1
|
He C, Dong X, Zhai B, Jiang X, Dong D, Li B, Jiang H, Xu S, Sun X. MiR-21 mediates sorafenib resistance of hepatocellular carcinoma cells by inhibiting autophagy via the PTEN/Akt pathway. Oncotarget 2015; 6:28867-28881. [PMID: 26311740 PMCID: PMC4745697 DOI: 10.18632/oncotarget.4814] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/17/2015] [Indexed: 02/06/2023] [Imported: 04/03/2025] Open
Abstract
Sorafenib resistance remains a major obstacle for the effective treatments of hepatocellular carcinoma (HCC). Recent studies indicate that activated Akt contributes to the acquired resistance to sorafenib, and miR-21 dysregulates phosphatase and tensin homolog (PTEN), which inhibits Akt activation. Sorafenib-resistant HCC cells were shown to be refractory to sorafenib-induced growth inhibition and apoptosis. Akt and its downstream factors were highly activated and/or upregulated in sorafenib-resistant cells. Inhibition of autophagy decreased the sensitivity of sorafenib-resistant cells to sorafenib, while its induction had the opposite effect. Differential screening of miRNAs showed higher levels of miR-21 in sorafenib-resistant HCC cells. Exposure of HCC cells to sorafenib led to an increase in miR-21 expression, a decrease in PTEN expression and sequential Akt activation. Transfection of miR-21 mimics in HCC cells restored sorafenib resistance by inhibiting autophagy. Anti-miR-21 oligonucleotides re-sensitized sorafenib-resistant cells by promoting autophagy. Inhibition of miR-21 enhances the efficacy of sorafenib in treating sorafenib-resistant HCC tumors in vivo. We conclude that miR-21 participates in the acquired resistance of sorafenib by suppresing autophagy through the Akt/PTEN pathway. MiR-21 could serve as a therapeutic target for overcoming sorafenib resistance in the treatment of HCC.
Collapse
|
research-article |
10 |
183 |
2
|
Li W, Dong X, He C, Tan G, Li Z, Zhai B, Feng J, Jiang X, Liu C, Jiang H, Sun X. LncRNA SNHG1 contributes to sorafenib resistance by activating the Akt pathway and is positively regulated by miR-21 in hepatocellular carcinoma cells. J Exp Clin Cancer Res 2019; 38:183. [PMID: 31053148 PMCID: PMC6499991 DOI: 10.1186/s13046-019-1177-0] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/14/2019] [Indexed: 12/19/2022] [Imported: 04/03/2025] Open
Abstract
BACKGROUND Acquired resistance to sorafenib greatly limits its therapeutic efficiency in the treatment of hepatocellular carcinoma (HCC). Increasing evidence indicates that long noncoding RNAs (lncRNAs) play important roles in the resistance to anti-cancer drugs. The present study aims to explore the involvement of lncRNA SNHG1 (small nucleolar RNA host gene 1) in sorafenib resistance and how SNHG1 is associated with overexpressed microRNA-21 (miR-21) and the activated Akt pathway, which have been demonstrated to mediate this resistance in HCC cells. METHODS Sorafenib-resistant HCC (SR-HCC) cells were generated and their sorafenib-resistant properties were confirmed by cell viability and apoptosis assays. Potential lncRNAs were screened by using multiple bioinformatics analyses and databases. The expression of genes and proteins was detected by qRT-PCR, Western blot and in situ hybridization. Gene silencing was achieved by specific siRNA or lncRNA Smart Silencer. The effects of anti-SNHG1 were evaluated in vitro and in experimental animals by using quantitative measures of cell proliferation, apoptosis and autophagy. The binding sites of miR-21 and SNHG1 were predicted by using the RNAhybrid algorithm and their interaction was verified by luciferase assays. RESULTS The Akt pathway was highly activated by overexpressed miR-21 in SR-HCC cells compared with parental HCC cells. Among ten screened candidates, SNHG1 showed the largest folds of alteration between SR-HCC and parental cells and between vehicle- and sorafenib-treated cells. Overexpressed SNHG1 contributes to sorafenib resistance by activating the Akt pathway via regulating SLC3A2. Depletion of SNHG1 enhanced the efficacy of sorafenib to induce apoptosis and autophagy of SR-HCC cells by inhibiting the activation of Akt pathway. Sorafenib induced translocation of miR-21 to the nucleus, where it promoted the expression of SNHG1, resulting in upregulation of SLC3A2, leading to the activation of Akt pathway. In contrast, SNHG1 was shown to have little effect on the expression of miR-21, which downregulated the expression of PTEN, leading to the activation of the Akt pathway independently of SNHG1. CONCLUSIONS The present study has demonstrated that lncRNA SNHG1 contributes to sorafenib resistance by activating the Akt pathway and its nuclear expression is promoted by miR-21, whose nuclear translocation is induced by sorafenib. These results indicate that SNHG1 may represent a potentially valuable target for overcoming sorafenib resistance for HCC.
Collapse
|
research-article |
6 |
146 |
3
|
Yu T, Tang B, Sun X. Development of Inhibitors Targeting Hypoxia-Inducible Factor 1 and 2 for Cancer Therapy. Yonsei Med J 2017; 58:489-496. [PMID: 28332352 PMCID: PMC5368132 DOI: 10.3349/ymj.2017.58.3.489] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022] [Imported: 04/03/2025] Open
Abstract
Hypoxia is frequently observed in solid tumors and also one of the major obstacles for effective cancer therapies. Cancer cells take advantage of their ability to adapt hypoxia to initiate a special transcriptional program that renders them more aggressive biological behaviors. Hypoxia-inducible factors (HIFs) are the key factors that control hypoxia-inducible pathways by regulating the expression of a vast array of genes involved in cancer progression and treatment resistance. HIFs, mainly HIF-1 and -2, have become potential targets for developing novel cancer therapeutics. This article reviews the updated information in tumor HIF pathways, particularly recent advances in the development of HIF inhibitors. These inhibitors interfere with mRNA expression, protein synthesis, protein degradation and dimerization, DNA binding and transcriptional activity of HIF-1 and -2, or both. Despite efforts in the past two decades, no agents directly inhibiting HIFs have been approved for treating cancer patients. By analyzing results of the published reports, we put the perspectives at the end of the article. The therapeutic efficacy of HIF inhibitors may be improved if more efforts are devoted on developing agents that are able to simultaneously target HIF-1 and -2, increasing the penetrating capacity of HIF inhibitors, and selecting suitable patient subpopulations for clinical trials.
