. NATURE MATERIALS 2009; 8:543-57. [PMID: 19525947 DOI: 10.1038/nmat2442] [Citation(s) in RCA: 4698] [Impact Index Per Article: 293.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Rapid growth in nanotechnology is increasing the likelihood of engineered nanomaterials coming into contact with humans and the environment. Nanoparticles interacting with proteins, membranes, cells, DNA and organelles establish a series of nanoparticle/biological interfaces that depend on colloidal forces as well as dynamic biophysicochemical interactions. These interactions lead to the formation of protein coronas, particle wrapping, intracellular uptake and biocatalytic processes that could have biocompatible or bioadverse outcomes. For their part, the biomolecules may induce phase transformations, free energy releases, restructuring and dissolution at the nanomaterial surface. Probing these various interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings. This knowledge is important from the perspective of safe use of nanomaterials.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
4698 |
4
|
Li D, Müller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. NATURE NANOTECHNOLOGY 2008; 3:101-5. [PMID: 18654470 DOI: 10.1038/nnano.2007.451] [Citation(s) in RCA: 4409] [Impact Index Per Article: 259.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 12/18/2007] [Indexed: 05/19/2023]
Abstract
Graphene sheets offer extraordinary electronic, thermal and mechanical properties and are expected to find a variety of applications. A prerequisite for exploiting most proposed applications for graphene is the availability of processable graphene sheets in large quantities. The direct dispersion of hydrophobic graphite or graphene sheets in water without the assistance of dispersing agents has generally been considered to be an insurmountable challenge. Here we report that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization. This discovery has enabled us to develop a facile approach to large-scale production of aqueous graphene dispersions without the need for polymeric or surfactant stabilizers. Our findings make it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.
Collapse
|
|
17 |
4409 |
5
|
Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:823-39. [PMID: 16002369 PMCID: PMC1257642 DOI: 10.1289/ehp.7339] [Citation(s) in RCA: 4127] [Impact Index Per Article: 206.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 03/22/2005] [Indexed: 05/02/2023]
Abstract
Although humans have been exposed to airborne nanosized particles (NSPs; < 100 nm) throughout their evolutionary stages, such exposure has increased dramatically over the last century due to anthropogenic sources. The rapidly developing field of nanotechnology is likely to become yet another source through inhalation, ingestion, skin uptake, and injection of engineered nanomaterials. Information about safety and potential hazards is urgently needed. Results of older biokinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices. Collectively, some emerging concepts of nanotoxicology can be identified from the results of these studies. When inhaled, specific sizes of NSPs are efficiently deposited by diffusional mechanisms in all regions of the respiratory tract. The small size facilitates uptake into cells and transcytosis across epithelial and endothelial cells into the blood and lymph circulation to reach potentially sensitive target sites such as bone marrow, lymph nodes, spleen, and heart. Access to the central nervous system and ganglia via translocation along axons and dendrites of neurons has also been observed. NSPs penetrating the skin distribute via uptake into lymphatic channels. Endocytosis and biokinetics are largely dependent on NSP surface chemistry (coating) and in vivo surface modifications. The greater surface area per mass compared with larger-sized particles of the same chemistry renders NSPs more active biologically. This activity includes a potential for inflammatory and pro-oxidant, but also antioxidant, activity, which can explain early findings showing mixed results in terms of toxicity of NSPs to environmentally relevant species. Evidence of mitochondrial distribution and oxidative stress response after NSP endocytosis points to a need for basic research on their interactions with subcellular structures. Additional considerations for assessing safety of engineered NSPs include careful selections of appropriate and relevant doses/concentrations, the likelihood of increased effects in a compromised organism, and also the benefits of possible desirable effects. An interdisciplinary team approach (e.g., toxicology, materials science, medicine, molecular biology, and bioinformatics, to name a few) is mandatory for nanotoxicology research to arrive at an appropriate risk assessment.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
4127 |
6
|
Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996; 382:607-9. [PMID: 8757129 DOI: 10.1038/382607a0] [Citation(s) in RCA: 4103] [Impact Index Per Article: 141.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colloidal particles of metals and semiconductors have potentially useful optical, optoelectronic and material properties that derive from their small (nanoscopic) size. These properties might lead to applications including chemical sensors, spectroscopic enhancers, quantum dot and nanostructure fabrication, and microimaging methods. A great deal of control can now be exercised over the chemical composition, size and polydispersity of colloidal particles, and many methods have been developed for assembling them into useful aggregates and materials. Here we describe a method for assembling colloidal gold nanoparticles rationally and reversibly into macroscopic aggregates. The method involves attaching to the surfaces of two batches of 13-nm gold particles non-complementary DNA oligonucleotides capped with thiol groups, which bind to gold. When we add to the solution an oligonucleotide duplex with 'sticky ends' that are complementary to the two grafted sequences, the nanoparticles self-assemble into aggregates. This assembly process can be reversed by thermal denaturation. This strategy should now make it possible to tailor the optical, electronic and structural properties of the colloidal aggregates by using the specificity of DNA interactions to direct the interactions between particles of different size and composition.
