1
|
Kim MY, Na I, Kim JS, Son SH, Choi S, Lee SE, Kim JH, Jang K, Alterovitz G, Chen Y, van der Vaart A, Won HS, Uversky VN, Kim CG. Rational discovery of antimetastatic agents targeting the intrinsically disordered region of MBD2. SCIENCE ADVANCES 2019; 5:eaav9810. [PMID: 31799386 PMCID: PMC6867884 DOI: 10.1126/sciadv.aav9810] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 09/20/2019] [Indexed: 06/10/2023] [Imported: 08/29/2023]
Abstract
Although intrinsically disordered protein regions (IDPRs) are commonly engaged in promiscuous protein-protein interactions (PPIs), using them as drug targets is challenging due to their extreme structural flexibility. We report a rational discovery of inhibitors targeting an IDPR of MBD2 that undergoes disorder-to-order transition upon PPI and is critical for the regulation of the Mi-2/NuRD chromatin remodeling complex (CRC). Computational biology was essential for identifying target site, searching for promising leads, and assessing their binding feasibility and off-target probability. Molecular action of selected leads inhibiting the targeted PPI of MBD2 was validated in vitro and in cell, followed by confirming their inhibitory effects on the epithelial-mesenchymal transition of various cancer cells. Identified lead compounds appeared to potently inhibit cancer metastasis in a murine xenograft tumor model. These results constitute a pioneering example of rationally discovered IDPR-targeting agents and suggest Mi-2/NuRD CRC and/or MBD2 as a promising target for treating cancer metastasis.
Collapse
|
research-article |
6 |
22 |
2
|
Kim MY, Park J, Lee JJ, Ha DH, Kim J, Kim CG, Hwang J, Kim CG. Staufen1-mediated mRNA decay induces Requiem mRNA decay through binding of Staufen1 to the Requiem 3'UTR. Nucleic Acids Res 2014; 42:6999-7011. [PMID: 24799437 PMCID: PMC4066795 DOI: 10.1093/nar/gku388] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 11/14/2022] [Imported: 08/29/2023] Open
Abstract
Requiem (REQ/DPF2) was originally identified as an apoptosis-inducing protein in mouse myeloid cells and belongs to the novel Krüppel-type zinc finger d4-protein family of proteins, which includes neuro-d4 (DPF1) and cer-d4 (DPF3). Interestingly, when a portion of the REQ messenger ribonucleic acid (mRNA) 3' untranslated region (3'UTR), referred to as G8, was overexpressed in K562 cells, β-globin expression was induced, suggesting that the 3'UTR of REQ mRNA plays a physiological role. Here, we present evidence that the REQ mRNA 3'UTR, along with its trans-acting factor, Staufen1 (STAU1), is able to reduce the level of REQ mRNA via STAU1-mediated mRNA decay (SMD). By screening a complementary deoxyribonucleic acid (cDNA) expression library with an RNA-ligand binding assay, we identified STAU1 as an interactor of the REQ mRNA 3'UTR. Specifically, we provide evidence that STAU1 binds to putative 30-nucleotide stem-loop-structured RNA sequences within the G8 region, which we term the protein binding site core; this binding triggers the degradation of REQ mRNA and thus regulates translation. Furthermore, we demonstrate that siRNA-mediated silencing of either STAU1 or UPF1 increases the abundance of cellular REQ mRNA and, consequently, the REQ protein, indicating that REQ mRNA is a target of SMD.
Collapse
|
research-article |
11 |
18 |
3
|
Kim JS, Son SH, Kim MY, Choi D, Jang IS, Paik SS, Chae JH, Uversky VN, Kim CG. Diagnostic and prognostic relevance of CP2c and YY1 expression in hepatocellular carcinoma. Oncotarget 2017; 8:24389-24400. [PMID: 28412749 PMCID: PMC5421856 DOI: 10.18632/oncotarget.15462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/02/2017] [Indexed: 12/23/2022] [Imported: 08/29/2023] Open
Abstract
Recent studies have demonstrated an oncogenic role of the transcription factor (TF) CP2c in hepatocellular carcinoma (HCC) based on a strong correlation between CP2c expression, tumor grade, and aggressiveness. We recently found that CP2c directly interacts with another TF, YY1, which is also overexpressed in multiple cancers, including HCC. To evaluate if these proteins are co-regulated in carcinogenesis, we analyzed the expression of CP2c and YY1 in HCC (n = 136) tissues and examined the correlation between their expression and clinicopathological characteristics of HCC. Receiver operating characteristic analysis exhibited the validity of CP2c and nuclear YY1 expression as a diagnostic factor in HCC tissues. High expression of CP2c was significantly correlated with patient age, and higher histological grade, American Joint Committee on Cancer (AJCC) stage, and small and large vessel invasion in HCC tissues, whereas high expression of nuclear YY1 was significantly associated with higher AJCC stage and small vessel invasion. In univariate and multivariate analyses, high expression of CP2c was significantly correlated with disease free survival (DFS), indicating that CP2c expression is an independent prognostic factor for DFS in HCC patients. Patients with high expression of both CP2c and nuclear YY1 usually had a shorter median survival time and worse DFS prognosis than other patients, suggesting that combined detection of CP2c and nuclear YY1 is a useful prognostic marker in HCC patients.
