276
|
Lan Shanyou 蓝, Zhang Da 张, Liu Xiaolong 刘, Zeng Yongyi 曾. Tumor-Microenvironment Activable Smart Nanocarrier System for Photodynamic Therapy of Cancers. CHINESE JOURNAL OF LASERS 2018; 45:0207008. [DOI: 10.3788/cjl201845.0207008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] [Imported: 01/23/2025]
|
|
7 |
|
277
|
Zhang Y, Zhong A, Min J, Tu H, Cao Y, Fu J, Li Y, Liu X, Yang Y, Wang J, Liu J, Wu M. Biomimetic Responsive Nanoconverters with Immune Checkpoint Blockade Plus Antiangiogenesis for Advanced Hepatocellular Carcinoma Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6894-6907. [PMID: 38306190 DOI: 10.1021/acsami.3c18140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024] [Imported: 01/23/2025]
Abstract
The first-line treatment for advanced hepatocellular carcinoma (HCC) combines immune checkpoint inhibitors and antiangiogenesis agents to prolong patient survival. Nonetheless, this approach has several limitations, including stringent inclusion criteria and suboptimal response rates that stem from the severe off-tumor side effects and the unfavorable pharmacodynamics and pharmacokinetics of different drugs delivered systemically. Herein, we propose a single-agent smart nanomedicine-based approach that mimics the therapeutic schedule in a targeted and biocompatible manner to elicit robust antitumor immunity in advanced HCC. Our strategy employed pH-responsive carriers, poly(ethylene glycol)-poly(β-amino esters) amphiphilic block copolymer (PEG-PAEs), for delivering apatinib (an angiogenesis inhibitor), that were surface-coated with plasma membrane derived from engineered cells overexpressing PD-1 proteins (an immune checkpoint inhibitor to block PD-L1). In an advanced HCC mouse model with metastasis, these biomimetic responsive nanoconverters induced significant tumor regression (5/9), liver function recovery, and complete suppression of lung metastasis. Examination of the tumor microenvironment revealed an increased infiltration of immune effector cells (CD8+ and CD4+ T cells) and reduced immunosuppressive cells (myeloid-derived suppressor cells and T regulatory cells) in treated tumors. Importantly, our nanomedicine selectively accumulated in both small and large HCC occupying >50% of the liver volume to exert therapeutic effects with minimal systemic side effects. Overall, these findings highlight the potential of such multifunctional nanoconverters to effectively reshape the tumor microenvironment for advanced HCC treatment.
Collapse
|
|
1 |
|
278
|
Guo L, Hao X, Chen L, Qian Y, Wang C, Liu X, Fan X, Jiang G, Zheng D, Gao P, Bai H, Wang C, Yu Y, Dai W, Gao Y, Liang X, Liu J, Sun J, Tian J, Wang H, Hou J, Fan R. Early warning of hepatocellular carcinoma in cirrhotic patients by three-phase CT-based deep learning radiomics model: a retrospective, multicentre, cohort study. EClinicalMedicine 2024; 74:102718. [PMID: 39070173 PMCID: PMC11279308 DOI: 10.1016/j.eclinm.2024.102718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024] [Imported: 01/23/2025] Open
Abstract
BACKGROUND The diagnosis of hepatocellular carcinoma (HCC) often experiences latency, ultimately leading to unfavorable patient outcomes due to delayed therapeutic interventions. Our study is designed to develop and validate a model that employs triple-phase computerized tomography (CT)-based deep learning radiomics and clinical variables for early warning of HCC in patients with cirrhosis. METHODS We studied 1858 patients with cirrhosis primarily from the PreCar cohort (NCT03588442) between June 2018 and January 2020 at 11 centres, and collected triple-phase CT images and laboratory results 3-12 months prior to HCC diagnosis or non-HCC final follow-up. Using radiomics and deep learning techniques, early warning model was developed in the discovery cohort (n = 924), and then validated in an internal validation cohort (n = 231), and an external validation cohort from 10 external centres (n = 703). FINDINGS We developed a hybrid model, named ALARM model, which integrates deep learning radiomics with clinical variables, enabling early warning of the majority of HCC cases. The ALARM model effectively predicted short-term HCC development in cirrhotic patients with area under the curve (AUC) of 0.929 (95% confidence interval 0.918-0.941) in the discovery cohort, 0.902 (0.818-0.987) in the internal validation cohort, and 0.918 (0.898-0.961) in the external validation cohort. By applying optimal thresholds of 0.21 and 0.65, the high-risk (n = 221, 11.9%) and medium-risk (n = 433, 23.3%) groups, which covered 94.4% (84/89) of the patients who developed HCC, had significantly higher rates of HCC occurrence compared to the low-risk group (n = 1204, 64.8%) (24.3% vs 6.4% vs 0.42%, P < 0.001). Furthermore, ALARM also demonstrated consistent performance in subgroup analysis. INTERPRETATION The novel ALARM model, based on deep learning radiomics with clinical variables, provides reliable estimates of short-term HCC development for cirrhotic patients, and may have the potential to improve the precision in clinical decision-making and early initiation of HCC treatments. FUNDING This work was supported by National Key Research and Development Program of China (2022YFC2303600, 2022YFC2304800), and the National Natural Science Foundation of China (82170610), Guangdong Basic and Applied Basic Research Foundation (2023A1515011211).
