1
|
Holbeck M, DeVries HS, Singal AK. Integrated Multidisciplinary Management of Alcohol-associated Liver Disease. J Clin Transl Hepatol 2023; 11:1404-1412. [PMID: 37719958 PMCID: PMC10500286 DOI: 10.14218/jcth.2023.00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Alcohol-associated liver disease (ALD) is one of the most common liver diseases and indications for liver transplantation (LT). Alcohol use disorder (AUD), a frequent accompaniment in ALD patients, may also be associated with psychiatric comorbidities such as depression and anxiety. Identification of ALD at an earlier stage, and treatment of AUD may help prevent progression to advanced stage of ALD such as cirrhosis and alcoholic hepatitis. Screening for alcohol use and AUD treatment in ALD patients is often not performed due to several barriers at the level of patients, clinicians, and administrative levels. This review details the integrated multidisciplinary care model especially on the specific role of the hepatologist, psychiatrist, addiction counselor, and social worker in providing complete management for the dual pathology of liver disease and of AUD. Laboratory assessment, pharmacological and behavioral therapies, and recommended assessments for follow-up care by the respective specialists is outlined. We provide perspective along with the literature support, with the goal of providing team based comprehensive care of patients with ALD.
Collapse
Affiliation(s)
- Malia Holbeck
- Addiction Medicine, Avera McKennan University Hospital, University of South Dakota, Sioux Falls, SD, USA
| | - Hannah Statz DeVries
- Psychiatry, Avera McKennan University Hospital, University of South Dakota, Sioux Falls, SD, USA
| | - Ashwani K. Singal
- Transplant Hepatology, Avera McKennan University Hospital, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
2
|
Chen S, Zhang X, Xu L, Tian Y, Fan Z, Cao Y, Pan Z, Gao Y, Zheng S, Duan Z, Liu M, Ren F. Performance of Hepatitis Delta Virus (HDV) RNA Testing for the Diagnosis of Active HDV Infection: Systematic Review and Meta-analysis. J Clin Transl Hepatol 2023; 11:1368-1376. [PMID: 37719969 PMCID: PMC10500291 DOI: 10.14218/jcth.2022.00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/09/2023] [Accepted: 05/10/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Background and Aims Hepatitis delta virus (HDV) is a defective virus and causes severe liver disease. Several HDV RNA assays have been developed, however the diagnostic efficacy remains unclear.This systematic review and meta-analysis aims to evaluate the diagnostic accuracy of HDV RNA assays to aid in the diagnosis of active hepatitis D. Methods The PubMed, Embase, and Cochrane Library databases were systematically searched from the beginning to June 31, 2022. Information on the characteristics of the literature and data on sensitivity, specificity, and area under curve (AUC) of the receiver operating characteristic (ROC) were extracted. Stata 14.0 was used for meta-analysis of the combined sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio. Results A total of 10 studies were included in the meta-analysis. The summary sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio of HDV RNA assays for HDV diagnosis were 0.92 (95% CI: 0.87-0.95), 0.90 (95% CI: 0.86-0.93), 7.74 (95% CI: 5.31-11.29), 0.10 (95% CI: 0.06-0.18) and 99.90 (95% CI: 47.08-211.99), respectively. The AUC of the pooled ROC curve was 0.95 (95% CI: 0.92-0.96). Conclusions The results show that HDV RNA assays had high diagnostic performance. However, that is limited by the number and quality of studies. Standard protocols for the development of assays by manufacturers and larger studies on the use of the assays are needed.
Collapse
Affiliation(s)
- Sisi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiangying Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ling Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuan Tian
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zihao Fan
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yaling Cao
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhenzhen Pan
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yao Gao
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Sujun Zheng
- The First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhongping Duan
- Fourth Department of Hepatology Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Mei Liu
- Department of Oncology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Feng Ren
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Binet Q, Loumaye A, Hermans MP, Lanthier N. A Cross-sectional Real-life Study of the Prevalence, Severity, and Determinants of Metabolic Dysfunction-associated Fatty Liver Disease in Type 2 Diabetes Patients. J Clin Transl Hepatol 2023; 11:1377-1386. [PMID: 37719967 PMCID: PMC10500296 DOI: 10.14218/jcth.2023.00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/23/2023] [Accepted: 05/25/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Background and Aims Most data on liver assessment in type 2 diabetes mellitus (T2DM) patients are from retrospective cohorts with selection bias. We aimed at appraising the feasibility, results, and benefits of an outpatient systematic noninvasive screening for metabolic dysfunction-associated fatty liver disease (MAFLD) severity and determinants in T2DM patients. Methods We conducted a 50-week cross-sectional study enrolling adult T2DM outpatients from a diabetes clinic. An algorithm based on guidelines was applied using simple bioclinical scores and, if applicable, ultrasound and/or elastometry. Results Two hundred and thirteen patients were included. Mean age and body mass index were 62 years and 31 kg/m2 and 29% of patients had abnormal transaminase levels. The acceptance rate of additional liver examinations was 92%. The prevalence of MAFLD, advanced fibrosis and cirrhosis was 87%, 11%, and 4%, respectively. More than half of the cases of advanced fibrosis had not been suspected and were detected by this screening. MAFLD was associated with poor glycemic control, elevated transaminases, low HDL-C and the absence of peripheral arterial disease. Advanced fibrosis was linked to high waist circumference and excessive alcohol consumption, which should be interpreted with caution owing to the small number of patients reporting excessive consumption. Conclusions Simple bioclinical tools allowed routine triage of T2DM patients for MAFLD severity, with high adherence of high-risk patients to subsequent noninvasive exams.
Collapse
Affiliation(s)
- Quentin Binet
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Audrey Loumaye
- Service d’Endocrinologie et Nutrition, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Michel P Hermans
- Service d’Endocrinologie et Nutrition, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Nicolas Lanthier
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| |
Collapse
|
4
|
Chen YQ. NASH Drug Development: Seeing the Light at the End of the Tunnel? J Clin Transl Hepatol 2023; 11:1397-1403. [PMID: 37719961 PMCID: PMC10500295 DOI: 10.14218/jcth.2023.00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 04/26/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a chronic liver disease affecting a large population worldwide. No clinically approved drugs are available. In this minireview, we discuss the heterogeneous nature of NASH and lack of consensus in outcome measures among clinical trials. We summarize NASH therapeutic targets and candidate drugs. We compare the efficacy of 33 published clinical trials that evaluated noninvasive biomarkers and liver biopsy. Currently, phase II trial results of fibroblast growth factor 21 (FGF21) and phase III trial results of resmetirom and pioglitazone are encouraging.
Collapse
Affiliation(s)
- Yong Q. Chen
- Wuxi School of Medicine, Jiangnan University Medical Center, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Corrigendum: FOXO1 Alleviates Liver Ischemia-reperfusion Injury by Regulating the Th17/Treg Ratio through the AKT/Stat3/FOXO1 Pathway. J Clin Transl Hepatol 2023; 11:1443. [PMID: 37719960 DOI: 10.14218/JCTH.2023.00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
[This corrects the article DOI: 10.14218/JCTH.2021.00551.].
