26
|
WEN XIANMEI, ZHOU MUXIU, GUO YONG, ZHU YANWU, LI HONG, ZHANG LU, YU LONG, WANG XIAOCHENG, PENG XIAOCHUN. Expression and significance of DOK2 in colorectal cancer. Oncol Lett 2015; 9:241-244. [PMID: 25435967 PMCID: PMC4246696 DOI: 10.3892/ol.2014.2672] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 10/22/2014] [Indexed: 12/29/2022] [Imported: 08/29/2023] Open
Abstract
A reduction in the levels of docking protein 2 (DOK2) expression has previously been reported in lung adenocarcinoma and gastric cancer, indicating that this protein acts as a tumor suppressor in solid tumors. The aim of the current study was to determine the significance of DOK2 in colorectal cancer. The study consisted of 102 patients who underwent curative surgery for colorectal cancer. Histopathological and immunohistochemical analysis of DOK2 protein expression levels was performed in issue samples, and univariate and multivariate analyses were used to investigate the correlation between prognosis and the clinicopathological parameters. DOK2 expression was confirmed in the normal colorectal mucosa tissues, which is consistent with the literature, whereas 34 out of 102 (33.3%) tumor specimens were negative. The results revealed that recurrence was more likely to develop in DOK2(-) patients compared with DOK2(+) patients. The DOK2(-) patients also exhibited a poorer five-year overall survival rate (59.1%) compared with the DOK2(+) group (76.4%; P=0.0328). These results indicate that DOK2 may potentially be used as a marker of poor prognosis in patients with colorectal cancer following curative resection.
Collapse
|
research-article |
10 |
8 |
27
|
Peng X, Li J, Yu X, Tan R, Zhu L, Wang J, Wang R, Gu G, Liu Q, Ren L, Wang C, Hu Q. Therapeutic effectiveness of bone marrow-derived mesenchymal stem cell administration against acute pulmonary thromboembolism in a mouse model. Thromb Res 2015; 135:990-999. [PMID: 25712897 DOI: 10.1016/j.thromres.2015.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 01/31/2015] [Accepted: 02/08/2015] [Indexed: 02/04/2023] [Imported: 04/09/2025]
Abstract
INSTRUCTION Acute pulmonary thromboembolism (APTE) is a common clinical condition associated with significant morbidity and mortality. Although promising, bone marrow-derived mesenchymal stem cell (BMSC) treatment for thrombus resolution remains controversial. The therapeutic effectiveness of BMSC against APTE has not been evaluated. This study aims to determine whether BMSCs administration is effective in mouse model. MATERIALS AND METHODS Therapeutic efficacy of female and male BMSCs were evaluated by applying serial sectioning analysis method for the whole lungs of APTE mice and calculating each thrombus size in volume. Plasmid construction and stable transfection were used to manipulate expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in both genders of BMSCs. Western blot were performed to detect GAPDH and urokinase plasminogen activator expression in BMSCs. RESULTS Our data showed, 1) compared with non-serial sectioning method, the serial sectioning method detected more thrombi, larger size ranges of thrombus area, and the volume of each individual thrombus. 2) BMSCs significantly decreased the thrombi size in APTE mice, with female BMSCs superior to male ones. 3) female BMSCs showed a higher GAPDH protein level and manipulations of GAPDH expression in female or male BMSCs profoundly affected their therapeutic efficacies as well as urokinase plasminogen activator expression. CONCLUSION This study indicates serial-sectioning analysis method is necessary for evaluating APTE and provides strong evidences for BMSCs possessing therapeutic effectiveness against APTE, with female BMSCs superior to male counterparts. GAPDH played a critical role in the superior function of female BMSCs, possibly by regulating the expression of urokinase plasminogen activator.
Collapse
|
|
10 |
8 |
28
|
Huang J, Yang X, Peng X, Huang W. Inhibiting prenylation augments chemotherapy efficacy in renal cell carcinoma through dual inhibition on mitochondrial respiration and glycolysis. Biochem Biophys Res Commun 2017; 493:921-927. [PMID: 28943437 DOI: 10.1016/j.bbrc.2017.09.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 09/20/2017] [Indexed: 11/29/2022] [Imported: 04/09/2025]
Abstract
Prenylation is a posttranslational lipid modification required for the proper functions of a number of proteins involved in cell regulation. Here, we show that prenylation inhibition is important for renal cell carcinoma (RCC) growth, survival and response to chemotherapy, and its underlying mechanism may be contributed to mitochondrial dysfunction. We first demonstrated that a HMG-CoA reductase inhibitor pitavastatin inhibited mevalonate pathway and thereby prenylation in RCC cells. In addition, pitavastatin is effective in inhibiting growth and inducing apoptosis in a panel of RCC cell lines. Combination of pitavastatin and paclitaxel is significantly more effective than pitavastatin or paclitaxel alone as shown by both in vitro cell culture system and in vivo RCC xenograft model. Importantly, pitavastatin treatment inhibits mitochondrial respiration via suppressing mitochondrial complex I and II enzyme activities. Interestingly, different from mitochondrial inhibitor phenformin that inhibits mitochondrial respiration but activates glycolytic rate in RCC cells, pitavastatin significantly decreases glycolytic rate. The dual inhibitory action of pitavastatin on mitochondrial respiration and glycolysis results in remarkable energy depletion and oxidative stress in RCC cells. In addition, inhibition of prenylation by depleting Isoprenylcysteine carboxylmethyltransferase (Icmt) also mimics the inhibitory effects of pitavastatin in RCC cells. Our work demonstrates the previously unappreciated association between prenylation inhibition and energy metabolism in RCC, which can be therapeutically exploited, likely in tumors that largely rely on energy metabolism.