Collapse
|
research-article |
1 |
|
279
|
Chen Y, Yuan J, Han X, Liu X, Han X, Ye H. Coexpression Analysis of Transcriptome on AIDS and Other Human Disease Pathways by Canonical Correlation Analysis. Int J Genomics 2017; 2017:9163719. [PMID: 28695125 PMCID: PMC5488239 DOI: 10.1155/2017/9163719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/24/2017] [Accepted: 03/08/2017] [Indexed: 11/17/2022] [Imported: 01/23/2025] Open
Abstract
Acquired immune deficiency syndrome is a severe disease in humans caused by human immunodeficiency virus. Several human genes were characterized as host genetic factors that impact the processes of AIDS disease. Recent studies on AIDS patients revealed a series disease is complicating with AIDS. To resolve gene interaction between AIDS and complicating diseases, a canonical correlation analysis was used to identify the global correlation between AIDS and other disease pathway genes expression. The results showed that HLA-B, HLA-A, MH9, ZNED1, IRF1, TLR8, TSG101, NCOR2, and GML are the key AIDS-restricted genes highly correlated with other disease pathway genes. Furthermore, pathway genes in several diseases such as asthma, autoimmune thyroid disease, and malaria were globally correlated with ARGs. It suggests that these diseases are a high risk in AIDS patients as complicating diseases.
Collapse
|
research-article |
8 |
|
280
|
Lin J, Li S, Ying Y, Zheng W, Wu J, Wang P, Liu X. In Situ Formation of Hydrogel Wound Dressing Based on Carboxymethyl Chitin/Tannic Acid for Promoting Skin Wound Healing. ACS OMEGA 2024; 9:4386-4394. [PMID: 38313508 PMCID: PMC10831824 DOI: 10.1021/acsomega.3c06683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024] [Imported: 01/23/2025]
Abstract
Triggering the healing process of drug-resistant bacteria-infected wounds has attracted great attention due to global morbidity that may induce gangrene, amputation, and even death. Here, a chitin derivative, carboxymethyl chitosan (CMC), tannic acid (TA), and Cu2+ were used for hydrogel engineering. Using sodium bicarbonate as the neutralizer and reductant, hydrogen bonds between CMC and TA and in situ Cu(OH)2 generation via ion coordination force between Cu2+ and TA facilitated the synthesis of CMC/TA/Cu hydrogel. Cu2+ and TA release, cytotoxicity, in vitro cell migration, angiogenesis, and antidrug-resistant bacteria were measured. Besides, wound closure was evaluated in vivo using the methicillin-resistant Staphylococcus aureus (MRSA)-infected excisional dermal wound mouse model. Negligible toxicity was observed both in vitro and in vivo. Dermal cell migration and angiogenesis were significantly enhanced. In vivo, the CMC/TA/Cu hydrogel induced effective re-epithelialization, collagen deposition, inflammatory alleviation, and MRSA inhibition during wound repair in mice. All these results confirmed that the CMC/TA/Cu hydrogel is a promising novel dressing for chronic wound healing in clinic.
Collapse
|
research-article |
1 |
|
281
|
Wang C, Shi Y, Zhang D, Sun Y, Xie J, Wu B, Zhang C, Liu X. Generalization of neoantigen-based tumor vaccine by delivering peptide-MHC complex via oncolytic virus. EMBO Mol Med 2025; 17:1118-1152. [PMID: 40195559 DOI: 10.1038/s44321-025-00225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 04/09/2025] [Imported: 05/03/2025] Open
Abstract
Neoantigen vaccine is a promising breakthrough in tumor immunotherapy. However, the application of this highly personalized strategy in the treatment of solid tumors is hindered by several obstacles, including very costly and time-consuming preparation steps, uncertainty in prediction algorithms and tumor heterogeneity. Universalization of neoantigen vaccine is an ideal yet currently unattainable solution to such limitations. To overcome these limitations, we engineered oncolytic viruses co-expressing neoantigens and neoantigen-binding major histocompatibility complex (MHC) molecules to force ectopic delivery of peptide-MHC ligands to T cell receptors (TCRs), enabling specific targeting by neoantigen vaccine-primed host immunity. When integrated with neoantigen vaccination, the engineered viruses exhibited potent cytolytic activity in a variety of tumor models irrespective of the neoantigen expression profiles, eliciting robust systemic antitumor immunity to reject tumor rechallenge and inhibit abscopal tumor growth with a favorable safety profile. Thus, this study provides a powerful approach to enhance the universality and efficacy of neoantigen vaccines, meeting the urgent need for universal neoantigen vaccines in the clinic to facilitate the further development of tumor immunotherapy.
