1
|
McGonagle D, Marzo-Ortega H, O'Connor P, Gibbon W, Pease C, Reece R, Emery P. The role of biomechanical factors and HLA-B27 in magnetic resonance imaging-determined bone changes in plantar fascia enthesopathy. ARTHRITIS AND RHEUMATISM 2002; 46:489-93. [PMID: 11840452 DOI: 10.1002/art.10125] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To study the role of biomechanical factors and HLA-B27 in plantar fasciitis. METHODS T1-weighted and T2 spectral presaturation with inversion recovery (fat suppressed) magnetic resonance imaging (MRI) sequences of the plantar fascia insertion and adjacent bone were performed on 28 patients with plantar fasciitis; 17 had spondylarthropathy (SpA)-associated disease, and 11 had mechanically induced disease. The relationship between the degree of bone edema, scored on a semiquantitative scale (from absent to severe), and the patient's HLA-B27 status was determined. RESULTS On MRI, edema within the soft tissue at the enthesis was evident in both groups. Bone edema in the adjacent calcaneum was evident in 64.7% (11 of 17) of patients with SpA and in 45% (5 of 11) of those with mechanically induced disease (P = 0.441). HLA-B27 was identified in 9 (53%) of the patients with SpA but in none (0%) of those with mechanically induced disease. All 6 of the SpA patients with extensive bone edema but none of the 5 SpA patients with mild bone edema were HLA-B27 positive (P = 0.002). CONCLUSION The association of HLA-B27 with bone pathology in early enthesitis may have implications for a better understanding of the pathogenesis of SpA.
Collapse
|
|
23 |
136 |
2
|
Alfredson H, Lorentzon M, Bäckman S, Bäckman A, Lerner UH. cDNA-arrays and real-time quantitative PCR techniques in the investigation of chronic Achilles tendinosis. J Orthop Res 2003; 21:970-5. [PMID: 14554207 DOI: 10.1016/s0736-0266(03)00107-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aetiology and pathogenesis of chronic painful Achilles tendinosis are unknown. This investigation aimed to use cDNA arrays and real-time quantitative polymerase chain reaction (real-time PCR) technique to study tendinosis and control tissue samples. Five patients (females mean age 57.1+/-4.3 (years+/-SD)) with chronic painful Achilles tendinosis were included. From all patients, one biopsy was taken from the area with tendinosis and one from a clinically normal area (control) of the tendon. The tissue samples were immediately immersed in RNAlater and frozen at -80 degrees C until RNA extraction. Portions of pooled RNA from control and tendinosis sites, respectively, were transcribed to cDNA, radioactively labelled (32P), hybridized to cDNA expression arrays, and exposed to phosphoimager screens over night. Expressions of specific genes, shown to be regulated in the cDNA array analysis, were analyzed in the individual samples using real-time PCR. cDNA arrays showed that gene expressions for matrix-metalloproteinase-2 (MMP-2), fibronectin subunit B (FNRB), vascular endothelial growth factor (VEGF), and mitogen-activated protein kinase p38 (MAPKp38) were up-regulated, while matrix-metalloproteinase-3 (MMP-3) and decorin were down-regulated, in tendinosis tissue compared with control tissue. Using real-time PCR, 4/5 and 3/5 patients showed up-regulation of MMP-2 and FNRB mRNA, respectively. For decorin, VEGF, and MAPKp38, real-time PCR revealed a great variability among patients. Interestingly, the mRNAs for several cytokines and cytokine receptors were not regulated, indicating the absence of an inflammatory process in chronic painful Achilles tendinosis. In conclusion, cDNA-arrays and real-time PCR can be used to study differences in gene expression levels between tendinosis and control tendon tissue.
Collapse
|
|
22 |
126 |
3
|
Longo UG, Berton A, Papapietro N, Maffulli N, Denaro V. Epidemiology, genetics and biological factors of rotator cuff tears. MEDICINE AND SPORT SCIENCE 2011; 57:1-9. [PMID: 21986040 DOI: 10.1159/000328868] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rotator cuff disease is among the most common musculoskeletal disorders with high direct and indirect costs in industrialized countries. Not all rotator cuff tears are symptomatic. Genetics has recently been investigated as a factor involved in the pathogenesis of rotator cuff pathology. Genetic factors seem to be involved in symptom presentation and tear progression. As rotator cuff disease is multifactorial, no single gene is directly involved in the pathology. Phenotypic expression of genetic susceptibility manifests at the level of ultrastructure of the tendon. Predisposing genes may also operate through apoptosis and regenerative capacity. Studies on cellular and molecular biology are more numerous, but still incomplete, and recently have focussed on the role of apoptosis in tendinopathy, analyzing its key mediators and cellular changes. Oxidative stress is responsible for reduction of collagen synthesis. Biological investigations have identified recently new risk factors. Preliminary reports introduced the possible role of glucose as a risk factor for rotator cuff tear. Further studies are required to fully clarify the genetic and biological factors involved in rotator cuff tears.