Collapse
|
6
|
Li JJ, Dai WQ, Mo WH, Xu WQ, Li YY, Guo CY, Xu XF. Fucoidan Ameliorates Ferroptosis in Ischemia-reperfusion-induced Liver Injury through Nrf2/HO-1/GPX4 Activation. J Clin Transl Hepatol 2023; 11:1341-1354. [PMID: 37719959 PMCID: PMC10500289 DOI: 10.14218/jcth.2023.00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/17/2023] [Accepted: 05/10/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Background and Aims Liver ischemia-reperfusion (IR) injury is a common pathological process in liver surgery. Ferroptosis, which is closely related to lipid peroxidation, has recently been confirmed to be involved in the pathogenesis of IR injury. However, the development of drugs that regulate ferroptosis has been slow, and a complete understanding of the mechanisms underlying ferroptosis has not yet been achieved. Fucoidan (Fu) is a sulfated polysaccharide that has attracted research interest due to its advantages of easy access and wide biological activity. Methods In this study, we established models of IR injury using erastin as an activator of ferroptosis, with the ferroptosis inhibitor ferrostatin-1 (Fer-1) as the control. We clarified the molecular mechanism of fucoidan in IR-induced ferroptosis by determining lipid peroxidation levels, mitochondrial morphology, and key pathways in theta were involved. Results Ferroptosis was closely related to IR-induced hepatocyte injury. The use of fucoidan or Fer-1 inhibited ferroptosis by eliminating reactive oxygen species and inhibiting lipid peroxidation and iron accumulation, while those effects were reversed after treatment with erastin. Iron accumulation, mitochondrial membrane rupture, and active oxygen generation related to ferroptosis also inhibited the entry of nuclear factor erythroid 2-related factor 2 (Nrf2) into the nucleus and reduced downstream heme oxygenase-1 (HO-1) and glutathione peroxidase 4 (GPX4) protein levels. However, fucoidan pretreatment produced adaptive changes that reduced irreversible cell damage induced by IR or erastin. Conclusions Fucoidan inhibited ferroptosis in liver IR injury via the Nrf2/HO-1/GPX4 axis.
Collapse
Affiliation(s)
- Jing-Jing Li
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, China
| | - Wei-Qi Dai
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, China
| | - Wen-Hui Mo
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, China
| | - Wen-Qiang Xu
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, China
| | - Yue-Yue Li
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, China
| | - Chuan-Yong Guo
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuan-Fu Xu
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, China
| |
Collapse
|
7
|
Li K, Niu Y, Li K, Zhong C, Qiu Z, Yuan Y, Shi Y, Lin Z, Huang Z, Zuo D, Yuan Y, Li B. Dysregulation of PLOD2 Promotes Tumor Metastasis and Invasion in Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:1094-1105. [PMID: 37577214 PMCID: PMC10412693 DOI: 10.14218/jcth.2022.00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/04/2022] [Accepted: 02/22/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Background and Aims Metastasis is a major factor associated with high recurrence and mortality in hepatocellular carcinoma (HCC) patients while the underlying mechanism of metastasis remains elusive. In our study, procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) was shown to be involved in the process of metastasis in HCC. Methods The Cancer Genome Atlas (TCGA) database and HCC tissue microarrays were used to evaluate the expression of genes. In vitro migration, invasion, in vivo subcutaneous tumor model and in vivo lung metastasis assays were used to determine the role of PLOD2 in tumor growth and metastasis in HCC. RNA sequencing and gene set enrichment analysis were performed to uncover the downstream factor of PLOD2 in HCC cells. A luciferase reporter assay was performed to evaluate the interaction between PLOD2 and interferon regulatory factor 5 (IRF5). Results The expression of PLOD2 in HCC tissues was higher than that in adjacent tissues, and increased PLOD2 expression was often found in advanced tumors and was correlated with poor prognosis in HCC patients. In vitro experiments, knockdown of PLOD2 reduced the migration and invasion of human HCC cells. Loss of PLOD2 suppressed human HCC growth and metastasis in a subcutaneous tumor model and a lung metastasis model. Baculoviral IAP repeat containing 3 (BIRC3) was proven to be the downstream factor of PLOD2 in human HCC cells. In addition, PLOD2 was transcriptionally regulated by IRF5 in HCC cells. Conclusions High expression of PLOD2 was regulated by IRF5, which was correlated with the poor survival of HCC patients. PLOD2 enhanced HCC metastasis via BIRC3, suggesting that PLOD2 might be a valuable prognostic biomarker for HCC treatment.
Collapse
Affiliation(s)
- Keren Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yi Niu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Kai Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chengrui Zhong
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhiyu Qiu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yichuan Yuan
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yunxing Shi
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhu Lin
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhenkun Huang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Dinglan Zuo
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Binkui Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Liang D, Luo L, Wang J, Liu T, Guo C. CENPA-driven STMN1 Transcription Inhibits Ferroptosis in Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:1118-1129. [PMID: 37577230 PMCID: PMC10412702 DOI: 10.14218/jcth.2023.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Background and Aims The growing knowledge of ferroptosis has suggested the regulatory role of ferroptosis in hepatocellular carcinoma (HCC), but the pertinent molecular mechanisms remain unclear. Herein, this study investigated the mechanistic basis of ferroptosis-related genes (ferrGenes) in the growth of HCC. Methods Differentially expressed human ferrGenes and tumor-related transcription factors (TFs) were obtained from the The Cancer Genome Atlas (TCGA) dataset and the GTEx dataset. Spearman method-based correlation analysis were conducted to construct TF-ferrGene coexpression regulatory network. Key genes associated with prognosis were singled out with Lasso regression and multivariate Cox analysis to construct the prognostic risk model. Then the accuracy and independent prognostic ability of the model were evaluated. Expression of CENPA and STMN1 was determined in clinical HCC tissues and HCC cells, and their binding was analyzed with dual-luciferase and chromatin immunoprecipitation (ChIP) assays. Furthermore, ectopic expression and knockdown assays were performed in HCC cells to assess the effect of CENPA and STMN1 on ferroptosis and malignant phenotypes. Results The prognostic risk model constructed based on the eight TF-ferrGene regulatory network-related genes accurately predicted the prognosis of HCC patients. It was strongly related to the clinical characteristics of HCC patients. Moreover, CENPA/STMN1 might be a key TF-ferrGene regulatory network in ferroptosis of HCC. CENPA and STMN1 were overexpressed in HCC tissues and cells. Additionally, CENPA facilitated STMN1 transcription by binding to STMN1 promoter, thus facilitating the malignant phenotypes and suppressing the ferroptosis of HCC cells. Conclusions Taken together, CENPA curbs the ferroptosis of HCC cells by upregulating STMN1 transcription, thereby promoting HCC growth.
