1
|
Wassenegger M, Heimes S, Riedel L, Sänger HL. RNA-directed de novo methylation of genomic sequences in plants. Cell 1994; 76:567-76. [PMID: 8313476 DOI: 10.1016/0092-8674(94)90119-8] [Citation(s) in RCA: 548] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
One monomeric and three oligomeric potato spindle tuber viroid (PSTVd) cDNA units were introduced into the tobacco genome via the Agrobacterium-mediated leaf-disc transformation. Southern analysis of the integrates revealed that only their PSTVd-specific sequences become fully methylated, whereas the flanking T-DNA and the genomic plant DNA remain unaltered. Viroid cDNA methylation could only be observed after autonomous viroid RNA-RNA replication had taken place in these plants. These findings demonstrate that a mechanism of de novo methylation of genes might exist that can be induced and targeted in a sequence-specific manner by their own mRNA.
Collapse
|
|
31 |
548 |
2
|
Abstract
Experimental data concerning viroid-specific nucleic acids accumulating in tomato plants establish, together with earlier studies, the major features of a replication cycle for viroid RNA in plant cells. Many features of this pathway, which involves multimeric strands of both polarities, may be shared by other small infectious RNA's including certain satellite RNA's and "virusoid" RNA's which replicate in conjunction with conventional plant viruses. The presence, in host plans, of an elaborate machinery for replicating these disease agents suggests a role for endogenous small RNA's in cellular development.
Collapse
|
Review |
41 |
324 |
3
|
Abstract
Viroids are single-stranded, circular, and noncoding RNAs that infect plants. They replicate in the nucleus or chloroplast and then traffic cell-to-cell through plasmodesmata and long distance through the phloem to establish systemic infection. They also cause diseases in certain hosts. All functions are mediated directly by the viroid RNA genome or genome-derived RNAs. I summarize recent advances in the understanding of viroid structures and cellular factors enabling these functions, emphasizing conceptual developments, major knowledge gaps, and future directions. Newly emerging experimental systems and research tools are discussed that are expected to enable significant progress in a number of key areas. I highlight examples of groundbreaking contributions of viroid research to the development of new biological principles and offer perspectives on using viroid models to continue advancing some frontiers of life science.
Collapse
|
Review |
16 |
190 |
4
|
Zhu Y, Green L, Woo YM, Owens R, Ding B. Cellular basis of potato spindle tuber viroid systemic movement. Virology 2001; 279:69-77. [PMID: 11145890 DOI: 10.1006/viro.2000.0724] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Viroids are small, nontranslatable pathogenic RNAs that replicate autonomously and traffic systemically in their host plants. We have used in situ hybridization to analyze the trafficking pattern of Potato spindle tuber viroid (PSTVd) in tomato and Nicotiana benthamiana. When PSTVd was inoculated onto the stem of a plant, it replicated and trafficked to sink, but not source, leaves. PSTVd was absent from shoot apical meristems. In the flowers of infected plants, PSTVd was present in the sepals, but was absent in the petals, stamens, and ovary. The replicative form of PSTVd was detected in the phloem. Our data demonstrate that (i) PSTVd traffics long distance in the phloem and this trafficking is likely sustained by replication of the viroid in the phloem, and (ii) PSTVd trafficking is governed by plant developmental and cellular factors. The dependency of PSTVd and other viroids on cellular mechanisms for RNA trafficking makes them excellent tools to study such mechanisms.
Collapse
|
|
24 |
116 |
5
|
Zhong X, Archual AJ, Amin AA, Ding B. A genomic map of viroid RNA motifs critical for replication and systemic trafficking. THE PLANT CELL 2008; 20:35-47. [PMID: 18178767 PMCID: PMC2254921 DOI: 10.1105/tpc.107.056606] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/12/2007] [Accepted: 12/13/2007] [Indexed: 05/19/2023]
Abstract
RNA replication and systemic trafficking play significant roles in developmental regulation and host-pathogen interactions. Viroids are the simplest noncoding eukaryotic RNA pathogens and genetic units that are capable of autonomous replication and systemic trafficking and offer excellent models to investigate the role of RNA structures in these processes. Like other RNAs, the predicted secondary structure of a viroid RNA contains many loops and bulges flanked by double-stranded helices, the biological functions of which are mostly unknown. Using Potato spindle tuber viroid infection of Nicotiana benthamiana as the experimental system, we tested the hypothesis that these loops/bulges are functional motifs that regulate replication in single cells or trafficking in a plant. Through a genome-wide mutational analysis, we identified multiple loops/bulges essential or important for each of these biological processes. Our results led to a genomic map of viroid RNA motifs that mediate single-cell replication and systemic trafficking, respectively. This map provides a framework to enable high-throughput studies on the tertiary structures and functional mechanisms of RNA motifs that regulate viroid replication and trafficking. Our model and approach should also be valuable for comprehensive investigations of the replication and trafficking motifs in other RNAs.