Collapse
|
Review |
14 |
77 |
4
|
Andersson G, Danielson P, Alfredson H, Forsgren S. Presence of substance P and the neurokinin-1 receptor in tenocytes of the human Achilles tendon. ACTA ACUST UNITED AC 2008; 150:81-7. [PMID: 18394729 DOI: 10.1016/j.regpep.2008.02.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/31/2008] [Accepted: 02/07/2008] [Indexed: 11/19/2022]
Abstract
Nerve signal substances, such as the tachykinin substance P (SP), may be involved in the changes that occur in response to tendinopathy (tendinosis). It is previously known that the level of SP innervation within tendon tissue is limited, but results of experimental studies have suggested that SP may have stimulatory, angiogenetic and healing effects in injured tendons. Therefore, it would be of interest to know if there is a local SP-supply in tendon tissue. In the present study, the patterns of expression of SP and its preferred receptor, the neurokinin-1 receptor (NK-1 R), in normal and tendinosis human Achilles tendons were analyzed by use of both immunohistochemistry and in situ hybridization. We found that there was expression of SP mRNA in tenocytes, and that tenocytes showed expression of NK-1 R at protein as well as mRNA levels. The observations concerning both SP and NK-1 R were most evident for tenocytes in tendinosis tendons. Our findings suggest that SP is produced in tendinosis tendons, and furthermore that SP has marked effects on the tenocytes via the NK-1 R. It cannot be excluded that the SP effects are of importance concerning the processes of reorganization and healing that occur for tendon tissue in tendinosis. In conclusion, it appears as if SPergic autocrine/paracrine effects occur in tendon tissue during the processes of tendinosis, hitherto unknown effects for human tendons.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
62 |
5
|
Magra M, Maffulli N. Genetic aspects of tendinopathy. J Sci Med Sport 2007; 11:243-7. [PMID: 17870670 DOI: 10.1016/j.jsams.2007.04.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 04/06/2007] [Accepted: 04/10/2007] [Indexed: 11/28/2022]
Abstract
Tendinopathy is characterised by a disorganised, haphazard healing response with no histological signs of inflammation. Research on tendon injuries is limited to the description of the condition and its management, and the pathogenesis is still ill defined. Together with known intrinsic and extrinsic factors, genetics may play a significant role in the aetiopathogenesis of tendinopathy. ABO and other closely linked genes, COL5A1, and tenascin-C have all been implicated in the aetiopathogenesis of tendinopathy. However, the precise role of these genes in causing or protecting individuals from developing tendinopathy is yet to be defined. An interaction between the various intrinsic and extrinsic factors with the genetic make-up of an individual may increase the likelihood of one individual developing tendinopathy over another. Tendinopathy may well be polygenic, involving complex interactions between multiple genes, and could possibly run in families. Further investigations should determine the exact role played by genetic influences in maintaining tendon homeostasis and pave the way for gene transfer therapy to be developed for the management of tendinopathies.
Collapse
|
Review |
18 |
62 |
6
|
Oliva F, Barisani D, Grasso A, Maffulli N. Gene expression analysis in calcific tendinopathy of the rotator cuff. Eur Cell Mater 2011; 21:548-557. [PMID: 21710445 DOI: 10.22203/ecm.v021a41] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We evaluated the expression of several genes involved in tissue remodelling and bone development in patients with calcific tendinopathy of the rotator cuff. Biopsies from calcified and non-calcified areas were obtained from 10 patients (8 women and 2 men; average age: 55 years; range: 40-68) with calcific tendinopathy of the rotator cuff. To evaluate the expression of selected genes, RNA extraction, cDNA synthesis and quantitative polymerase chain reaction (PCR) were performed. A significantly increased expression of tissue transglutaminase (tTG)2 and its substrate, osteopontin, was detected in the calcific areas compared to the levels observed in the normal tissue from the same subject with calcific tendinopathy, whereas a modest increase was observed for catepsin K. There was also a significant decrease in mRNA expression of Bone Morphogenetic Protein (BMP)4 and BMP6 in the calcific area. BMP-2, collagen V and vascular endothelial growth factor (VEGF) did not show significant differences. Collagen X and matrix metalloproteinase (MMP)-9 were not detectable. A variation in expression of these genes could be characteristic of this form tendinopathy, since an increased level of these genes has not been detected in other forms of tendon lesions.