Collapse
Affiliation(s)
- Daomiao Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Lanzhu Luo
- Children’s Medical Center, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan China
| | - Jiang Wang
- Children’s Medical Center, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan China
| | - Tongyu Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Chao Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| |
Collapse
|
9
|
Jose-Abrego A, Roman S, Rebello Pinho JR, Gomes-Gouvêa MS, Panduro A. High Frequency of Antiviral Resistance Mutations in HBV Genotypes A2 and H: Multidrug Resistance Strains in Mexico. J Clin Transl Hepatol 2023; 11:1023-1034. [PMID: 37577226 PMCID: PMC10412697 DOI: 10.14218/jcth.2022.00135s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Background and Aims Lamivudine (3TC), telbivudine (LdT), entecavir (ETV), adefovir (ADF), and tenofovir (TFV) are drugs used to treat hepatitis B virus (HBV) infection, but specific mutations allow some viruses to become resistant to antiviral drugs or to acquire immune escape capacities. These mutations have not been thoroughly investigated in Mexico. This study aimed to estimate the prevalence of HBV antiviral resistance and escape mutations. Methods This cross-sectional study analyzed 158 samples. HBV DNA was extracted, amplified, and sequenced in serum samples using the spin column method, PCR assay, and Sanger's sequencing, respectively. HBV genotypes were determined, and HBV mutations were tested using the Geno2pheno tool. Results Overall, 68.4% (108/158) of HBV patients were infected with genotype H, followed by G (11.4%, 18/158), A2 (10.8%, 17/158), F1b (6.9.0%, 11/158), D (1.9%, 3/158), and E (0.6%, 1/158), and 5.1% (8/158) had evidence of recombination. The prevalence of resistance mutations was 8.2% (13/158) and the most common combined mutation was rt180M+rt204V. Notably, we found the combinations rt180M+rt204V+rt173L (n=2) and rt180M+rt204V+rt202G (n=1) that confer multidrug resistance to 3TC, LdT, and ETV. Resistance mutations were found in genotypes A2 (11.8%, 2/17), and H (10.2%, 11/108), and escape mutations were detected in HBV genotypes A2 (11.8%, 2/17), H (10.2%, 11/108), F1b (9.1%, 1/11) and G (5.6%, 1/18). Conclusions The highest prevalence of antiviral resistance mutations or escape mutations was detected in HBV genotypes A2 and H. The earliest cases of HBV multidrug resistance were detected in Mexico.
Collapse
Affiliation(s)
- Alexis Jose-Abrego
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde,” Guadalajara, Jalisco, Mexico
- Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Sonia Roman
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde,” Guadalajara, Jalisco, Mexico
- Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - João Renato Rebello Pinho
- LIM07, Department of Gastroenterology, University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Arturo Panduro
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde,” Guadalajara, Jalisco, Mexico
- Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
10
|
Liu X, Shao Y, Han L, Zhang R, Chen J. Emerging Evidence Linking the Liver to the Cardiovascular System: Liver-derived Secretory Factors. J Clin Transl Hepatol 2023; 11:1246-1255. [PMID: 37577236 PMCID: PMC10412704 DOI: 10.14218/jcth.2022.00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 02/27/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide. Recently, accumulating evidence has revealed hepatic mediators, termed as liver-derived secretory factors (LDSFs), play an important role in regulating CVDs such as atherosclerosis, coronary artery disease, thrombosis, myocardial infarction, heart failure, metabolic cardiomyopathy, arterial hypertension, and pulmonary hypertension. LDSFs presented here consisted of microbial metabolite, extracellular vesicles, proteins, and microRNA, they are primarily or exclusively synthesized and released by the liver, and have been shown to exert pleiotropic actions on cardiovascular system. LDSFs mainly target vascular endothelial cell, vascular smooth muscle cells, cardiomyocytes, fibroblasts, macrophages and platelets, and further modulate endothelial nitric oxide synthase/nitric oxide, endothelial function, energy metabolism, inflammation, oxidative stress, and dystrophic calcification. Although some LDSFs are known to be detrimental/beneficial, controversial findings were also reported for many. Therefore, more studies are required to further explore the causal relationships between LDSFs and CVDs and uncover the exact mechanisms, which is expected to extend our understanding of the crosstalk between the liver and cardiovascular system and identify potential therapeutic targets. Furthermore, in the case of patients with liver disease, awareness should be given to the implications of these abnormalities in the cardiovascular system. These studies also underline the importance of early recognition and intervention of liver abnormalities in the practice of cardiovascular care, and a multidisciplinary approach combining hepatologists and cardiologists would be more preferable for such patients.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, Guangdong, China
| | - Yijia Shao
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linjiang Han
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, Guangdong, China
| | - Ruyue Zhang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, Guangdong, China
| | - Jimei Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Li J, Fan P, Xu Z, Dong Y, Wang F, Hong W, Zhao J, Gao Y, Yan J, Cao L, Zhang C, Zhu S, Wang FS, Zhang M. Functional Cure of Chronic Hepatitis B with Antiviral Treatment in Children having High-level Viremia and Normal or Mildly Elevated Serum Aminotransferase. J Clin Transl Hepatol 2023; 11:1011-1022. [PMID: 37577220 PMCID: PMC10412703 DOI: 10.14218/jcth.2023.00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Background and Aims There is a lack of data supporting the notion that antiviral treatments can benefit children with chronic hepatitis B (CHB) having high viremia and normal or mildly elevated serum alanine aminotransferase (ALT) levels. We aimed to analyze the efficacy of antiviral treatments in children with CHB and explore the factors associated with functional cure. Methods Forty-eight children with CHB having high viremia and normal or mildly elevated serum ALT levels were screened in this real-world study. Thirty-two children received either interferon-alpha (IFN-α) monotherapy, IFN-α therapy with a nucleoside analog (NA) add-on, or IFN-α and NA combination therapy. The 16 children in the control group did not receive antiviral treatment. All 48 children were available for follow-up assessments for the entire 36-month study period. We identified a functional cure with respect to hepatitis B virus (HBV) DNA loss, loss /seroconversion of circulating hepatitis B e antigen (HBeAg), and loss of hepatitis B surface antigen (HBsAg) with or without seroconversion. Cox regression analysis was employed to evaluate the factors that may have influenced the functional cure. Results After 36 months, the cumulative functional cure rate was 56.25% (18/32) in the treated group and 0% (0/16) in the control group (p<0.001). In the treated group, the serum HBV DNA levels declined rapidly at the end of a 6-month visit and the cured children achieved a loss rate of 100% (18/18) within 16 months of beginning treatment, compared with 64.29% (9/14) of the uncured children (p<0.001). The rates of HBeAg seroconversion were significantly higher among the cured children than among the uncured children (p<0.001). All 16 children in the control group maintained high levels of serum HBV DNA and were positive for both serum HBeAg and HBsAg during the entire 36 months of the study period. Functional cure was associated with younger ages (1-6 vs. 7-14 years, p=0.013), CD8+ T lymphocyte counts (p=0.013), and B lymphocyte counts (p=0.003). No serious adverse events were observed. Conclusions Antiviral treatment achieved a functional cure of CHB in a high proportion of children having high-level viremia and normal or mildly elevated ALT levels. Younger age and high peripheral lymphocyte counts were associated with this functional cure.