Collapse
|
|
29 |
4103 |
7
|
Abstract
Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection. In comparison with organic dyes such as rhodamine, this class of luminescent labels is 20 times as bright, 100 times as stable against photobleaching, and one-third as wide in spectral linewidth. These nanometer-sized conjugates are water-soluble and biocompatible. Quantum dots that were labeled with the protein transferrin underwent receptor-mediated endocytosis in cultured HeLa cells, and those dots that were labeled with immunomolecules recognized specific antibodies or antigens.
Collapse
|
|
27 |
3925 |
8
|
Burda C, Chen X, Narayanan R, El-Sayed MA. Chemistry and properties of nanocrystals of different shapes. Chem Rev 2005; 105:1025-102. [PMID: 15826010 DOI: 10.1021/cr030063a] [Citation(s) in RCA: 3832] [Impact Index Per Article: 191.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
Review |
20 |
3832 |
9
|
Andrady AL. Microplastics in the marine environment. MARINE POLLUTION BULLETIN 2011; 62:1596-605. [PMID: 21742351 DOI: 10.1016/j.marpolbul.2011.05.030] [Citation(s) in RCA: 3665] [Impact Index Per Article: 261.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/18/2011] [Accepted: 05/30/2011] [Indexed: 05/18/2023]
Abstract
This review discusses the mechanisms of generation and potential impacts of microplastics in the ocean environment. Weathering degradation of plastics on the beaches results in their surface embrittlement and microcracking, yielding microparticles that are carried into water by wind or wave action. Unlike inorganic fines present in sea water, microplastics concentrate persistent organic pollutants (POPs) by partition. The relevant distribution coefficients for common POPs are several orders of magnitude in favour of the plastic medium. Consequently, the microparticles laden with high levels of POPs can be ingested by marine biota. Bioavailability and the efficiency of transfer of the ingested POPs across trophic levels are not known and the potential damage posed by these to the marine ecosystem has yet to be quantified and modelled. Given the increasing levels of plastic pollution of the oceans it is important to better understand the impact of microplastics in the ocean food web.
Collapse
|
Review |
14 |
3665 |
10
|
Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002; 287:1132-41. [PMID: 11879110 PMCID: PMC4037163 DOI: 10.1001/jama.287.9.1132] [Citation(s) in RCA: 3488] [Impact Index Per Article: 151.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT Associations have been found between day-to-day particulate air pollution and increased risk of various adverse health outcomes, including cardiopulmonary mortality. However, studies of health effects of long-term particulate air pollution have been less conclusive. OBJECTIVE To assess the relationship between long-term exposure to fine particulate air pollution and all-cause, lung cancer, and cardiopulmonary mortality. DESIGN, SETTING, AND PARTICIPANTS Vital status and cause of death data were collected by the American Cancer Society as part of the Cancer Prevention II study, an ongoing prospective mortality study, which enrolled approximately 1.2 million adults in 1982. Participants completed a questionnaire detailing individual risk factor data (age, sex, race, weight, height, smoking history, education, marital status, diet, alcohol consumption, and occupational exposures). The risk factor data for approximately 500 000 adults were linked with air pollution data for metropolitan areas throughout the United States and combined with vital status and cause of death data through December 31, 1998. MAIN OUTCOME MEASURE All-cause, lung cancer, and cardiopulmonary mortality. RESULTS Fine particulate and sulfur oxide--related pollution were associated with all-cause, lung cancer, and cardiopulmonary mortality. Each 10-microg/m(3) elevation in fine particulate air pollution was associated with approximately a 4%, 6%, and 8% increased risk of all-cause, cardiopulmonary, and lung cancer mortality, respectively. Measures of coarse particle fraction and total suspended particles were not consistently associated with mortality. CONCLUSION Long-term exposure to combustion-related fine particulate air pollution is an important environmental risk factor for cardiopulmonary and lung cancer mortality.