Collapse
|
Review |
8 |
145 |
4
|
Tan G, Pan S, Li J, Dong X, Kang K, Zhao M, Jiang X, Kanwar JR, Qiao H, Jiang H, Sun X. Hydrogen sulfide attenuates carbon tetrachloride-induced hepatotoxicity, liver cirrhosis and portal hypertension in rats. PLoS One 2011; 6:e25943. [PMID: 22022478 PMCID: PMC3195078 DOI: 10.1371/journal.pone.0025943] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 09/14/2011] [Indexed: 11/19/2022] [Imported: 04/03/2025] Open
Abstract
BACKGROUND Hydrogen sulfide (H(2)S) displays vasodilative, anti-oxidative, anti-inflammatory and cytoprotective activities. Impaired production of H(2)S contributes to the increased intrahepatic resistance in cirrhotic livers. The study aimed to investigate the roles of H(2)S in carbon tetrachloride (CCl(4))-induced hepatotoxicity, cirrhosis and portal hypertension. METHODS AND FINDINGS Sodium hydrosulfide (NaHS), a donor of H(2)S, and DL-propargylglycine (PAG), an irreversible inhibitor of cystathionine γ-lyase (CSE), were applied to the rats to investigate the effects of H(2)S on CCl(4)-induced acute hepatotoxicity, cirrhosis and portal hypertension by measuring serum levels of H(2)S, hepatic H(2)S producing activity and CSE expression, liver function, activity of cytochrome P450 (CYP) 2E1, oxidative and inflammatory parameters, liver fibrosis and portal pressure. CCl(4) significantly reduced serum levels of H(2)S, hepatic H(2)S production and CSE expression. NaHS attenuated CCl(4)-induced acute hepatotoxicity by supplementing exogenous H(2)S, which displayed anti-oxidative activities and inhibited the CYP2E1 activity. NaHS protected liver function, attenuated liver fibrosis, inhibited inflammation, and reduced the portal pressure, evidenced by the alterations of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), hyaluronic acid (HA), albumin, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and soluble intercellular adhesion molecule (ICAM)-1, liver histology, hepatic hydroxyproline content and α-smooth muscle actin (SMA) expression. PAG showed opposing effects to NaHS on most of the above parameters. CONCLUSIONS Exogenous H(2)S attenuates CCl(4)-induced hepatotoxicity, liver cirrhosis and portal hypertension by its multiple functions including anti-oxidation, anti-inflammation, cytoprotection and anti-fibrosis, indicating that targeting H(2)S may present a promising approach, particularly for its prophylactic effects, against liver cirrhosis and portal hypertension.
Collapse
|
research-article |
14 |
91 |
5
|
Liu B, Pan S, Dong X, Qiao H, Jiang H, Krissansen GW, Sun X. Opposing effects of arsenic trioxide on hepatocellular carcinomas in mice. Cancer Sci 2006; 97:675-681. [PMID: 16827809 PMCID: PMC11159334 DOI: 10.1111/j.1349-7006.2006.00230.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] [Imported: 04/03/2025] Open
Abstract
Arsenic trioxide (As2O3) is a potent antitumor agent used to treat acute promyelocytic leukemia (APL) and, more recently, solid tumors. However, the dose of As2O3 required to suppress human xenographs in mice is markedly higher than that used to treat APL in humans. Paradoxically, low doses of As2O3 stimulate angiogenesis, which might be expected to promote tumor growth. Clearly, appropriate dosages of As2O3 are required to treat human patients to avoid toxicity and undesirable side effects. In the present study, we investigated As2O3 with respect to its toxicity and effects on tumor growth, angiogenesis and cell apoptosis using H22 hepatocellular carcinoma (HCC) cells in a mouse model of HCC. As2O3 inhibited tumor growth and angiogenesis, and enhanced tumor cell apoptosis at doses greater than 1 mg/kg, but mice lost weight and failed to thrive at doses of 4 mg/kg and greater. In contrast, low doses (<1 mg/kg) of As2O3 promoted tumor growth, upregulated the expression of vascular endothelial growth factor and tumor angiogenesis, and had no effect on tumor cell apoptosis. In vitro studies demonstrated that As2O3 inhibited the proliferation of H22 tumor cells and bovine aortic endothelial cells, and induced their apoptosis in a dose- and time-dependent fashion, suggesting that the mechanism of As2O3-mediated inhibition of tumor growth is due to direct effects of the drug on both tumor cells and endothelia. In summary, different doses of As2O3 have opposing effects on tumor growth and angiogenesis. The results demonstrate that As2O3 has a narrow window of therapeutic opportunity with respect to dosage, and that low doses of the drug as used in metronomic therapy should be used with extreme caution.
Collapse
|
research-article |
19 |
87 |
6
|
Tang S, Tan G, Jiang X, Han P, Zhai B, Dong X, Qiao H, Jiang H, Sun X. An artificial lncRNA targeting multiple miRNAs overcomes sorafenib resistance in hepatocellular carcinoma cells. Oncotarget 2016; 7:73257-73269. [PMID: 27689326 PMCID: PMC5341977 DOI: 10.18632/oncotarget.12304] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/21/2016] [Indexed: 12/30/2022] [Imported: 08/29/2023] Open
Abstract
Sorafenib resistance remains a major obstacle for the effective treatment of hepatocellular carcinoma (HCC), and a number of miRNAs contribute to this resistance. However, the regulatory networks of miRNAs are very complex, thus inhibiting a single miRNA may sequentially activate other compensatory pathways. In the present study, we generated an artificial long non-coding RNA (AlncRNA), which simultaneously targets multiple miRNAs including miR-21, miR-153, miR-216a, miR-217, miR-494 and miR-10a-5p. These miRNAs have been shown to be upregulated in sorafenib-resistant cells and participate in the mechanisms underlying sorafenib resistance. The AlncRNA contains tandem sequences of 6 copies of the complementary binding sequences to the target miRNAs and is expressed by an adenoviral vector (Ad5-AlncRNA). Infection of Ad5-AlncRNA into sorafenib-resistant HCC cells blocked the function of miRNAs, and sequentially inhibited the downregulation of PTEN and activation of AKT. Ad5-AlncRNA significantly inhibited proliferation and induced apoptosis of sorafenib-resistant cells and enhanced the effects of sorafenib in vitro and in animal models. Inhibition of autophagy decreased the sensitivity of sorafenib-resistant cells to Ad5-AlncRNA, while its induction had the opposite effect. These results indicate that targeting multiple miRNAs by the artificial lncRNA could be a potential promising strategy for overcoming sorafenib resistance in the treatment of HCC.