Collapse
|
|
8 |
8 |
29
|
Sun P, Li R, Meng Y, Xi S, Wang Q, Yang X, Peng X, Cai J. Introduction to DOK2 and its potential role in cancer. Physiol Res 2021; 70:671-685. [PMID: 34505522 PMCID: PMC8820521 DOI: 10.33549/physiolres.934710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022] [Imported: 08/29/2023] Open
Abstract
Cancer is a complex, multifactorial disease that modern medicine ultimately aims to overcome. Downstream of tyrosine kinase 2 (DOK2) is a well-known tumor suppressor gene, and a member of the downstream protein DOK family of tyrosine kinases. Through a search of original literature indexed in PubMed and other databases, the present review aims to extricate the mechanisms by which DOK2 acts on cancer, thereby identifying more reliable and effective therapeutic targets to promote enhanced methods of cancer prevention and treatment. The review focuses on the role of DOK2 in multiple tumor types in the lungs, intestines, liver, and breast. Additionally, we discuss the potential mechanisms of action of DOK2 and the downstream consequences via the Ras/MPAK/ERK or PI3K/AKT/mTOR signaling pathways.
Collapse
|
Review |
4 |
8 |
30
|
Cheng JT, Wang YY, Zhu LZ, Zhang Y, Cai WQ, Han ZW, Zhou Y, Wang XW, Peng XC, Xiang Y, Yang HY, Cui SZ, Ma Z, Liu BR, Xin HW. Novel transcription regulatory sequences and factors of the immune evasion protein ICP47 (US12) of herpes simplex viruses. Virol J 2020; 17:101. [PMID: 32650799 PMCID: PMC7377220 DOI: 10.1186/s12985-020-01365-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022] [Imported: 04/09/2025] Open
Abstract
BACKGROUND Herpes simplex virus (HSV) can cause encephalitis. Its infected cell polypeptide 47 (ICP47), encoded by immediate-early gene US12, promotes immune escape. ICP47 was modified in the clinically approved oncolytic HSV (oHSV) T-Vec. However, transcription regulatory sequence (TRS) and transcription regulatory factor (TRF) of HSV US12 are seldom reported. METHODS Previously, our laboratory isolated a new HSV strain named HSV-1-LXMW from a male patient with oral herpes in Beijing, China. Firstly, the genetic tree was used to analyze its genetic relationship. The US12 TRS and TRF in HSV-1-LXMW were found by using predictive software. Secondly, the further verification by the multi-sequence comparative analysis shown that the upstream DNA sequence of HSV US12 gene contained the conserved region. Finally, the results of literature search shown that the expression of transcription factors was related to the tissue affinity of HSV-1 and HSV-2, so as to increase the new understanding of the transcriptional regulation of HSV biology and oncolytic virus (OVs) therapy. RESULTS Here we reported the transcriptional regulation region sequence of our new HSV-1-LXMW, and its close relationship with HSV-1-CR38 and HSV-1-17. Importantly we identified eight different kinds of novel TRSs and TRFs of HSV US12 for the first time, and found they are conserved among HSV-1 (c-Rel, Elk-1, Pax-4), HSV-2 (Oct-1, CF2-II, E74A, StuAp) or both HSVs (HNF-4). The TRFs c-Rel and Oct-1 are biologically functional respectively in immune escape and viral replication during HSV infection. CONCLUSIONS Our findings have important implication to HSV biology, infection, immunity and oHSVs.
Collapse
|
research-article |
5 |
7 |
31
|
Tong C, Peng X, Hu H, Wang Z, Zhou H. The effect of different flushing methods in a short peripheral catheter. Acta Cir Bras 2019; 34:e201900804. [PMID: 31618404 PMCID: PMC6799976 DOI: 10.1590/s0102-865020190080000004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/18/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022] [Imported: 04/09/2025] Open
Abstract
PURPOSE To develop a rabbit model of a short peripheral catheter (SPC) and to observe the effects of different flushing methods on blood vessels. METHODS Thirty rabbits were randomly divided into three groups (A, B, and C), with ten rabbits per group. In group A, we used pulsed flush; in group B, we used uniform flush; and no treatment was used in group C. RESULTS We observed that a uniform flush reduced blockage, phlebitis, and exudation compared to a pulsed flush by visual observation. The histopathological examination found that the morphological changes in group A were more severe than in group B and C related to loss of venous endothelial cells, inflammatory cell infiltration, edema, epidermal and chondrocyte degeneration, except for the thrombosis on group B that was more serious than in group A, especially in the distal side of puncture points. The distal region of groups A and B had more inflammatory cell infiltration than the proximal region. Thrombosis was more severe in the distal region than in the proximal region in group B. CONCLUSIONS The uniform flush produced less damage to the vascular endothelium and surrounding tissues and was superior to the pulsed flush. However, the uniform flush is prone to thrombosis.