Collapse
|
|
1 |
|
282
|
Xu C, Zhang Z, Ying Y, Li S, Dang Y, He L, Liu X, Wang P, Xue F. Tumor-microenvironment-activated bimetallic oxide nanoplatform for second near-infrared region fluorescence-guided colon tumor surgery and multimodal synergistic therapy. J Colloid Interface Sci 2025; 692:137529. [PMID: 40220640 DOI: 10.1016/j.jcis.2025.137529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/31/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025] [Imported: 05/03/2025]
Abstract
Colon cancer, characterized by its high incidence and mortality rates, continues to present a significant challenge in cancer treatment. To address this, we present a novel ZnCe based nanocarrier featuring stacked mesopores and rough surface, indocyanine Green (ICG) is encapsulated within these mesopores (ZnCe&ICG). This innovative nanoplatform demonstrates effective accumulation in tumor regions and can be triggered to generate efficacious reactive oxygen species (ROS) in the weakly acidic and high H2O2 conditions typical of tumor microenvironments. Enhanced fluorescent imaging using improved tumor-to-background ratio has proven effective in precisely delineating tumor margins from surrounding healthy tissue. With the guidance of this second near-infrared region (NIR II, 1000-1700 nm) fluorescence imaging technique, tumors are completely excised, resulting in negligible instances of in situ recurrence or metastasis observed 30 days following surgery. Notably, under 808 nm laser irradiation, the nanoplatform exhibits a high photothermal conversion efficiency, leading to localized heating that further amplifies ROS production via multi ion synergetic catalysis for tumor cell killing. These results underscore the potential of tumor microenvironment-responsive ZnCe-based nanocomposite as a fluorescence imaging contrast agent and chemodynamic agent for cancer treatment, particularly when combined with NIR light activation.
Collapse
|
|
1 |
|
283
|
Qin J, Tang Y, Zeng Y, Liu X, Tang D. Recent advances in flexible sensors: From sensing materials to detection modes. Trends Analyt Chem 2024; 181:118027. [DOI: 10.1016/j.trac.2024.118027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] [Imported: 01/23/2025]
|
|
1 |
|
284
|
He L, Qiu L, Chen F, Chen T, Peng F, Li Z, Dong X, Cai Z, Fang Y, Chen H, Chen G, Liu X. Dysregulation of global circular RNA abundance regulated by spliceosomes predicts prognosis in hepatocellular carcinoma. Hepatol Commun 2022; 6:3578-3591. [PMID: 36349484 PMCID: PMC9701485 DOI: 10.1002/hep4.2074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022] [Imported: 01/23/2025] Open
Abstract
CircRNAs have been reported to play crucial roles in tumor progression and recurrence, showing potential as biomarkers in cancer. However, the global abundance of circRNA and their involvement in hepatocellular carcinoma (HCC) development have not been fully explored. Whole transcriptome sequencing was performed on tumor and peritumor from 60 patients with HCC to quantify the expression of circRNAs, and the global circRNA abundance was calculated by circRNA index (CRI). Gene-set enrichment analysis and weighted gene co-expression network analysis were used to reveal the biological signaling pathways associated with the global circRNA abundance. The correlation between the global circRNA abundance and the infiltration level of CD8+ T cells was explored by immunohistochemical assays. Small interfering RNA was used to knock down the pre-messenger RNA spliceosome in HCC cell lines to verify the regulation of spliceosome in global circRNA abundance. We found that dysregulation of global circRNA abundance in both tumor and peritumor could lead to worse prognosis. The immunohistochemical assay further revealed that the dysregulation of global circRNA abundance in both tumor and peritumor would obstruct the CD8+ T cells from invading into the tumor, which might explain its correlation with HCC prognosis. We also demonstrated that the spliceosome genes were the main factors to regulate the global circRNA abundance in HCC, and these results were also confirmed by knockdown experiments. Conclusion: This study revealed the association between the global circRNA abundance and patients' prognosis and its underlying mechanism.
Collapse
|
research-article |
3 |
|
285
|
ZHENG Ai-xian 郑, ZHANG Xiao-long 张, LIU Xiao-long 刘. Application in nucleic acid functionalized nanoprobe in cellular fluorescence imaging. CHINESE OPTICS 2018; 11:363-376. [DOI: 10.3788/co.20181103.0363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] [Imported: 01/23/2025]
|
|
7 |
|
286
|
Sun Y, Liu Y, Li R, Zhang C, Wu M, Zhang X, Zheng A, Liao N, Zheng Y, Xu H, Zeng R, Zeng Y, Liu X. Multifunctional Biomimetic Nanocarriers for Dual-Targeted Immuno-Gene Therapy Against Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400951. [PMID: 38973319 PMCID: PMC11425963 DOI: 10.1002/advs.202400951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/22/2024] [Indexed: 07/09/2024] [Imported: 01/23/2025]
Abstract
Growing evidences have proved that tumors evade recognition and attack by the immune system through immune escape mechanisms, and PDL1/Pbrm1 genes have a strong correlation with poor response or resistance to immune checkpoint blockade (ICB) therapy. Herein, a multifunctional biomimetic nanocarrier (siRNA-CaP@PD1-NVs) is developed, which can not only enhance the cytotoxic activity of immune cells by blocking PD1/PDL1 axis, but also reduce tumor immune escape via Pbrm1/PDL1 gene silencing, leading to a significant improvement in tumor immunosuppressive microenvironment. Consequently, the nanocarrier promotes DC cell maturation, enhances the infiltration and activity of CD8+ T cells, and forms long-term immune memory, which can effectively inhibit tumor growth or even eliminate tumors, and prevent tumor recurrence and metastasis. Overall, this study presents a powerful strategy for co-delivery of siRNA drugs, immune adjuvant, and immune checkpoint inhibitors, and holds great promise for improving the effectiveness and safety of current immunotherapy regimens.