Collapse
|
|
14 |
48 |
7
|
Corps AN, Robinson AHN, Movin T, Costa ML, Ireland DC, Hazleman BL, Riley GP. Versican splice variant messenger RNA expression in normal human Achilles tendon and tendinopathies. Rheumatology (Oxford) 2004; 43:969-72. [PMID: 15138331 DOI: 10.1093/rheumatology/keh222] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Versican is the principal large proteoglycan expressed in mid-tendon, but its role in tendon pathology is unknown. Our objective was to define the expression of versican isoform splice variant messenger ribonucleic acid (mRNA) in normal Achilles tendons, in chronic painful tendinopathy and in ruptured tendons. METHODS Total RNA isolated from frozen tendon samples (normal n = 14; chronic painful tendinopathy n = 10; ruptured n = 8) was assayed by relative quantitative reverse transcriptase polymerase chain reaction (RT-PCR) for total versican, versican variants V0, V1, V2, V3 and type I collagen alpha1 mRNA, normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Differences between sample groups were tested by Wilcoxon statistics. RESULTS Painful and ruptured tendons showed a significant decrease (median 2-fold) in the expression of versican mRNA, in contrast to an increased expression (median 8-fold) of type I collagen alpha1 mRNA in painful tendons. Versican splice variants V0 and V1 mRNA were readily detected in normal samples, V3 levels were substantially lower, and V2 levels were more variable. Each of V1, V2 and V3 mRNA showed significant decreases in expression in painful and ruptured tendons, but V0 was not significantly changed. CONCLUSIONS Changes in versican expression relative to that of collagen, and alterations in the balance of versican splice variants, may contribute to changes in matrix structure and function in tendinopathies.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
46 |
8
|
Akbar M, MacDonald L, Crowe LAN, Carlberg K, Kurowska-Stolarska M, Ståhl PL, Snelling SJB, McInnes IB, Millar NL. Single cell and spatial transcriptomics in human tendon disease indicate dysregulated immune homeostasis. Ann Rheum Dis 2021; 80:1494-1497. [PMID: 34001518 PMCID: PMC8522454 DOI: 10.1136/annrheumdis-2021-220256] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/05/2021] [Indexed: 01/16/2023]
|
Letter |
4 |
43 |
9
|
Kim SK, Roos TR, Roos AK, Kleimeyer JP, Ahmed MA, Goodlin GT, Fredericson M, Ioannidis JPA, Avins AL, Dragoo JL. Genome-wide association screens for Achilles tendon and ACL tears and tendinopathy. PLoS One 2017; 12:e0170422. [PMID: 28358823 PMCID: PMC5373512 DOI: 10.1371/journal.pone.0170422] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/04/2017] [Indexed: 11/18/2022] Open
Abstract
Achilles tendinopathy or rupture and anterior cruciate ligament (ACL) rupture are substantial injuries affecting athletes, associated with delayed recovery or inability to return to competition. To identify genetic markers that might be used to predict risk for these injuries, we performed genome-wide association screens for these injuries using data from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort consisting of 102,979 individuals. We did not find any single nucleotide polymorphisms (SNPs) associated with either of these injuries with a p-value that was genome-wide significant (p<5x10-8). We found, however, four and three polymorphisms with p-values that were borderline significant (p<10-6) for Achilles tendon injury and ACL rupture, respectively. We then tested SNPs previously reported to be associated with either Achilles tendon injury or ACL rupture. None showed an association in our cohort with a false discovery rate of less than 5%. We obtained, however, moderate to weak evidence for replication in one case; specifically, rs4919510 in MIR608 had a p-value of 5.1x10-3 for association with Achilles tendon injury, corresponding to a 7% chance of false replication. Finally, we tested 2855 SNPs in 90 candidate genes for musculoskeletal injury, but did not find any that showed a significant association below a false discovery rate of 5%. We provide data containing summary statistics for the entire genome, which will be useful for future genetic studies on these injuries.