Collapse
|
research-article |
6 |
5 |
32
|
Zhang Y, Xin Q, Zhang JY, Wang YY, Cheng JT, Cai WQ, Han ZW, Zhou Y, Cui SZ, Peng XC, Wang XW, Ma Z, Xiang Y, Su XL, Xin HW. Transcriptional Regulation of Latency-Associated Transcripts (LATs) of Herpes Simplex Viruses. J Cancer 2020; 11:3387-3399. [PMID: 32231745 PMCID: PMC7097949 DOI: 10.7150/jca.40186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022] [Imported: 04/09/2025] Open
Abstract
Herpes simplex viruses (HSVs) cause cold sores and genital herpes and can establish lifelong latent infection in neurons. An engineered oncolytic HSV (oHSV) has recently been approved to treat tumors in clinics. HSV latency-associated transcripts (LATs) are associated with the latent infection, but LAT transcriptional regulation was seldom reported. For a better treatment of HSV infection and tumors, here we sequenced the LAT encoding DNA and LAT transcription regulatory region of our recently isolated new strain HSV-1-LXMW and did comparative analysis of the sequences together with those of other four HSV-1 and two HSV-2 strains. Phylogenetic analysis of LATs revealed that HSV-1-LXMW is evolutionarily close to HSV-1-17 from MRC University, Glasgow, UK. For the first time, Using a weight matrix-based program Match and multi-sequences alignment of the 6 HSV strains, we identified HSV LAT transcription regulatory sequences that bind to 9 transcription factors: AP-1, C-REL, Comp1, E2F, Hairy, HFH-3, Kr, TCF11/MAFG, v-Myb. Interestingly, these transcription regulatory sequences and factors are either conserved or unique among LATs of HSV-1 and HSV-2, suggesting they are potentially functional. Furthermore, literature analysis found that the transcription factors v-myb and AP-1 family member JunD are functional in regulating HSV gene transcription, including LAT transcription. For the first time, we discovered seven novel transcription factors and their corresponding transcription regulatory sequences of HSV LATs. Based on our findings and other reports, we proposed potential mechanisms of the initiation and maintenance of HSV latent infection. Our findings may have significant implication in our understanding of HSV latency and engineering of better oncolytic HSVs.
Collapse
|
research-article |
5 |
5 |
33
|
Wu J, Lv T, Liu Y, Liu Y, Han Y, Liu X, Peng X, Tang F, Cai J. The role of quercetin in NLRP3-associated inflammation. Inflammopharmacology 2024; 32:3585-3610. [PMID: 39306817 DOI: 10.1007/s10787-024-01566-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/30/2024] [Indexed: 11/10/2024] [Imported: 04/09/2025]
Abstract
Quercetin is a natural flavonoid that is widely found in fruits and vegetables. As an important flavonoid, it exhibits a wide range of biological activities, including antioxidant, anti-inflammatory, antiviral, immunomodulatory, and analgesic activities. Quercetin exerts powerful antioxidant activity by regulating glutathione, enzyme activity, and the production of reactive oxygen species (ROS). Quercetin exerts powerful anti-inflammatory effects by acting on the Nod-like receptor protein 3 (NLRP3) inflammasome. In diabetes, quercetin has been shown to improve insulin sensitivity and reduce high blood sugar level, while, in neurological diseases, it potentially prevents neuronal degeneration and cognitive decline by regulating neuroinflammation. In addition, in liver diseases, quercetin may improve liver inflammation and fibrosis by regulating the NLRP3 activity. In addition, quercetin may improve inflammation in other diseases based on the NLRP3 inflammasome. With this background, in this review, we have discussed the progress in the study on the mechanism of quercetin toward improving inflammation via NLRP3 inflammasome in the past decade. In addition, from the perspective of quercetin glycoside derivatives, the anti-inflammatory mechanism of hyperoside, rutin, and isoquercetin based on NLRP3 inflammasome has been discussed. Moreover, we have discussed the pharmacokinetics of quercetin and its nanoformulation application, with the aim to provide new ideas for further research on the anti-inflammatory effect of quercetin and its glycoside derivatives based on NLRP3 inflammasome, as well as in drug development and application.
Collapse
|
Review |
1 |
5 |
34
|
Wang MY, Zhou Y, Lai GS, Huang Q, Cai WQ, Han ZW, Wang Y, Ma Z, Wang XW, Xiang Y, Fang SX, Peng XC, Xin HW. DNA barcode to trace the development and differentiation of cord blood stem cells (Review). Mol Med Rep 2021; 24:849. [PMID: 34643250 PMCID: PMC8524429 DOI: 10.3892/mmr.2021.12489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/15/2021] [Indexed: 12/05/2022] [Imported: 04/09/2025] Open
Abstract
Umbilical cord blood transplantation was first reported in 1980. Since then, additional research has indicated that umbilical cord blood stem cells (UCBSCs) have various advantages, such as multi‑lineage differentiation potential and potent renewal activity, which may be induced to promote their differentiation into a variety of seed cells for tissue engineering and the treatment of clinical and metabolic diseases. Recent studies suggested that UCBSCs are able to differentiate into nerve cells, chondrocytes, hepatocyte‑like cells, fat cells and osteoblasts. The culture of UCBSCs has developed from feeder‑layer to feeder‑free culture systems. The classical techniques of cell labeling and tracing by gene transfection and fluorescent dye and nucleic acid analogs have evolved to DNA barcode technology mediated by transposon/retrovirus, cyclization recombination‑recombinase and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‑associated protein 9 strategies. DNA barcoding for cell development tracing has advanced to include single cells and single nucleic acid mutations. In the present study, the latest research findings on the development and differentiation, culture techniques and labeling and tracing of UCBSCs are reviewed. The present study may increase the current understanding of UCBSC biology and its clinical applications.
