26
|
Carvalho CRO, Carvalheira JBC, Lima MHM, Zimmerman SF, Caperuto LC, Amanso A, Gasparetti AL, Meneghetti V, Zimmerman LF, Velloso LA, Saad MJA. Novel signal transduction pathway for luteinizing hormone and its interaction with insulin: activation of Janus kinase/signal transducer and activator of transcription and phosphoinositol 3-kinase/Akt pathways. Endocrinology 2003; 144:638-647. [PMID: 12538627 DOI: 10.1210/en.2002-220706] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] [Imported: 01/11/2025]
Abstract
The actions of LH are mediated through a single class of cell surface LH/human chorionic gonadotropin receptor, which is a member of the G protein-coupled receptor family. In the present study we showed that LH induced rapid tyrosine phosphorylation and activation of the Janus kinase 2 (JAK2) in rat ovary. Upon JAK2 activation, tyrosine phosphorylation of signal transducer and activator of transcription-1 (STAT-1), STAT-5b, insulin receptor substrate-1 (IRS-1), and Src homology and collagen homology (Shc) were detected. In addition, LH induced IRS-1/phosphoinositol 3-kinase and Shc /growth factor receptor-binding protein 2 (Grb2) associations and downstream AKT (protein kinase B, homologous to v-AKT) serine phosphorylation and ERK tyrosine phosphorylation, respectively. The simultaneous infusion of insulin and LH induced higher phosphorylation levels of JAK2, STAT5b, IRS-1, and AKT compared with each hormone alone in the whole ovary of normal rats. By immunohistochemistry we demonstrated that these late events take place in follicular cells and both external and internal theca. These results indicate a new signal transduction pathway for LH and show that there is positive cross-talk between the insulin and LH signaling pathways at the level of phosphoinositol 3-kinase/AKT pathway in this tissue.
Collapse
|
|
22 |
88 |
27
|
Picardi PK, Calegari VC, Prada PO, Moraes JC, Araújo E, Marcondes MCCG, Ueno M, Carvalheira JBC, Velloso LA, Saad MJA. Reduction of hypothalamic protein tyrosine phosphatase improves insulin and leptin resistance in diet-induced obese rats. Endocrinology 2008; 149:3870-3880. [PMID: 18467448 PMCID: PMC2488223 DOI: 10.1210/en.2007-1506] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 04/25/2008] [Indexed: 02/07/2023] [Imported: 01/11/2025]
Abstract
Protein tyrosine phosphatase (PTP1B) has been implicated in the negative regulation of insulin and leptin signaling. PTP1B knockout mice are hypersensitive to insulin and leptin and resistant to obesity when fed a high-fat diet. We investigated the role of hypothalamic PTP1B in the regulation of food intake, insulin and leptin actions and signaling in rats through selective decreases in PTP1B expression in discrete hypothalamic nuclei. We generated a selective, transient reduction in PTP1B by infusion of an antisense oligonucleotide designed to blunt the expression of PTP1B in rat hypothalamic areas surrounding the third ventricle in control and obese rats. The selective decrease in hypothalamic PTP1B resulted in decreased food intake, reduced body weight, reduced adiposity after high-fat feeding, improved leptin and insulin action and signaling in hypothalamus, and may also have a role in the improvement in glucose metabolism in diabetes-induced obese rats.
Collapse
|
research-article |
17 |
86 |
28
|
Pauli JR, Ropelle ER, Cintra DE, Carvalho-Filho MA, Moraes JC, De Souza CT, Velloso LA, Carvalheira JBC, Saad MJA. Acute physical exercise reverses S-nitrosation of the insulin receptor, insulin receptor substrate 1 and protein kinase B/Akt in diet-induced obese Wistar rats. J Physiol 2008; 586:659-671. [PMID: 17974582 PMCID: PMC2375587 DOI: 10.1113/jphysiol.2007.142414] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/03/2007] [Accepted: 10/30/2007] [Indexed: 02/05/2023] [Imported: 01/11/2025] Open
Abstract
Early evidence demonstrates that exogenous nitric oxide (NO) and the NO produced by inducible nitric oxide synthase (iNOS) can induce insulin resistance. Here, we investigated whether this insulin resistance, mediated by S-nitrosation of proteins involved in early steps of the insulin signal transduction pathway, could be reversed by acute physical exercise. Rats on a high-fat diet were subjected to swimming for two 3 h-long bouts, separated by a 45 min rest period. Two or 16 h after the exercise protocol the rats were killed and proteins from the insulin signalling pathway were analysed by immunoprecipitation and immunoblotting. We demonstrated that a high-fat diet led to an increase in the iNOS protein level and S-nitrosation of insulin receptor beta (IR beta), insulin receptor substrate 1 (IRS1) and Akt. Interestingly, an acute bout of exercise reduced iNOS expression and S-nitrosation of proteins involved in the early steps of insulin action, and improved insulin sensitivity in diet-induced obesity rats. Furthermore, administration of GSNO (NO donor) prevents this improvement in insulin action and the use of an inhibitor of iNOS (L-N6-(1-iminoethyl)lysine; L-NIL) simulates the effects of exercise on insulin action, insulin signalling and S-nitrosation of IR beta, IRS1 and Akt. In summary, a single bout of exercise reverses insulin sensitivity in diet-induced obese rats by improving the insulin signalling pathway, in parallel with a decrease in iNOS expression and in the S-nitrosation of IR/IRS1/Akt. The decrease in iNOS protein expression in the muscle of diet-induced obese rats after an acute bout of exercise was accompanied by an increase in AMP-activated protein kinase (AMPK) activity. These results provide new insights into the mechanism by which exercise restores insulin sensitivity.