Collapse
|
research-article |
9 |
66 |
7
|
Han P, Li H, Jiang X, Zhai B, Tan G, Zhao D, Qiao H, Liu B, Jiang H, Sun X. Dual inhibition of Akt and c-Met as a second-line therapy following acquired resistance to sorafenib in hepatocellular carcinoma cells. Mol Oncol 2017; 11:320-334. [PMID: 28164434 PMCID: PMC5527443 DOI: 10.1002/1878-0261.12039] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/09/2017] [Accepted: 01/18/2017] [Indexed: 12/15/2022] [Imported: 08/29/2023] Open
Abstract
Sorafenib displays a limited efficacy for advanced hepatocellular carcinoma (HCC). Some patients with HCC initially respond to sorafenib, but eventually succumb to the disease, indicating that the acquired resistance to sorafenib reduces its beneficial effects. No alternative drugs are available after the failure of sorafenib therapy. Therefore, investigation of the mechanisms underlying the acquired resistance and development of second-line treatments for sorafenib-resistant HCC are urgently required. In this study, sorafenib-resistant HCC cells generated from sorafenib-sensitive human HCC cells were shown to overproduce hepatocyte growth factor (HGF) and overexpress c-Met kinase and its phosphorylated form, leading to the activation of Akt and ERK (extracellular signaling-regulated kinase) pathways. Use of specific c-Met inhibitors enhanced the effects of sorafenib by inhibiting the growth of sorafenib-resistant HCC cells. Akt inhibitors, a class of second-line therapeutic drugs under investigation for treating HCC in clinical trials, enhanced the effects of sorafenib, but also activated the c-Met pathway in sorafenib-resistant cells. Dual inhibition of Akt and c-Met by their respective inhibitors, MK2206 and capmatinib, additively or synergistically suppressed sorafenib-resistant HCC cells in vitro and sorafenib-resistant HCC xenografts in mice. The anticancer activities of MK2206 mainly rely on its ability to induce cell apoptosis and autophagic death, while capmatinib treatment leads to cell cycle arrest at phase G1. These results provide strong evidence for further investigation on the clinical utility of dual inhibition of Akt and c-Met, particularly MK2206 and capmatinib, as a second-line therapy for advanced HCC that has acquired resistance to sorafenib.
Collapse
|
research-article |
8 |
62 |
8
|
Xiu P, Dong X, Dong X, Xu Z, Zhu H, Liu F, Wei Z, Zhai B, Kanwar JR, Jiang H, Li J, Sun X. Secretory clusterin contributes to oxaliplatin resistance by activating Akt pathway in hepatocellular carcinoma. Cancer Sci 2013; 104:375-382. [PMID: 23279642 PMCID: PMC7657244 DOI: 10.1111/cas.12088] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 12/11/2012] [Accepted: 12/15/2012] [Indexed: 12/30/2022] [Imported: 04/03/2025] Open
Abstract
Secretory clusterin (sCLU) is expressed in numerous cancers and is associated with the resistance to chemotherapy. However, the role of sCLU in the resistance of hepatocellular carcinoma (HCC) to oxaliplatin (OXA), a recently used third-generation platinum agent, remains unclear. The stable transfectants that are depleted of or overexpress sCLU and OXA-resistant cells were generated using human HCC cells. Overexpression of sCLU abrogated OXA-induced inhibition of cell growth and cell apoptosis, but depletion of sCLU synergized with OXA to inhibit cell growth and enhance cell apoptosis, by regulating proteins involved in mitochondrial apoptosis pathways, such as Bcl-2, Bax, Bcl-xL and caspase-9, and affecting phosphorylation of Akt and GSK-3β. Overexpression of sCLU in either OXA-resistant cells or stable transfectants that overexpress sCLU significantly increased phosphorylated Akt. However, specific inhibition of Akt enhanced sensitivity of sCLU-overexpressing cells to OXA, but had no effect on sCLU expression, suggesting that the regulatory effects between sCLU and pAkt may be in a one-way manner in HCC cells. The expression levels of sCLU affected the therapeutic efficacy of OXA to treat HCC tumors established in immunodeficiency mice. The results have demonstrated that sCLU contributes to OXA resistance by activating Akt pathway, indicating that sCLU may be a novel molecular target for overcoming OXA resistance in HCC.
Collapse
|
research-article |
12 |
59 |
9
|
He C, Sun XP, Qiao H, Jiang X, Wang D, Jin X, Dong X, Wang J, Jiang H, Sun X. Downregulating hypoxia-inducible factor-2α improves the efficacy of doxorubicin in the treatment of hepatocellular carcinoma. Cancer Sci 2012; 103:528-534. [PMID: 22145922 PMCID: PMC7712417 DOI: 10.1111/j.1349-7006.2011.02177.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/27/2011] [Accepted: 12/01/2011] [Indexed: 01/12/2023] [Imported: 08/29/2023] Open
Abstract
The hypoxic microenvironment inside solid tumors, including hepatocellular carcinoma (HCC), is a major cause of tumor resistance to chemotherapy. The recently identified hypoxia-inducible factor (HIF)-2 executes the hypoxia response. Its expression feature and transcriptional targets indicate a possible dominance of HIF-2 in regulating genes in HCC. The aim of the present study was to determine whether transfection of siRNA targeting HIF-2α could enhance the efficacy of doxorubicin, the most commonly used drug in the treatment of HCC. Transfection of HIF-2 siRNA into human HCC cells downregulated the expression of HIF-2α, vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-α, and cyclin D1, but had little effect on the expression of HIF-1α, fms-related tyrosine kinase-1 (Flt-1), the glucose transporter (GLUT)-1, and lactate dehydrogenase A (LDHA). Doxorubicin itself only downregulated VEGF expression. Furthermore, HIF-2 siRNA inhibited proliferation, induced cell cycle arrest at the G(0)/G(1) phase, and acted synergistically with doxorubicin to inhibit the growth of human HCC cells in vitro. Transfection of HIF-2 siRNA also downregulated tumoral expression of HIF-2α, VEGF, TGF-α, and cyclin D1 in vivo, and acted synergistically with doxorubicin to suppress the growth of HepG2 tumors established in immunodeficient mice by inhibiting cell proliferation, tumor angiogenesis and microvessel perfusion. The results of the present study suggest that targeting HIF-2α with siRNA warrants investigation as a potential strategy to enhance the efficacy of doxorubicin in the treatment of HCC.