Collapse
|
Review |
4 |
5 |
35
|
Li Y, Xu Y, Peng X, Huang J, Yang M, Wang X. A Novel Photosensitizer Znln 2S 4 Mediated Photodynamic Therapy Induced-HepG2 Cell Apoptosis. Radiat Res 2019; 192:422-430. [PMID: 31390309 DOI: 10.1667/rr15389.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] [Imported: 04/09/2025]
Abstract
Photodynamic therapy (PDT) uses a combination of photosensitizers with visible light to generate reactive species and selectively kill tumor or unwanted tissue. Znln2S4 nanoparticles are widely implemented in photovoltaic device materials and photolysis water catalysts owing to their unique photoelectric properties. Whether Znln2S4 itself can be used as an effective dye in PDT is still unknown. To determine the effects and potential mechanism of Znln2S4PDT on HepG2 cell apoptosis, electron microscopic analysis was performed to monitor the apoptotic morphology of HepG2 cells upon exposure to Znln2S4-PDT. Flow cytometry was performed to measure the apoptosis rate and intracellular ROS production. Western blot and ELISA were performed to reveal the expression changes in Bax, caspase-3 and caspase-9. Data from this work suggested that cells exhibited the typical apoptotic morphology in response to Znln2S4-PDT, with high apoptotic rate. The intracellular ROS production after Znln2S4-PDT occurred in a dose-dependent manner. Moreover, Znln2S4-PDT augmented the expression levels of pro-apoptosis factors, especially, Bax, caspase-3 and caspase-9. Taken together, our novel findings, Znln2S4-PDT elicited HepG2 cell apoptosis, suggesting Znln2S4 as a promising photosensitizer candidate for cancer therapy.
Collapse
|
|
6 |
4 |
36
|
Yang TT, Qian F, Liu L, Peng XC, Huang JR, Ren BX, Tang FR. Astroglial connexins in epileptogenesis. Seizure 2021; 84:122-128. [PMID: 33348235 DOI: 10.1016/j.seizure.2020.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/27/2022] [Imported: 04/09/2025] Open
Abstract
The astroglial network connected through gap junctions assembling from connexins physiologically balances the concentrations of ions and neurotransmitters around neurons. Astrocytic dysfunction has been associated with many neurological disorders including epilepsy. Dissociated gap junctions result in the increased activity of connexin hemichannels which triggers brain pathophysiological changes. Previous studies in patients and animal models of epilepsy indicate that the reduced gap junction coupling from assembled connexin hemichannels in the astrocytes may play an important role in epileptogenesis. This abnormal cell-to-cell communication is now emerging as an important feature of brain pathologies and being considered as a novel therapeutic target for controlling epileptogenesis. In particular, candidate drugs with ability of inhibition of connexin hemichannel activity and enhancement of gap junction formation in astrocytes should be explored to prevent epileptogenesis and control epilepsy.
Collapse
|
Review |
4 |
3 |
37
|
Zhou W, Yan LD, Yu ZQ, Li N, Yang YH, Wang M, Chen YY, Mao MX, Peng XC, Cai J. Role of STK11 in ALK-positive non-small cell lung cancer. Oncol Lett 2022; 23:181. [PMID: 35527776 PMCID: PMC9073580 DOI: 10.3892/ol.2022.13301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022] [Imported: 08/29/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) inhibitors have been shown to be effective in treating patients with ALK-positive non-small cell lung cancer (NSCLC), and crizotinib, ceritinib and alectinib have been approved as clinical first-line therapeutic agents. The availability of these inhibitors has also largely changed the treatment strategy for advanced ALK-positive NSCLC. However, patients still inevitably develop resistance to ALK inhibitors, leading to tumor recurrence or metastasis. The most critical issues that need to be addressed in the current treatment of ALK-positive NSCLC include the high cost of targeted inhibitors and the potential for increased toxicity and resistance to combination therapy. Recently, it has been suggested that the serine/threonine kinase 11 (STK11) mutation may serve as one of the biomarkers for immunotherapy in NSCLC. Therefore, the main purpose of this review was to summarize the role of STK11 in ALK-positive NSCLC. The present review also summarizes the treatment and drug resistance studies in ALK-positive NSCLC and the current status of STK11 research in NSCLC.
Collapse
|
Review |
3 |
3 |
38
|
Han ZW, Lyv ZW, Cui B, Wang YY, Cheng JT, Zhang Y, Cai WQ, Zhou Y, Ma ZW, Wang XW, Peng XC, Cui SZ, Xiang Y, Yang M, Xin HW. Correction to: The old CEACAMs find their new role in tumor immunotherapy. Invest New Drugs 2020; 38:1899-1900. [PMID: 32572666 DOI: 10.1007/s10637-020-00967-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] [Imported: 04/09/2025]
Abstract
Correction is needed to the original version of this article.