Collapse
|
research-article |
17 |
77 |
29
|
Arruda AP, Milanski M, Romanatto T, Solon C, Coope A, Alberici LC, Festuccia WT, Hirabara SM, Ropelle E, Curi R, Carvalheira JB, Vercesi AE, Velloso LA. Hypothalamic actions of tumor necrosis factor alpha provide the thermogenic core for the wastage syndrome in cachexia. Endocrinology 2010; 151:683-694. [PMID: 19996183 DOI: 10.1210/en.2009-0865] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] [Imported: 01/11/2025]
Abstract
TNFalpha is an important mediator of catabolism in cachexia. Most of its effects have been characterized in peripheral tissues, such as skeletal muscle and fat. However, by acting directly in the hypothalamus, TNFalpha can activate thermogenesis and modulate food intake. Here we show that high concentration TNFalpha in the hypothalamus leads to increased O(2) consumption/CO(2) production, increased body temperature, and reduced caloric intake, resulting in loss of body mass. Most of the thermogenic response is produced by beta 3-adrenergic signaling to the brown adipose tissue (BAT), leading to increased BAT relative mass, reduction in BAT lipid quantity, and increased BAT mitochondria density. The expression of proteins involved in BAT thermogenesis, such as beta 3-adrenergic receptor, peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha, and uncoupling protein-1, are increased. In the hypothalamus, TNFalpha produces reductions in neuropeptide Y, agouti gene-related peptide, proopiomelanocortin, and melanin-concentrating hormone, and increases CRH and TRH. The activity of the AMP-activated protein kinase signaling pathway is also decreased in the hypothalamus of TNFalpha-treated rats. Upon intracerebroventricular infliximab treatment, tumor-bearing and septic rats present a significantly increased survival. In addition, the systemic inhibition of beta 3-adrenergic signaling results in a reduced body mass loss and increased survival in septic rats. These data suggest hypothalamic TNFalpha action to be important mediator of the wastage syndrome in cachexia.
Collapse
|
|
15 |
76 |
30
|
Luciano E, Carneiro EM, Carvalho CRO, Carvalheira JBC, Peres SB, Reis MAB, Saad MJA, Boschero AC, Velloso LA. Endurance training improves responsiveness to insulin and modulates insulin signal transduction through the phosphatidylinositol 3-kinase/Akt-1 pathway. Eur J Endocrinol 2002; 147:149-157. [PMID: 12088932 DOI: 10.1530/eje.0.1470149] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] [Imported: 01/11/2025]
Abstract
BACKGROUND Endurance training increases insulin-stimulated muscle glucose transport and leads to improved metabolic control in diabetic patients. OBJECTIVE To analyze the effects of endurance training on the early steps of insulin action in muscle of rats. DESIGN Male rats submitted to daily swimming for 6 weeks were compared with sedentary controls. At the end of the training period, anesthetized animals received an intravenous (i.v.) injection of insulin and had a fragment of their gastrocnemius muscle excised for the experiments. METHODS Associations between insulin receptor, insulin receptor substrates (IRS)-1 and -2 and phosphatidylinositol 3-kinase (PI3-kinase) were analyzed by immunoprecipitation and immunoblotting. Akt-1 serine phosphorylation and specific protein quantification were detected by immunoblotting of total extracts, and IRS-1/IRS-2-associated PI3-kinase activity were determined by thin-layer chromatography. RESULTS Insulin-induced phosphorylation of IRS-1 and IRS-2 increased respectively by 1.8-fold (P<0.05) and 1.5-fold (P<0.05), whereas their association with PI3-kinase increased by 2.3-fold (P<0.05) and 1.9-fold (P<0.05) in trained rats as compared with sedentary controls, respectively. The activity of PI3-kinase associated with IRS-1 and IRS-2 increased by 1.8-fold (P<0.05) and 1.7-fold (P<0.05) respectively, in trained rats as compared with their untrained counterparts. Serine phosphorylation of Akt-1/PKB increased 1.7-fold (P<0.05) in trained rats in response to insulin. These findings were accompanied by increased responsiveness to insulin as demonstrated by a reduced area under the curve for insulin during an i.v. glucose tolerance test, by increased glucose disappearance rate during an insulin tolerance test, and by increased expression of glucose transporter-4. CONCLUSIONS The increased responsiveness to insulin induced by chronic exercise in rat skeletal muscle may result, at least in part, from the modulation of the insulin signaling pathway at different molecular levels.
Collapse
|
|
23 |
75 |
31
|
Oliveira AG, Araujo TG, Carvalho BM, Guadagnini D, Rocha GZ, Bagarolli RA, Carvalheira JBC, Saad MJA. Acute exercise induces a phenotypic switch in adipose tissue macrophage polarization in diet-induced obese rats. Obesity (Silver Spring) 2013; 21:2545-2556. [PMID: 23512570 DOI: 10.1002/oby.20402] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/22/2013] [Indexed: 02/05/2023] [Imported: 01/11/2025]
Abstract
OBJECTIVE It has become clear that exercise may be a useful therapy in the insulin resistance treatment, as it has anti-inflammatory effects and improves insulin sensitivity. However, it remains uncertain whether exercise affects the adipocytes or infiltrated macrophages. Thus, the aim was to investigate the effects of acute exercise on the inflammatory status and insulin signaling of the white adipose tissue (WAT) fractions (stromal-vascular fraction [SVF] and adipocytes). DESIGN AND METHODS The effect of acute swimming exercise was investigated on insulin sensitivity, insulin signaling, inflammatory pathways in the WAT fractions of high-fat fed Wistar rats. Additionally, macrophage infiltration and polarization were analyzed in the WAT. RESULTS Acute exercise can improve insulin signaling in WAT fractions, along with a phenotypic switch from M1- to M2-macrophages in obese rats, as indicated by a marked increase in macrophage galactose-type C-type lectin 1-positive cells in WAT was observed. Additionally, exercise promoted a reduction in circulating levels of lipopolysaccharide, and toll-like receptor 4 activity along with TNF-alpha, IL-1-beta and MCP-1 mRNA levels in WAT fractions. CONCLUSIONS These data suggest that acute exercise improves insulin signaling in the WAT, at least in part by inducing macrophage polarization toward the M2-state.