Collapse
|
Meta-Analysis |
8 |
39 |
10
|
Pingel J, Wienecke J, Kongsgaard M, Behzad H, Abraham T, Langberg H, Scott A. Increased mast cell numbers in a calcaneal tendon overuse model. Scand J Med Sci Sports 2013; 23:e353-60. [PMID: 23889295 PMCID: PMC4282450 DOI: 10.1111/sms.12089] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2013] [Indexed: 02/06/2023]
Abstract
Tendinopathy is often discovered late because the initial development of tendon pathology is asymptomatic. The aim of this study was to examine the potential role of mast cell involvement in early tendinopathy using a high-intensity uphill running (HIUR) exercise model. Twenty-four male Wistar rats were divided in two groups: running group (n = 12); sedentary control group (n = 12). The running-group was exposed to the HIUR exercise protocol for 7 weeks. The calcaneal tendons of both hind limbs were dissected. The right tendon was used for histologic analysis using Bonar score, immunohistochemistry, and second harmonic generation microscopy (SHGM). The left tendon was used for quantitative polymerase chain reaction (qPCR) analysis. An increased tendon cell density in the runners were observed compared to the controls (P = 0.05). Further, the intensity of immunostaining of protein kinase B, P = 0.03; 2.75 ± 0.54 vs 1.17 ± 0.53, was increased in the runners. The Bonar score (P = 0.05), and the number of mast cells (P = 0.02) were significantly higher in the runners compared to the controls. Furthermore, SHGM showed focal collagen disorganization in the runners, and reduced collagen density (P = 0.03). IL-3 mRNA levels were correlated with mast cell number in sedentary animals. The qPCR analysis showed no significant differences between the groups in the other analyzed targets. The current study demonstrates that 7-week HIUR causes structural changes in the calcaneal tendon, and further that these changes are associated with an increased mast cell density.
Collapse
|
research-article |
12 |
38 |
11
|
Tasto JP, Cummings J, Medlock V, Harwood F, Hardesty R, Amiel D. The tendon treatment center: new horizons in the treatment of tendinosis. Arthroscopy 2003; 19 Suppl 1:213-23. [PMID: 14673441 DOI: 10.1016/j.arthro.2003.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
Comparative Study |
22 |
33 |
12
|
Corps AN, Robinson AHN, Harrall RL, Avery NC, Curry VA, Hazleman BL, Riley GP. Changes in matrix protein biochemistry and the expression of mRNA encoding matrix proteins and metalloproteinases in posterior tibialis tendinopathy. Ann Rheum Dis 2012; 71:746-52. [PMID: 22241901 PMCID: PMC3329235 DOI: 10.1136/annrheumdis-2011-200391] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/29/2011] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Adult-acquired flat foot secondary to a dysfunctional posterior tibialis tendon (PTT) is often treated by surgical transfer of the flexor digitorum longus tendon (FDLT). In this study, the authors compared normal PTT, stage II dysfunctional PTT and replacement FDLT, aiming to define changes in collagen modification, glycosaminoglycan (GAG) and the expression of matrix and metalloproteinase mRNA. METHODS Normal PTTs were obtained from patients with no history of tendon problems. Samples of dysfunctional PTT and replacement FDLT tissue were obtained from patients undergoing surgical reconstruction. Tissue samples were analysed for total collagen and GAG, pentosidine and collagen cross-links. Total RNA was assayed for mRNA encoding matrix proteins and metalloproteinases, using real-time reverse transcription PCR. Differences between clinical groups were assessed using non-parametric statistics. RESULTS Dysfunctional PTT contained higher levels of GAG and lower levels of pentosidine than normal PTT or FDLT. In contrast, collagen in FDLT contained fewer ketoimine and more aldimine cross-links than either normal or dysfunctional PTT. mRNA encoding types I and III collagens, aggrecan, biglycan, matrix metalloproteinase (MMP)-2, -13 and -23, and a disintegrin and metalloproteinase (ADAM)-12L each showed increased levels in dysfunctional PTT compared with either normal PTT or (except MMP-13) FDLT. In contrast, MMP-3 and ADAM with thrombospondin domain (ADAMTS)-5 mRNA were lower in both dysfunctional PTT and FDLT than in normal PTT, while ADAMTS-1 mRNA was lower in dysfunctional PTT than in FDLT. CONCLUSIONS Stage II dysfunctional PTT shows biochemical and molecular changes consistent with a chronic remodelling of the extracellular matrix, rather than rupture, while the replacement FDLT resembles normal PTT in many, but not all, parameters.