Collapse
|
research-article |
17 |
115 |
6
|
|
Review |
40 |
107 |
7
|
Abstract
This chapter focuses on the second viroid family, whose members are also referred to as hammerhead viroids, taking into account their most outstanding feature. If the word “small” is the first to come to mind when considering viroids, perhaps the second word is “hammerhead,” because this class of ribozymes, which because of its structural simplicity has an enormous biotechnological potential, is described in avocado sunblotch viroid (ASBVd) as well as in a viroid-like satellite RNA. The most outstanding feature of the Avsunviroidae members is their potential to adopt hammerhead structures in both polarity strands and to self-cleave in vitro accordingly. Viroids differ from viruses not only in their genome size but also in other fundamental aspects, prominent among which is the lack of messenger activity of both viroid RNAs and their complementary strands.
Collapse
|
review-article |
25 |
104 |
8
|
Navarro B, Flores R. Chrysanthemum chlorotic mottle viroid: unusual structural properties of a subgroup of self-cleaving viroids with hammerhead ribozymes. Proc Natl Acad Sci U S A 1997; 94:11262-7. [PMID: 9326597 PMCID: PMC23434 DOI: 10.1073/pnas.94.21.11262] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The causal agent of chrysanthemum chlorotic mottle (CChM) disease has been identified, cloned, and sequenced. It is a viroid RNA (CChMVd) of 398-399 nucleotides. In vitro transcripts with the complete CChMVd sequence were infectious and induced the typical symptoms of the CChM disease. CChMVd can form hammerhead structures in both polarity strands. Plus and minus monomeric CChMVd RNAs self-cleaved during in vitro transcription and after purification as predicted by these structures, which are stable and most probably act as single hammerhead structures as in peach latent mosaic viroid (PLMVd), but not in avocado sunblotch viroid (ASBVd). Moreover, the plus CChMVd hammerhead structure also appears to be active in vivo, because the 5' terminus of the linear plus CChMVd RNA isolated from infected tissue is that predicted by the corresponding hammerhead ribozyme. Both hammerhead structures of CChMVd display some peculiarities: the plus self-cleaving domain has an unpaired A after the conserved A9 residue, and the minus one has an unusually long helix II. The most stable secondary structure predicted for CChMVd is a branched conformation that does not fulfill the rod-like or quasi-rod-like model proposed for the in vitro structure of most viroids with the exception of PLMVd, whose proposed secondary structure of lowest free energy also is branched. The unusual conformation of CChMVd and PLMVd is supported by their insolubility in 2 M LiCl, in contrast to ASBVd and a series of representative non-self-cleaving viroids that are soluble under the same high salt conditions. These results support the classification of self-cleaving viroids into two subgroups, one formed by ASBVd and the other one by PLMVd and CChMVd.
Collapse
|
research-article |
28 |
97 |
9
|
Abstract
During 1970 and 1971, I discovered that a devastating disease of potato plants is not caused by a virus, as had been assumed, but by a new type of subviral pathogen, the viroid. Viroids are so small--one fiftieth of the size of the smallest viruses--that many scientists initially doubted their existence. We now know that viroids cause many damaging diseases of crop plants. Fortunately, new methods that are based on the unique properties of viroids now promise effective control.