Collapse
|
|
12 |
74 |
32
|
De Souza CT, Araújo EP, Stoppiglia LF, Pauli JR, Ropelle E, Rocco SA, Marin RM, Franchini KG, Carvalheira JB, Saad MJ, Boschero AC, Carneiro EM, Velloso LA. Inhibition of UCP2 expression reverses diet-induced diabetes mellitus by effects on both insulin secretion and action. FASEB J 2007; 21:1153-1163. [PMID: 17209127 DOI: 10.1096/fj.06-7148com] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] [Imported: 01/11/2025]
Abstract
Recent characterization of the ability of uncoupling protein 2 (UCP2) to reduce ATP production and inhibit insulin secretion by pancreatic beta-cells has placed this mitochondrial protein as a candidate target for therapeutics in diabetes mellitus. In the present study we evaluate the effects of short-term treatment of two animal models of type 2 diabetes mellitus with an antisense oligonucleotide to UCP2. In both models, Swiss mice (made obese and diabetic by a hyperlipidic diet) and ob/ob mice, the treatment resulted in a significant improvement in the hyperglycemic syndrome. This effect was due not only to an improvement of insulin secretion, but also to improved peripheral insulin action. In isolated pancreatic islets, the partial inhibition of UCP2 increased ATP content, followed by increased glucose-stimulated insulin secretion. This was not accompanied by increased expression of enzymes involved in protection against oxidative stress. The evaluation of insulin action in peripheral tissues revealed that the inhibition of UCP2 expression significantly improved insulin signal transduction in adipose tissue. In conclusion, short-term inhibition of UCP2 expression ameliorates the hyperglycemic syndrome in two distinct animal models of obesity and diabetes. Metabolic improvement is due to a combined effect on insulin-producing pancreatic islets and in at least one peripheral tissue that acts as a target for insulin.
Collapse
|
|
18 |
68 |
33
|
Carvalho-Filho MA, Ueno M, Carvalheira JBC, Velloso LA, Saad MJA. Targeted disruption of iNOS prevents LPS-induced S-nitrosation of IRbeta/IRS-1 and Akt and insulin resistance in muscle of mice. Am J Physiol Endocrinol Metab 2006; 291:E476-E482. [PMID: 16638822 DOI: 10.1152/ajpendo.00422.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] [Imported: 01/11/2025]
Abstract
We have previously demonstrated that the insulin resistance associated with inducible nitric oxide synthase (iNOS) induction in two different models of obesity, diet-induced obesity and the ob/ob mice, is mediated by S-nitrosation of proteins involved in insulin signal transduction: insulin receptor beta-subunit (IRbeta), insulin receptor substrate 1(IRS-1), and Akt. S-nitrosation of IRbeta and Akt impairs their kinase activities, and S-nitrosation of IRS-1 reduces its tissue expression. In this study, we observed that LPS-induced insulin resistance in the muscle of wild-type mice, as demonstrated by reduced insulin-induced tyrosine phosphorylation of IRbeta and IRS-1, reduced IRS-1 expression and reduced insulin-induced serine phosphorylation of Akt. This resistance occurred in parallel with enhanced iNOS expression, which was accompanied by S-nitrosation of IRbeta/IRS-1 and Akt. In the muscle of iNOS(-/-) mice, we did not observe enhanced iNOS expression or any S-nitrosation of IRbeta/IRS-1 and Akt after LPS treatment. Moreover, insulin resistance was not present. The preservation of insulin-induced tyrosine phosphorylation of IRbeta and IRS-1, of IRS-1 protein expression, and of insulin-induced serine phosphorylation of Akt observed in LPS-treated iNOS(-/-) mice strongly suggests that the insulin resistance induced by LPS is iNOS mediated, probably through S-nitrosation of proteins of early steps of insulin signaling.
Collapse
|
|
19 |
64 |
34
|
Dalla Costa AP, Clemente CFMZ, Carvalho HF, Carvalheira JB, Nadruz W, Franchini KG. FAK mediates the activation of cardiac fibroblasts induced by mechanical stress through regulation of the mTOR complex. Cardiovasc Res 2010; 86:421-431. [PMID: 20038548 DOI: 10.1093/cvr/cvp416] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] [Imported: 01/11/2025] Open
Abstract
AIMS Cardiac fibroblasts are activated by mechanical stress, but the underlying mechanisms involved remain poorly understood. In this study, we investigated whether focal adhesion kinase (FAK) plays a role in the activation of cardiac fibroblasts in response to cyclic stretch. METHODS AND RESULTS Neonatal (NF-P3/80--third passage, 80% confluence) and adult (AF-P1/80--first passage, 80% confluence) rat cardiac fibroblasts were exposed to cyclic stretch (biaxial, 1 Hz), which enhanced FAK phosphorylation at Tyr397. Proliferation (anti-5-bromo-2'-deoxyuridine and anti-Ki67 nuclear labelling), differentiation into myofibroblasts (expression of alpha-smooth muscle actin--alpha-SMA), and the activity of matrix metalloproteinase-2 were equally enhanced in stretched NF-P3/80 and AF-P1/80. Treatment with the integrin inhibitor RGD peptide impaired FAK phosphorylation and increased apoptosis (TUNEL) in non-stretched and stretched NF-P3/80, whereas FAK silencing induced by small interfering RNA modestly enhanced apoptosis only in stretched cells. RGD peptide or FAK silencing suppressed the activation of NF-P3/80 invoked by cyclic stretch. In addition, NF-P3/80 depleted of FAK were defective in AKT Ser473, TSC-2 Thr1462, and S6 kinase Thr389 phosphorylation induced by cyclic stretch. The activation of NF-P3/80 invoked by cyclic stretch was prevented by pre-treatment with the mammalian target of rapamycin (mTOR) inhibitor rapamycin, whereas supplementation with the amino acid, leucine, activated S6K and rescued the stretch-induced activation of NF-P3/80 depleted of FAK. CONCLUSIONS These findings demonstrate a critical role for the mTOR complex, downstream from FAK, in mediating the activation of cardiac fibroblasts in response to mechanical stress.