Collapse
|
research-article |
13 |
33 |
13
|
Thankam FG, Boosani CS, Dilisio MF, Dietz NE, Agrawal DK. MicroRNAs Associated with Shoulder Tendon Matrisome Disorganization in Glenohumeral Arthritis. PLoS One 2016; 11:e0168077. [PMID: 27992561 PMCID: PMC5161352 DOI: 10.1371/journal.pone.0168077] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/27/2016] [Indexed: 12/27/2022] Open
Abstract
The extracellular matrix (ECM) provides core support which is essential for the cell and tissue architectural development. The role of ECM in many pathological conditions has been well established and ECM-related abnormalities leading to serious consequences have been identified. Though much has been explored in regards to the role of ECM in soft tissue associated pathologies, very little is known about its role in inflammatory disorders in tendon. In this study, we performed microRNA (miRNA) expression analysis in the long head of the human shoulder biceps tendon to identify key genes whose expression was altered during inflammation in patients with glenohumeral arthritis. We identified differential regulation of matrix metalloproteinases (MMPs) that could be critical in collagen type replacement during tendinopathy. The miRNA profiling showed consistent results between the groups and revealed significant changes in the expression of seven different miRNAs in the inflamed tendons. Interestingly, all of these seven miRNAs were previously reported to have either a direct or indirect role in regulating the ECM organization in other pathological disorders. In addition, these miRNAs were also found to alter the expression levels of MMPs, which are the key matrix degrading enzymes associated with ECM-related abnormalities and pathologies. To our knowledge, this is the first report which identifies specific miRNAs associated with inflammation and the matrix reorganization in the tendons. Furthermore, the findings also support the potential role of these miRNAs in altering the collagen type ratio in the tendons during inflammation which is accompanied with differential expression of MMPs.
Collapse
|
research-article |
9 |
30 |
14
|
Danielson P, Andersson G, Alfredson H, Forsgren S. Extensive expression of markers for acetylcholine synthesis and of M2 receptors in tenocytes in therapy-resistant chronic painful patellar tendon tendinosis - a pilot study. Life Sci 2007; 80:2235-8. [PMID: 17289083 DOI: 10.1016/j.lfs.2007.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 11/26/2006] [Accepted: 01/05/2007] [Indexed: 11/23/2022]
Abstract
We have recently obtained evidence favoring the occurrence of an up-regulation of a non-neuronal cholinergic system in chronic painful patellar tendon tendinosis. It seems possible that this up-regulation to a certain degree may be involved in the manifestations of the disease. Today, there is a new, very successful, line of treatment of patellar tendinosis in the form of Doppler guided sclerosing injections. However, a few patients seem resistant to this therapy. Therefore, we have in this pilot study investigated biopsies from the patellar tendon of three such therapy-resistant patients, using immunohistochemistry. In situ hybridization was also applied. Comparisons were made with a material of specimens from both normal (n=16) and tendinosis (n=7) tendons, also previously examined. The study showed that there were extensive immunoreactions for choline acetyltransferase (ChAT) and vesicular acetylcholine transporter, as well as for the M(2) muscarinic acetylcholine receptor, in the overwhelming majority of the tenocytes. The immunoreactions were more pronounced than those generally obtained in the tendinosis tissue of the previously studied patients and clearly more pronounced than those of patellar tendon tissue of controls. Also, for the first time, we here present findings of mRNA for ChAT within tenocytes. In conclusion, it appears as if there is an excessive local acetylcholine (ACh) production and an occurrence of marked ACh effects in cases of severe tendinosis. An excessive production of local ACh might be related to pain sensation and the processes that occur in tendinosis development, such as cell proliferation. Thus, the results of this pilot study suggest that non-neuronal ACh is highly involved in the pathology of therapy-resistant patellar tendinosis.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
30 |
15
|
Sengar DP, McKendry RJ, Uhthoff HK. Increased frequency of HLA-A1 in calcifying tendinitis. TISSUE ANTIGENS 1987; 29:173-4. [PMID: 3496685 DOI: 10.1111/j.1399-0039.1987.tb01571.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
|
38 |
27 |
16
|
Chaudhury S, Carr AJ. Lessons we can learn from gene expression patterns in rotator cuff tears and tendinopathies. J Shoulder Elbow Surg 2012; 21:191-9. [PMID: 22244062 DOI: 10.1016/j.jse.2011.10.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 10/22/2011] [Accepted: 10/23/2011] [Indexed: 02/06/2023]
Abstract
Persistently high failure rates that are reported after rotator cuff repairs have encouraged greater understanding of the pathophysiology that underlies rotator cuff tears. Biologic changes that contribute to the pathogenesis of rotator cuff tears and tendinopathies, as well as adaptation after these changes, have been well described. A subset of patients with a genetic predisposition to early onset of rotator cuff tears and earlier symptom and disease progression have been identified. Many biologic changes occurring at the gene level have been identified. Pathways that are believed to contribute to rotator cuff tendinopathies include extracellular matrix remodeling, angiogenesis, changes in metabolism, apoptosis, and stress-related genes. Metaplasia of rotator cuff cells is contributed to by changes in gene expression. Modification of these gene changes may be possible through mechanical loading, drugs, or cellular manipulation. Gene changes may offer greater insight into why certain tears fail to heal and help to identify therapeutic targets.