Collapse
|
Review |
21 |
96 |
10
|
Navarro JA, Vera A, Flores R. A chloroplastic RNA polymerase resistant to tagetitoxin is involved in replication of avocado sunblotch viroid. Virology 2000; 268:218-25. [PMID: 10683343 DOI: 10.1006/viro.1999.0161] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Avocado sunblotch viroid (ASBVd), the type species of the family Avsunviroidae, replicates and accumulates in the chloroplast. Two main chloroplastic RNA polymerases have been described: the plastid-encoded polymerase (PEP) with a multisubunit structure similar to the Escherichia coli enzyme and a single-unit nuclear-encoded polymerase (NEP) resembling phage RNA polymerases. On a different basis, sensitivity to tagetitoxin, two major RNA polymerase activities, tagetitoxin sensitive (TS) and resistant (TR), have been found in plastids. The most plausible candidates for the TS and TR RNA polymerases are PEP and NEP, respectively. To gain an insight into the enzymology of the polymerization of ASBVd strands, purified chloroplast preparations from ASBVd-infected leaves were assayed for their in vitro ability to transcribe ASBVd RNAs together with some representative genes (psbA, 16SrDNA, accD, and rpoB) of the three classes of chloroplastic genes according to their promoter structure. High concentrations of alpha-amanitin had no effect on gene or on viroid transcription, but tagetitoxin (5-10 microM) prevented transcription of all these genes without affecting synthesis of ASBVd strands; only at higher tagetitoxin concentrations (50-100 microM) was a 25% inhibition observed. These results suggest that NEP is the RNA polymerase required in ASBVd replication, although the participation of another TR RNA polymerase from the chloroplast cannot be excluded.
Collapse
|
|
25 |
79 |
11
|
Schwind N, Zwiebel M, Itaya A, Ding B, Wang MB, Krczal G, Wassenegger M. RNAi-mediated resistance to Potato spindle tuber viroid in transgenic tomato expressing a viroid hairpin RNA construct. MOLECULAR PLANT PATHOLOGY 2009; 10:459-69. [PMID: 19523100 PMCID: PMC6640329 DOI: 10.1111/j.1364-3703.2009.00546.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Because of their highly ordered structure, mature viroid RNA molecules are assumed to be resistant to degradation by RNA interference (RNAi). In this article, we report that transgenic tomato plants expressing a hairpin RNA (hpRNA) construct derived from Potato spindle tuber viroid (PSTVd) sequences exhibit resistance to PSTVd infection. Resistance seems to be correlated with high-level accumulation of hpRNA-derived short interfering RNAs (siRNAs) in the plant. Thus, although small RNAs produced by infecting viroids [small RNAs of PSTVd (srPSTVds)] do not silence viroid RNAs efficiently to prevent their replication, hpRNA-derived siRNAs (hp-siRNAs) appear to effectively target the mature viroid RNA. Genomic mapping of the hp-siRNAs revealed an unequal distribution of 21- and 24-nucleotide siRNAs of both (+)- and (-)-strand polarities along the PSTVd genome. These data suggest that RNAi can be employed to engineer plants for viroid resistance, as has been well established for viruses.
Collapse
MESH Headings
- Blotting, Northern
- Blotting, Southern
- Chromosome Segregation
- Gene Expression Regulation, Viral
- Immunity, Innate/immunology
- Solanum lycopersicum/genetics
- Solanum lycopersicum/virology
- Nucleic Acid Conformation
- Plant Diseases/genetics
- Plant Diseases/virology
- Plant Tubers/virology
- Plant Viruses/genetics
- Plants, Genetically Modified
- RNA Interference
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Temperature
- Viroids/chemistry
- Viroids/genetics
- Viroids/physiology
Collapse
|
research-article |
16 |
78 |
12
|
Kovalskaya N, Hammond RW. Molecular biology of viroid-host interactions and disease control strategies. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:48-60. [PMID: 25438785 DOI: 10.1016/j.plantsci.2014.05.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/26/2014] [Accepted: 05/14/2014] [Indexed: 06/04/2023]
Abstract
Viroids are single-stranded, covalently closed, circular, highly structured noncoding RNAs that cause disease in several economically important crop plants. They replicate autonomously and move systemically in host plants with the aid of the host machinery. In addition to symptomatic infections, viroids also cause latent infections where there is no visual evidence of infection in the host; however, transfer to a susceptible host can result in devastating disease. While there are non-hosts for viroids, no naturally occurring durable resistance has been observed in most host species. Current effective control methods for viroid diseases include detection and eradication, and cultural controls. In addition, heat or cold therapy combined with meristem tip culture has been shown to be effective for elimination of viroids for some viroid-host combinations. An understanding of viroid-host interactions, host susceptibility, and non-host resistance could provide guidance for the design of viroid-resistant plants. Efforts to engineer viroid resistance into host species have been underway for several years, and include the use of antisense RNA, antisense RNA plus ribozymes, a dsRNase, and siRNAs, among others. The results of those efforts and the challenges associated with creating viroid resistant plants are summarized in this review.