Collapse
|
Retracted Publication |
15 |
63 |
35
|
Flores MBS, Rocha GZ, Damas-Souza DM, Osório-Costa F, Dias MM, Ropelle ER, Camargo JA, de Carvalho RB, Carvalho HF, Saad MJA, Carvalheira JBC. RETRACTED: Obesity-induced increase in tumor necrosis factor-α leads to development of colon cancer in mice. Gastroenterology 2012; 143:741-753.e4. [PMID: 22677195 DOI: 10.1053/j.gastro.2012.05.045] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 05/16/2012] [Accepted: 05/24/2012] [Indexed: 12/25/2022] [Imported: 01/11/2025]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief and Deputy Editor-in-Chief following an investigation into the data that were presented in several figures within the article. A number of images used in this article are believed to be duplicated images. The authors stated that they inadvertently inserted images of the wrong blots in several of the figures, resulting in the duplications; however, they did not address all of the concerns raised. Because the editors were no longer confident in the conclusions of the article based on these incorrect data, a decision was made to retract the paper. All authors have been notified of this decision. The University of Campinas (UNICAMP) in São Paulo, Brazil was contacted regarding these concerns, but to date the journal has received no response.
Collapse
|
Retracted Publication |
13 |
62 |
36
|
Araújo TG, Oliveira AG, Carvalho BM, Guadagnini D, Protzek AOP, Carvalheira JBC, Boschero AC, Saad MJA. Hepatocyte growth factor plays a key role in insulin resistance-associated compensatory mechanisms. Endocrinology 2012; 153:5760-5769. [PMID: 23024263 DOI: 10.1210/en.2012-1496] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] [Imported: 01/11/2025]
Abstract
Insulin resistance is present in obesity and in type 2 diabetes and is associated with islet cell hyperplasia and hyperinsulinemia, but the driving forces behind this compensatory mechanism are incompletely understood. Previous data have suggested the involvement of an unknown circulating insulin resistance-related β-cell growth factor. In this context, looking for candidates to be a circulating factor, we realized that hepatocyte growth factor (HGF) is a strong candidate as a link between insulin resistance and increased mass of islets/hyperinsulinemia. Our approach aimed to show a possible cause-effect relationship between increase in circulating HGF levels and compensatory islet hyperplasia/hyperinsulinemia by showing the strength of the association, whether or not is a dose-dependent response, the temporality, consistency, plausibility, and reversibility of the association. In this regard, our data showed: 1) a strong and consistent correlation between HGF and the compensatory mechanism in three animal models of insulin resistance; 2) HGF increases β-cell mass in a dose-dependent manner; 3) blocking HGF shuts down the compensatory mechanisms; and 4) an increase in HGF levels seems to precede the compensatory response associated with insulin resistance, indicating that these events occur in a sequential mode. Additionally, blockages of HGF receptor (Met) worsen the impaired insulin-induced insulin signaling in liver of diet-induced obesity rats. Overall, our data indicate that HGF is a growth factor playing a key role in islet mass increase and hyperinsulinemia in diet-induced obesity rats and suggest that the HGF-Met axis may have a role on insulin signaling in the liver.
Collapse
|
|
13 |
61 |
37
|
Carvalho-Filho MA, Carvalho BM, Oliveira AG, Guadagnini D, Ueno M, Dias MM, Tsukumo DM, Hirabara SM, Reis LF, Curi R, Carvalheira JBC, Saad MJA. Double-stranded RNA-activated protein kinase is a key modulator of insulin sensitivity in physiological conditions and in obesity in mice. Endocrinology 2012; 153:5261-5274. [PMID: 22948222 DOI: 10.1210/en.2012-1400] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] [Imported: 01/11/2025]
Abstract
The molecular integration of nutrient- and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr(-/-) and Pkr(+/+) mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr(-/-) mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of κB kinase β. Pkr(-/-) mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of κB kinase β phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity.
Collapse
|
|
13 |
59 |
38
|
Mendes MCS, Pimentel GD, Costa FO, Carvalheira JBC. Molecular and neuroendocrine mechanisms of cancer cachexia. J Endocrinol 2015; 226:R29-R43. [PMID: 26112046 DOI: 10.1530/joe-15-0170] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2015] [Indexed: 02/05/2023] [Imported: 01/11/2025]
Abstract
Cancer and its morbidities, such as cancer cachexia, constitute a major public health problem. Although cancer cachexia has afflicted humanity for centuries, its underlying multifactorial and complex physiopathology has hindered the understanding of its mechanism. During the last few decades we have witnessed a dramatic increase in the understanding of cancer cachexia pathophysiology. Anorexia and muscle and adipose tissue wasting are the main features of cancer cachexia. These apparently independent symptoms have humoral factors secreted by the tumor as a common cause. Importantly, the hypothalamus has emerged as an organ that senses the peripheral signals emanating from the tumoral environment, and not only elicits anorexia but also contributes to the development of muscle and adipose tissue loss. Herein, we review the roles of factors secreted by the tumor and its effects on the hypothalamus, muscle and adipose tissue, as well as highlighting the key targets that are being exploited for cancer cachexia treatment.