Collapse
|
research-article |
13 |
52 |
10
|
Li L, Jiang X, Zhang Q, Dong X, Gao Y, He Y, Qiao H, Xie F, Xie X, Sun X. Neuropilin-1 is associated with clinicopathology of gastric cancer and contributes to cell proliferation and migration as multifunctional co-receptors. J Exp Clin Cancer Res 2016; 35:16. [PMID: 26795388 PMCID: PMC4722781 DOI: 10.1186/s13046-016-0291-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/11/2016] [Indexed: 01/13/2023] [Imported: 08/29/2023] Open
Abstract
BACKGROUND Neuropilin-1 (NRP-1) is a transmembrane glycoprotein participating in the growth and metastasis of cancer cells as multifunctional co-receptors by interacting with the signaling pathways. However, its role in gastric cancer has not yet been clarified. This study aims to investigate whether NRP-1 expression is associated with the clinicopathology of gastric cancer, and involved in the growth and metastasis of gastric cancer cells. METHODS NRP-1 expression in clinical gastric cancer specimens was examined by immunohistochemistry and its association with clinicopathology analyzed. The expression of NRP-1 in a panel of human gastric cancer cells was examined by real-time RT-PCR and immunoblotting. Stable transfectants depleted of NRP-1, termed MGC-803-NRP(low), were generated from MGC-803 cells. Cell proliferation was analyzed by the Cell Counting Kit-8 and Bromodeoxyuridine incorporation assays, and migrating ability analyzed by migration assays. The xenograft model was used to assess the effects of NRP-1 depletion on tumorigenesis, growth, metastasis and therapeutic potentials. The role of NRP-1 as co-receptors in the signaling pathways stimulated by ligands was examined. The key molecules involved in cell proliferation, migration and related signaling pathways were detected by immunoblotting. RESULTS Gastric cancer tissues expressed higher levels of NRP-1 compared to normal gastric mucosa. Its expression correlated with clinical staging, tumor differentiation and pathological types. NRP-1 depletion inhibited cell proliferation by inducing cell cycle arrest in the G1/S phase by upregulating p27, and downregulating cyclin E and cyclin-dependent kinase 2. NRP-1 depletion reduced the ability of cells to migrate by inhibiting the phosphorylation of focal adhesion kinase. NRP-1 depletion suppressed tumorigenesis, tumor growth and lung metastasis by inhibiting cell proliferation and tumor angiogenesis in situ. Therapeutic NRP-1 shRNA inhibited the growth of established BGC823 tumors. Depletion of NRP-1 inhibited the activation of VEGF/VEGFR2, EGF/EGFR and HGF/c-Met pathways stimulated by respective recombinant human VEGF-165, EGF and HGF proteins. CONCLUSIONS The present results indicate that NRP-1 may be a potentially valuable biomarker and therapeutic target for gastric cancer.
Collapse
|
research-article |
9 |
50 |
11
|
He C, Qiao H, Jiang H, Sun X. The inhibitory role of b7-h4 in antitumor immunity: association with cancer progression and survival. Clin Dev Immunol 2011; 2011:695834. [PMID: 22013483 PMCID: PMC3195678 DOI: 10.1155/2011/695834] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/08/2011] [Indexed: 01/05/2023] [Imported: 04/03/2025]
Abstract
B7-H4 is one of the most recently identified members of B7 superfamily of costimulatory molecules serving as an inhibitory modulator of T-cell response. B7-H4 is broadly expressed in human peripheral tissues and inducibly expressed in immune cells. The expression of B7-H4 has been observed in various types of human cancer tissues, and its soluble form has been detected in blood samples from cancer patients. However, its precise physiological role is still elusive, as its receptor has not been identified and the expression levels are not consistent. This paper summarizes the pertinent data on the inhibitory role of B7-H4 in antitumor immunity and its association with cancer progression and survival in human patients. The paper also discusses the clinical significance of investigating B7-H4 as potential markers for cancer diagnosis and prognosis, and as therapeutic targets.
Collapse
|
Review |
14 |
46 |
12
|
Li ZT, Zhang X, Wang DW, Xu J, Kou KJ, Wang ZW, Yong G, Liang DS, Sun XY. Overexpressed lncRNA GATA6-AS1 Inhibits LNM and EMT via FZD4 through the Wnt/β-Catenin Signaling Pathway in GC. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:827-840. [PMID: 31981860 PMCID: PMC6976905 DOI: 10.1016/j.omtn.2019.09.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 08/29/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022] [Imported: 04/03/2025]
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. Accumulating evidence reveals the significance of long non-coding RNAs (lncRNAs) in various cancers. The current study aimed to evaluate the role of GATA6 antisense RNA 1 (GATA6-AS1) in the epithelial-mesenchymal transition (EMT) and lymph node metastasis (LNM) in GC. GC-related microarray datasets were initially retrieved from the GEO with differentially expressed lncRNAs screened, followed by evaluation of the regulatory relationship between Frizzled 4 (FZD4) and GATA6-AS1. The detailed regulatory mechanism by which GATA6-AS1 influences the Wnt/β-catenin signaling pathway and GC cell biological behaviors was investigated by treating SGC7901 cells with overexpressed GATA6-AS1, specific antisense oligonucleotide against GATA6-AS1, and lithium chloride (LiCl; activator of the Wnt/β-catenin signaling pathway). Finally, xenograft nude mice were used to assay tumor growth and LNM in vivo. GATA6-AS1 was poorly expressed, but FZD4 was highly expressed in GC tissues and cells. Elevated GATA6-AS1 reduced FZD4 expression by recruiting enhancer of zeste homolog 2 (EZH2) and trimethylation at lysine 27 of histone H3 (H3K27me3) to the FZD4 promoter region via the inactivated Wnt/β-catenin signaling pathway, whereby cell invasion, migration, and proliferation, tumor growth, and LNM in nude mice were reduced. Taken together, overexpressed GATA6-AS1 downregulated the expression of FZD4 to inactivate the Wnt/β-catenin signaling pathway, which ultimately inhibited GC progression.
Collapse
|
Retracted Publication |
5 |
44 |
13
|
Zhu H, Zhai B, He C, Li Z, Gao H, Niu Z, Jiang X, Lu J, Sun X. LncRNA TTN-AS1 promotes the progression of cholangiocarcinoma via the miR-320a/neuropilin-1 axis. Cell Death Dis 2020; 11:637. [PMID: 32801339 PMCID: PMC7429853 DOI: 10.1038/s41419-020-02896-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] [Imported: 04/03/2025]
Abstract
Neuropilin-1 regulated by miR-320a participates in the progression of cholangiocarcinoma by serving as a co-receptor that activates multiple signaling pathways. The present study sought to investigate upstream lncRNAs that control the expression of miR-320a/neuropilin-1 axis and dissect some of the underlying mechanisms. Here we report lncRNA TTN-AS1 (titin-antisense RNA1) acts as a sponging ceRNA to downregulate miR-320a and is highly expressed in human cholangiocarcinoma tissues and cells. The expression of the above three molecules is correlated with the clinicopathologic parameters of cholangiocarcinoma patients. In this study, multiple bioinformatics tools and databases were employed to seek potential lncRNAs that have binding sites with miR-320a and TTN-AS1 was identified because it exhibited the largest folds of alteration between cholangiocarcinoma and normal bile duct epithelial cells. The regulatory role of TTN-AS1 on miR-320a was further evaluated by luciferase reporter and RNA pulldown assays, coupled with in situ hybridization and RNA immunoprecipitation analyses, which showed that TTN-AS1 bound to miR-320a through an argonaute2-dependent RNA interference pathway in the cytoplasm of cholangiocarcinoma cells. Knockdown and overexpression assays showed that the regulatory effect between TTN-AS1 and miR-320 was in a one-way manner. TTN-AS1 promoted the proliferation and migration of cholangiocarcinoma cells via the miR-320a/ neuropilin-1 axis. The function of TTN-AS1 on tumor growth and its interaction with miR-320a were confirmed in animal models. Further mechanistic studies revealed that TTA-AS1, through downregulating miR-320a, promoted cell cycle progression, epithelial-mesenchymal transition, and tumor angiogenesis by upregulating neuropilin-1, which co-interacted with the hepatocyte growth factor/c-Met and transforming growth factor (TGF)-β/TGF-β receptor I pathways. In conclusion, the present results demonstrate that lncRNA TTA-AS1 is a sponging ceRNA for miR-320a, which in turn downregulates neuropilin-1 in cholangiocarcinoma cells, indicating these three molecules represent potential biomarkers and therapeutic targets in the management of cholangiocarcinoma.