Collapse
Affiliation(s)
- Jing Li
- Peking University 302 Clinical Medical School, Beijing, China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Peiyao Fan
- Peking University 302 Clinical Medical School, Beijing, China
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhiqiang Xu
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yi Dong
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fuchuan Wang
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Weiguo Hong
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jinfang Zhao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yinjie Gao
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianguo Yan
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lili Cao
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Shishu Zhu
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fu-Sheng Wang
- Peking University 302 Clinical Medical School, Beijing, China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Min Zhang
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Kovynev A, Ying Z, Lambooij JM, van der Zande HJ, Guigas B, Rensen PC, Schönke M. Early but Not Late Exercise Training in Mice Exacerbates Hepatic Inflammation in Developing Nonalcoholic Fatty Liver Disease. J Clin Transl Hepatol 2023; 11:1282-1285. [PMID: 37577234 PMCID: PMC10412690 DOI: 10.14218/jcth.2023.00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Affiliation(s)
- Artemiy Kovynev
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Zhixiong Ying
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Joost M. Lambooij
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C.N. Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Milena Schönke
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Mitten EK, Portincasa P, Baffy G. Portal Hypertension in Nonalcoholic Fatty Liver Disease: Challenges and Paradigms. J Clin Transl Hepatol 2023; 11:1201-1211. [PMID: 37577237 PMCID: PMC10412712 DOI: 10.14218/jcth.2023.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Portal hypertension in cirrhosis is defined as an increase in the portal pressure gradient (PPG) between the portal and hepatic veins and is traditionally estimated by the hepatic venous pressure gradient (HVPG), which is the difference in pressure between the free-floating and wedged positions of a balloon catheter in the hepatic vein. By convention, HVPG≥10 mmHg indicates clinically significant portal hypertension, which is associated with adverse clinical outcomes. Nonalcoholic fatty liver disease (NAFLD) is a common disorder with a heterogeneous clinical course, which includes the development of portal hypertension. There is increasing evidence that portal hypertension in NAFLD deserves special considerations. First, elevated PPG often precedes fibrosis in NAFLD, suggesting a bidirectional relationship between these pathological processes. Second, HVPG underestimates PPG in NAFLD, suggesting that portal hypertension is more prevalent in this condition than currently believed. Third, cellular mechanoresponses generated early in the pathogenesis of NAFLD provide a mechanistic explanation for the pressure-fibrosis paradigm. Finally, a better understanding of liver mechanobiology in NAFLD may aid in the development of novel pharmaceutical targets for prevention and management of this disease.
Collapse
Affiliation(s)
- Emilie K. Mitten
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Piero Portincasa
- Division of Internal Medicine and Department of Precision and Regenerative Medicine and Ionian Area, University ‘Aldo Moro’ Medical School, Bari, Italy
| | - György Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
14
|
Cheung KS, Mok CH, Lam LK, Mao XH, Mak LY, Seto WK, Yuen MF. Carvedilol Versus Other Nonselective Beta Blockers for Variceal Bleeding Prophylaxis and Death: A Network Meta-analysis. J Clin Transl Hepatol 2023; 11:1143-1149. [PMID: 37577228 PMCID: PMC10412710 DOI: 10.14218/jcth.2022.00130s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/20/2023] [Accepted: 04/25/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Background and Aims We aimed to perform a network meta-analysis (NWM) to examine comparative effectiveness of non-selective beta blockers (NSBBs) on prophylaxis of gastroesophageal variceal bleeding (GVB) and mortality benefit. Methods MEDLINE (OVID) and EMBASE databases were searched for eligible randomized clinical trials (RCTs) from inception to July 3, 2021. Outcomes of interest included primary/secondary prophylaxis of GVB, failure to achieve hepatic venous pressure gradient (HVPG) decremental response, liver-related and all-cause mortality. A Bayesian NWM was performed to derive relative risk (RR) with 95% credible intervals (CrIs). The ranking probability of each NSBB was assessed by surface under cumulative ranking curve (SUCRA). Results Thirty-three RCTs including 3,188 cirrhosis patients with gastroesophageal varices were included. Compared with placebo, nadolol ranked first for reducing variceal bleeding [RR:0.25, (95% CrI:0.11-0.51); SUCRA:0.898], followed by carvedilol [RR:0.33, (95% CrI: 0.11-0.88); SUCRA:0.692] and propranolol [RR:0.52, (95% CrI:0.37-0.75); SUCRA:0.405]. Carvedilol was more effective than propranolol in achieving HVPG decremental response [RR:0.43, (95% CrI: 0.26-0.69)]. Carvedilol ranked first for reducing all-cause mortality [RR: 0.32, (95% CrI:0.17-0.57); SUCRA:0.963), followed by nadolol [RR:0.48, (95% CI:0.29-0.77); SUCRA:0.688], and propranolol [RR:0.77, (95% CI:0.58-1.02); SUCRA: 0.337]. Similar findings were observed for liver-related mortality. Carvedilol ranked the safest. The RR of adverse events was 4.38, (95% CrI:0.33-161.4); SUCRA:0.530, followed by propranolol [RR: 7.54, (95% CrI:1.90-47.89); SUCRA:0.360], and nadolol [RR: 18.24, (95% CrI:91.51-390.90); SUCRA:0.158]. Conclusions Carvedilol is the preferred NSBB with better survival benefit and lower occurrence of adverse events among patients with gastroesophageal varices.