Collapse
|
research-article |
8 |
16 |
4
|
Son SH, Kim MY, Lim YS, Jin HC, Shin JH, Yi JK, Choi S, Park MA, Chae JH, Kang HC, Lee YJ, Uversky VN, Kim CG. SUMOylation-mediated PSME3-20 S proteasomal degradation of transcription factor CP2c is crucial for cell cycle progression. SCIENCE ADVANCES 2023; 9:eadd4969. [PMID: 36706181 PMCID: PMC9882985 DOI: 10.1126/sciadv.add4969] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023] [Imported: 08/29/2023]
Abstract
Transcription factor CP2c (also known as TFCP2, α-CP2, LSF, and LBP-1c) is involved in diverse ubiquitous and tissue/stage-specific cellular processes and in human malignancies such as cancer. Despite its importance, many fundamental regulatory mechanisms of CP2c are still unclear. Here, we uncover an unprecedented mechanism of CP2c degradation via a previously unidentified SUMO1/PSME3/20S proteasome pathway and its biological meaning. CP2c is SUMOylated in a SUMO1-dependent way, and SUMOylated CP2c is degraded through the ubiquitin-independent PSME3 (also known as REGγ or PA28)/20S proteasome system. SUMOylated PSME3 could also interact with CP2c to degrade CP2c via the 20S proteasomal pathway. Moreover, precisely timed degradation of CP2c via the SUMO1/PSME3/20S proteasome axis is required for accurate progression of the cell cycle. Therefore, we reveal a unique SUMO1-mediated uncanonical 20S proteasome degradation mechanism via the SUMO1/PSME3 axis involving mutual SUMO-SIM interaction of CP2c and PSME3, providing previously unidentified mechanistic insights into the roles of dynamic degradation of CP2c in cell cycle progression.
Collapse
|
research-article |
2 |
9 |
5
|
Na I, Choi S, Son SH, Uversky VN, Kim CG. Drug Discovery Targeting the Disorder-To-Order Transition Regions through the Conformational Diversity Mimicking and Statistical Analysis. Int J Mol Sci 2020; 21:5248. [PMID: 32722024 PMCID: PMC7432763 DOI: 10.3390/ijms21155248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022] [Imported: 08/29/2023] Open
Abstract
Intrinsically disordered proteins exist as highly dynamic conformational ensembles of diverse forms. However, the majority of virtual screening only focuses on proteins with defined structures. This means that computer-aided drug discovery is restricted. As a breakthrough, understanding the structural characteristics of intrinsically disordered proteins and its application can open the gate for unrestricted drug discovery. First, we segmented the target disorder-to-order transition region into a series of overlapping 20-amino-acid-long peptides. Folding prediction generated diverse conformations of these peptides. Next, we applied molecular docking, new evaluation score function, and statistical analysis. This approach successfully distinguished known compounds and their corresponding binding regions. Especially, Myc proto-oncogene protein (MYC) inhibitor 10058F4 was well distinguished from others of the chemical compound library. We also studied differences between the two Methyl-CpG-binding domain protein 2 (MBD2) inhibitors (ABA (2-amino-N-[[(3S)-2,3-dihydro-1,4-benzodioxin-3-yl]methyl]-acetamide) and APC ((R)-(3-(2-Amino-acetylamino)-pyrrolidine-1-carboxylic acid tert-butyl ester))). Both compounds bind MBD2 through electrostatic interaction behind its p66α-binding site. ABA is also able to bind p66α through electrostatic interaction behind its MBD2-binding site while APC-p66α binding was nonspecific. Therefore, structural heterogeneity mimicking of the disorder-to-order transition region at the peptide level and utilization of the new docking score function represent a useful approach that can efficiently discriminate compounds for expanded virtual screening toward intrinsically disordered proteins.