Collapse
|
Review |
10 |
58 |
39
|
Carvalheira JBC, Ribeiro EB, Folli F, Velloso LA, Saad MJA. Interaction between leptin and insulin signaling pathways differentially affects JAK-STAT and PI 3-kinase-mediated signaling in rat liver. Biol Chem 2003; 384:151-159. [PMID: 12674509 DOI: 10.1515/bc.2003.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] [Imported: 01/11/2025]
Abstract
Chronic leptin treatment markedly enhances the effect of insulin on hepatic glucose production unproportionally with respect to body weight loss and increased insulin sensitivity. In the present study the cross-talk between insulin and leptin was evaluated in rat liver. Upon stimulation of JAK2 tyrosine phosphorylation, leptin induced JAK2 co-immunoprecipitation with STAT3, STAT5b, IRS-1 and IRS-2. This phenomenon parallels the leptin-induced tyrosine phosphorylation of STAT3, STAT5b, IRS-1 and IRS-2. Acutely injected insulin stimulated a mild increase in tyrosine phosphorylation of JAK2, STAT3 and STAT5b. Leptin was less effective than insulin in stimulating IRS phosphorylation and their association with PI 3-kinase. Simultaneous treatment with both hormones yielded no change in maximal phosphorylation of STAT3, IRS-1, IRS-2 and Akt, but led to a marked increase in tyrosine phosphorylation of JAK2 and STAT5b when compared with isolated administration of insulin or leptin. This indicates that there is a positive cross-talk between insulin and leptin signaling pathways at the level of JAK2 and STAT5b in rat liver.
Collapse
|
|
22 |
58 |
40
|
Alves MDC, Carvalheira JB, Módulo CM, Rocha EM. Tear film and ocular surface changes in diabetes mellitus. Arq Bras Oftalmol 2008; 71:96-103. [PMID: 19274419 DOI: 10.1590/s0004-27492008000700018] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] [Imported: 01/11/2025] Open
Abstract
Diabetes mellitus and its clinical association with dry eye and ocular surface are becoming a frequent and sometimes complicate problem in Ophthalmology. Epidemiological data show that an increase in the number of patients with this association is expected following the trend to rise of the disease. The present work reviews the clinical and functional aspects of this problem. The observations indicate that metabolic, neuropathic and vascular tissue damages lead to an inflammatory process and functional degeneration. The physiopathological mechanism include hyperglycemia, advanced glycated end product accumulation, oxidative stress and inflammation mediated by NF-kappaB signaling pathways. Potential treatments enlightened by those findings would include antioxidant, anti-inflammatory, secretagogues and/or anabolic agents that would mimic insulin effects.
Collapse
|
Review |
17 |
56 |
41
|
Prada PO, Hirabara SM, Souza CTD, Schenka AA, Zecchin HG, Vassallo J, Velloso LA, Carneiro E, Carvalheira JBC, Curi R, Saad MJ. L-glutamine supplementation induces insulin resistance in adipose tissue and improves insulin signalling in liver and muscle of rats with diet-induced obesity. Diabetologia 2007; 50:1949-1959. [PMID: 17604977 DOI: 10.1007/s00125-007-0723-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 04/30/2007] [Indexed: 01/22/2023] [Imported: 01/11/2025]
Abstract
AIMS/HYPOTHESIS Diet-induced obesity (DIO) is associated with insulin resistance in liver and muscle, but not in adipose tissue. Mice with fat-specific disruption of the gene encoding the insulin receptor are protected against DIO and glucose intolerance. In cell culture, glutamine induces insulin resistance in adipocytes, but has no effect in muscle cells. We investigated whether supplementation of a high-fat diet with glutamine induces insulin resistance in adipose tissue in the rat, improving insulin sensitivity in the whole animal. MATERIALS AND METHODS Male Wistar rats received standard rodent chow or a high-fat diet (HF) or an HF supplemented with alanine or glutamine (HFGln) for 2 months. Light microscopy and morphometry, oxygen consumption, hyperinsulinaemic-euglycaemic clamp and immunoprecipitation/immunoblotting were performed. RESULTS HFGln rats showed reductions in adipose mass and adipocyte size, a decrease in the activity of the insulin-induced IRS-phosphatidylinositol 3-kinase (PI3-K)-protein kinase B-forkhead transcription factor box 01 pathway in adipose tissue, and an increase in adiponectin levels. These results were associated with increases in insulin-stimulated glucose uptake in skeletal muscle and insulin-induced suppression of hepatic glucose output, and were accompanied by an increase in the activity of the insulin-induced IRS-PI3-K-Akt pathway in these tissues. In parallel, there were decreases in TNFalpha and IL-6 levels and reductions in c-jun N-terminal kinase (JNK), IkappaB kinase subunit beta (IKKbeta) and mammalian target of rapamycin (mTOR) activity in the liver, muscle and adipose tissue. There was also an increase in oxygen consumption and a decrease in the respiratory exchange rate in HFGln rats. CONCLUSIONS/INTERPRETATION Glutamine supplementation induces insulin resistance in adipose tissue, and this is accompanied by an increase in the activity of the hexosamine pathway. It also reduces adipose mass, consequently attenuating insulin resistance and activation of JNK and IKKbeta, while improving insulin signalling in liver and muscle.