Collapse
|
research-article |
1 |
|
287
|
Luo ZY, Tian Q, Cheng NM, Liu WH, Yang Y, Chen W, Zhang XZ, Zheng XY, Chen MS, Zhuang QY, Zhao BX, Liu CS, Liu XL, Li Q, Wang YC. Pien Tze Huang Inhibits Migration and Invasion of Hepatocellular Carcinoma Cells by Repressing PDGFRB/YAP/CCN2 Axis Activity. Chin J Integr Med 2024; 30:115-124. [PMID: 35947230 DOI: 10.1007/s11655-022-3533-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 11/25/2022] [Imported: 01/23/2025]
Abstract
OBJECTIVE To investigate the effects of Pien Tze Huang (PZH) on the migration and invasion of HCC cells and underlying molecular mechanism. METHODS Cell counting kit-8 (CCK-8) was applied to evaluate the cell viabilities of SMMC-7721, SK-Hep-1, C3A and HL-7702 (6 × 103 cells/well) co-incubated with different concentrations of PZH (0, 0.2, 0.4, 0.6, 0.8 mg/mL) for 24 h. Transwell, wound healing assay, CCK-8 and Annexin V-FITC/PI staining were conducted to investigate the effects of PZH on the migration, invasion, proliferation and apoptosis of SK-Hep-1 and SMMC-7721 cells (650 µ g/mL for SK-Hep-1 cells and 330 µ g/mL for SMMC-7721 cells), respectively. In vivo, lung metastasis mouse model constructed by tail vein injection of HCC cells was used for evaluating the anti-metastasis function of PZH. SK-Hep-1 cells (106 cells/200 µ L per mice) were injected into B-NDG mice via tail vein. Totally 8 mice were randomly divided into PZH and control groups, 4 mice in each group. After 2-d inoculation, mice in the PZH group were administered with PZH (250 mg/kg, daily) and mice in the control group received only vehicle (PBS) from the 2nd day after xenograft to day 17. Transcriptome analysis based on RNA-seq was subsequently used for deciphering anti-tumor mechanism of PZH. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were applied to verify RNA-seq results. Luciferase reporter assay was performed to examine the transcriptional activity of yes-associated protein (YAP). RESULTS PZH treatment significantly inhibited the migration, invasion, proliferation and promoted the apoptosis of HCC cells in vitro and in vivo (P<0.01). Transcriptome analysis indicated that Hippo signaling pathway was associated with anti-metastasis function of PZH. Mechanical study showed PZH significantly inhibited the expressions of platelet derived growth factor receptor beta (PDGFRB), YAP, connective tissue growth factor (CCN2), N-cadherin, vimentin and matrix metallopeptidase 2 (MMP2, P<0.01). Meanwhile, the phosphorylation of YAP was also enhanced by PZH treatment in vitro and in vivo. Furthermore, PZH played roles in inhibiting the transcriptional activity of YAP. CONCLUSION PZH restrained migration, invasion and epithelial-mesenchymal transition of HCC cells through repressing PDGFRB/YAP/CCN2 axis.
Collapse
|
|
1 |
|
288
|
Wang F, Hu E, Li J, Ouyang J, Liu X, Xing X. High-Throughput Proteomics Reveals a Novel Small Open Reading Frame-Encoded Peptide That Promotes Hepatocellular Carcinoma Invasion and Migration. J Proteome Res 2025; 24:777-785. [PMID: 39916558 DOI: 10.1021/acs.jproteome.4c00862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] [Imported: 01/23/2025]
Abstract
Long noncoding RNAs (lncRNAs) are closely associated with tumor development, and increasing evidence suggests that small open reading frame (smORF) within lncRNAs also have the capability to encode smORF-encoded peptides (SEPs). Here, we thoroughly uncovered the SEP expression profile of hepatocellular carcinoma (HCC) from tumor and adjacent nontumor tissues of 154 HCC patients using high-throughput mass spectrometry (MS). A total of 208 SEPs were identified, with no significant difference in abundance and stability compared with coding region proteins. Notably, the peptide encoded by LINC01007 (LINC01007-33AA) was significantly upregulated in HCC tissues (p < 0.05) and could serve as an independent risk factor affecting prognosis (HR [95% CI]: 1.31[1.01-1.7]). This endogenous peptide was further confirmed at both the mRNA and protein levels, and its overexpression significantly enhances the invasion and migration of HCC cells. These findings highlight the potential of MS-based methods to identify novel noncoding sequence encoded functional peptides associated with tumor progression.
Collapse
|
|
1 |
|
289
|
Wang H, Tang J, Wan X, Wang X, Zeng Y, Liu X, Tang D. Mechanism Exploration of the Photoelectrochemical Immunoassay for the Integration of Radical Generation with Self-Quenching. Anal Chem 2024. [PMID: 39255509 DOI: 10.1021/acs.analchem.4c04050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] [Imported: 01/23/2025]
Abstract
Photoelectrochemical (PEC) sensing mechanisms based on enzyme-catalyzed strategies primarily achieve the quantitative analysis of biomolecules through the enhancement or attenuation of photocurrent signals. However, there are still no reports that delve into the principles of photocurrent signaling conversion in the reaction between photoactive materials and the biomolecules. In this work, we demonstrated that indium oxysulfide InOS-0.5 heterojunction has excellent peroxidase activity to catalyze the reaction of H2O2-generated hydroxyl radicals (•OH) with the self-generated electrons, thereby resulting in synergistic quenching of the photocurrent signal. Based on the above principles, we coupled InOS-0.5 with a sandwich-type immunoassay to introduce H2O2 production catalyzed by glucose oxidase for the development of a PEC immunosensing platform. H2O2 reacted with InOS-0.5 to produce •OH with strong oxidizing properties, thus quenching the photogenerated electrons and realizing the PEC detection of the carcinoembryonic antigen (CEA, as a model analyte). The photocurrent intensity decreases with the logarithmic increase in CEA concentration (0.02-50 ng mL-1), with a remarkable limit of detection of 8.9 pg mL-1 (S/N = 3). This study further investigates the mechanism of hydrogen peroxide-induced photocurrent quenching, providing deeper insights into the mechanisms of electron-hole transport in hollow porous semiconductor materials and paving the way for the development of efficient PEC sensors.