Collapse
|
research-article |
5 |
34 |
14
|
Zhu H, Wang J, Jiang H, Ma Y, Pan S, Reddy S, Sun X. Bilirubin protects grafts against nonspecific inflammation-induced injury in syngeneic intraportal islet transplantation. Exp Mol Med 2010; 42:739-748. [PMID: 20881452 PMCID: PMC2992853 DOI: 10.3858/emm.2010.42.11.075] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2010] [Indexed: 01/17/2023] [Imported: 04/03/2025] Open
Abstract
Nonspecific inflammatory response is the major cause for failure of islet grafts at the early phase of intraportal islet transplantation (IPIT). Bilirubin, a natural product of heme catabolism, has displayed anti-oxidative and anti-inflammatory activities. The present study has demonstrated that bilirubin protected islet grafts by inhibiting nonspecific inflammatory response in a syngeneic rat model of IPIT. The inflammation-induced cell injury was mimicked by exposing cultured rat insulinoma INS-1 cells to cytokines (IL-1β, TNF-α and IFN-γ) in in vitro assays. At appropriate lower concentrations, bilirubin significantly attenuated the reduced cell viability and enhanced cell apoptosis induced by cytokines, and protected the insulin secretory function of INS-1 cells. Diabetic inbred male Lewis rats induced by streptozotocin underwent IPIT at different islet equivalents (IEQs) (optimal dose of 1000, and suboptimal doses of 750 or 500), and bilirubin was administered to the recipients every 12 h, starting from one day before transplantation until 5 days after transplantation. Administration of bilirubin improved glucose control and enhanced glucose tolerance in diabetic recipients, and reduced the serum levels of inflammatory mediators including IL-1β, TNF-α, soluble intercellular adhesion molecule 1, monocyte chemoattractant protein-1 and NO, and inhibited the infiltration of Kupffer cells into the islet grafts, and restored insulin-producing ability of transplanted islets.
Collapse
|
research-article |
15 |
34 |
15
|
Ma L, Zhai B, Zhu H, Li W, Jiang W, Lei L, Zhang S, Qiao H, Jiang X, Sun X. The miR-141/neuropilin-1 axis is associated with the clinicopathology and contributes to the growth and metastasis of pancreatic cancer. Cancer Cell Int 2019; 19:248. [PMID: 31572065 PMCID: PMC6764122 DOI: 10.1186/s12935-019-0963-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022] [Imported: 04/03/2025] Open
Abstract
BACKGROUND Neuropilin-1 (NRP-1) is a non-tyrosine kinase receptor interacting with multiple signaling pathways that underpin the biological behavior and fate of cancer cells. However, in pancreatic cancer, the mechanisms underlying the function of NRP-1 in cell proliferation and metastasis and the involvement of regulatory upstream miRNAs remain unclear. METHODS Potential miRNAs were mined by using multiple bioinformatics prediction tools and validated by luciferase assays. The expression of NRP-1 and miRNA-141 (miR-141) in pancreatic tissues and cells was examined by immunohistochemistry, immunoblotting and/or real-time RT-PCR. Stable transfected cells depleted of NRP-1 were generated, and regulatory effects of miR-141 were investigated by transfecting cells with miR-141 mimics and anti-miR-141. Assays of cell viability, proliferation, cell cycle distribution, transwell migration and cell scratch were employed. Xenograft tumor models were established to assess the effects of NRP-1 depletion on tumorigenesis and liver metastasis, and therapeutic effects of miR-141 on tumor growth. The role of miR-141/NRP-1 axis in regulating epithelial-mesenchymal transition (EMT) by co-interacting the TGF-β pathway was examined. RESULTS In this study, of 12 candidate miRNAs identified, miR-141 showed the strongest ability to regulate NRP-1. In pancreatic cancer tissues and cells, the expression level of NRP-1 was negatively correlated with that of miR-141. NRP-1 was highly expressed in pancreatic cancer tissues compared with normal pancreatic tissues, and its expression levels were positively correlated with tumor grade, lymph metastasis and AJCC staging. NRP-1 depletion inhibited cell proliferation by inducing cell cycle arrest at the G0/G1 phase through upregulating p27 and downregulating cyclin E and cyclin-dependent kinase 2, and reduced cell migration by inhibiting EMT through upregulating E-cadherin and downregulating Snail and N-cadherin. Through downregulating NRP-1, miR-141 mimics showed a similar effect as NRP-1 depletion on cell proliferation and migration. NRP-1 depletion suppressed tumor growth and liver metastasis and miR-141 mimics inhibited the growth of established tumors in mice. NRP-1 depletion and/or miR-141 mimics inhibited the activation of the TGF-β pathway stimulated by TGF-β ligand. CONCLUSIONS The present results indicate that NRP-1 is negatively regulated by miR-141 and the miR-141/NRP-1 axis may serve as potentially valuable biomarkers and therapeutic targets for pancreatic cancer.