Collapse
|
Review |
11 |
77 |
13
|
Kalantidis K, Denti MA, Tzortzakaki S, Marinou E, Tabler M, Tsagris M. Virp1 is a host protein with a major role in Potato spindle tuber viroid infection in Nicotiana plants. J Virol 2007; 81:12872-80. [PMID: 17898061 PMCID: PMC2169090 DOI: 10.1128/jvi.00974-07] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Accepted: 09/16/2007] [Indexed: 01/12/2023] Open
Abstract
Viroids are small, circular, single-stranded RNA molecules that, while not coding for any protein, cause several plant diseases. Viroids rely for their infectious cycle on host proteins, most of which are likely to be involved in endogenous RNA-mediated phenomena. Therefore, characterization of host factors interacting with the viroid may contribute to the elucidation of RNA-related pathways of the hosts. Potato spindle tuber viroid (PSTVd) infects several members of the Solanaceae family. In an RNA ligand screening we have previously isolated the tomato protein Virp1 by its ability to specifically interact with PSTVd positive-strand RNA. Virp1 is a bromodomain-containing protein with an atypical RNA binding domain and a nuclear localization signal. Here we investigate the role of Virp1 in the viroid infection cycle by the use of transgenic lines of Nicotiana tabacum and Nicotiana benthamiana that either overexpress the tomato Virp1 RNA or suppress the orthologous Nicotiana genes through RNA silencing. Plants of the Virp1-suppressed lines were not infected by PSTVd or Citrus exocortis viroid through mechanical inoculation, indicating a major role of Virp1 in viroid infection. On the other hand, overexpression of tomato Virp1 in N. tabacum and N. benthamiana plants did not affect PSTVd KF 440-2 infectivity or symptomatology in these species. Transfection experiments with isolated protoplasts revealed that Virp1-suppressed cells were unable to sustain viroid replication, suggesting that resistance to viroid infection in Virp1-suppressed plants is likely the result of cell-autonomous events.
Collapse
|
research-article |
18 |
74 |
14
|
Owens RA, Steger G, Hu Y, Fels A, Hammond RW, Riesner D. RNA structural features responsible for potato spindle tuber viroid pathogenicity. Virology 1996; 222:144-58. [PMID: 8806495 DOI: 10.1006/viro.1996.0405] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The native structure of potato spindle tuber viroid (PSTVd) contains a series of short double helices and small internal loops that are organized into five structural domains. Nucleotides within the pathogenicity domain are known to play a critical role in modulating PSTVd symptom expression, and it has been suggested that disruption of a comparatively unstable "premelting region" within the pathogenicity domain may be required for disease induction. We have used a combination of quantitative bioassays, temperature gradient gel electrophoresis of circularized RNA transcripts, and thermodynamic calculations to compare the biological and structural properties of 12 representative PSTVd sequence variants. Certain mutations appeared to act indirectly, downregulating pathogenicity by suppressing the rate of PSTVd replication/accumulation. The effects of other mutations appeared to be more direct, but there was no consistent correlation between symptom severity and melting temperature. Taking into account the three-dimensional shape of RNA helices, comparison of the optimal secondary structures for these variants point to major differences in the geometry of their pathogenicity domains; i.e., variants producing intermediate symptoms possess a linear arrangement of three consecutive helices, whereas for variants producing mild or severe symptoms this domain is bent in opposing directions. Such alterations in RNA structure together with concomitant alterations in RNA-protein interaction(s) may be the primary cause of viroid pathogenicity.