Collapse
|
Retracted Publication |
18 |
56 |
42
|
Silva VRR, Micheletti TO, Pimentel GD, Katashima CK, Lenhare L, Morari J, Mendes MCS, Razolli DS, Rocha GZ, de Souza CT, Ryu D, Prada PO, Velloso LA, Carvalheira JBC, Pauli JR, Cintra DE, Ropelle ER. Hypothalamic S1P/S1PR1 axis controls energy homeostasis. Nat Commun 2014; 5:4859. [PMID: 25255053 DOI: 10.1038/ncomms5859] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/31/2014] [Indexed: 02/07/2023] [Imported: 01/11/2025] Open
Abstract
Sphingosine 1-phosphate receptor 1 (S1PR1) is a G-protein-coupled receptor for sphingosine-1-phosphate (S1P) that has a role in many physiological and pathophysiological processes. Here we show that the S1P/S1PR1 signalling pathway in hypothalamic neurons regulates energy homeostasis in rodents. We demonstrate that S1PR1 protein is highly enriched in hypothalamic POMC neurons of rats. Intracerebroventricular injections of the bioactive lipid, S1P, reduce food consumption and increase rat energy expenditure through persistent activation of STAT3 and the melanocortin system. Similarly, the selective disruption of hypothalamic S1PR1 increases food intake and reduces the respiratory exchange ratio. We further show that STAT3 controls S1PR1 expression in neurons via a positive feedback mechanism. Interestingly, several models of obesity and cancer anorexia display an imbalance of hypothalamic S1P/S1PR1/STAT3 axis, whereas pharmacological intervention ameliorates these phenotypes. Taken together, our data demonstrate that the neuronal S1P/S1PR1/STAT3 signalling axis plays a critical role in the control of energy homeostasis in rats.
Collapse
|
|
11 |
56 |
43
|
Prada PO, Ropelle ER, Mourão RH, de Souza CT, Pauli JR, Cintra DE, Schenka A, Rocco SA, Rittner R, Franchini KG, Vassallo J, Velloso LA, Carvalheira JB, Saad MJ. EGFR tyrosine kinase inhibitor (PD153035) improves glucose tolerance and insulin action in high-fat diet-fed mice. Diabetes 2009; 58:2910-2919. [PMID: 19696185 PMCID: PMC2780887 DOI: 10.2337/db08-0506] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 08/05/2009] [Indexed: 01/04/2023] [Imported: 01/11/2025]
Abstract
OBJECTIVE In obesity, an increased macrophage infiltration in adipose tissue occurs, contributing to low-grade inflammation and insulin resistance. Epidermal growth factor receptor (EGFR) mediates both chemotaxis and proliferation in monocytes and macrophages. However, the role of EGFR inhibitors in this subclinical inflammation has not yet been investigated. We investigated, herein, in vivo efficacy and associated molecular mechanisms by which PD153035, an EGFR tyrosine kinase inhibitor, improved diabetes control and insulin action. RESEARCH DESIGN AND METHODS The effect of PD153035 was investigated on insulin sensitivity, insulin signaling, and c-Jun NH(2)-terminal kinase (JNK) and nuclear factor (NF)-kappaB activity in tissues of high-fat diet (HFD)-fed mice and also on infiltration and the activation state of adipose tissue macrophages (ATMs) in these mice. RESULTS PD153035 treatment for 1 day decreased the protein expression of inducible nitric oxide synthase, tumor necrosis factor (TNF)-alpha, and interleukin (IL)-6 in the stroma vascular fraction, suggesting that this drug reduces the M1 proinflammatory state in ATMs, as an initial effect, in turn reducing the circulating levels of TNF-alpha and IL-6, and initiating an improvement in insulin signaling and sensitivity. After 14 days of drug administration, there was a marked improvement in glucose tolerance; a reduction in insulin resistance; a reduction in macrophage infiltration in adipose tissue and in TNF-alpha, IL-6, and free fatty acids; accompanied by an improvement in insulin signaling in liver, muscle, and adipose tissue; and also a decrease in insulin receptor substrate-1 Ser(307) phosphorylation in JNK and inhibitor of NF-kappaB kinase (IKKbeta) activation in these tissues. CONCLUSIONS Treatment with PD153035 improves glucose tolerance, insulin sensitivity, and signaling and reduces subclinical inflammation in HFD-fed mice.
Collapse
|
Retracted Publication |
16 |
55 |
44
|
Pereira-da-Silva M, Torsoni MA, Nourani HV, Augusto VD, Souza CT, Gasparetti AL, Carvalheira JB, Ventrucci G, Marcondes MCCG, Cruz-Neto AP, Saad MJA, Boschero AC, Carneiro EM, Velloso LA. Hypothalamic melanin-concentrating hormone is induced by cold exposure and participates in the control of energy expenditure in rats. Endocrinology 2003; 144:4831-4840. [PMID: 12960043 DOI: 10.1210/en.2003-0243] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] [Imported: 01/11/2025]
Abstract
Short-term cold exposure of homeothermic animals leads to higher thermogenesis and food consumption accompanied by weight loss. An analysis of cDNA-macroarray was employed to identify candidate mRNA species that encode proteins involved in thermogenic adaptation to cold. A cDNA-macroarray analysis, confirmed by RT-PCR, immunoblot, and RIA, revealed that the hypothalamic expression of melanin-concentrating hormone (MCH) is enhanced by exposure of rats to cold environment. The blockade of hypothalamic MCH expression by antisense MCH oligonucleotide in cold-exposed rats promoted no changes in feeding behavior and body temperature. However, MCH blockade led to a significant drop in body weight, which was accompanied by decreased liver glycogen, increased relative body fat, increased absolute and relative interscapular brown adipose tissue mass, increased uncoupling protein 1 expression in brown adipose tissue, and increased consumption of lean body mass. Thus, increased hypothalamic MCH expression in rats exposed to cold may participate in the process that allows for efficient use of energy for heat production during thermogenic adaptation to cold.