Collapse
Affiliation(s)
- Ka-Shing Cheung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Chiu-Hang Mok
- School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Lok-Ka Lam
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Xian-Hua Mao
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Gao P, Li M, Lu J, Xiang D, Wang X, Xu Y, Zu Y, Guan X, Li G, Zhang C. IL-33 Downregulates Hepatic Carboxylesterase 1 in Acute Liver Injury via Macrophage-derived Exosomal miR-27b-3p. J Clin Transl Hepatol 2023; 11:1130-1142. [PMID: 37577217 PMCID: PMC10412689 DOI: 10.14218/jcth.2022.00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 02/23/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Background and Aims We previously reported that carboxylesterase 1 (CES1) expression was suppressed following liver injury. The study aimed to explore the role of interleukin (IL)-33 in liver injury and examine the mechanism by which IL-33 regulates CES1. Methods IL-33 and CES1 levels were determined in the livers of patients and lipopolysaccharide (LPS)-, acetaminophen (APAP)-treated mice. We constructed IL-33 and ST2 knockout (KO) mice. ST2-enriched immune cells in livers were screened to identify the responsible cells. Macrophage-derived exosome (MDE) activity was tested by adding exosome inhibitors. Micro-RNAs (miRs) were extracted from control and IL-33-stimulated MDEs (IL-33-MDEs) and subjected miR sequencing (miR-Seq). Candidate miR was tested in vitro and in vivo and its binding of a target gene was assessed by luciferase reporter assays. Lentivirus-vector cellular transfection and transcript silencing were used to examine pathways mediating IL-33 suppression of miR-27b-3p. Results Patient liver IL-33 and CES1 expression levels were inversely correlated. CES1 downregulation in liver injury was rescued in both IL-33-deficient and ST2 KO mice. Macrophages were shown to be responsible for IL-33 effects. IL-33-MDEs reduced CES1 levels in hepatocytes. Exosomal miR-Seq and qRT-PCR demonstrated increased miR-27b-3p levels in IL-33-MDEs; miR-27b-3p was implicated in Nrf2 targeting. IL-33 inhibition of miR-27b-3p was found to be GATA3-dependent. Conclusions IL-33-ST2-GATA3 pathway signaling increases miR-27b-3p content in MDEs, which upon being internalized by hepatocytes reduce CES1 expression by inhibiting Nrf2. The elucidation of this mechanism in this study contributes to a better understanding of CES1 dysregulation in liver injury.
Collapse
Affiliation(s)
- Ping Gao
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Li
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingli Lu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daochun Xiang
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ximin Wang
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanjiao Xu
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Zu
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Guodong Li
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chengliang Zhang
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
16
|
Jia H, Yu G, Yu J, Zhang X, Yang L, Wang B, Zhang J, Bai L, Zhang X, Wang K, Zhao P, Yang D, Zhao Y, Yu Y, Zhang Y, Gu J, Ye C, Cai H, Lu Y, Xiang D, Yu L, Lian J, Hu J, Zhang S, Jin C, Yang Y. Immunomodulatory and Antiviral Therapy Improved Functional Cure Rate in CHB Patients with High HBsAg Level Experienced NA. J Clin Transl Hepatol 2023; 11:1003-1010. [PMID: 37577218 PMCID: PMC10412713 DOI: 10.14218/jcth.2022.00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Background and Aims A functional cure, or hepatitis B virus (HBV) surface antigen (HBsAg) loss, is difficult to achieve in patients with hepatitis B virus e antigen (HBeAg)-positive chronic hepatitis B. The HBV vaccine and granulocyte-macrophage colony-stimulating factor (GM-CSF) have been reported to help reduce HBsAg levels and promote HBsAg loss. In this prospective randomized trial, we evaluated HBsAg loss in patients receiving pegylated interferon-α2b (PEGIFN-α2b) and tenofovir disoproxil fumarate (TDF), with and without GM-CSF and HBV vaccination. Methods A total of 287 patients with HBeAg positive chronic hepatitis B and seroconversion after nucleot(s)ide analog treatment were assigned randomly to three treatment groups for 48 weeks, TDF alone (control), PEGIFN-α2b + TDF, and PEGIFN-α2b + TDF + GM-CSF + HBV vaccine. The primary endpoints were the proportions of patients with HBsAg loss and seroconversion at 48 and 72 weeks. Results The cumulative HBsAg loss rates in the control, PEGIFN-α2b + TDF, and PEGIFN-α2b + TDF + GM-CSF + HBV vaccine groups at week 48 were 0.0%, 28.3%, and 41.1%, respectively. The cumulative HBsAg seroconversion rates in these groups at week 48 were 0.0%, 21.7%, and 33.9%, respectively. Multivariate regression analysis showed that GM-CSF use plus HBV vaccination was significantly associated with HBsAg loss (p=0.017) and seroconversion (p=0.030). Conclusions In patients with HBeAg-positive chronic hepatitis B and seroconversion after nucleot(s)ide analog treatment, immunomodulatory/antiviral treatment regimens effectively improved HBsAg loss, and the regimen including GM-CSF and HBV vaccination was most effective.
Collapse
Affiliation(s)
- Hongyu Jia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, China
- Department of Infectious Diseases,Branch of the First Affiliated Hospital of Zhejiang University School of Medicine, Ningbo, Zhejiang, China
| | - Guodong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Xiaoli Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Lisha Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Bin Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xinxin Zhang
- Department of Infectious Disease, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ping Zhao
- International Center for Liver Disease Treatment, 302 Hospital Beijing, Beijing, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yingren Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yanyan Yu
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Yimin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Jueqing Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Chanyuan Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Huan Cai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Yingfeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Dairong Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Liang Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Jiangshan Lian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Jianhua Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Shanyan Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Ciliang Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Wang J, Wang F, Wang N, Zhang MY, Wang HY, Huang GL. Diagnostic and Prognostic Value of Protein Post-translational Modifications in Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:1192-1200. [PMID: 37577238 PMCID: PMC10412711 DOI: 10.14218/jcth.2022.00006s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with high incidence and cancer mortality worldwide. Post-translational modifications (PTMs) of proteins have a great impact on protein function. Almost all proteins can undergo PTMs, including phosphorylation, acetylation, methylation, glycosylation, ubiquitination, and so on. Many studies have shown that PTMs are related to the occurrence and development of cancers. The findings provide novel therapeutic targets for cancers, such as glypican-3 and mucin-1. Other clinical implications are also found in the studies of PTMs. Diagnostic or prognostic value, and response to therapy have been identified. In HCC, it has been shown that glycosylated alpha-fetoprotein (AFP) has a higher detection rate for early liver cancer than conventional AFP. In this review, we mainly focused on the diagnostic and prognostic value of PTM, in order to provide new insights into the clinical implication of PTM in HCC.
Collapse
Affiliation(s)
- Jing Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- China-America Cancer Research Institute, Key Laboratory for Epigenetics of Dongguan City, Guangdong Medical University, Dongguan, Guangdong, China
| | - Fangfang Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- China-America Cancer Research Institute, Key Laboratory for Epigenetics of Dongguan City, Guangdong Medical University, Dongguan, Guangdong, China
| | - Ning Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- China-America Cancer Research Institute, Key Laboratory for Epigenetics of Dongguan City, Guangdong Medical University, Dongguan, Guangdong, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Guo-Liang Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- China-America Cancer Research Institute, Key Laboratory for Epigenetics of Dongguan City, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
18
|
Bojanic K, Bogojevic MS, Vukadin S, Sikora R, Ivanac G, Lucic NR, Smolic M, Tabll AA, Wu GY, Smolic R. Noninvasive Fibrosis Assessment in Chronic Hepatitis C Infection: An Update. J Clin Transl Hepatol 2023; 11:1228-1238. [PMID: 37577224 PMCID: PMC10412701 DOI: 10.14218/jcth.2022.00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/04/2022] [Accepted: 02/27/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Liver biopsy is historically the gold standard for liver fibrosis assessment of chronic hepatitis C patients. However, with the introduction and validation of noninvasive tests (NITs) to evaluate advanced fibrosis, and the direct-acting antiviral agents for treatment of chronic hepatitis C virus (HCV), the role of NITs have become even more complex. There is now need for longitudinal monitoring and elucidation of cutoff values for prediction of liver-related complication after sustained virological response. The aim of this report is to provide a critical overview of the various NITs available for the assessment of liver fibrosis in HCV patients.