Collapse
|
research-article |
23 |
3488 |
11
|
Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005; 26:3995-4021. [PMID: 15626447 DOI: 10.1016/j.biomaterials.2004.10.012] [Citation(s) in RCA: 3465] [Impact Index Per Article: 173.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 10/18/2004] [Indexed: 12/11/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) with appropriate surface chemistry have been widely used experimentally for numerous in vivo applications such as magnetic resonance imaging contrast enhancement, tissue repair, immunoassay, detoxification of biological fluids, hyperthermia, drug delivery and in cell separation, etc. All these biomedical and bioengineering applications require that these nanoparticles have high magnetization values and size smaller than 100 nm with overall narrow particle size distribution, so that the particles have uniform physical and chemical properties. In addition, these applications need special surface coating of the magnetic particles, which has to be not only non-toxic and biocompatible but also allow a targetable delivery with particle localization in a specific area. To this end, most work in this field has been done in improving the biocompatibility of the materials, but only a few scientific investigations and developments have been carried out in improving the quality of magnetic particles, their size distribution, their shape and surface in addition to characterizing them to get a protocol for the quality control of these particles. Nature of surface coatings and their subsequent geometric arrangement on the nanoparticles determine not only the overall size of the colloid but also play a significant role in biokinetics and biodistribution of nanoparticles in the body. The types of specific coating, or derivatization, for these nanoparticles depend on the end application and should be chosen by keeping a particular application in mind, whether it be aimed at inflammation response or anti-cancer agents. Magnetic nanoparticles can bind to drugs, proteins, enzymes, antibodies, or nucleotides and can be directed to an organ, tissue, or tumour using an external magnetic field or can be heated in alternating magnetic fields for use in hyperthermia. This review discusses the synthetic chemistry, fluid stabilization and surface modification of superparamagnetic iron oxide nanoparticles, as well as their use for above biomedical applications.
Collapse
|
Review |
20 |
3465 |
12
|
Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. NANO LETTERS 2006; 6:662-8. [PMID: 16608261 DOI: 10.1021/nl052396o] [Citation(s) in RCA: 3218] [Impact Index Per Article: 169.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We investigated the intracellular uptake of different sized and shaped colloidal gold nanoparticles. We showed that kinetics and saturation concentrations are highly dependent upon the physical dimensions of the nanoparticles (e.g., uptake half-life of 14, 50, and 74 nm nanoparticles is 2.10, 1.90, and 2.24 h, respectively). The findings from this study will have implications in the chemical design of nanostructures for biomedical applications (e.g., tuning intracellular delivery rates and amounts by nanoscale dimensions and engineering complex, multifunctional nanostructures for imaging and therapeutics).