Collapse
|
|
22 |
53 |
45
|
Pimentel GD, Ropelle ER, Rocha GZ, Carvalheira JBC. The role of neuronal AMPK as a mediator of nutritional regulation of food intake and energy homeostasis. Metabolism 2013; 62:171-178. [PMID: 22898253 DOI: 10.1016/j.metabol.2012.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/01/2012] [Accepted: 07/06/2012] [Indexed: 02/07/2023] [Imported: 01/11/2025]
Abstract
Hypothalamic 5'-adenosine monophosphate-activated protein kinase (AMPK) senses intracellular metabolic stress, i.e., an increase in the cellular AMP:ATP ratio, and integrates diverse hormonal and nutritional signals to restore energy balance. Recent evidence suggests that different nutrients can modulate AMPK activity in the hypothalamus, thereby controlling weight gain through a leptin-independent mechanism. Understanding the mechanisms by which nutrients control hypothalamic AMPK activity is crucial to the development of effective nutritional interventions for the treatment of food intake-related disorders, such as anorexia and obesity. This article highlights the current evidence for the intricate relationship between nutrients and hypothalamic AMPK activity.
Collapse
|
Review |
12 |
50 |
46
|
Zecchin HG, Bezerra RMN, Carvalheira JBC, Carvalho-Filho MA, Metze K, Franchini KG, Saad MJA. Insulin signalling pathways in aorta and muscle from two animal models of insulin resistance--the obese middle-aged and the spontaneously hypertensive rats. Diabetologia 2003; 46:479-491. [PMID: 12679867 DOI: 10.1007/s00125-003-1073-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2002] [Revised: 12/04/2002] [Indexed: 02/07/2023] [Imported: 01/11/2025]
Abstract
AIMS/HYPOTHESIS The aim of this study was to investigate insulin signalling pathways directly in vivo in skeletal muscle and thoracic aorta from obese middle-aged (12-month-old) rats, which have insulin resistance but not cardiovascular disease, and from spontaneously hypertensive rats (SHR), an experimental model of insulin resistance and cardiovascular disease. METHODS We have used in vivo insulin infusion, followed by tissue extraction, immunoprecipitation and immunoblotting. RESULTS Obese middle-aged rats and the SHR showed marked insulin resistance, which parallels the reduced effects of this hormone in the insulin signalling cascade in muscle. In aortae from obese middle-aged rats, the PI 3-kinase/Akt pathway is preserved, leading to a normal activation of endothelial nitric oxide synthase. In SHR this pathway is severely blunted, with reductions in eNOS protein concentration and activation. Both animals, however, showed higher concentrations and higher tyrosine phosphorylation of mitogen-activated protein (MAP) kinase isoforms in aortae. CONCLUSIONS/INTERPRETATION Alterations in the IRS/PI 3-K/Akt pathway in muscle of 12-month-old rats and SHR could be involved in the insulin resistance of these animals. The preservation of this pathway in aorta of 12-month-old rats, apart from increases in MAP kinase protein concentration and activation, could be a factor that contributes to explaining the absence of cardiovascular disease in this animal model. However, in aortae of SHR, the reduced insulin signalling through IRS/PI 3-kinase/Akt/eNOS pathway could contribute to the endothelial dysfunction of this animal.
Collapse
|
|
22 |
49 |
47
|
Ropelle ER, Pauli JR, Cintra DE, da Silva AS, De Souza CT, Guadagnini D, Carvalho BM, Caricilli AM, Katashima CK, Carvalho-Filho MA, Hirabara S, Curi R, Velloso LA, Saad MJ, Carvalheira JB. Targeted disruption of inducible nitric oxide synthase protects against aging, S-nitrosation, and insulin resistance in muscle of male mice. Diabetes 2013; 62:466-470. [PMID: 22991447 PMCID: PMC3554348 DOI: 10.2337/db12-0339] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/25/2012] [Indexed: 02/07/2023] [Imported: 01/11/2025]
Abstract
Accumulating evidence has demonstrated that S-nitrosation of proteins plays a critical role in several human diseases. Here, we explored the role of inducible nitric oxide synthase (iNOS) in the S-nitrosation of proteins involved in the early steps of the insulin-signaling pathway and insulin resistance in the skeletal muscle of aged mice. Aging increased iNOS expression and S-nitrosation of major proteins involved in insulin signaling, thereby reducing insulin sensitivity in skeletal muscle. Conversely, aged iNOS-null mice were protected from S-nitrosation-induced insulin resistance. Moreover, pharmacological treatment with an iNOS inhibitor and acute exercise reduced iNOS-induced S-nitrosation and increased insulin sensitivity in the muscle of aged animals. These findings indicate that the insulin resistance observed in aged mice is mainly mediated through the S-nitrosation of the insulin-signaling pathway.