Collapse
|
research-article |
5 |
5 |
6
|
Lee YJ, Son SH, Lim CS, Kim MY, Lee SW, Lee S, Jeon J, Ha DH, Jung NR, Han SY, Do BR, Na I, Uversky VN, Kim CG. MMTR/Dmap1 Sets the Stage for Early Lineage Commitment of Embryonic Stem Cells by Crosstalk with PcG Proteins. Cells 2020; 9:1190. [PMID: 32403252 PMCID: PMC7290897 DOI: 10.3390/cells9051190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 01/13/2023] [Imported: 08/29/2023] Open
Abstract
Chromatin remodeling, including histone modification, chromatin (un)folding, and nucleosome remodeling, is a significant transcriptional regulation mechanism. By these epigenetic modifications, transcription factors and their regulators are recruited to the promoters of target genes, and thus gene expression is controlled through either transcriptional activation or repression. The Mat1-mediated transcriptional repressor (MMTR)/DNA methyltransferase 1 (DNMT1)-associated protein (Dmap1) is a transcription corepressor involved in chromatin remodeling, cell cycle regulation, DNA double-strand break repair, and tumor suppression. The Tip60-p400 complex proteins, including MMTR/Dmap1, interact with the oncogene Myc in embryonic stem cells (ESCs). These proteins interplay with the stem cell-related proteome networks and regulate gene expressions. However, the detailed mechanisms of their functions are unknown. Here, we show that MMTR/Dmap1, along with other Tip60-p400 complex proteins, bind the promoters of differentiation commitment genes in mouse ESCs. Hence, MMTR/Dmap1 controls gene expression alterations during differentiation. Furthermore, we propose a novel mechanism of MMTR/Dmap1 function in early stage lineage commitment of mouse ESCs by crosstalk with the polycomb group (PcG) proteins. The complex controls histone mark bivalency and transcriptional poising of commitment genes. Taken together, our comprehensive findings will help better understand the MMTR/Dmap1-mediated transcriptional regulation in ESCs and other cell types.
Collapse
|
research-article |
5 |
4 |
7
|
Cha CD, Son SH, Kim CG, Park H, Chung MS. Prognostic Implication of YY1 and CP2c Expression in Patients with Primary Breast Cancer. Cancers (Basel) 2023; 15:3495. [PMID: 37444605 PMCID: PMC10340759 DOI: 10.3390/cancers15133495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] [Imported: 08/29/2023] Open
Abstract
Yin Yang 1 (YY1) is a transcription factor that regulates epigenetic pathways and protein modifications. CP2c is a transcription factor that functions as an oncogene to regulate cell proliferation. YY1 is known to interact with CP2c to suppress CP2c's transcriptional activity. This study aimed to investigate YY1 and CP2c expression in breast cancer and prognostic implications. In this study, YY1 and CP2c expression was evaluated using immunohistochemical staining, Western blot and RT-PCR assays. Of 491 patients with primary breast cancer, 138 patients showed YY1 overexpression. Luminal subtype and early stage were associated with overexpression (p < 0.001). After a median follow-up of 68 months, YY1 overexpression was found to be associated with a better prognosis (disease-free survival rates of 92.0% vs. 79.2%, p = 0.014). In Cox proportional hazards model, YY1 overexpression functioned as an independent prognostic factor after adjustment of hormone receptor/HER2 status and tumor size (hazard ratio of 0.50, 95% CI 0.26-0.98, p = 0.042). Quantitative analysis of YY1 and CP2c protein expression in tumors revealed a negative correlation between them. In conclusion, YY1 overexpression is a favorable prognostic biomarker in patients with breast cancer, and it has a negative correlation with CP2c at the protein level.
Collapse
|
research-article |
2 |
1 |
8
|
Kim MY, Choi S, Lee SE, Kim JS, Son SH, Lim YS, Kim BJ, Ryu BY, Uversky VN, Lee YJ, Kim CG. Development of a MEL Cell-Derived Allograft Mouse Model for Cancer Research. Cancers (Basel) 2019; 11:1707. [PMID: 31683958 PMCID: PMC6895914 DOI: 10.3390/cancers11111707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 11/22/2022] [Imported: 08/29/2023] Open
Abstract
Murine erythroleukemia (MEL) cells are often employed as a model to dissect mechanisms of erythropoiesis and erythroleukemia in vitro. Here, an allograft model using MEL cells resulting in splenomegaly was established to develop a diagnostic model for isolation/quantification of metastatic cells, anti-cancer drug screening, and evaluation of the tumorigenic or metastatic potentials of molecules in vivo. In this animal model, circulating MEL cells from the blood stream were successfully isolated and quantified with an additional in vitro cultivation step. In terms of the molecular-pathological analysis, we were able to successfully evaluate the functional discrimination between methyl-CpG-binding domain 2 (Mbd2) and p66α in erythroid differentiation, and tumorigenic potential in spleen and blood stream of allograft model mice. In addition, we found that the number of circulating MEL cells in anti-cancer drug-treated mice was dose-dependently decreased. Our data demonstrate that the newly established allograft model is useful to dissect erythroleukemia pathologies and non-invasively provides valuable means for isolation of metastatic cells, screening of anti-cancer drugs, and evaluation of the tumorigenic potentials.
Collapse
|
research-article |
6 |
1 |