Collapse
|
Review |
13 |
27 |
17
|
Abstract
Although heredity has been previously suggested as a cause of congenital trigger thumb (stenosing tenovaginitis), no cases in succeeding generations have been reported. The occurrence of 2 cases in a father and son adds credence to a hereditary etiology.
Collapse
|
Case Reports |
46 |
20 |
18
|
Still C, Chang WT, Sherman SL, Sochacki KR, Dragoo JL, Qi LS. Single-cell transcriptomic profiling reveals distinct mechanical responses between normal and diseased tendon progenitor cells. Cell Rep Med 2021; 2:100343. [PMID: 34337559 PMCID: PMC8324492 DOI: 10.1016/j.xcrm.2021.100343] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 02/23/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022]
Abstract
Regenerative medicine approaches utilizing stem cells offer a promising strategy to address tendinopathy, a class of common tendon disorders associated with pain and impaired function. Tendon progenitor cells (TPCs) are important in healing and maintaining tendon tissues. Here we provide a comprehensive single cell transcriptomic profiling of TPCs from three normal and three clinically classified tendinopathy samples in response to mechanical stimuli. Analysis reveals seven distinct TPC subpopulations including subsets that are responsive to the mechanical stress, highly clonogenic, and specialized in cytokine or growth factor expression. The single cell transcriptomic profiling of TPCs and their subsets serves as a foundation for further investigation into the pathology and molecular hallmarks of tendinopathy in mechanical stimulation conditions.
Collapse
|
brief-report |
4 |
16 |
19
|
Jacobsen E, Dart AJ, Mondori T, Horadogoda N, Jeffcott LB, Little CB, Smith MM. Focal experimental injury leads to widespread gene expression and histologic changes in equine flexor tendons. PLoS One 2015; 10:e0122220. [PMID: 25837713 PMCID: PMC4383631 DOI: 10.1371/journal.pone.0122220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 02/19/2015] [Indexed: 01/15/2023] Open
Abstract
It is not known how extensively a localised flexor tendon injury affects the entire tendon. This study examined the extent of and relationship between histopathologic and gene expression changes in equine superficial digital flexor tendon after a surgical injury. One forelimb tendon was hemi-transected in six horses, and in three other horses, one tendon underwent a sham operation. After euthanasia at six weeks, transected and control (sham and non-operated contralateral) tendons were regionally sampled (medial and lateral halves each divided into six 3 cm regions) for histologic (scoring and immunohistochemistry) and gene expression (real time PCR) analysis of extracellular matrix changes. The histopathology score was significantly higher in transected tendons compared to control tendons in all regions except for the most distal (P ≤ 0.03) with no differences between overstressed (medial) and stress-deprived (lateral) tendon halves. Proteoglycan scores were increased by transection in all but the most proximal region (P < 0.02), with increased immunostaining for aggrecan, biglycan and versican. After correcting for location within the tendon, gene expression for aggrecan, versican, biglycan, lumican, collagen types I, II and III, MMP14 and TIMP1 was increased in transected tendons compared with control tendons (P < 0.02) and decreased for ADAMTS4, MMP3 and TIMP3 (P < 0.001). Aggrecan, biglycan, fibromodulin, and collagen types I and III expression positively correlated with all histopathology scores (P < 0.001), whereas lumican, ADAMTS4 and MMP14 expression positively correlated only with collagen fiber malalignment (P < 0.001). In summary, histologic and associated gene expression changes were significant and widespread six weeks after injury to the equine SDFT, suggesting rapid and active development of tendinopathy throughout the entire length of the tendon. These extensive changes distant to the focal injury may contribute to poor functional outcomes and re-injury in clinical cases. Our data suggest that successful treatments of focal injuries will need to address pathology in the entire tendon, and that better methods to monitor the development and resolution of tendinopathy are required.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
16 |
20
|
Nie G, Wen X, Liang X, Zhao H, Li Y, Lu J. Additional evidence supports association of common genetic variants in MMP3 and TIMP2 with increased risk of chronic Achilles tendinopathy susceptibility. J Sci Med Sport 2019; 22:1074-1078. [PMID: 31208828 DOI: 10.1016/j.jsams.2019.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/13/2019] [Accepted: 05/30/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To systematically evaluate the effects of matrix metalloproteinase-3 (MMP3) and tissue inhibitor of metalloproteinase-2 (TIMP2) on chronic Achilles tendinopathy (AT) susceptibility. Chronic AT is one of the most prevalent and severe injuries in athletes. Early studies suggested that tendon extracellular matrix (ECM) may be involved in the pathogenesis of chronic AT. MMP3 is an important member of the MMP family and is important to ECM integrity. In addition, tissue inhibitor of metalloproteinase-2 (TIMP2) can indirectly limit the activity of MMP3 activity. DESIGN Case-control genetic association study. METHODS A total of 1084 chronic AT patients and 2188 controls with Chinese Han ancestry were recruited. Twenty-one SNPs, 4 mapped to MMP3 and 17 mapped to TIMP2, were selected and genotyped. Genetic association analyses and eQTL analyses were performed. In addition, we also examined the potential effects of epistasis using a case-only study design. RESULTS Two SNPs, rs679620 (OR=0.82, P=0.0006, MMP3) and rs4789932 (OR=1.2, P=0.0002, TIMP2) were identified to be significantly associated with chronic AT risk. No significant results were obtained from epistasis analyses. SNP rs4789932 was identified to be strongly associated with the gene expression level of TIMP2 in two types of human tissues: atrial appendage (P=0.0003) and tibial artery (P=0.0009). CONCLUSIONS We have identified genetic polymorphisms in MMP3 and TIMP2 to be significantly associated with chronic AT risk. Further eQTL analyses indicated that SNP rs4789932 of TIMP2 was related to the gene expression levels of TIMP2. These results suggest important roles for MMP3 and TIMP2 in the pathophysiology of chronic AT.