Collapse
|
|
29 |
72 |
15
|
Martínez de Alba AE, Sägesser R, Tabler M, Tsagris M. A bromodomain-containing protein from tomato specifically binds potato spindle tuber viroid RNA in vitro and in vivo. J Virol 2003; 77:9685-94. [PMID: 12915580 PMCID: PMC187389 DOI: 10.1128/jvi.77.17.9685-9694.2003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For the identification of RNA-binding proteins that specifically interact with potato spindle tuber viroid (PSTVd), we subjected a tomato cDNA expression library prepared from viroid-infected leaves to an RNA ligand screening procedure. We repeatedly identified cDNA clones that expressed a protein of 602 amino acids. The protein contains a bromodomain and was termed viroid RNA-binding protein 1 (VIRP1). The specificity of interaction of VIRP1 with viroid RNA was studied by different methodologies, which included Northwestern blotting, plaque lift, and electrophoretic mobility shift assays. VIRP1 interacted strongly and specifically with monomeric and oligomeric PSTVd positive-strand RNA transcripts. Other RNAs, for example, U1 RNA, did not bind to VIRP1. Further, we could immunoprecipitate complexes from infected tomato leaves that contained VIRP1 and viroid RNA in vivo. Analysis of the protein sequence revealed that VIRP1 is a member of a newly identified family of transcriptional regulators associated with chromatin remodeling. VIRP1 is the first member of this family of proteins, for which a specific RNA-binding activity is shown. A possible role of VIRP1 in viroid replication and in RNA mediated chromatin remodeling is discussed.
Collapse
|
research-article |
22 |
70 |
16
|
Flores R, Delgado S, Gas ME, Carbonell A, Molina D, Gago S, De la Peña M. Viroids: the minimal non-coding RNAs with autonomous replication. FEBS Lett 2004; 567:42-8. [PMID: 15165891 DOI: 10.1016/j.febslet.2004.03.118] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 03/07/2004] [Indexed: 10/26/2022]
Abstract
Viroids are small (246-401 nucleotides), non-coding, circular RNAs able to replicate autonomously in certain plants. Viroids are classified into the families Pospiviroidae and Avsunviroidae, whose members replicate in the nucleus and chloroplast, respectively. Replication occurs by an RNA-based rolling-circle mechanism in three steps: (1). synthesis of longer-than-unit strands catalyzed by host DNA-dependent RNA polymerases forced to transcribe RNA templates, (2). processing to unit-length, which in family Avsunviroidae is mediated by hammerhead ribozymes, and (3). circularization either through an RNA ligase or autocatalytically. Disease induction might result from the accumulation of viroid-specific small interfering RNAs that, via RNA silencing, could interfere with normal developmental pathways.
Collapse
|
Review |
21 |
69 |
17
|
Owens RA, Blackburn M, Ding B. Possible involvement of the phloem lectin in long-distance viroid movement. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:905-9. [PMID: 11437264 DOI: 10.1094/mpmi.2001.14.7.905] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Incubation with cucumber phloem exudate in vitro results in a dramatic decrease in the electrophoretic mobility of Hop stunt viroid. UV cross-linking and a combination of size exclusion and ion exchange chromatography indicate that this phenomenon reflects a previously unsuspected ability of phloem protein 2, a dimeric lectin and the most abundant component of phloem exudate, to interact with RNA. In light of its demonstrated ability to move from cell to cell via plasmodesmata as well as long distances in the phloem, our results suggest that phloem protein 2 may facilitate the systemic movement of viroids and, possibly, other RNAs in vivo.
Collapse
|
|
24 |
68 |
18
|
Daròs JA, Elena SF, Flores R. Viroids: an Ariadne's thread into the RNA labyrinth. EMBO Rep 2006; 7:593-8. [PMID: 16741503 PMCID: PMC1479586 DOI: 10.1038/sj.embor.7400706] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 04/05/2006] [Indexed: 11/09/2022] Open
Abstract
Viroids are structurally, functionally and evolutionarily different from viruses. Despite their small, non-protein-encoding, single-stranded circular RNA genome, viroids can infect higher plants and cause certain diseases. Members of the two viroid families, Pospiviroidae and Avsunviroidae, have evolved to usurp the transcriptional machinery of their host nuclei and chloroplasts, respectively, in which replication proceeds through a rolling-circle mechanism involving RNA polymerization, cleavage and ligation. Remarkably, viroids subvert certain DNA-dependent RNA polymerases to transcribe RNA templates, and, in the family Avsunviroidae, post-transcriptional cleavage is catalysed by hammerhead ribozymes. Viroids are models for studying RNA evolution and for analysing RNA transport in plants, because they can move intracellularly, intercellularly through plasmodesmata and to distal parts of the plant through the vascular system. Viroids elicit RNA-silencing phenomena, which might mediate some of their biological properties, including pathogenesis. As some viroids behave as catalytic RNAs, they are regarded as remnants of the RNA world.