Collapse
|
|
1 |
|
290
|
Yang Z, Zhang L, Liu T, Wang H, Tang Z, Zhao H, Yuan L, Zhang Z, Liu X. Alternating projection combined with fast gradient projection (FGP-AP) method for intensity-only measurement optical diffraction tomography in LED array microscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:2524-2542. [PMID: 38633101 PMCID: PMC11019679 DOI: 10.1364/boe.518955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024] [Imported: 01/23/2025]
Abstract
Optical diffraction tomography (ODT) is a powerful label-free measurement tool that can quantitatively image the three-dimensional (3D) refractive index (RI) distribution of samples. However, the inherent "missing cone problem," limited illumination angles, and dependence on intensity-only measurements in a simplified imaging setup can all lead to insufficient information mapping in the Fourier domain, affecting 3D reconstruction results. In this paper, we propose the alternating projection combined with the fast gradient projection (FGP-AP) method to compensate for the above problem, which effectively reconstructs the 3D RI distribution of samples using intensity-only images captured from LED array microscopy. The FGP-AP method employs the alternating projection (AP) algorithm for gradient descent and the fast gradient projection (FGP) algorithm for regularization constraints. This approach is equivalent to incorporating prior knowledge of sample non-negativity and smoothness into the 3D reconstruction process. Simulations demonstrate that the FGP-AP method improves reconstruction quality compared to the original AP method, particularly in the presence of noise. Experimental results, obtained from mouse kidney cells and label-free blood cells, further affirm the superior 3D imaging efficacy of the FGP-AP method.
Collapse
|
research-article |
1 |
|
291
|
Xu Y, Wang B, Huang Y, Liao J, Wu C, Zhou C, Kang Z, Jiang S, Wu B, Zhang D, Xu R, Liu X, Wang F. Targeting Antigen-Presenting Cells to Enhance the Tumor-Spleen Immunity Cycle through Liposome-Neoantigen Vaccine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500021. [PMID: 40125791 PMCID: PMC12097013 DOI: 10.1002/advs.202500021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/03/2025] [Indexed: 03/25/2025] [Imported: 05/03/2025]
Abstract
Effective immune responses in both the spleen and the tumor microenvironment are crucial for cancer immunotherapy. However, delivery of neoantigen peptide vaccines to antigen-presenting cells (APCs) at these sites remains challenging. In this study, LNPsD18, a cationic liposomal formulation that targets and enhances APC uptake at both sites without modifying the targeting ligands is developed. By co-delivering tumor-specific neoantigens and a cholesterol-coupled toll-like receptor 9 (TLR9) agonist within LNP-vaxD18, an approximately 60-fold increase in dendritic cell uptake compared to neoantigen-adjuvant mixtures is achieved. Intravenous administration of the liposome-neoantigen peptide vaccine targets both the spleen and the tumor, boosting splenic DC activation, increasing M1-type tumor-associated macrophages, and elevating tumor cytokine levels. This reshapes the tumor microenvironment, enhancing IFN-γ-producing CD8+ T cells and TCF1+CD8+ T cells within tumors. These outcomes significantly inhibit established tumor growth compared to nontargeted lipid-based nanovaccine formulations, resulting in improved survival in orthotopic hepatocellular carcinoma and colorectal cancer models. The findings highlight the importance of targeting APCs in both the spleen and tumors to optimize the therapeutic efficacy of liposome-neoantigen vaccines in cancer treatment.