Collapse
|
Published Erratum |
5 |
3 |
39
|
Peng XC, Zhang M, Meng YY, Liang YF, Wang YY, Liu XQ, Cai WQ, Zhou Y, Wang XW, Ma ZW, Xiang Y, Zeng LS, Cui SZ, Yang LM, Xin HW. Cell‑cell fusion as an important mechanism of tumor metastasis (Review). Oncol Rep 2021; 46:145. [PMID: 34080662 DOI: 10.3892/or.2021.8096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/10/2021] [Indexed: 11/06/2022] [Imported: 04/09/2025] Open
Abstract
Cell‑cell fusion is a dynamic biological phenomenon, which plays an important role in various physiological processes, such as tissue regeneration. Similarly, normal cells, particularly bone marrow‑derived cells (BMDCs), may attempt to fuse with cancer cells to rescue them. The rescue may fail, but the fused cells end up gaining the motility traits of BMDCs and become metastatic due to the resulting genomic instability. In fact, cell‑cell fusion was demonstrated to occur in vivo in cancer and was revealed to promote tumor metastasis. However, its existence and role may be underestimated, and has not been widely acknowledged. In the present review, the milestones in cell fusion research were highlighted, the evidence for cell‑cell fusion in vitro and in vivo in cancer was evaluated, and the current understanding of the molecular mechanisms by which cell‑cell fusion occurs was summarized, to emphasize their important role in tumor metastasis. The summary provided in the present review may promote further study into this process and result in novel discoveries of strategies for future treatment of tumor metastasis.
Collapse
|
Review |
4 |
3 |
40
|
Zhang YH, Su B, Sun P, Li RM, Peng XC, Cai J. Percutaneous radiofrequency ablation is superior to hepatic resection in patients with small hepatocellular carcinoma. World J Clin Cases 2020; 8:4380-4387. [PMID: 33083397 PMCID: PMC7559644 DOI: 10.12998/wjcc.v8.i19.4380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/27/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] [Imported: 04/09/2025] Open
Abstract
BACKGROUND It is not known whether percutaneous radiofrequency ablation (PRFA) has the same treatment efficacy and fewer complications than laparoscopic resection in patients with small centrally located hepatocellular carcinoma (HCC). AIM To compare the effectiveness of PRFA with classical laparoscopic resection in patients with small HCC and document the safety parameters. METHODS In this retrospective study, 85 patients treated with hepatic resection (HR) and 90 PRFA-treated patients were enrolled in our hospital from July 2016 to July 2019. Treatment outcomes, including major complications and survival data, were evaluated. RESULTS The results showed that minor differences existed in the baseline characteristics between the patients in the two groups. PRFA significantly increased cumulative recurrence-free survival (hazard ratio 1.048, 95%CI: 0.265-3.268) and overall survival (hazard ratio 0.126, 95%CI: 0.025-0.973); PRFA had a lower rate of major complications than HR (7.78% vs 20.0%, P < 0.05), and hospital stay was shorter in the PRFA group than in the HR group (7.8 ± 0.2 d vs 9.5 ± 0.3 d, P < 0.001). CONCLUSION Based on the data obtained, we conclude that PRFA was superior to HR and may reduce complications and hospital stay in patients with small HCC.
Collapse
|
Retrospective Study |
5 |
2 |
41
|
Shi F, Xin VW, Liu XQ, Wang YY, Zhang Y, Cheng JT, Cai WQ, Xiang Y, Peng XC, Wang X, Xin HW. Identification of 22 Novel Motifs of the Cell Entry Fusion Glycoprotein B of Oncolytic Herpes Simplex Viruses: Sequence Analysis and Literature Review. Front Oncol 2020; 10:1386. [PMID: 32974139 PMCID: PMC7466406 DOI: 10.3389/fonc.2020.01386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/30/2020] [Indexed: 12/27/2022] [Imported: 04/09/2025] Open
Abstract
Objective: Herpes simplex viruses (HSVs) are widely spread throughout the world, causing infections from oral, and genital mucous membrane ulcerations to severe viral encephalitis. Glycoprotein B (gB) was the first HSV envelope glycoprotein identified to induce cell fusion. This glycoprotein initiates viral entry and thereby determines the infectivity of HSV, as well as oncolytic HSV (oHSV). Clarifying its molecular characterization and enlarging its motif reservoir will help to engineer oHSV and in cancer treatment applications. Only in recent years has the importance of gB been acknowledged in HSV infection and oHSV engineering. Although gB-modified oHSVs have been developed, the detailed molecular biology of gB needs to be illustrated more clearly in order to construct more effective oHSVs. Method: Here, we performed a systematic comparative sequence analysis of gBs from the 9 HSV-1 and 2 HSV-2 strains, including HSV-1-LXMW, which was isolated by our lab. Online software was implemented to predict gB secondary structure and motifs. Based on extensive literature reviews, a functional analysis of the predicted motifs was performed. Results: Here, we reported the DNA and predicted amino acid sequences of our recently isolated HSV-1-LXMW and found that the strain was evolutionarily close to HSV-1 strains F, H129, and SC16 based on gB analysis. The 22 novel motifs of HSV gB were identified for the first time. An amino acid sequence alignment of the 11 HSV strains showed that the gB motifs are conserved among HSV strains, suggesting that they are functional in vivo. Additionally, we found that certain amino acids within the 13 motifs out of the 22 were reported to be functional in vivo. Furthermore, the gB mutants and gB-engineered oHSVs were also summarized. Conclusion: Our identification of the 22 novel motifs shed light on HSV gB biology and provide new options for gB engineering to improve the efficiency and safety of oHSVs.