Collapse
|
Review |
19 |
65 |
19
|
Gozmanova M, Denti MA, Minkov IN, Tsagris M, Tabler M. Characterization of the RNA motif responsible for the specific interaction of potato spindle tuber viroid RNA (PSTVd) and the tomato protein Virp1. Nucleic Acids Res 2003; 31:5534-43. [PMID: 14500815 PMCID: PMC206474 DOI: 10.1093/nar/gkg777] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Viroids are small non-coding parasitic RNAs that are able to infect their host plants systemically. This circular naked RNA makes use of host proteins to accomplish its proliferation. Here we analyze the specific binding of the tomato protein Virp1 to the terminal right domain of potato spindle tuber viroid RNA (PSTVd). We find that two asymmetric internal loops within the PSTVd (+) RNA, each composed of the sequence elements 5'-ACAGG and CUCUUCC-5', are responsible for the specific RNA-protein interaction. In view of the nucleotide composition we call this structural element an 'RY motif'. The RY motif located close to the terminal right hairpin loop of the PSTVd secondary structure has an approximately 5-fold stronger binding affinity than the more centrally located RY motif. Simultaneous sequence alterations in both RY motifs abolished the specific binding to Virp1. Mutations in any of the two RY motifs resulted in non-infectious viroid RNA, with the exception of one case, where reversion to sequence wild type took place. In contrast, the simultaneous exchange of two nucleotides within the terminal right hairpin loop of PSTVd had only moderate influence on the binding to Virp1. This variant was infectious and sequence changes were maintained in the progeny. The relevance of the phylogenetic conservation of the RY motif, and sequence elements therein, amongst various genera of the family Pospiviroidae is discussed.
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
65 |
20
|
Gómez G, Martínez G, Pallás V. Viroid-induced symptoms in Nicotiana benthamiana plants are dependent on RDR6 activity. PLANT PHYSIOLOGY 2008; 148:414-23. [PMID: 18599649 PMCID: PMC2528107 DOI: 10.1104/pp.108.120808] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 06/29/2008] [Indexed: 05/07/2023]
Abstract
Viroids are small self-replicating RNAs that infect plants. How these noncoding pathogenic RNAs interact with hosts to induce disease symptoms is a long-standing unanswered question. Recent experimental data have led to the suggestive proposal of a pathogenic model based on the RNA silencing mechanism. However, evidence of a direct relation between key components of the RNA silencing pathway and symptom expression in infected plants remains elusive. To address this issue, we used a symptomatic transgenic line of Nicotiana benthamiana that expresses and processes dimeric forms of Hop stunt viroid (HSVd). These plants were analyzed under different growing temperature conditions and were used as stocks in grafting assays with the rdr6i-Nb line, in which the RNA-dependent RNA polymerase 6 (RDR6) is constitutively silenced. Here, we show that the symptom expression in N. benthamiana plants is independent of HSVd accumulation levels but dependent on an active state of the viroid-specific RNA silencing pathway. The scion of rdr6i-Nb plants remained asymptomatic when grafted onto symptomatic plants, despite an accumulation of a high level of mature forms of HSVd, indicating the requirement of RDR6 for viroid-induced symptom production. In addition, the RDR6 requirement for symptom expression was also observed in wild-type N. benthamiana plants mechanically infected with HSVd. These results provide biological evidence of the involvement of the viroid-specific RNA silencing pathway in the symptom expression associated with viroid pathogenesis.