Collapse
|
|
19 |
3218 |
13
|
Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Frangioni JV. Renal clearance of quantum dots. Nat Biotechnol 2007; 25:1165-70. [PMID: 17891134 PMCID: PMC2702539 DOI: 10.1038/nbt1340] [Citation(s) in RCA: 3097] [Impact Index Per Article: 172.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 08/16/2007] [Indexed: 11/08/2022]
Abstract
The field of nanotechnology holds great promise for the diagnosis and treatment of human disease. However, the size and charge of most nanoparticles preclude their efficient clearance from the body as intact nanoparticles. Without such clearance or their biodegradation into biologically benign components, toxicity is potentially amplified and radiological imaging is hindered. Using intravenously administered quantum dots in rodents as a model system, we have precisely defined the requirements for renal filtration and urinary excretion of inorganic, metal-containing nanoparticles. Zwitterionic or neutral organic coatings prevented adsorption of serum proteins, which otherwise increased hydrodynamic diameter by >15 nm and prevented renal excretion. A final hydrodynamic diameter <5.5 nm resulted in rapid and efficient urinary excretion and elimination of quantum dots from the body. This study provides a foundation for the design and development of biologically targeted nanoparticles for biomedical applications.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
3097 |
14
|
Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. NATURE NANOTECHNOLOGY 2010; 5:574-8. [PMID: 20562870 DOI: 10.1038/nnano.2010.132] [Citation(s) in RCA: 3057] [Impact Index Per Article: 203.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 05/28/2010] [Indexed: 05/20/2023]
Abstract
The outstanding electrical, mechanical and chemical properties of graphene make it attractive for applications in flexible electronics. However, efforts to make transparent conducting films from graphene have been hampered by the lack of efficient methods for the synthesis, transfer and doping of graphene at the scale and quality required for applications. Here, we report the roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates. The films have sheet resistances as low as approximately 125 ohms square(-1) with 97.4% optical transmittance, and exhibit the half-integer quantum Hall effect, indicating their high quality. We further use layer-by-layer stacking to fabricate a doped four-layer film and measure its sheet resistance at values as low as approximately 30 ohms square(-1) at approximately 90% transparency, which is superior to commercial transparent electrodes such as indium tin oxides. Graphene electrodes were incorporated into a fully functional touch-screen panel device capable of withstanding high strain.
Collapse
|
|
15 |
3057 |
15
|
Abstract
Interest in graphene centres on its excellent mechanical, electrical, thermal and optical properties, its very high specific surface area, and our ability to influence these properties through chemical functionalization. There are a number of methods for generating graphene and chemically modified graphene from graphite and derivatives of graphite, each with different advantages and disadvantages. Here we review the use of colloidal suspensions to produce new materials composed of graphene and chemically modified graphene. This approach is both versatile and scalable, and is adaptable to a wide variety of applications.
Collapse
|
Review |
16 |
2947 |
16
|
Cole M, Lindeque P, Halsband C, Galloway TS. Microplastics as contaminants in the marine environment: a review. MARINE POLLUTION BULLETIN 2011; 62:2588-97. [PMID: 22001295 DOI: 10.1016/j.marpolbul.2011.09.025] [Citation(s) in RCA: 2851] [Impact Index Per Article: 203.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 05/18/2023]
Abstract
Since the mass production of plastics began in the 1940s, microplastic contamination of the marine environment has been a growing problem. Here, a review of the literature has been conducted with the following objectives: (1) to summarise the properties, nomenclature and sources of microplastics; (2) to discuss the routes by which microplastics enter the marine environment; (3) to evaluate the methods by which microplastics are detected in the marine environment; (4) to assess spatial and temporal trends of microplastic abundance; and (5) to discuss the environmental impact of microplastics. Microplastics are both abundant and widespread within the marine environment, found in their highest concentrations along coastlines and within mid-ocean gyres. Ingestion of microplastics has been demonstrated in a range of marine organisms, a process which may facilitate the transfer of chemical additives or hydrophobic waterborne pollutants to biota. We conclude by highlighting key future research areas for scientists and policymakers.