Collapse
|
research-article |
5 |
2 |
42
|
Zhang Y, Zeng LS, Wang J, Cai WQ, Cui W, Song TJ, Peng XC, Ma Z, Xiang Y, Cui SZ, Xin HW. Multifunctional Non-Coding RNAs Mediate Latent Infection and Recurrence of Herpes Simplex Viruses. Infect Drug Resist 2021; 14:5335-5349. [PMID: 34934329 PMCID: PMC8684386 DOI: 10.2147/idr.s334769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022] [Imported: 04/09/2025] Open
Abstract
Herpes simplex viruses (HSVs) often cause latent infection for a lifetime, leading to repeated recurrence. HSVs have been engineered as oncolytic HSVs. The mechanism of the latent infection and recurrence remains largely unknown, which brings great challenges and limitations to eliminate HSVs in clinic and engineer safe oHSVs. Here, we systematically reviewed the latest development of the multi-step complex process of HSV latency and reactivation. Significantly, we first summarized the three HSV latent infection pathways, analyzed the structure and expression of the LAT1 and LAT2 of HSV-1 and HSV-2, proposed the regulation of LAT expression by four pathways, and dissected the function of LAT mediated by five LAT products of miRNAs, sRNAs, lncRNAs, sncRNAs and ORFs. We further analyzed that application of HSV LAT deletion mutants in HSV vaccines and oHSVs. Our review showed that deleting LAT significantly reduced the latency and reactivation of HSV, providing new ideas for the future development of safe and effective HSV therapeutics, vaccines and oHSVs. In addition, we proposed that RNA silencing or RNA interference may play an important role in HSV latency and reactivation, which is worth validating in future.
Collapse
|
Review |
4 |
2 |
43
|
Xi S, ZhiguoShao, Li L, Gui Z, Liu P, Jiang Q, Yu Y, Zhou W, Zhou Z, Zhang S, Peng XC, Su B. Tongbixiao Pills Improve Gout by Reducing Uric Acid Levels and Inhibiting Inflammation. Dose Response 2022; 20:15593258221090340. [PMID: 35431698 PMCID: PMC9005743 DOI: 10.1177/15593258221090340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] [Imported: 04/09/2025] Open
Abstract
Gout is a chronic disease. Gout symptoms are often experienced in the middle of the night. The onset of gout in the middle of the night is closely related to abnormal liver and gallbladder meridian. The purpose of this study was to investigate the clinical efficacy and possible mechanism of action of Tongbixiao pills in the treatment of hyperuricemia and gouty arthritis. The Tongbixiao pills we used included several traditional Chinese medicines, most of which tonify the spleen; strengthen the liver; benefit the kidney; and reduce heat, dampness, and blood stasis. In this randomized clinical study of 105 patients, we found that Tongbixiao pills can reduce uric acid levels in hyperuricemia patients. Additionally, the efficacy was similar to that of allopurinol and the level of uric acid did not increase significantly at eight weeks after withdrawal. In the absence of notable adverse reactions, Tongbixiao pills can also increase uric acid excretion, reduce serum creatinine and lipid levels, and reduce inflammation and relieve gout symptoms. In addition, we used SD rats to simulate gout and arthritis and divided them into five groups: normal group, model group, low-dose group, medium-dose group, and high-dose group. The inflammatory indices of the 40 SD rats were observed. After seven days, ankle swelling in rats in the treatment group was significantly reduced. The indices of uric acid, creatinine, and urea nitrogen in the treatment group were significantly lower than those in the model group, which proved that Tongbixiao pills could inhibit hyperuricemia in rats, thus treating gout. This study demonstrates that Tongbixiao pills can treat gout, provide more treatment options for gouty arthritis, and improve the quality of life of patients.