Collapse
Affiliation(s)
- Kristina Bojanic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Health Center Osijek-Baranja County, Osijek, Croatia
| | | | - Sonja Vukadin
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Renata Sikora
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Health Center Osijek-Baranja County, Osijek, Croatia
| | - Gordana Ivanac
- University Hospital Dubrava, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nikola Raguz Lucic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ashraf A. Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Center, Giza, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - George Y. Wu
- University of Connecticut Health Center, Farmington, CT, USA
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
19
|
Zhang W, Du F, Wang L, Bai T, Zhou X, Mei H. Hepatitis Virus-associated Non-hodgkin Lymphoma: Pathogenesis and Treatment Strategies. J Clin Transl Hepatol 2023; 11:1256-1266. [PMID: 37577221 PMCID: PMC10412707 DOI: 10.14218/jcth.2022.00079s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/21/2023] [Accepted: 03/22/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Over the last decade, epidemiological studies have discovered a link between hepatitis C virus (HCV) and hepatitis B virus (HBV) infection and non-Hodgkin lymphoma (NHL). The regression of HCV-associated NHL after HCV eradication is the most compelling proof supporting HCV infection's role in lymphoproliferative diseases. HBV infection was found to significantly enhance the incidence of NHL, according to the epidemiological data. The exact mechanism of HCV leading to NHL has not been fully clarified, and there are mainly the following possible mechanisms: (1) Indirect mechanisms: stimulation of B lymphocytes by extracellular HCV and cytokines; (2) Direct mechanisms: oncogenic effects mediated by intracellular HCV proteins; (3) hit-and-run mechanism: permanent genetic B lymphocytes damage by the transitional entry of HCV. The specific role of HBV in the occurrence of NHL is still unclear, and the research on its mechanism is less extensively explored than HCV, and there are mainly the following possible mechanisms: (1) Indirect mechanisms: stimulation of B lymphocytes by extracellular HBV; (2) Direct mechanisms: oncogenic effects mediated by intracellular HBV DNA. In fact, it is reasonable to consider direct-acting antivirals (DAAs) as first-line therapy for indolent HCV-associated B-NHL patients who do not require immediate chemotherapy. Chemotherapy for NHL is affected by HBV infection and replication. At the same time, chemotherapy can also activate HBV replication. Following recent guidelines, all patients with HBsAg positive/HBV DNA≥2,000 IU/mL should be treated for HBV. The data on epidemiology, interventional studies, and molecular mechanisms of HCV and HBV-associated B-NHL are systematically summarized in this review.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Hematology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fan Du
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Wang
- Department of Hematology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Bai
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Zhou
- Department of Internal Medicine II, Würzburg University Hospital, University of Würzburg, Würzburg, Germany
| | - Heng Mei
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
20
|
Lv T, Yu H, Han X, Wee A, Liu J, Li M, Xu J, Hu X, Li J, Duan W, Wang T, Jia J, Zhao X. Histopathological Features Predicting Long-term Clinical Outcomes in Patients with Vanishing Bile Duct Syndrome. J Clin Transl Hepatol 2023; 11:1161-1169. [PMID: 37577216 PMCID: PMC10412695 DOI: 10.14218/jcth.2022.00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/19/2022] [Accepted: 02/01/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Background and Aims The clinicopathological features and long-term outcomes of patients with vanishing bile duct syndrome (VBDS) have yet to be elucidated. The study aims to investigate these features and identify factors associated with poor prognosis. Methods This multicenter retrospective study recruited patients with liver biopsy-proven VBDS who were followed up at five hospitals in northern China from January 2003 to April 2022. Clinical and pathological data at time of biopsy were reviewed. Clinical outcomes including cirrhosis, decompensation events, liver transplantation (LT), and liver-related death were recorded. Cox regression analysis was used to identify the risk factors associated with poor outcomes. Results A total of 183 patients were included. The median age was 47 years, with 77.6% being women. During a median follow-up of 4.8 years, 88 patients developed compensated or decompensated cirrhosis, 27 died, and 15 received LT. Multivariate Cox regression analysis showed that hepatocellular cholestasis (HR 2.953, 95% CI: 1.437-6.069), foam cells (HR 2.349, 95% CI: 1.092-5.053), and advanced fibrosis (HR 2.524, 95% CI: 1.313-4.851) were independent predictors of LT or liver-related deaths. A nomogram formulated with the above factors showed good consistency with a concordance index of 0.746 (95% CI: 0.706-0.785). Conclusions Nearly half of VBDS patients studied progressed to end-stage liver disease and 23% of them had LT or liver-related death within two years of diagnosis. Hepatocellular cholestasis, foam cells and advanced fibrosis rather than the degree of bile duct loss or underlying etiologies were independently associated with poor prognosis in VBDS patients.
Collapse
Affiliation(s)
- Tingting Lv
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Haitian Yu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xiao Han
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Aileen Wee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, National University Hospital, Singapore
| | - Jimin Liu
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Min Li
- Clinical Epidemiology and Evidence-Based Medicine Unit, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jinghang Xu
- Department of infectious disease, Peking University First Hospital, Beijing, China
| | - Xiaoli Hu
- Department of infectious disease, Heilongjiang Province Hospital, Heilongjiang, China
| | - Jia Li
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin, China
| | - Weijia Duan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Tailing Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
21
|
Li YJ, Wu XF, Wang DD, Li P, Liang H, Hu XY, Gan JQ, Sun YZ, Li JH, Li J, Shu X, Song AL, Yang CY, Yang ZY, Yu WF, Yang LQ, Wang XB, Belguise K, Xia ZY, Yi B. Serum Soluble Vascular Endothelial Growth Factor Receptor 1 as a Potential Biomarker of Hepatopulmonary Syndrome. J Clin Transl Hepatol 2023; 11:1150-1160. [PMID: 37577229 PMCID: PMC10412700 DOI: 10.14218/jcth.2022.00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/02/2023] [Accepted: 02/28/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Background and Aims The results of basic research implicate the vascular endothelial growth factor (VEGF) family as a potential target of hepatopulmonary syndrome (HPS). However, the negative results of anti-angiogenetic therapy in clinical studies have highlighted the need for markers for HPS. Therefore, we aimed to determine whether VEGF family members and their receptors can be potential biomarkers for HPS through clinical and experimental studies. Methods Clinically, patients with chronic liver disease from two medical centers were enrolled and examined for HPS. Patients were divided into HPS, intrapulmonary vascular dilation [positive contrast-enhanced echocardiography (CEE) and normal oxygenation] and CEE-negative groups. Baseline information and perioperative clinical data were compared between HPS and non-HPS patients. Serum levels of VEGF family members and their receptors were measured. In parallel, HPS rats were established by common bile duct ligation. Liver, lung and serum samples were collected for the evaluation of pathophysiologic changes, as well as the expression levels of the above factors. Results In HPS rats, all VEGF family members and their receptors underwent significant changes; however, only soluble VEGFR1 (sFlt-1) and the sFlt-1/ placental growth factor (PLGF) ratio were changed in almost the same manner as those in HPS patients. Furthermore, through feature selection and internal and external validation, sFlt-1 and the sFlt-1/PLGF ratio were identified as the most important variables to distinguish HPS from non-HPS patients. Conclusions Our results from animal and human studies indicate that sFlt-1 and the sFlt-1/PLGF ratio in serum are potential markers for HPS.