Collapse
|
research-article |
6 |
32 |
16
|
Liu F, Wang P, Jiang X, Tan G, Qiao H, Jiang H, Krissansen GW, Sun X. Antisense hypoxia-inducible factor 1alpha gene therapy enhances the therapeutic efficacy of doxorubicin to combat hepatocellular carcinoma. Cancer Sci 2008; 99:2055-2061. [PMID: 19016766 PMCID: PMC11159667 DOI: 10.1111/j.1349-7006.2008.00905.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/09/2008] [Accepted: 06/17/2008] [Indexed: 12/21/2022] [Imported: 04/03/2025] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most common cancers worldwide, is resistant to anticancer drugs. Hypoxia is a major cause of tumor resistance to chemotherapy, and hypoxia-inducible factor (HIF)-1 is a key transcription factor in hypoxic responses. We have previously demonstrated that gene transfer of an antisense HIF-1alpha expression vector downregulates expression of HIF-1alpha and vascular endothelial growth factor (VEGF), and synergizes with immunotherapy to eradicate lymphomas. The aim of the present study was to determine whether gene transfer of antisense HIF-1alpha could enhance the therapeutic efficacy of doxorubicin to combat HCC. Both antisense HIF-1alpha therapy and doxorubicin suppressed the growth of subcutaneous human HepG2 tumors established in BALB/c nude mice, tumor angiogenesis, and cell proliferation, and induced tumor cell apoptosis. The combination therapy with antisense HIF-1alpha and doxorubicin was more effective in suppressing tumor growth, angiogenesis, and cell proliferation, and inducing cell apoptosis than the respective monotherapies. Gene transfer of antisense HIF-1alpha downregulated the expression of both HIF-1alpha and VEGF, whereas doxorubicin only downregulated VEGF expression. Antisense HIF-1alpha and doxorubicin synergized to downregulate VEGF expression. Both antisense HIF-1alpha and doxorubicin inhibited expression of proliferating cell nuclear antigen, and combined to exert even stronger inhibition of proliferating cell nuclear antigen expression. Antisense HIF-1alpha therapy warrants investigation as a therapeutic strategy to enhance the efficacy of doxorubicin for treating HCC.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Antisense Elements (Genetics)/genetics
- Apoptosis/drug effects
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/drug therapy
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Doxorubicin/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Transfer Techniques
- Genetic Therapy/methods
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/therapeutic use
- Immunohistochemistry
- Ki-67 Antigen/metabolism
- Liver Neoplasms, Experimental/blood supply
- Liver Neoplasms, Experimental/prevention & control
- Male
- Mice
- Mice, Nude
- Neovascularization, Pathologic/drug therapy
- Proliferating Cell Nuclear Antigen/metabolism
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays
Collapse
|
research-article |
17 |
27 |
17
|
Jiang H, Ma Y, Chen X, Pan S, Sun B, Krissansen GW, Sun X. Genistein synergizes with arsenic trioxide to suppress human hepatocellular carcinoma. Cancer Sci 2010; 101:975-983. [PMID: 20219070 PMCID: PMC11159316 DOI: 10.1111/j.1349-7006.2009.01464.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] [Imported: 04/03/2025] Open
Abstract
Arsenic trioxide (ATO) is of limited therapeutic benefit for the treatment of solid tumors. Genistein exhibits anticancer and pro-oxidant activities, making it a potential candidate to enhance the efficacy of ATO whose cytotoxicity is oxidation-sensitive. This study sought to determine whether genistein synergizes with ATO to combat hepatocellular carcinoma (HCC). Three human HCC cell lines, namely HepG2, Hep3B, and SK-Hep-1, were incubated with ATO, genistein, or ATO + genistein. The cells were also pretreated with antioxidant agents N-acetyl-L-cysteine (NAC) or butylated hydroxyanisole (BHA). Cell viability, apoptosis, intracellular reactive oxygen species (ROS), mitochondrial membrane potential (DeltaPsim), expression of Bcl-2, Bax, caspase-9, and -3, and release of cytochrome c into the cytosol were examined. The synergistic effect of ATO and genistein was also assessed using HepG2 xenografts subcutaneously established in BALB/c nude mice. The results show that genistein synergized with ATO to reduce viability, induce apoptosis, and diminish the DeltaPsim of cells. The combination therapy down-regulated Bcl-2 expression, up-regulated Bax expression, enhanced the activation of caspase-9 and -3, and increased the release of cytochrome c. The synergistic effect of ATO and genistein was diminished by pretreatment with NAC or BHA. Genistein increased the production of intracellular ROS, while ATO had little effect. Genistein synergized with a low dose of ATO (2.5 mg/kg) to significantly inhibit the growth of HepG2 tumors, and suppress cell proliferation and induce apoptosis in situ. There were no obvious side effects, as seen with a high dose of ATO (5 mg/kg). Combining genistein with ATO warrants investigation as a therapeutic strategy to combat HCC.
Collapse
|
research-article |
15 |
27 |
18
|
Leng K, Xu Y, Kang P, Qin W, Cai H, Wang H, Ji D, Jiang X, Li J, Li Z, Huang L, Zhong X, Sun X, Wang Z, Cui Y. Akirin2 is modulated by miR-490-3p and facilitates angiogenesis in cholangiocarcinoma through the IL-6/STAT3/VEGFA signaling pathway. Cell Death Dis 2019; 10:262. [PMID: 30886152 PMCID: PMC6423123 DOI: 10.1038/s41419-019-1506-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/15/2019] [Accepted: 03/04/2019] [Indexed: 02/08/2023] [Imported: 04/03/2025]
Abstract
Akirin2 is a key regulator of embryonic development and the innate immunity response. However, this regulator's role in tumorigenesis especially in cholangiocarcinoma (CCA) development has not been thoroughly elucidated to date. In the current work, we used RT-qPCR, western blot analysis, and immunohistochemistry (IHC) to explore the expression level of Akirin2, and the relationship between Akirin2 levels and clinicopathological characteristics was evaluated. The biological functions of Akirin2 were examined in vitro and in vivo by using a lentiviral vector system. Luciferase reporter assays were applied to detect the direct binding relationship between the 3'-UTR of Akirin2 mRNA and miR-490-3p. The results showed that Akirin2 was overexpressed in CCA and this upregulation was associated with a shorter overall survival. Silencing or overexpressing Akirin2 by lentiviral approaches significantly influenced CCA cell proliferation, migration, invasion, and angiogenesis. An in vivo tumor model further validated the oncogenic effect of Akirin2 on CCA cell growth, metastasis, and angiogenesis. Mechanistic studies demonstrated that Akirin2 induced angiogenesis by increasing the expression of VEGFA by activating the IL-6/STAT3 signaling pathway. Akirin2 promoted cell migratory and invasive potential by affecting the epithelial-mesenchymal transition (EMT) process. In addition, Akirin2 expression was negatively controlled by miR-490-3p in CCA cells, and miR-490-3p attenuated cell migration and angiogenesis in CCA cells by silencing Akirin2. Taken together, the data indicated that Akirin2 could be regulated by miR-490-3p at the posttranscriptional level and facilitate CCA cell progression via the IL-6/STAT3/VEGFA signaling pathway. The present study may expedite the development of novel therapeutic strategies for CCA.