Collapse
|
research-article |
1 |
|
292
|
Li J, Lei D, Cao Y, Xin F, Zhang Z, Liu X, Wu M, Yao C. Nanozyme Decorated Metal-Organic Framework Nanosheet for Enhanced Photodynamic Therapy Against Hypoxic Tumor. Int J Nanomedicine 2024; 19:9727-9739. [PMID: 39315364 PMCID: PMC11418915 DOI: 10.2147/ijn.s466011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] [Imported: 01/23/2025] Open
Abstract
INTRODUCTION Photodynamic therapy (PDT) has attracted increasing attention in the clinical treatment of epidermal and luminal tumors. However, the PDT efficacy in practice is severely impeded by tumor hypoxia and the adverse factors associated with hydrophobic photosensitizers (PSs), including low delivery capacity, poor photoactivity and limited ROS diffusion. In this study, Pt nanozymes decorated two-dimensional (2D) porphyrin metal-organic framework (MOF) nanosheets (PMOF@HA) were fabricated and investigated to conquer the obstacles of PDT against hypoxic tumors. MATERIALS AND METHODS PMOF@HA was synthesized by the coordination of transition metal iron (Zr4+) and PS (TCPP), in situ generation of Pt nanozyme and surface modification with hyaluronic acid (HA). The abilities of hypoxic relief and ROS generation were evaluated by detecting the changes of O2 and 1O2 concentration. The cellular uptake was investigated using flow cytometry and confocal laser scanning microscopy. The SMMC-7721 cells and the subcutaneous tumor-bearing mice were used to demonstrate the PDT efficacy of PMOF@HA in vitro and in vivo, respectively. RESULTS Benefiting from the 2D structure and inherent properties of MOF materials, the prepared PMOF@HA could not only serve as nano-PS with high PS loading but also ensure the rational distance between PS molecules to avoid aggregation-induced quenching, enhance the photosensitive activity and promote the rapid diffusion of generated radical oxide species (ROS). Meanwhile, Pt nanozymes with catalase-like activity effectively catalyzed intratumoral overproduced H2O2 into O2 to alleviate tumor hypoxia. Additionally, PMOF@HA, with the help of externally coated HA, significantly improved the stability and increased the cell uptake by CD44 overexpressed tumor cells to strengthen O2 self-supply and PDT efficacy. CONCLUSION This study provided a new strategy of integrating 2D porphyrin MOF nanosheets with nanozymes to conquer the obstacles of PDT against hypoxic tumors.
Collapse
|
research-article |
1 |
|
293
|
Ke J, Ding L, Lian R, Zheng C, Li W, Zheng A, Sun Y, Wu M, Zeng Y, Liu X, Hong M, Zhang X. Activatable chemiluminescence probe based on four-arm PEG-conjugated-pyropheophorbide-a for in vivo autofluorescence-free imaging of peroxynitrite. Sci China Chem 2025. [DOI: 10.1007/s11426-024-2360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/12/2024] [Indexed: 02/20/2025] [Imported: 03/03/2025]
|
|
1 |
|
294
|
Zhuang Q, Dai Z, Xu X, Bai S, Zhang Y, Zheng Y, Xing X, Hu E, Wang Y, Guo W, Zhao B, Zeng Y, Liu X. RNA Methyltransferase FTSJ3 Regulates the Type I Interferon Pathway to Promote Hepatocellular Carcinoma Immune Evasion. Cancer Res 2024; 84:405-418. [PMID: 37963197 DOI: 10.1158/0008-5472.can-23-2049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/29/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023] [Imported: 01/23/2025]
Abstract
UNLABELLED Immunotherapies such as immune checkpoint blockade have achieved remarkable success in treating cancer. Unfortunately, response rates have been limited in multiple cancers including hepatocellular carcinoma (HCC). The critical function of epigenetics in tumor immune evasion and antitumor immunity supports harnessing epigenetic regulators as a potential strategy to enhance the efficacy of immunotherapy. Here, we discovered a tumor-promoting function of FTSJ3, an RNA 2'-O-methyltransferase, in HCC by suppressing antitumor immune responses. FTSJ3 was upregulated in hepatocellular carcinoma, and high FTSJ3 expression correlated with reduced patient survival. Deletion of FTSJ3 blocked HCC growth and induced robust antitumor immune responses. Mechanistically, FTSJ3 suppressed double-stranded RNA (dsRNA)-induced IFNβ signaling in a 2'-O-methyltransferase manner. Deletion of RNA sensors in HCC cells or systemic knockout of type I IFN receptor IFNAR in mice rescued the in vivo tumor growth defect caused by FTSJ3 deficiency, indicating that FTSJ3 deletion suppresses tumor growth by activating the RNA sensor-mediated type I IFN pathway. Furthermore, FTSJ3 deletion significantly enhanced the efficacy of programmed cell death protein 1 (PD-1) immune checkpoint blockade. The combination of FTSJ3 deficiency and anti-PD-1 antibody treatment effectively eradicated tumors and increased the survival time. In conclusion, this study reveals an epigenetic mechanism of tumor immune evasion and, importantly, suggests FTSJ3-targeting therapies as potential approach to overcome immunotherapy resistance in patients with HCC. SIGNIFICANCE Hepatocellular carcinoma cells use 2'-O-methylation catalyzed by FTSJ3 for immune evasion by suppressing abnormal dsRNA-mediated type I IFN responses, providing a potential target to activate antitumor immunity and enhance immunotherapy efficacy.
Collapse
|
|
1 |
|
295
|
Wang H, Zhang L, Huang J, Yang Z, Fan C, Yuan L, Zhao H, Zhang Z, Liu X. Imaging the intracellular refractive index distribution (IRID) for dynamic label-free living colon cancer cells via circularly depolarization decay model (CDDM). BIOMEDICAL OPTICS EXPRESS 2024; 15:2451-2465. [PMID: 38633098 PMCID: PMC11019712 DOI: 10.1364/boe.518957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024] [Imported: 01/23/2025]
Abstract
Label-free detection of intracellular substances for living cancer cells remains a significant hurdle in cancer pathogenesis research. Although the sensitivity of light polarization to intracellular substances has been validated, current studies are predominantly focused on tissue lesions, thus label-free detection of substances within individual living cancer cells is still a challenge. The main difficulty is to find specific detection methods along with corresponding characteristic parameters. With refractive index as an endogenous marker of substances, this study proposes a detection method of intracellular refractive index distribution (IRID) for label-free living colon cancer (LoVo) cells. Utilizing the circular depolarization decay model (CDDM) to calculate the degree of circular polarization (DOCP) modulated by the cell allows for the derivation of the IRID on the focal plane. Experiments on LoVo cells demonstrated the refractive index of single cell can be accurately and precisely measured, with precision of 10-3 refractive index units (RIU). Additionally, chromatin content during the interphases (G1, S, G2) of cell cycle was recorded at 56.5%, 64.4%, and 71.5%, respectively. A significantly finer IRID can be obtained compared to the phase measurement method. This method is promising in providing a dynamic label-free intracellular substances detection method in cancer pathogenesis studies.