Collapse
|
Evaluation Study |
14 |
2851 |
17
|
Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C, Chang JS, Hwang YK, Marsaud V, Bories PN, Cynober L, Gil S, Férey G, Couvreur P, Gref R. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. NATURE MATERIALS 2010; 9:172-8. [PMID: 20010827 DOI: 10.1038/nmat2608] [Citation(s) in RCA: 2680] [Impact Index Per Article: 178.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 11/11/2009] [Indexed: 05/18/2023]
Abstract
In the domain of health, one important challenge is the efficient delivery of drugs in the body using non-toxic nanocarriers. Most of the existing carrier materials show poor drug loading (usually less than 5 wt% of the transported drug versus the carrier material) and/or rapid release of the proportion of the drug that is simply adsorbed (or anchored) at the external surface of the nanocarrier. In this context, porous hybrid solids, with the ability to tune their structures and porosities for better drug interactions and high loadings, are well suited to serve as nanocarriers for delivery and imaging applications. Here we show that specific non-toxic porous iron(III)-based metal-organic frameworks with engineered cores and surfaces, as well as imaging properties, function as superior nanocarriers for efficient controlled delivery of challenging antitumoural and retroviral drugs (that is, busulfan, azidothymidine triphosphate, doxorubicin or cidofovir) against cancer and AIDS. In addition to their high loadings, they also potentially associate therapeutics and diagnostics, thus opening the way for theranostics, or personalized patient treatments.
Collapse
|
|
15 |
2680 |
18
|
Pope CA, Dockery DW. Health effects of fine particulate air pollution: lines that connect. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2006; 56:709-42. [PMID: 16805397 DOI: 10.1080/10473289.2006.10464485] [Citation(s) in RCA: 2568] [Impact Index Per Article: 135.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Efforts to understand and mitigate thehealth effects of particulate matter (PM) air pollutionhave a rich and interesting history. This review focuseson six substantial lines of research that have been pursued since 1997 that have helped elucidate our understanding about the effects of PM on human health. There hasbeen substantial progress in the evaluation of PM health effects at different time-scales of exposure and in the exploration of the shape of the concentration-response function. There has also been emerging evidence of PM-related cardiovascular health effects and growing knowledge regarding interconnected general pathophysiological pathways that link PM exposure with cardiopulmonary morbidiity and mortality. Despite important gaps in scientific knowledge and continued reasons for some skepticism, a comprehensive evaluation of the research findings provides persuasive evidence that exposure to fine particulate air pollution has adverse effects on cardiopulmonaryhealth. Although much of this research has been motivated by environmental public health policy, these results have important scientific, medical, and public health implications that are broader than debates over legally mandated air quality standards.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
2568 |
19
|
Liu Z, Robinson JT, Sun X, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 2008; 130:10876-7. [PMID: 18661992 PMCID: PMC2597374 DOI: 10.1021/ja803688x] [Citation(s) in RCA: 2274] [Impact Index Per Article: 133.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is known that many potent, often aromatic drugs are water insoluble, which has hampered their use for disease treatment. In this work, we functionalized nanographene oxide (NGO), a novel graphitic material, with branched polyethylene glycol (PEG) to obtain a biocompatible NGO-PEG conjugate stable in various biological solutions, and used them for attaching hydrophobic aromatic molecules including a camptothecin (CPT) analogue, SN38, noncovalently via pi-pi stacking. The resulting NGO-PEG-SN38 complex exhibited excellent water solubility while maintaining its high cancer cell killing potency similar to that of the free SN38 molecules in organic solvents. The efficacy of NGO-PEG-SN38 was far higher than that of irinotecan (CPT-11), a FDA-approved water soluble SN38 prodrug used for the treatment of colon cancer. Our results showed that graphene is a novel class of material promising for biological applications including future in vivo cancer treatment with various aromatic, low-solubility drugs.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
2274 |
20
|
Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 2007; 110:7238-48. [PMID: 16599493 DOI: 10.1021/jp057170o] [Citation(s) in RCA: 2252] [Impact Index Per Article: 125.