Collapse
|
research-article |
17 |
64 |
21
|
Zhong X, Leontis N, Qian S, Itaya A, Qi Y, Boris-Lawrie K, Ding B. Tertiary structural and functional analyses of a viroid RNA motif by isostericity matrix and mutagenesis reveal its essential role in replication. J Virol 2006; 80:8566-81. [PMID: 16912306 PMCID: PMC1563885 DOI: 10.1128/jvi.00837-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2006] [Accepted: 06/19/2006] [Indexed: 02/07/2023] Open
Abstract
RNA-templated RNA replication is essential for viral or viroid infection, as well as for regulation of cellular gene expression. Specific RNA motifs likely regulate various aspects of this replication. Viroids of the Pospiviroidae family, as represented by the Potato spindle tuber viroid (PSTVd), replicate in the nucleus by utilizing DNA-dependent RNA polymerase II. We investigated the role of the loop E (sarcin/ricin) motif of the PSTVd genomic RNA in replication. A tertiary-structural model of this motif, inferred by comparative sequence analysis and comparison with nuclear magnetic resonance and X-ray crystal structures of loop E motifs in other RNAs, is presented in which core non-Watson-Crick base pairs are precisely specified. Isostericity matrix analysis of these base pairs showed that the model accounts for the reported natural sequence variations and viable experimental mutations in loop E motifs of PSTVd and other viroids. Furthermore, isostericity matrix analysis allowed us to design disruptive, as well as compensatory, mutations of PSTVd loop E. Functional analyses of such mutants by in vitro and in vivo experiments demonstrated that loop E structural integrity is crucial for replication, specifically during transcription. Our results suggest that the PSTVd loop E motif exists and functions in vivo and provide loss-of-function genetic evidence for the essential role of a viroid RNA three-dimensional motif in rolling-circle replication. The use of isostericity matrix analysis of non-Watson-Crick base pairing to rationalize mutagenesis of tertiary motifs and systematic in vitro and in vivo functional assays of mutants offers a novel, comprehensive approach to elucidate the tertiary-structure-function relationships for RNA motifs of general biological significance.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
64 |
22
|
Reanwarakorn K, Semancik JS. Regulation of pathogenicity in hop stunt viroid-related group II citrus viroids. J Gen Virol 1998; 79 ( Pt 12):3163-71. [PMID: 9880036 DOI: 10.1099/0022-1317-79-12-3163] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleotide sequences were determined for two hop stunt viroid-related Group II citrus viroids characterized as either a cachexia disease non-pathogenic variant (CVd-IIa) or a pathogenic variant (CVd-IIb). Sequence identity between the two variants of 95.6% indicated a conserved genome with the principal region of nucleotide difference clustered in the variable (V) domain. Full-length viroid RT-PCR cDNA products were cloned into plasmid SP72. Viroid cDNA clones as well as derived RNA transcripts were transmissible to citron (Citrus medica L.) and Luffa aegyptiaca Mill. To determine the locus of cachexia pathogenicity as well as symptom expression in Luffa, chimeric viroid cDNA clones were constructed from segments of either the left terminal, pathogenic and conserved (T1-P-C) domains or the conserved, variable and right terminal (C-V-T2) domains of CVd-IIa or CVd-IIb in reciprocal exchanges. Symptoms induced by the various chimeric constructs on the two bioassay hosts reflected the differential response observed with CVd-IIa and -IIb. Constructs with the C-V-T2 domains region from clone-IIa induced severe symptoms on Luffa typical of CVd-IIa, but were non-symptomatic on mandarin as a bioassay host for the cachexia disease. Constructs with the same region (C-V-T2) from the clone-IIb genome induced only mild symptoms on Luffa, but produced a severe reaction on mandarin, as observed for CVd-IIb. Specific site-directed mutations were introduced into the V domain of the CVd-IIa clone to construct viroid cDNA clones with either partial or complete conversions to the CVd-IIb sequence. With the introduction of six site-specific changes into the V domain of the clone-IIa genome, cachexia pathogenicity was acquired as well as a moderation of severe symptoms on Luffa.