Collapse
|
research-article |
1 |
|
296
|
Lin N, Wang L, Huang Q, Zhou W, Liu X, Liu J. A simplified model for prophylactic transarterial chemoembolization after resection for patients with hepatocellular carcinoma. PLoS One 2022; 17:e0276627. [PMID: 36315553 PMCID: PMC9621457 DOI: 10.1371/journal.pone.0276627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] [Imported: 01/23/2025] Open
Abstract
BACKGROUND Prophylactic transarterial chemoembolization (p-TACE) is frequently conducted for patients with hepatocellular carcinoma (HCC) in China, but the question of who could benefit from it remains controversial. Hence, we wanted to establish a nomogram model to identify patients eligible for p-TACE. METHODS Data from HCC patients receiving R0 resection with or without p-TACE between January 2013 and December 2014 were identified, using primary liver cancer big data, to establish a nomogram model to predict overall survival (OS). Based on the model, Patients receiving R0 resection between January 2015 and December 2015 were divided into three subgroups, and survival curves were constructed using the Kaplan-Meier method and analyzed by the log-rank test among patients in each subgroup. RESULTS A nomogram integrating the neutrophil to lymphocyte ratio, AFP, tumor diameter, and microvascular invasion was developed to predict the OS of patients with HCC receiving R0 resection, and significant differences were observed in the median OS of the subgroups of low-risk (≤20), intermediate-risk (20~120), and high-risk (>120) identified by the current model. This model showed good calibration and discriminatory power in the validation cohort and the external cohort (c-index of 0.669 and 0.676, respectively). In the external cohort, the Kaplan-Meier curves showed that p-TACE could only significantly prolong the median OS of high-risk patients (25.6 vs. 33.7 months, P<0.05), but no differences were observed in any subgroups stratified by the current staging systems (all P>0.05). CONCLUSION This readily available nomogram model could help guide decisions about p-TACE, but it needs further validation.
Collapse
|
research-article |
3 |
|
297
|
Cai Z, Li Z, Zhong W, Lin F, Dong X, Ye H, Guo Y, Chen G, Yu X, Yu H, Tang R, Liu X. Targeting Mesothelin Enhances Personalized Neoantigen Vaccine Induced Antitumor Immune Response in Orthotopic Pancreatic Cancer Mouse Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407976. [PMID: 39887656 PMCID: PMC11948035 DOI: 10.1002/advs.202407976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/25/2024] [Indexed: 02/01/2025] [Imported: 03/03/2025]
Abstract
The immunosuppressive microenvironment in pancreatic cancer, characterized by low tumor-specific T cells and excessive fibrosis, limits the effectiveness of immunotherapy. Here, three datasets and multi-immunofluorescence staining of tissue microarrays in pancreatic cancer indicate that mesothelin (MSLN) expression negatively correlates with cytotoxic T cells in tumor. Anti-MSLN antibody (αMSLN) treatment of pancreatic cancer in vivo can significantly increase T cell infiltration. Meanwhile, the combination of αMSLN and neoantigen peptide vaccine identified from pancreatic cancer cell lines is demonstrated to be more effective in inducing neoantigen-specific T cell generation and infiltration at subcutaneous and orthotopic pancreatic cancer models for enhancing antitumor efficacy. Single-cell transcriptome analysis shows that the combined treatment significantly reduces the proportion of fibroblasts, improves the infiltration of IFN-γ+CD4+ and GZMK+CD8+ T cells, as well as reduces the interaction of antigen presentation-associated ligands and receptors between antigen-presenting Cancer-Associated Fibroblasts (apCAFs) and naive CD4+ T cells. The negative correlations between apCAFs and CD8+ T cells/IFN-γ+CD4+ T cells are further confirmed in human pancreatic cancer tissues. Overall, this study demonstrates that targeting MSLN can improve neoantigen vaccine induced immune efficacy by reducing apCAFs to interrupt the conversion of naive CD4+ T cells to Tregs, and therefore increase the infiltration of tumor-specific T cells.