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The selection of nanoparticles for achieving efficient contrast for biological and cell imaging applications, as well as for photothermal therapeutic applications, is based on the optical properties of the nanoparticles. We use Mie theory and discrete dipole approximation method to calculate absorption and scattering efficiencies and optical resonance wavelengths for three commonly used classes of nanoparticles: gold nanospheres, silica-gold nanoshells, and gold nanorods. The calculated spectra clearly reflect the well-known dependence of nanoparticle optical properties viz. the resonance wavelength, the extinction cross-section, and the ratio of scattering to absorption, on the nanoparticle dimensions. A systematic quantitative study of the various trends is presented. By increasing the size of gold nanospheres from 20 to 80 nm, the magnitude of extinction as well as the relative contribution of scattering to the extinction rapidly increases. Gold nanospheres in the size range commonly employed ( approximately 40 nm) show an absorption cross-section 5 orders higher than conventional absorbing dyes, while the magnitude of light scattering by 80-nm gold nanospheres is 5 orders higher than the light emission from strongly fluorescing dyes. The variation in the plasmon wavelength maximum of nanospheres, i.e., from approximately 520 to 550 nm, is however too limited to be useful for in vivo applications. Gold nanoshells are found to have optical cross-sections comparable to and even higher than the nanospheres. Additionally, their optical resonances lie favorably in the near-infrared region. The resonance wavelength can be rapidly increased by either increasing the total nanoshell size or increasing the ratio of the core-to-shell radius. The total extinction of nanoshells shows a linear dependence on their total size, however, it is independent of the core/shell radius ratio. The relative scattering contribution to the extinction can be rapidly increased by increasing the nanoshell size or decreasing the ratio of the core/shell radius. Gold nanorods show optical cross-sections comparable to nanospheres and nanoshells, however, at much smaller effective size. Their optical resonance can be linearly tuned across the near-infrared region by changing either the effective size or the aspect ratio of the nanorods. The total extinction as well as the relative scattering contribution increases rapidly with the effective size, however, they are independent of the aspect ratio. To compare the effectiveness of nanoparticles of different sizes for real biomedical applications, size-normalized optical cross-sections or per micron coefficients are calculated. Gold nanorods show per micron absorption and scattering coefficients that are an order of magnitude higher than those for nanoshells and nanospheres. While nanorods with a higher aspect ratio along with a smaller effective radius are the best photoabsorbing nanoparticles, the highest scattering contrast for imaging applications is obtained from nanorods of high aspect ratio with a larger effective radius.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
2252 |
21
|
Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A 2007; 104:2050-5. [PMID: 17267609 PMCID: PMC1892985 DOI: 10.1073/pnas.0608582104] [Citation(s) in RCA: 2210] [Impact Index Per Article: 122.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Due to their small size, nanoparticles have distinct properties compared with the bulk form of the same materials. These properties are rapidly revolutionizing many areas of medicine and technology. Despite the remarkable speed of development of nanoscience, relatively little is known about the interaction of nanoscale objects with living systems. In a biological fluid, proteins associate with nanoparticles, and the amount and presentation of the proteins on the surface of the particles leads to an in vivo response. Proteins compete for the nanoparticle "surface," leading to a protein "corona" that largely defines the biological identity of the particle. Thus, knowledge of rates, affinities, and stoichiometries of protein association with, and dissociation from, nanoparticles is important for understanding the nature of the particle surface seen by the functional machinery of cells. Here we develop approaches to study these parameters and apply them to plasma and simple model systems, albumin and fibrinogen. A series of copolymer nanoparticles are used with variation of size and composition (hydrophobicity). We show that isothermal titration calorimetry is suitable for studying the affinity and stoichiometry of protein binding to nanoparticles. We determine the rates of protein association and dissociation using surface plasmon resonance technology with nanoparticles that are thiol-linked to gold, and through size exclusion chromatography of protein-nanoparticle mixtures. This method is less perturbing than centrifugation, and is developed into a systematic methodology to isolate nanoparticle-associated proteins. The kinetic and equilibrium binding properties depend on protein identity as well as particle surface characteristics and size.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
2210 |
22
|
Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. NANO LETTERS 2009; 9:30-5. [PMID: 19046078 DOI: 10.1021/nl801827v] [Citation(s) in RCA: 2106] [Impact Index Per Article: 131.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
In this work we present a low cost and scalable technique, via ambient pressure chemical vapor deposition (CVD) on polycrystalline Ni films, to fabricate large area ( approximately cm2) films of single- to few-layer graphene and to transfer the films to nonspecific substrates. These films consist of regions of 1 to approximately 12 graphene layers. Single- or bilayer regions can be up to 20 mum in lateral size. The films are continuous over the entire area and can be patterned lithographically or by prepatterning the underlying Ni film. The transparency, conductivity, and ambipolar transfer characteristics of the films suggest their potential as another materials candidate for electronics and opto-electronic applications.