Collapse
Affiliation(s)
- Yu-Jie Li
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xian-Feng Wu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dan-Dan Wang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Peng Li
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Hao Liang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiao-Yan Hu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jia-Qi Gan
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Yi-Zhu Sun
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jun-Hong Li
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jun Li
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Shu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ai-Lin Song
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chun-Yong Yang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhi-Yong Yang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Li-Qun Yang
- Department of Anesthesiology, Renji Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Bo Wang
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Karine Belguise
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Zheng-Yuan Xia
- Department of Anesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bin Yi
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
22
|
Keating SE, Croci I, Wallen MP, Cox ER, Coombes JS, Burton NW, Macdonald GA, Hickman IJ. High-intensity Interval Training for the Management of Nonalcoholic Steatohepatitis: Participant Experiences and Perspectives. J Clin Transl Hepatol 2023; 11:1050-1060. [PMID: 37577222 PMCID: PMC10412696 DOI: 10.14218/jcth.2022.00091s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/10/2023] [Accepted: 02/15/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Background and Aims High-intensity interval training (HIIT) is a therapeutic option for people with nonalcoholic steatohepatitis (NASH). However, the perspectives and experiences of HIIT for people with NASH are unknown, limiting translation of research. We explored the experiences and perspectives of both professionally supervised and self-directed HIIT in people with NASH and evaluated participant-reported knowledge, barriers, and enablers to commencing and sustaining HIIT. Methods Twelve participants with NASH underwent 12 weeks of supervised HIIT (3 days/week, 4×4 minutes at 85-95% maximal heart rate, interspersed with 3 minutes active recovery), followed by 12-weeks of self-directed (unsupervised) HIIT. One-on-one, semistructured participant interviews were conducted by exercise staff prior to HIIT and following both supervised and self-directed HIIT to explore prior knowledge, barriers, enablers, and outcomes at each stage. Interviews were audio-recorded, transcribed, coded, and thematically analyzed by two independent researchers. Results Four dominant themes were identified: (1) no awareness of/experience with HIIT and ambivalence about exercise capabilities; (2) multiple medical and social barriers to commencing and continuing HIIT; (3) exercise specialist support was a highly valued enabler, and (4) HIIT was enjoyed and provided holistic benefits. Conclusions People with NASH may lack knowledge of and confidence for HIIT, and experience multiple complex barriers to commencing and continuing HIIT. Exercise specialist support is a key enabler to sustained engagement. These factors need to be addressed in future clinical programs to augment the uptake and long-term sustainability of HIIT by people with NASH so they can experience the range of related benefits.
Collapse
Affiliation(s)
- Shelley E. Keating
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Ilaria Croci
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
- K.G. Jebsen Center of Exercise in Medicine Norwegian University of Science and Technology, Department of Circulation and Medical Imaging, Faculty of Medicine, Trondheim, Norway
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Matthew P. Wallen
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, Australia
- Institute of Health and Wellbeing, Federation University, Mount Helen, Australia
| | - Emily R. Cox
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, Australia
| | - Jeff S. Coombes
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Nicola W. Burton
- School of Applied Psychology, Griffith University, Mt Gravatt, Australia
- Menzies Health Institute, Griffith University, Gold Coast, Australia
- Centre for Mental Health, Griffith University, Brisbane, Australia
| | - Graeme A. Macdonald
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Ingrid J. Hickman
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Nutrition and Dietetics, Princess Alexandra Hospital, Brisbane, Australia
| |
Collapse
|
23
|
Feng S, Wang J, Wang L, Qiu Q, Chen D, Su H, Li X, Xiao Y, Lin C. Current Status and Analysis of Machine Learning in Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:1184-1191. [PMID: 37577233 PMCID: PMC10412715 DOI: 10.14218/jcth.2022.00077s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/11/2022] [Accepted: 02/21/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common tumor. Although the diagnosis and treatment of HCC have made great progress, the overall prognosis remains poor. As the core component of artificial intelligence, machine learning (ML) has developed rapidly in the past decade. In particular, ML has become widely used in the medical field, and it has helped in the diagnosis and treatment of cancer. Different algorithms of ML have different roles in diagnosis, treatment, and prognosis. This article reviews recent research, explains the application of different ML models in HCC, and provides suggestions for follow-up research.