Collapse
|
research-article |
1 |
|
298
|
Wang Q, Hu J, Ying Y, Wang P, Lin F, Guo Y, Huang Y, Ji K, Yang X, Li S, Liu X, Zhu H. Sodium Assists Controlled Synthesis of Cubic Rare-Earth Oxyfluorides Nanocrystals for Information Encryption and Near-Infrared-IIb Bioimaging. ACS NANO 2024; 18:29978-29990. [PMID: 39415510 PMCID: PMC11688664 DOI: 10.1021/acsnano.4c10697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] [Imported: 01/23/2025]
Abstract
Rare-earth oxyfluoride (REOF) colloidal nanocrystals (NCs) suffer from a low photoluminescence efficiency due to their small size with poor crystallinity and a detrimental surface quenching effect. Herein, we introduce an innovative approach that involves doping sodium ions into REOF NCs to produce monodisperse, size-controllable, well-crystallized, and highly luminescent colloidal REOF core/shell NCs. The Na+ doping allows for successfully synthesizing the cubic REOF NCs with a tunable size from 6 to 30 nm. Further fabrication of the core/shell NCs doped with Na+ results in enhancements up to 1062 (Ho3+), 1140 (Er3+), and 2212 (Tm3+) folds in upconversion luminescence and 17.7 folds (Er3+) in downconversion luminescence compared to that of core/shell NCs without doping Na+ ions. These NCs were subsequently developed into multicolor luminescent inks, demonstrating significant potential application for information security, and used for near-infrared-IIb (NIR-IIb) (1500-1700 nm) in vivo imaging, which exhibits a high-resolution in vivo dynamic imaging capability with a signal-to-noise ratio of 5.28. These results present the way to the controlled synthesis of efficient luminescent cubic LuOF: RE3+/LuOF core/shell NCs, expanding the toolkit of rare-earth doped NCs in diverse applications such as advanced encoding encryption, varied fluorescence imaging, and biomedicine.
Collapse
|
research-article |
1 |
|
299
|
Peng W, Yue Y, Zhang Y, Li H, Zhang C, Wang P, Cao Y, Liu X, Dong S, Wu M, Yao C. Scheduled dosage regimen by irreversible electroporation of loaded erythrocytes for cancer treatment. APL Bioeng 2023; 7:046102. [PMID: 37854061 PMCID: PMC10581719 DOI: 10.1063/5.0174353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] [Imported: 01/23/2025] Open
Abstract
Precise control of cargo release is essential but still a great challenge for any drug delivery system. Irreversible electroporation (IRE), utilizing short high-voltage pulsed electric fields to destabilize the biological membrane, has been recently approved as a non-thermal technique for tumor ablation without destroying the integrity of adjacent collagenous structures. Due to the electro-permeating membrane ability, IRE might also have great potential to realize the controlled drug release in response to various input IRE parameters, which were tested in a red blood cell (RBC) model in this work. According to the mathematical simulation model of a round biconcave disc-like cell based on RBC shape and dielectric characteristics, the permeability and the pore density of the RBC membrane were found to quantitatively depend on the pulse parameters. To further provide solid experimental evidence, indocyanine green (ICG) and doxorubicin (DOX) were both loaded inside RBCs (RBC@DOX&ICG) and the drug release rates were found to be tailorable by microsecond pulsed electric field (μsPEF). In addition, μsPEF could effectively modulate the tumor stroma to augment therapy efficacy by increasing micro-vessel density and permeability, softening extracellular matrix, and alleviating tumor hypoxia. Benefiting from these advantages, this IRE-responsive RBC@DOX&ICG achieved a remarkably synergistic anti-cancer effect by the combination of μsPEF and chemotherapy in the tumor-bearing mice model, with the survival time increasing above 90 days without tumor burden. Given that IRE is easily adaptable to different plasma membrane-based vehicles for delivering diverse drugs, this approach could offer a general applicability for cancer treatment.
Collapse
|
research-article |
2 |
|
300
|
Lin J, He Y, Li Y, Chen J, Liu X. Oxygen-Evolving Radiotherapy-Radiodynamic Therapy Synergized with NO Gas Therapy by Cerium-Based Rare-Earth Metal-Porphyrin Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310957. [PMID: 38698608 DOI: 10.1002/smll.202310957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/12/2024] [Indexed: 05/05/2024] [Imported: 01/23/2025]
Abstract
The efficacy of traditional radiotherapy (RT) has been severely limited by its significant side effects, as well as tumor hypoxia. Here, the nanoscale cerium (Ce)-based metaloxo clusters (Ce(IV)6)-porphyrin (meso-tetra (4-carboxyphenyl) porphyrin, TCPP) framework loaded with L-arginine (LA) (denoted as LA@Ce(IV)6-TCPP) is developed to serve as a multifarious radio enhancer to heighten X-ray absorption and energy transfer accompanied by O2/NO generation for hypoxia-improved RT-radiodynamic therapy (RDT) and gas therapy. Within tumor cells, LA@Ce(IV)6-TCPP will first react with endogenous H2O2 and inducible NO synthase (iNOS) to produce O2 and NO to respectively increase the oxygen supply and reduce oxygen consumption, thus alleviating tumor hypoxia. Then upon X-ray irradiation, LA@Ce(IV)6-TCPP can significantly enhance hydroxyl radical (•OH) generation from Ce(IV)6 metaloxo clusters for RT and synchronously facilitate singlet oxygen (1O2) generation from adjacently-coordinated TCPP for RDT. Moreover, both the •OH and 1O2 can further react with NO to generate more toxic peroxynitrite anions (ONOO-) to inhibit tumor growth for gas therapy. Benefitting from the alleviation of tumor hypoxia and intensified RT-RDT synergized with gas therapy, LA@Ce(IV)6-TCPP elicited superior anticancer outcomes. This work provides an effective RT strategy by using low doses of X-rays to intensify tumor suppression yet reduce systemic toxicity.
Collapse
|
|
1 |
|