Collapse
|
Journal Article |
6 |
15 |
21
|
Tsang AS, Dart AJ, Biasutti SA, Jeffcott LB, Smith MM, Little CB. Effects of tendon injury on uninjured regional tendons in the distal limb: An in-vivo study using an ovine tendinopathy model. PLoS One 2019; 14:e0215830. [PMID: 31013317 PMCID: PMC6478347 DOI: 10.1371/journal.pone.0215830] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
Following injury to a tendon little is known about potential for pathology to develop in other regional tendons from overloading or altered function. The aim of this study was to investigate the gene expression and histopathological changes that occur 1) within the deep digital flexor tendon (DDFT) after injury to the superficial digital flexor tendon (SDFT) and 2) within the flexor tendons (SDFT and DDFT) after injury to the extensor tendons. Merino wethers [Ovis aries] (n = 18) were divided into three equal groups and underwent either partial transection of the SDFT, complete transection of the extensor tendons or were left as non-operated controls. Tendons were harvested and sampled regionally for gene expression (real time PCR) and histologic analysis eight weeks after surgery. Transection of the SDFT resulted in increased expression of collagen III, versican, biglycan, lumican and MMP1 (P<0.026 for all genes) within the DDFT. There was no effect of transecting the extensor tendons on the expression of any gene tested in either the SDFT or the DDFT. The DDFT had elevated histopathology scores induced by transection of the SDFT, eight weeks previously. There were minimal histological differences in either the SDFT or DDFT after transection of the extensor tendons. Transection of the SDFT results in a mild, subclinical tendinopathy within the DDFT with potential implications on treatment and rehabilitation of SDFT injuries. Injury to the extensor tendons has minimal measured effect on the SDFT or DDFT.
Collapse
|
Journal Article |
6 |
13 |
22
|
Asundi KR, King KB, Rempel DM. Evaluation of gene expression through qRT-PCR in cyclically loaded tendons: an in vivo model. Eur J Appl Physiol 2008; 102:265-70. [PMID: 17922137 DOI: 10.1007/s00421-007-0582-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2007] [Indexed: 12/27/2022]
Abstract
An in vivo rabbit animal model for the tendinopathy, epicondylitis, was used to examine the effects of repetitive load on the expression of various genes associated with matrix remodeling. Following 80 h of cumulative load, tissue from the distal and proximal regions of the flexor digitorum profundus tendon was collected. Quantitative RT-PCR was used to asses mRNA levels of collagenase-1 (MMP-1), stromelysin (MMP-3), vascular endothelial growth factor (VEGF), connective tissue growth factor (CTGF), cyclooxygenase-2 (COX-2), interleukin-1beta (IL-1beta), type III collagen (COL-III) and fibronectin (FBRN). No significant differences in expression levels were found between loaded and unloaded limbs at either region of the tendon. The findings were unexpected as the same model has already demonstrated an increase in the density of cells staining for VEGF and CTGF. Different regulatory mechanisms between mRNA and protein expression or localized changes missed due to homogenization of the tissue samples, may explain the discrepancy in findings.