Collapse
|
|
16 |
2106 |
23
|
Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 2008; 105:11613-8. [PMID: 18697944 PMCID: PMC2575324 DOI: 10.1073/pnas.0801763105] [Citation(s) in RCA: 2098] [Impact Index Per Article: 123.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Indexed: 02/07/2023] Open
Abstract
The interaction of particles with cells is known to be strongly influenced by particle size, but little is known about the interdependent role that size, shape, and surface chemistry have on cellular internalization and intracellular trafficking. We report on the internalization of specially designed, monodisperse hydrogel particles into HeLa cells as a function of size, shape, and surface charge. We employ a top-down particle fabrication technique called PRINT that is able to generate uniform populations of organic micro- and nanoparticles with complete control of size, shape, and surface chemistry. Evidence of particle internalization was obtained by using conventional biological techniques and transmission electron microscopy. These findings suggest that HeLa cells readily internalize nonspherical particles with dimensions as large as 3 mum by using several different mechanisms of endocytosis. Moreover, it was found that rod-like particles enjoy an appreciable advantage when it comes to internalization rates, reminiscent of the advantage that many rod-like bacteria have for internalization in nonphagocytic cells.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
2098 |
24
|
Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 2004; 377:159-69. [PMID: 14505488 PMCID: PMC1223843 DOI: 10.1042/bj20031253] [Citation(s) in RCA: 2054] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Accepted: 09/24/2003] [Indexed: 11/17/2022]
Abstract
Non-phagocytic eukaryotic cells can internalize particles <1 microm in size, encompassing pathogens, liposomes for drug delivery or lipoplexes applied in gene delivery. In the present study, we have investigated the effect of particle size on the pathway of entry and subsequent intracellular fate in non-phagocytic B16 cells, using a range of fluorescent latex beads of defined sizes (50-1000 nm). Our data reveal that particles as large as 500 nm were internalized by cells via an energy-dependent process. With an increase in size (50-500 nm), cholesterol depletion increased the efficiency of inhibition of uptake. The processing of the smaller particles was significantly perturbed upon microtubule disruption, while displaying a negligible effect on that of the 500 nm beads. Inhibitor and co-localization studies revealed that the mechanism by which the beads were internalized, and their subsequent intracellular routing, was strongly dependent on particle size. Internalization of microspheres with a diameter <200 nm involved clathrin-coated pits. With increasing size, a shift to a mechanism that relied on caveolae-mediated internalization became apparent, which became the predominant pathway of entry for particles of 500 nm in size. At these conditions, delivery to the lysosomes was no longer apparent. The data indicate that the size itself of (ligand-devoid) particles can determine the pathway of entry. The clathrin-mediated pathway of endocytosis shows an upper size limit for internalization of approx. 200 nm, and kinetic parameters may determine the almost exclusive internalization of such particles along this pathway rather than via caveolae.
Collapse
|
Journal Article |
21 |
2054 |
25
|
Haiss W, Thanh NTK, Aveyard J, Fernig DG. Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal Chem 2007; 79:4215-21. [PMID: 17458937 DOI: 10.1021/ac0702084] [Citation(s) in RCA: 2051] [Impact Index Per Article: 113.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dependence of the optical properties of spherical gold nanoparticles on particle size and wavelength were analyzed theoretically using multipole scattering theory, where the complex refractive index of gold was corrected for the effect of a reduced mean free path of the conduction electrons in small particles. To compare these theoretical results to experimental data, gold nanoparticles in the size range of 5 to 100 nm were synthesized and characterized with TEM and UV-vis. Excellent agreement was found between theory and experiment. It is shown that the data produced here can be used to determine both size and concentration of gold nanoparticles directly from UV-vis spectra. Equations for this purpose are derived, and the precision of various methods is discussed. The major aim of this work is to provide a simple and fast method to determine size and concentration of nanoparticles.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
2051 |