Collapse
|
research-article |
6 |
26 |
19
|
Liu F, Tan G, Li J, Dong X, Krissansen GW, Sun X. Gene transfer of endostatin enhances the efficacy of doxorubicin to suppress human hepatocellular carcinomas in mice. Cancer Sci 2007; 98:1381-1387. [PMID: 17627616 PMCID: PMC11160007 DOI: 10.1111/j.1349-7006.2007.00542.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/08/2007] [Accepted: 05/21/2007] [Indexed: 11/30/2022] [Imported: 04/03/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancer-related causes of death, and is chemoresistant to anticancer drugs. Anti-angiogenic therapy has been shown to enhance the efficacy of chemotherapy to treat solid tumors. The aim of the present study was to determine whether endostatin, a potent antiangiogenic agent, could enhance the efficacy of doxorubicin to combat HCC. An endostatin expression plasmid was constructed and its expression in vitro and in vivo was detected after gene transfer. Recombinant endostatin inhibited angiogenesis in the chorioallantoic membrane assay, and showed synergistic effects with doxorubicin in inhibiting the in vitro proliferation of endothelial cells, but not that of tumor cells. Both endostatin gene therapy and doxorubicin suppressed the growth of subcutaneous human HepG2 tumors established in BALB/c nude mice, and tumor angiogenesis. Combination therapy with endostatin gene therapy and doxorubicin showed a stronger effect in suppressing tumor growth, and tumor angiogenesis, than the respective monotherapies. Gene transfer of endostatin down-regulated the expression of both hypoxia-inducible factor-1alpha and vascular endothelial growth factor (VEGF), whereas doxorubicin only down-regulated VEGF expression. Endostatin and doxorubicin synergized to down-regulate VEGF expression. Endostatin and doxorubicin combination therapy warrants investigation as a therapeutic strategy to combat HCC.
Collapse
|
research-article |
18 |
24 |
20
|
Zou X, Qiao H, Jiang X, Dong X, Jiang H, Sun X. Downregulation of developmentally regulated endothelial cell locus-1 inhibits the growth of colon cancer. J Biomed Sci 2008; 16:33. [PMID: 19292890 PMCID: PMC2666667 DOI: 10.1186/1423-0127-16-33] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 10/16/2008] [Indexed: 11/13/2022] [Imported: 04/03/2025] Open
Abstract
Developmentally regulated endothelial cell locus-1 (Del1) is an embryonic angiogenic factor expressed in early embryonic endothelial cells, but recently has been found to be expressed in some forms of cancers including colon and breast cancers, and melanoma, and human cancer cell lines. Overexpression of Del1 accelerates tumor growth by enhancing vascular formation, implying Del1 may be a potential target for anti-angiogenic cancer therapy. The study aims to investigate whether downregulation of Del1 could inhibit the growth of tumors established in nude Balb/c mice by subcutaneous implantation of human LS-174T colon cancer cells. The shRNA expression vectors targeting human Del1, and vascular endothelial growth factor (VEGF) were constructed. Gene transfection of Del1-shRNA downregulated expression of Del1 in LS-174T cells in vivo and in vitro, but did not alter the proliferative or survival properties of cells in vitro. Gene transfection of VEGF-shRNA downregulated expression of both VEGF and Del1 in LS-174T cells in vivo and in vitro. Both Del1-shRNA and VEGF-shRNA gene therapies exhibited anti-tumor activities and they also showed a synergistic effect in suppressing growth of colon tumors by anti-angiogenesis and anti-proliferation. Although further investigation to clarify the mechanisms explaining the role of Del1 in tumor growth, and the interaction between VEGF and Del1, is required, the results indicate that downregulation of Del1 presents a potent therapeutic strategy to combat colon cancer.
Collapse
|
research-article |
17 |
20 |
21
|
Jiang X, Li H, Qiao H, Jiang H, Xu R, Sun X. Combining kallistatin gene therapy and meloxicam to treat hepatocellular carcinoma in mice. Cancer Sci 2009; 100:2226-2233. [PMID: 19709125 PMCID: PMC11159929 DOI: 10.1111/j.1349-7006.2009.01306.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 07/27/2009] [Accepted: 07/31/2009] [Indexed: 01/09/2023] [Imported: 04/03/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancer-related causes of death, and conventional treatments offer unsatisfactory response. We have previously reported that kallistatin gene therapy suppressed the growth of HCC tumors by its anti-angiogenic activity, and meloxicam, a selective COX-2 inhibitor, inhibited proliferation and induced apoptosis of human HCC cells in vitro. The aim of this study was to determine whether combining kallistatin gene therapy and meloxicam could offer a better therapeutic effect to combat HCC in mice. A kallistatin expression plasmid was constructed and its expression was detected after intratumoral gene transfer. Both kallistatin gene therapy and meloxicam suppressed the growth of subcutaneous human HepG2 tumors established in BALB/c nude mice, and the combinational therapy showed a stronger effect in suppressing tumor growth, tumor angiogenesis and cell proliferation, and increasing cell apoptosis, than the respective monotherapies. Gene transfer of kallistatin inhibited tumor angiogenesis, and slightly inhibited cell proliferation and increased cell apoptosis in situ, but had no effect on expression of vascular endothelial growth factor, basic fibroblast growth factor, proliferating cell nuclear antigen, Bcl-2, Bax, or activation of caspase-3. Meloxicam therapy inhibited cell proliferation, induced cell apoptosis, reduced expression of proliferating cell nuclear antigen, increased activation of caspase-3, and upregulated Bax. Meloxicam also slightly inhibited tumor angiogenesis with no effect on the expression of vascular endothelial growth factor or basic fibroblast growth factor. Combining two novel anticancer agents, kallistatin targeting tumoral vascularization and meloxicam targeting cell proliferation and apoptosis, warrants investigation as a therapeutic strategy to combat HCC.
Collapse
|
research-article |
16 |
20 |
22
|
Jiang W, Li G, Li W, Wang P, Xiu P, Jiang X, Liu B, Sun X, Jiang H. Sodium orthovanadate overcomes sorafenib resistance of hepatocellular carcinoma cells by inhibiting Na +/K +-ATPase activity and hypoxia-inducible pathways. Sci Rep 2018; 8:9706. [PMID: 29946188 PMCID: PMC6018801 DOI: 10.1038/s41598-018-28010-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022] [Imported: 04/03/2025] Open
Abstract
The resistance to sorafenib highly affects its clinical benefits for treating hepatocellular carcinoma (HCC). Sodium orthovanadate (SOV) is a phosphate analog that displays anti-cancer activities against various types of malignancies including HCC. The present study has demonstrated that SOV is able to overcome sorafenib resistance and strengthens sorafenib in suppressing sorafenib-resistant HCC cells in vitro and in animal models. Similar to its action on parental HCC cells, SOV induced cell cycle arrest at G2/M phases by regulating cyclin B1 and cyclin-dependent kinase 1, and apoptosis by reducing mitochondrial membrane potential, in sorafenib-resistant HCC cells. More importantly, SOV inhibited ATPase activity, which was significantly elevated in sorafenib-resistant HCC cells. SOV also reduced the expression of HIF-1α and HIF-2α and their nuclear translocation, resulting in downregulation of their downstream factors including vascular endothelial growth factor, lactate dehydrogenase-A and glucose transporter 1. Its ability to inhibit ATPase activity and hypoxia-inducible pathways enabled SOV to efficiently suppress both normoxic and hypoxic cells, which compose cancer cell populations inside sorafenib-resistant HCC tumors. The present results indicate that SOV may be a potent candidate drug for overcoming the resistance to sorafenib in treating HCC.