Collapse
|
|
27 |
62 |
23
|
Nohales MÁ, Molina-Serrano D, Flores R, Daròs JA. Involvement of the chloroplastic isoform of tRNA ligase in the replication of viroids belonging to the family Avsunviroidae. J Virol 2012; 86:8269-76. [PMID: 22623792 PMCID: PMC3421689 DOI: 10.1128/jvi.00629-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/15/2012] [Indexed: 11/20/2022] Open
Abstract
Avocado sunblotch viroid, peach latent mosaic viroid, chrysanthemum chlorotic mottle viroid, and eggplant latent viroid (ELVd), the four recognized members of the family Avsunviroidae, replicate through the symmetric pathway of an RNA-to-RNA rolling-circle mechanism in chloroplasts of infected cells. Viroid oligomeric transcripts of both polarities contain embedded hammerhead ribozymes that, during replication, mediate their self-cleavage to monomeric-length RNAs with 5'-hydroxyl and 2',3'-phosphodiester termini that are subsequently circularized. We report that a recombinant version of the chloroplastic isoform of the tRNA ligase from eggplant (Solanum melongena L.) efficiently catalyzes in vitro circularization of the plus [(+)] and minus [(-)] monomeric linear replication intermediates from the four Avsunviroidae. We also show that while this RNA ligase specifically recognizes the genuine monomeric linear (+) ELVd replication intermediate, it does not do so with five other monomeric linear (+) ELVd RNAs with their ends mapping at different sites along the molecule, despite containing the same 5'-hydroxyl and 2',3'-phosphodiester terminal groups. Moreover, experiments involving transient expression of a dimeric (+) ELVd transcript in Nicotiana benthamiana Domin plants preinoculated with a tobacco rattle virus-derived vector to induce silencing of the plant endogenous tRNA ligase show a significant reduction of ELVd circularization. In contrast, circularization of a viroid replicating in the nucleus occurring through a different pathway is unaffected. Together, these results support the conclusion that the chloroplastic isoform of the plant tRNA ligase is the host enzyme mediating circularization of both (+) and (-) monomeric linear intermediates during replication of the viroids belonging to the family Avsunviroidae.
Collapse
|
research-article |
13 |
62 |
24
|
Takeda R, Petrov AI, Leontis NB, Ding B. A three-dimensional RNA motif in Potato spindle tuber viroid mediates trafficking from palisade mesophyll to spongy mesophyll in Nicotiana benthamiana. THE PLANT CELL 2011; 23:258-72. [PMID: 21258006 PMCID: PMC3051236 DOI: 10.1105/tpc.110.081414] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/13/2010] [Accepted: 12/25/2010] [Indexed: 05/04/2023]
Abstract
Cell-to-cell trafficking of RNA is an emerging biological principle that integrates systemic gene regulation, viral infection, antiviral response, and cell-to-cell communication. A key mechanistic question is how an RNA is specifically selected for trafficking from one type of cell into another type. Here, we report the identification of an RNA motif in Potato spindle tuber viroid (PSTVd) required for trafficking from palisade mesophyll to spongy mesophyll in Nicotiana benthamiana leaves. This motif, called loop 6, has the sequence 5'-CGA-3'...5'-GAC-3' flanked on both sides by cis Watson-Crick G/C and G/U wobble base pairs. We present a three-dimensional (3D) structural model of loop 6 that specifies all non-Watson-Crick base pair interactions, derived by isostericity-based sequence comparisons with 3D RNA motifs from the RNA x-ray crystal structure database. The model is supported by available chemical modification patterns, natural sequence conservation/variations in PSTVd isolates and related species, and functional characterization of all possible mutants for each of the loop 6 base pairs. Our findings and approaches have broad implications for studying the 3D RNA structural motifs mediating trafficking of diverse RNA species across specific cellular boundaries and for studying the structure-function relationships of RNA motifs in other biological processes.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
60 |
25
|
Navarro JA, Flores R. Characterization of the initiation sites of both polarity strands of a viroid RNA reveals a motif conserved in sequence and structure. EMBO J 2000; 19:2662-70. [PMID: 10835363 PMCID: PMC212762 DOI: 10.1093/emboj/19.11.2662] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Viroids replicate through a rolling-circle mechanism in which the infecting circular RNA and its complementary (-) strand are transcribed. The precise site at which transcription starts was investigated for the avocado sunblotch viroid (ASBVd), the type species of the family of viroids with hammerhead ribozymes. Linear ASBVd (+) and (-) RNAs begin with a UAAAA sequence that maps to similar A+U-rich terminal loops in their predicted quasi-rod-like secondary structures. The sequences around the initiation sites of ASBVd, which replicates and accumulates in the chloroplast, are similar to the promoters of a nuclear-encoded chloroplastic RNA polymerase (NEP), supporting the involvement of an NEP-like activity in ASBVd replication. Since RNA folding appears to be kinetically determined, the specific location of both ASBVd initiation sites provides a mechanistic insight into how the nascent ASBVd strands may fold in vivo. The approach used here, in vitro capping and RNase protection assays, may be useful for investigating the initiation sites of other small circular RNA replicons.
Collapse
|
research-article |
25 |
57 |