Collapse
|
brief-report |
12 |
48 |
48
|
Torsoni MA, Carvalheira JB, Pereira-Da-Silva M, de Carvalho-Filho MA, Saad MJA, Velloso LA. Molecular and functional resistance to insulin in hypothalamus of rats exposed to cold. Am J Physiol Endocrinol Metab 2003; 285:E216-E223. [PMID: 12644444 DOI: 10.1152/ajpendo.00031.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] [Imported: 01/11/2025]
Abstract
Insulin and leptin act in the hypothalamus, providing robust anorexigenic signals. The exposure of homeothermic animals to a cold environment leads to increased feeding, accompanied by sustained low levels of insulin and leptin. In the present study, the initial and intermediate steps of the insulin-signaling cascade were evaluated in the hypothalamus of cold-exposed Wistar rats. By immunohistochemistry, most insulin receptor (IR) and insulin receptor substrate-2 (IRS-2) immunoreactivity localized to the arcuate nucleus. Basal levels of tyrosine phosphorylation of IR and IRS-2 were increased in cold-exposed rats compared with rats maintained at room temperature. However, after an acute, peripheral infusion of exogenous insulin, significantly lower increases of IR and IRS-2 tyrosine phosphorylation were detected in the hypothalamus of cold-exposed rats. Insulin-induced association of p85/phosphatidylinositol 3-kinase with IRS-2, Ser473 phosphorylation of Akt, and tyrosine phosphorylation of ERK was significantly reduced in the hypothalamus of cold-exposed rats. To test the hypothesis of functional impairment of insulin signaling in the hypothalamus, intracerebroventricularly cannulated rats were acutely treated with insulin, and food ingestion was measured over a period of 12 h. Cold-exposed animals presented a significantly lower insulin-induced reduction in food consumption compared with animals maintained at room temperature. Hence, the present studies reveal that animals exposed to cold are resistant, both at the molecular and the functional level, to the actions of insulin in the hypothalamus.
Collapse
|
|
22 |
48 |
49
|
Carvalheira JBC, Calegari VC, Zecchin HG, Nadruz W, Guimarães RB, Ribeiro EB, Franchini KG, Velloso LA, Saad MJA. The cross-talk between angiotensin and insulin differentially affects phosphatidylinositol 3-kinase- and mitogen-activated protein kinase-mediated signaling in rat heart: implications for insulin resistance. Endocrinology 2003; 144:5604-5614. [PMID: 12960006 DOI: 10.1210/en.2003-0788] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] [Imported: 01/11/2025]
Abstract
Insulin and angiotensin II (AngII) may act through overlapping intracellular pathways to promote cardiac myocyte growth. In this report insulin and AngII signaling, through the phosphatidylinositol 3-kinase (PI 3-kinase) and MAPK pathways, were compared in cardiac tissues of control and obese Zucker rats. AngII induced Janus kinase 2 tyrosine phosphorylation and coimmunoprecipitation with insulin receptor substrate 1 (IRS-1) and IRS-2 as well as an increase in tyrosine phosphorylation of IRS and its association with growth factor receptor-binding protein 2. Simultaneous treatment with both hormones led to marked increases in the associations of IRS-1 and -2 with growth factor receptor-binding protein 2 and in the dual phosphorylation of ERK1/2 compared with the administration of AngII or insulin alone. In contrast, an acute inhibition of both basal and insulin-stimulated PI 3-kinase activity was induced by both hormones. Insulin stimulated the phosphorylation of MAPK equally in lean and obese rats. Conversely, insulin-induced phosphorylation of Akt in heart was decreased in obese rats. Pretreatment with losartan did not change insulin-induced activation of ERK1/2 and attenuated the reduction of Akt phosphorylation in the heart of obese rats. Thus, the imbalance between PI 3-kinase-Akt and MAPK signaling pathways in the heart may play a role in the development of cardiovascular abnormalities observed in insulin-resistant states, such as in obese Zucker rats.
Collapse
|
|
22 |
47 |
50
|
Amaral MEC, Ueno M, Carvalheira JB, Carneiro EM, Velloso LA, Saad MJ, Boschero AC. Prolactin-signal transduction in neonatal rat pancreatic islets and interaction with the insulin-signaling pathway. Horm Metab Res 2003; 35:282-289. [PMID: 12915997 DOI: 10.1055/s-2003-41303] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] [Imported: 01/11/2025]
Abstract
During pregnancy, pancreatic islets undergo structural and functional changes in response to an increased demand for insulin. Different hormones, especially placental lactogens, mediate these adaptive changes. Prolactin (PRL) mainly exerts its biological effects by activation of the JAK2/STAT5 pathway. PRL also stimulates some biological effects via activation of IRS-1, IRS-2, PI 3-kinase, and MAPK in different cell lines. Since IRS-2 is important for the maintenance of pancreatic islet cell mass, we investigated whether PRL affects insulin-signaling pathways in neonatal rat islets. PRL significantly potentiated glucose-induced insulin secretion in islets cultured for 7 days. This effect was blocked by the specific PI 3-kinase inhibitor wortmannin. To determine possible effects of PRL on insulin-signaling pathways, fresh islets were incubated with or without the hormone for 5 or 15 min. Immunoprecipitation and immunoblotting with specific antibodies showed that PRL induced a dose-dependent IRS-1 and IRS-2 phosphorylation compared to control islets. PRL-induced increase in IRS-1/-2 phosphorylation was accompanied by an increase in the association with and activation of PI 3-kinase. PRL-induced IRS-2 phosphorylation and its association with PI 3-kinase did not add to the effect of insulin. PRL also induced JAK2, SHC, ERK1 and ERK2 phosphorylation in neonatal islets, demonstrating that PRL can activate MAPK. These data indicate that PRL can stimulate the IRSs/PI 3-kinase and SHC/ERK pathways in islets from neonatal rats.
Collapse
|
|
22 |
46 |