Collapse
|
research-article |
7 |
17 |
23
|
Zhang J, Zhang X, Li Z, Wang Q, Shi Y, Jiang X, Sun X. The miR-124-3p/Neuropilin-1 Axis Contributes to the Proliferation and Metastasis of Triple-Negative Breast Cancer Cells and Co-Activates the TGF-β Pathway. Front Oncol 2021; 11:654672. [PMID: 33912463 PMCID: PMC8072051 DOI: 10.3389/fonc.2021.654672] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022] [Imported: 04/03/2025] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for 90% of breast cancer-associated mortality. Neuropilin-1 (NRP-1) acts as a non-tyrosine kinase receptor for several cellular signaling pathways involved in the proliferation and metastasis of cancer cells. However, the miRNAs that regulate NRP-1 expression and the underlying mechanisms in TNBC cells remain unclear. In the present study, we found that TNBC cells expressed higher levels of NRP-1 than non-TNBC cells. Stable transfectants depleted of NRP-1 were generated from two TNBC cell lines, human MDA-MB-231 and mouse 4T1 cells. NRP-1 depletion significantly suppressed the proliferation of TNBC cells by arresting the cell cycle at phase G0/G1 by upregulating p27 and downregulating cyclin E and cyclin-dependent kinase 2. NRP-1 depletion also repressed cell migration and epithelial-mesenchymal transition (EMT) by inducing the upregulation of E-cadherin and the downregulation of N-cadherin, matrix metalloproteinase (MMP)-2 and MMP-9, and reducing MMP-2 and MMP-9 activities as detected by gelatin zymography assay. By applying multiple miRNA-target prediction tools, we screened potential miRNAs with binding sites with the 3'-untranslated region of the NRP-1 gene and selected 12 miRNA candidates, among which miR-124-3p displayed the most vigorous activity to downregulate NRP-1 as validated by luciferase assay and miRNA transfection assay. By downregulating NRP-1, miR-124-3p mimics inhibited the proliferation, migration, and invasion of TNBC cells, and antagomiR-124-3p could partially abolish the effects of NRP-1 depletion. In the animal experiments, NRP-1 depletion inhibited tumorigenesis and liver metastasis of TNBC cells, while miR-124-3p mimics inhibited the growth of established TNBC tumors. In the mechanistic exploration, we revealed that NRP-1 co-interacted with transforming growth factor (TGF)-β to activate the TGF-β pathway, which regulates EMT-related molecules. In summary, the present results indicate that the miR-124-3p/NRP-1 axis contributes to the proliferation and metastasis of TNBC cells and co-activates the TGF-β pathway, suggesting that these molecules may present as potential therapeutic targets and valuable biomarkers for TNBC.
Collapse
|
research-article |
4 |
17 |
24
|
Li Z, Sun X. Non-Coding RNAs Operate in the Crosstalk Between Cancer Metabolic Reprogramming and Metastasis. Front Oncol 2020; 10:810. [PMID: 32547948 PMCID: PMC7273922 DOI: 10.3389/fonc.2020.00810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/24/2020] [Indexed: 01/10/2023] [Imported: 04/03/2025] Open
Abstract
Metastasis, the spread of cancer cells from a primary tumor to a secondary site, represents one of the hallmarks of malignancies and the leading cause of cancer-related death. The process of metastasis is a result of the interaction of genetic heterogeneity, abnormal metabolism, and tumor microenvironments. On the other hand, metabolic reprogramming, another malignancy hallmark, refers to the ability of cancer cells to alter metabolic and nutrient acquisition modes in order to support the energy demands for accomplishing the rapid growth, dissemination, and colonization. Cancer cells remodel metabolic patterns to supplement nutrients for their metastasis and also undergo metabolic adjustments at different stages of metastasis. Genes and signaling pathways involved in tumor metabolic reprogramming crosstalk with those participating in metastasis. Non-coding RNAs are a group of RNA molecules that do not code proteins but have pivotal biological functions. Some of microRNAs and lncRNAs, which are the two most extensively studied non-coding RNAs, have been identified to participate in regulating metabolic remodeling of glucose, lipid, glutamine, oxidative phosphorylation, and mitochondrial respiration, as well as the process of metastasis involving cell motility, transit in the circulation and growth at a new site. This article reviews recent progress on non-coding RNAs operating in the crosstalk between tumor metabolic reprogramming and metastasis, particularly those influencing metastasis through regulating metabolism, and the underlying mechanisms of how they exert their regulatory functions.
Collapse
|
Review |
5 |
10 |
25
|
Ma Y, Zhang C, Chen X, Jiang H, Pan S, Easteal AJ, Sun X. The influence of modified pluronic F127 copolymers with higher phase transition temperature on arsenic trioxide-releasing properties and toxicity in a subcutaneous model of rats. AAPS PharmSciTech 2012; 13:441-447. [PMID: 22374430 PMCID: PMC3364388 DOI: 10.1208/s12249-012-9756-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 01/31/2012] [Indexed: 11/30/2022] [Imported: 04/03/2025] Open
Abstract
Pluronic F127 (PF-127) shows thermoreversible property, which is of the utmost interest in optimizing drug formulation and delivery. However, its hitherto unresolved drawback of a low phase transition temperature (T (tr)) has limited its application in injectable drug delivery systems. We have recently synthesized a new type of PF-127 copolymers with higher T (tr) using a simple oxidative method. Here, we have investigated the drug-releasing feature of oxidized PF-127 and oxidized PF-127-containing silver nanoparticles (SNPs), carrying arsenic trioxide (ATO), in a subcutaneous model of rats. Injectable hydrogels prepared with oxidized PF-127s were less viscous and easier to inject, at the same concentration, than their precursor. Addition of SNPs further elevated T (tr), resulting in even lower viscosity of the injectable hydrogel prepared from SNP-containing oxidized PF-127. The oxidized PF-127 copolymers did not differ significantly in ATO-releasing ability, compared with parental PF-127, but the addition of SNPs altered the ATO-releasing feature of oxidized PF-127 to some extent. ATO-carrying oxidized PF-127s had similar toxicity, but the addition of SNPs enhanced the hepatotoxicity of ATO, as evidenced by elevated serum levels of alanine aminotransferase and aspartate aminotransferase and histological alterations, compared to parental PF-127. The results presented herein warrant further investigation of the modified PF-127 copolymers to deliver ATO or other drugs in the form of injectable hydrogels.
Collapse
|
Comparative Study |
13 |
10 |