Collapse
|
research-article |
3 |
2 |
44
|
Yan LD, Yang L, Li N, Wang M, Zhang YH, Zhou W, Yu ZQ, Peng XC, Cai J. Prognostic role of multiple abnormal genes in non-small-cell lung cancer. World J Clin Cases 2022; 10:7772-7784. [PMID: 36158484 PMCID: PMC9372825 DOI: 10.12998/wjcc.v10.i22.7772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/19/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) has the highest morbidity and mortality rates among all malignant tumor types. Although therapies targeting the mutated genes such as KRAS have been used in the clinic for many years, the prognosis remains poor. Therefore, it is necessary to further study the aberrant expression or mutation of non-target genes affecting the survival and prognosis. AIM To explore the impact of simultaneous abnormalities of multiple genes on the prognosis and survival of patients. METHODS We used R packages to analyze gene expression data and clinical data downloaded from The Cancer Genome Atlas (TCGA) database. We also collected samples from 85 NSCLC patients from the First People's Hospital of Jingzhou City and retrospectively followed the patients. Multivariate Cox regression analysis and survival analysis were performed. RESULTS Analysis of gene expression data from TCGA revealed that the overexpression of the following single genes affected overall survival: TP53 (P = 0.79), PTEN (P = 0.94), RB1 (P = 0.49), CTNNB1 (P = 0.24), STK11 (P = 0.32), and PIK3CA (P = 0.013). However, the probability of multiple genes (TP53, PTEN, RB1, and STK11) affecting survival was 0.025. Retrospective analysis of clinical data revealed that sex (hazard ratio [HR] = 1.29; [95%CI: 0.64-2.62]), age (HR = 1.05; [95%CI: 1.02-1.07]), smoking status (HR = 2.26; [95%CI: 1.16-4.39]), tumor histology (HR = 0.58; [95%CI: 0.30-1.11]), cancer stage (HR = 16.63; [95%CI: 4.8-57.63]), epidermal growth factor receptor (EGFR) mutation (HR = 1.82; [95%CI: 1.05-3.16]), abundance (HR = 4.95; [95%CI: 0.78-31.36]), and treatment with tyrosine kinase inhibitors (TKIs) (HR = 0.58; [95%CI: 0.43-0.78]) affected patient survival. Co-occurring mutations of TP53, PTEN, RB1, and STK11 did not significantly affect the overall survival of patients receiving chemotherapy (P = 0.96) but significantly affected the overall survival of patients receiving TKIs (P = 0.045). CONCLUSION Co-occurring mutation or overexpression of different genes has different effects on the overall survival and prognosis of NSCLC patients. Combined with TKI treatment, the co-occurring mutation of some genes may have a synergistic effect on the survival and prognosis of NSCLC patients.
Collapse
|
Retrospective Study |
3 |
1 |
45
|
Lv T, Meng Y, Liu Y, Han Y, Xin H, Peng X, Huang J. RNA nanotechnology: A new chapter in targeted therapy. Colloids Surf B Biointerfaces 2023; 230:113533. [PMID: 37713955 DOI: 10.1016/j.colsurfb.2023.113533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/14/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023] [Imported: 04/09/2025]
Abstract
Nanoparticles have been widely studied in the fields of biotechnology, pharmacy, optics and medicine and have broad application prospects. Numerous studies have shown significant interest in utilizing nanoparticles for chemically coating or coupling drugs, aiming to address the challenges of drug delivery, including degradability and uncertainty. Furthermore, the utilization of lipid nanoparticles loaded with novel coronavirus antigen mRNA to control the COVID-19 pandemic has led to a notable surge in research on nanoparticle vaccines. Hence, nanoparticles have emerged as a crucial delivery system for disease prevention and treatment, bearing immense significance. Current research highlights that nanoparticles offer superior efficacy and potential compared to conventional drug treatment and prevention methods. Notably, for drug delivery applications, it is imperative to utilize biodegradable nanoparticles. This paper reviews the structures and characteristics of various biodegradable nanoparticles and their applications in biomedicine in order to inspire more researchers to further explore the functions of nanoparticles. RNA plays a pivotal role in regulating the occurrence and progression of diseases, but its inherent susceptibility to degradation poses a challenge. In light of this, we conducted a comprehensive review of the research advancements concerning RNA-containing biodegradable nanoparticles in the realm of disease prevention and treatment, focusing on cancer, inflammatory diseases, and viral infections.
Collapse
|
Review |
2 |
1 |
46
|
Xi SJ, Cai WQ, Wang QQ, Peng XC. Role of circular RNAs in gastrointestinal tumors and drug resistance. World J Clin Cases 2021; 9:10400-10417. [PMID: 35004973 PMCID: PMC8686142 DOI: 10.12998/wjcc.v9.i34.10400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/26/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
The incidence of gastrointestinal cancers has increased significantly over the past decade and gastrointestinal malignancies now rank among the leading causes of mortality globally. Although newer therapeutic strategies such as targeted therapies have greatly improved patient outcomes, their clinical success is limited by drug resistance, treatment failure and recurrence of metastatic disease. Therefore, there is an urgent need for further research identifying accurate and reliable biomarkers for precise treatment strategies. Circular RNAs (circRNAs) exhibit a covalently closed structure, high stability and biological conservation, and their expression is associated with the occurrence and development of gastrointestinal tumors. Moreover, circRNAs may significantly influence drug resistance of gastrointestinal cancers. In this article, we review the role of circRNAs in the occurrence and development of gastrointestinal cancer, their association with drug resistance, and potential application for early diagnosis, treatment and prognosis in gastrointestinal malignancies. Furthermore, we summarize characteristics of circRNA, including mechanism of formation and biological effects via mRNA sponging, chromatin replication, gene regulation, translational modification, signal transduction, and damage repair. Finally, we discuss whether circRNA-related noninvasive testing may be clinically provided in the future. This review provides new insights for the future development of diagnostics and therapeutics based on circRNAs in gastrointestinal tumors.