Collapse
Affiliation(s)
- Sijia Feng
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Jianhua Wang
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Liheng Wang
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Qixuan Qiu
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Dongdong Chen
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Huo Su
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Xiaoli Li
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Yao Xiao
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Chiayen Lin
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
24
|
Zhang L, Wang M, An R, Dai J, Liu S, Chen M, Ding H. Activation of NLRP3 Inflammasome via Drp1 Overexpression in Kupffer Cells Aggravates Ischemia-reperfusion Injury in Hepatic Steatosis. J Clin Transl Hepatol 2023; 11:1069-1078. [PMID: 37577223 PMCID: PMC10412692 DOI: 10.14218/jcth.2022.00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Background and Aims Donors with fatty livers are considered to address the shortage of livers for transplantation, but those livers are particularly sensitive to ischemia-reperfusion injury (IRI), and an increased incidence of graft failure is observed. Kupffer cells account for 20-35% of liver nonparenchymal cells, and have been shown to participate in the process of IRI and inflammatory reactions of hepatic steatosis. NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) is an intracellular sensor activated by Kupffer cells to promote generation and participates in IRI. Dynamics-associated protein 1 (Drp1) is one of the main proteins regulating mitochondrial division and exacerbates IRI by affecting mitochondrial dynamics. The mechanism of interaction of Kupffer cells with Drp1 and NLRP3 to aggravate IRI has not been clarified. Methods A mouse model of hepatic steatosis was established by feeding the mice with a high-fat diet. In vitro experiments were performed using AML12 normal mouse liver cells and RAW264.7 mononuclear macrophage cells cultured in medium with palmitate and oleic acid. Western blotting and immunohistochemical (IHC) staining were used to detect the expression of NLRPP3 and Drp1 in IRI in the control and high-fat diet groups. The expression of F4/80+ cells during IRI in hepatic steatosis was verified by IHC staining, and the role of NLRPP3 and Drp1 in Kupffer-cell mediated IRI was investigated by targeting Drp-1 inhibition. Results Drp1 and NLRP3 expression was increased during IRI in hepatic steatosis, and the expression of Drp1 and NLRP3 were decreased after the elimination of Kupffer cells. That indicated Kupffer cells were involved in the process of IRI in hepatic steatosis through the action of Drp1 and NLRP3. After Drp1 inhibition, liver function was restored and NLRP3 expression level was reduced. Conclusions Kupffer cells aggravated IRI in hepatic steatosis via NLRP3 and Drp1. Drp1 inhibitors might be useful as specific therapeutics to alleviate IRI in hepatic steatosis and may have promise in case of liver donor shortage.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mingfu Wang
- Surgery Department I, Zhangjiagang Traditional Chinese Medicine Hospital, Suzhou, Jiangsu, China
| | - Ran An
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jun Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Shujun Liu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ming Chen
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Haoran Ding
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Reinshagen M, Kabisch S, Pfeiffer AF, Spranger J. Liver Fat Scores for Noninvasive Diagnosis and Monitoring of Nonalcoholic Fatty Liver Disease in Epidemiological and Clinical Studies. J Clin Transl Hepatol 2023; 11:1212-1227. [PMID: 37577225 PMCID: PMC10412706 DOI: 10.14218/jcth.2022.00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 03/21/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is strongly associated with the metabolic syndrome and type 2 diabetes and independently contributes to long-term complications. Being often asymptomatic but reversible, it would require population-wide screening, but direct diagnostics are either too invasive (liver biopsy), costly (MRI) or depending on the examiner's expertise (ultrasonography). Hepatosteatosis is usually accommodated by features of the metabolic syndrome (e.g. obesity, disturbances in triglyceride and glucose metabolism), and signs of hepatocellular damage, all of which are reflected by biomarkers, which poorly predict NAFLD as single item, but provide a cheap diagnostic alternative when integrated into composite liver fat indices. Fatty liver index, NAFLD LFS, and hepatic steatosis index are common and accurate indices for NAFLD prediction, but show limited accuracy for liver fat quantification. Other indices are rarely used. Hepatic fibrosis scores are commonly used in clinical practice, but their mandatory reflection of fibrotic reorganization, hepatic injury or systemic sequelae reduces sensitivity for the diagnosis of simple steatosis. Diet-induced liver fat changes are poorly reflected by liver fat indices, depending on the intervention and its specific impact of weight loss on NAFLD. This limited validity in longitudinal settings stimulates research for new equations. Adipokines, hepatokines, markers of cellular integrity, genetic variants but also simple and inexpensive routine parameters might be potential components. Currently, liver fat indices lack precision for NAFLD prediction or monitoring in individual patients, but in large cohorts they may substitute nonexistent imaging data and serve as a compound biomarker of metabolic syndrome and its cardiometabolic sequelae.
Collapse
Affiliation(s)
- Mona Reinshagen
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Neuherberg, Germany
| | - Stefan Kabisch
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Neuherberg, Germany
| | - Andreas F.H. Pfeiffer
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Neuherberg, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Neuherberg, Germany
| |
Collapse
|
26
|
Tan N, Lubel J, Kemp W, Roberts S, Majeed A. Current Therapeutics in Primary Sclerosing Cholangitis. J Clin Transl Hepatol 2023; 11:1267-1281. [PMID: 37577219 PMCID: PMC10412694 DOI: 10.14218/jcth.2022.00068s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/01/2023] [Accepted: 01/20/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is an orphan, cholestatic liver disease that is characterized by inflammatory biliary strictures with variable progression to end-stage liver disease. Its pathophysiology is poorly understood. Chronic biliary inflammation is likely driven by immune dysregulation, gut dysbiosis, and environmental exposures resulting in gut-liver crosstalk and bile acid metabolism disturbances. There is no proven medical therapy that alters disease progression in PSC, with the commonly prescribed ursodeoxycholic acid being shown to improve liver biochemistry at low-moderate doses (15-23 mg/kg/day) but not alter transplant-free survival or liver-related outcomes. Liver transplantation is the only option for patients who develop end-stage liver disease or refractory complications of PSC. Immunosuppressive and antifibrotic agents have not proven to be effective, but there is promise for manipulation of the gut microbiome with fecal microbiota transplantation and antibiotics. Bile acid manipulation via alternate synthetic bile acids such as norursodeoxycholic acid, or interaction at a transcriptional level via nuclear receptor agonists and fibrates have shown potential in phase II trials in PSC with several leading to larger phase III trials. In view of the enhanced malignancy risk, statins, and aspirin show potential for reducing the risk of colorectal cancer and cholangiocarcinoma in PSC patients. For patients who develop clinically relevant strictures with cholestatic symptoms and worsening liver function, balloon dilatation is safer compared with biliary stent insertion with equivalent clinical efficacy.
Collapse
Affiliation(s)
- Natassia Tan
- Department of Gastroenterology and Hepatology, Alfred Health; Central Clinical School, Monash University, Melbourne, Australia
| | - John Lubel
- Department of Gastroenterology and Hepatology, Alfred Health; Central Clinical School, Monash University, Melbourne, Australia
| | - William Kemp
- Department of Gastroenterology and Hepatology, Alfred Health; Central Clinical School, Monash University, Melbourne, Australia
| | - Stuart Roberts
- Department of Gastroenterology and Hepatology, Alfred Health; Central Clinical School, Monash University, Melbourne, Australia
| | - Ammar Majeed
- Department of Gastroenterology and Hepatology, Alfred Health; Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
27
|
Kobayashi T, Iwaki M, Nogami A, Yoneda M. Epidemiology and Management of Drug-induced Liver Injury: Importance of the Updated RUCAM. J Clin Transl Hepatol 2023; 11:1239-1245. [PMID: 37577239 PMCID: PMC10412691 DOI: 10.14218/jcth.2022.00067s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/28/2023] [Accepted: 03/21/2023] [Indexed: 07/03/2023] [Imported: 07/03/2023] Open
Abstract
Drug-induced liver injury (DILI) is a major cause of acute liver injury, liver failure, and liver transplantation worldwide. In recent years, immune checkpoint inhibitors have become widely used. This has led to an increase in DILI, for which pathophysiology and management methods differ significantly from the past. As the number of cases of acute liver injury and liver transplantation due to DILI is expected to increase, information about a DILI is becoming more valuable. DILI is classified into two types according to its etiology: intrinsic DILI, in which the drug or its metabolit |