Collapse
|
|
17 |
13 |
23
|
Chen F, Zheng L, Li Y, Li H, Yao Z, Li M. Mutation in FAM111B Causes Hereditary Fibrosing Poikiloderma with Tendon Contracture, Myopathy, and Pulmonary Fibrosis. Acta Derm Venereol 2019; 99:695-696. [PMID: 30938824 DOI: 10.2340/00015555-3186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
Case Reports |
6 |
13 |
24
|
Gibbon A, Saunders CJ, Collins M, Gamieldien J, September AV. Defining the molecular signatures of Achilles tendinopathy and anterior cruciate ligament ruptures: A whole-exome sequencing approach. PLoS One 2018; 13:e0205860. [PMID: 30359423 PMCID: PMC6201890 DOI: 10.1371/journal.pone.0205860] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/02/2018] [Indexed: 12/22/2022] Open
Abstract
Musculoskeletal soft tissue injuries are complex phenotypes with genetics being one of many proposed risk factors. Case-control association studies using the candidate gene approach have predominately been used to identify risk loci for these injuries. However, the ability to identify all risk conferring variants using this approach alone is unlikely. Therefore, this study aimed to further define the genetic profile of these injuries using an integrated omics approach involving whole exome sequencing and a customised analyses pipeline. The exomes of ten exemplar asymptomatic controls and ten exemplar cases with Achilles tendinopathy were individually sequenced using a platform that included the coverage of the untranslated regions and miRBase miRNA genes. Approximately 200 000 variants were identified in the sequenced samples. Previous research was used to guide a targeted analysis of the genes encoding the tenascin-C (TNC) glycoprotein and the α1 chain of type XXVII collagen (COL27A1) located on chromosome 9. Selection of variants within these genes were; however, not predetermined but based on a tiered filtering strategy. Four variants in TNC (rs1061494, rs1138545, rs2104772 and rs1061495) and three variants in the upstream COL27A1 gene (rs2567706, rs2241671 and rs2567705) were genotyped in larger Achilles tendinopathy and anterior cruciate ligament (ACL) rupture sample groups. The CC genotype of TNC rs1061494 (C/T) was associated with the risk of Achilles tendinopathy (p = 0.018, OR: 2.5 95% CI: 1.2-5.1). Furthermore, the AA genotype of the TNC rs2104772 (A/T) variant was significantly associated with ACL ruptures in the female subgroup (p = 0.035, OR: 2.3 95% CI: 1.1-5.5). An inferred haplotype in the TNC gene was also associated with the risk of Achilles tendinopathy. These results provide a proof of concept for the use of a customised pipeline for the exploration of a larger genomic dataset. This approach, using previous research to guide a targeted analysis of the data has generated new genetic signatures in the biology of musculoskeletal soft tissue injuries.
Collapse
|
research-article |
7 |
12 |
25
|
Yeung CC, Svensson RB, Yurchenko K, Malmgaard‐Clausen NM, Tryggedsson I, Lendal M, Jokipii‐Utzon A, Olesen JL, Lu Y, Kadler KE, Schjerling P, Kjær M. Disruption of day-to-night changes in circadian gene expression with chronic tendinopathy. J Physiol 2024; 602:6509-6524. [PMID: 36810732 PMCID: PMC11607887 DOI: 10.1113/jp284083] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Overuse injury in tendon tissue (tendinopathy) is a frequent and costly musculoskeletal disorder and represents a major clinical problem with unsolved pathogenesis. Studies in mice have demonstrated that circadian clock-controlled genes are vital for protein homeostasis and important in the development of tendinopathy. We performed RNA sequencing, collagen content and ultrastructural analyses on human tendon biopsies obtained 12 h apart in healthy individuals to establish whether human tendon is a peripheral clock tissue and we performed RNA sequencing on patients with chronic tendinopathy to examine the expression of circadian clock genes in tendinopathic tissues. We found time-dependent expression of 280 RNAs including 11 conserved circadian clock genes in healthy tendons and markedly fewer (23) differential RNAs with chronic tendinopathy. Further, the expression of COL1A1 and COL1A2 was reduced at night but was not circadian rhythmic in synchronised human tenocyte cultures. In conclusion, day-to-night changes in gene expression in healthy human patellar tendons indicate a conserved circadian clock as well as the existence of a night reduction in collagen I expression. KEY POINTS: Tendinopathy is a major clinical problem with unsolved pathogenesis. Previous work in mice has shown that a robust circadian rhythm is required for collagen homeostasis in tendons. The use of circadian medicine in the diagnosis and treatment of tendinopathy has been stifled by the lack of studies on human tissue. Here, we establish that the expression of circadian clock genes in human tendons is time dependent, and now we have data to corroborate that circadian output is reduced in diseased tendon tissues. We consider our findings to be of significance in advancing the use of the tendon circadian clock as a therapeutic target or preclinical biomarker for tendinopathy.
Collapse
|
research-article |
1 |
9 |