Collapse
|
Review |
4 |
1 |
47
|
Zhang Y, Xu H, Li Y, Sun Y, Peng X. Advances in the treatment of pancreatic cancer with traditional Chinese medicine. Front Pharmacol 2023; 14:1089245. [PMID: 37608897 PMCID: PMC10440824 DOI: 10.3389/fphar.2023.1089245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/25/2023] [Indexed: 08/24/2023] [Imported: 08/29/2023] Open
Abstract
Pancreatic cancer is a common malignancy of the digestive system. With a high degree of malignancy and poor prognosis, it is called the "king of cancers." Currently, Western medicine treats pancreatic cancer mainly by surgical resection, radiotherapy, and chemotherapy. However, the curative effect is not satisfactory. The application of Traditional Chinese Medicine (TCM) in the treatment of pancreatic cancer has many advantages and is becoming an important facet of comprehensive clinical treatment. In this paper, we review current therapeutic approaches for pancreatic cancer. We also review the protective effects shown by TCM in different models and discuss the potential molecular mechanisms of these.
Collapse
|
Review |
2 |
1 |
48
|
Ma XY, Yang TT, Liu L, Peng XC, Qian F, Tang FR. Ependyma in Neurodegenerative Diseases, Radiation-Induced Brain Injury and as a Therapeutic Target for Neurotrophic Factors. Biomolecules 2023; 13:754. [PMID: 37238624 PMCID: PMC10216700 DOI: 10.3390/biom13050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] [Imported: 04/09/2025] Open
Abstract
The neuron loss caused by the progressive damage to the nervous system is proposed to be the main pathogenesis of neurodegenerative diseases. Ependyma is a layer of ciliated ependymal cells that participates in the formation of the brain-cerebrospinal fluid barrier (BCB). It functions to promotes the circulation of cerebrospinal fluid (CSF) and the material exchange between CSF and brain interstitial fluid. Radiation-induced brain injury (RIBI) shows obvious impairments of the blood-brain barrier (BBB). In the neuroinflammatory processes after acute brain injury, a large amount of complement proteins and infiltrated immune cells are circulated in the CSF to resist brain damage and promote substance exchange through the BCB. However, as the protective barrier lining the brain ventricles, the ependyma is extremely vulnerable to cytotoxic and cytolytic immune responses. When the ependyma is damaged, the integrity of BCB is destroyed, and the CSF flow and material exchange is affected, leading to brain microenvironment imbalance, which plays a vital role in the pathogenesis of neurodegenerative diseases. Epidermal growth factor (EGF) and other neurotrophic factors promote the differentiation and maturation of ependymal cells to maintain the integrity of the ependyma and the activity of ependymal cilia, and may have therapeutic potential in restoring the homeostasis of the brain microenvironment after RIBI or during the pathogenesis of neurodegenerative diseases.
Collapse
|
Review |
2 |
|
49
|
Yin G, Wang Q, Lv T, Liu Y, Peng X, Zeng X, Huang J. The Radioprotective Effect of LBP on Neurogenesis and Cognition after Acute Radiation Exposure. Curr Radiopharm 2024; 17:257-265. [PMID: 38204264 PMCID: PMC11327742 DOI: 10.2174/0118744710274008231220055033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024] [Imported: 04/09/2025]
Abstract
BACKGROUND Radiation exposure has been linked to the development of brain damage and cognitive impairment, but the protective effect and mechanism of Lycium barbarum pills (LBP) on radiation-induced neurological damage remains to be clarified. METHODS Behavioral tests and immunohistochemical studies were conducted to evaluate the protective effects of LBP extract (10 g/kg orally daily for 4 weeks) against radiation-induced damage on neurogenesis and cognitive function in Balb/c mice exposed to 5.5 Gy X-ray acute radiation. RESULTS The results showed that the LBP extract significantly improved body weight loss, locomotor activity and spatial learning and memory. Immunohistochemical tests revealed that the LBP extract prevented the loss of proliferating cells, newly generated neurons and interneurons, especially in the subgranular area of the dentate gyrus. CONCLUSION The findings suggest that LBP is a potential neuroprotective drug for mitigating radiation-induced neuropsychological disorders.
Collapse
|
research-article |
1 |
|
50
|
Chen YY, Wang M, Zuo CY, Mao MX, Peng XC, Cai J. Nrf-2 as a novel target in radiation induced lung injury. Heliyon 2024; 10:e29492. [PMID: 38665580 PMCID: PMC11043957 DOI: 10.1016/j.heliyon.2024.e29492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/09/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] [Imported: 04/09/2025] Open
Abstract
Radiation-induced lung injury (RILI) is a common and fatal complication of chest radiotherapy. The underlying mechanisms include radiation-induced oxidative stress caused by damage to the deoxyribonucleic acid (DNA) and production of reactive oxygen species (ROS), resulting in apoptosis of lung and endothelial cells and recruitment of inflammatory cells and myofibroblasts expressing NADPH oxidase to the site of injury, which in turn contribute to oxidative stress and cytokine production. Nuclear factor erythroid 2-related factor 2 (Nrf-2) is a vital transcription factor that regulates oxidative stress and inhibits inflammation. Studies have shown that Nrf-2 protects against radiation-induced lung inflammation and fibrosis. This review discusses the protective role of Nrf-2 in RILI and its possible mechanisms.
Collapse
|
Review |
1 |
|