26
|
Rapid detection of monkeypox virus and monkey B virus by a multiplex loop-mediated isothermal amplification assay. J Infect 2023; 86:e114-e116. [PMID: 36792036 PMCID: PMC9924052 DOI: 10.1016/j.jinf.2023.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023] [Imported: 06/09/2025]
|
letter |
2 |
13 |
27
|
Zhu Z, Yang Y, Feng Y, Shi B, Chen L, Zheng Y, Tian D, Song Z, Xu C, Qin B, Zhang X, Guan W, Liu F, Yang T, Yang H, Zeng D, Zhou W, Hu Y, Zhou X. Infection of inbred BALB/c and C57BL/6 and outbred Institute of Cancer Research mice with the emerging H7N9 avian influenza virus. Emerg Microbes Infect 2013; 2:e50. [PMID: 26038485 PMCID: PMC3821289 DOI: 10.1038/emi.2013.50] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/03/2013] [Accepted: 07/07/2013] [Indexed: 01/21/2023] [Imported: 06/09/2025]
Abstract
A new avian-origin influenza virus A (H7N9) recently crossed the species barrier and infected humans; therefore, there is an urgent need to establish mammalian animal models for studying the pathogenic mechanism of this strain and the immunological response. In this study, we attempted to develop mouse models of H7N9 infection because mice are traditionally the most convenient models for studying influenza viruses. We showed that the novel A (H7N9) virus isolated from a patient could infect inbred BALB/c and C57BL/6 mice as well as outbred Institute of Cancer Research (ICR) mice. The amount of bodyweight lost showed differences at 7 days post infection (d.p.i.) (BALB/c mice 30%, C57BL/6 and ICR mice approximately 20%), and the lung indexes were increased both at 3 d.p.i. and at 7 d.p.i.. Immunohistochemistry demonstrated the existence of the H7N9 viruses in the lungs of the infected mice, and these findings were verified by quantitative real-time polymerase chain reaction (RT-PCR) and 50% tissue culture infectious dose (TCID50) detection at 3 d.p.i. and 7 d.p.i.. Histopathological changes occurred in the infected lungs, including pulmonary interstitial inflammatory lesions, pulmonary oedema and haemorrhages. Furthermore, because the most clinically severe cases were in elderly patients, we analysed the H7N9 infections in both young and old ICR mice. The old ICR mice showed more severe infections with more bodyweight lost and a higher lung index than the young ICR mice. Compared with the young ICR mice, the old mice showed a delayed clearance of the H7N9 virus and higher inflammation in the lungs. Thus, old ICR mice could partially mimic the more severe illness in elderly patients.
Collapse
|
Journal Article |
12 |
13 |
28
|
Wu M, Wang C, Shi B, Fang Z, Qin B, Zhou X, Zhang X, Yuan Z. A novel recombinant cccDNA-based mouse model with long term maintenance of rcccDNA and antigenemia. Antiviral Res 2020; 180:104826. [PMID: 32502604 DOI: 10.1016/j.antiviral.2020.104826] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] [Imported: 06/09/2025]
Abstract
The covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) is critical for viral persistence in vivo. The lack of reliable, characterized and convenient small animal models for studying cccDNA persistence has long been a bottleneck for basic and translational research on HBV cure. A mouse model that can maintain intrahepatic cccDNA is urgently needed. Through combining the Cre/loxP-mediated recombination and adeno-associated virus (AAV) vector delivery strategy, we establish a novel recombinant cccDNA (rcccDNA) mouse model. AAV-rcccDNA mice supported long-term maintenance of intrahepatic rcccDNA which could be easily detected by Southern blotting within 30 weeks after transduction. Quantitative PCR could detect the rcccDNA signal throughout the experiment duration (>51 weeks). Furthermore, rcccDNA supported persistent serum antigenemia (>72 weeks) and intrahepatic HBsAg and HBcAg expression (>51 weeks). Flow cytometry analysis and single-cell RNA sequencing showed that AAV-rcccDNA mice displayed a compromised CD8+ T cell response. Meanwhile, minimal intrahepatic inflammation and fibrosis were observed. Furthermore, three anti-HBV compounds, AKEX0007, a post-transcriptional inhibitor, Bay 41-4109, a capsid allosteric modulator, and Entecavir were assessed in this AAV-rcccDNA mouse model. The changes of viral markers by these drugs were consistent with their mode of action although neither of them diminished the level of rcccDNA. This mouse model recapitulated the immune tolerant state of HBV infection with long term maintenance of cccDNA and antigenemia, which will provide a suitable platform for studying cccDNA persistence and developing intervention strategies that would eventually break the tolerance and clear the virus.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
12 |
29
|
Gao Z, Wang S, Qi G, Pan H, Zhang L, Zhou X, Liu J, Zhao X, Wu J. A surfactin cyclopeptide of WH1fungin used as a novel adjuvant for intramuscular and subcutaneous immunization in mice. Peptides 2012; 38:163-71. [PMID: 22982610 DOI: 10.1016/j.peptides.2012.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/31/2012] [Accepted: 08/31/2012] [Indexed: 10/27/2022] [Imported: 06/09/2025]
Abstract
WH1fungin, a surfactin cyclopeptide from Bacillus amyloliquefaciens WH1, is firstly reported as a novel immunoadjuvant, which can markedly enhance the immune response when given in mixture with antigens. After intramuscular or subcutaneous immunization, WH1fungin can help to induce both of durable humoral and cellular immune response, even as strong as Freund's adjuvant. Both IgG1 and IgG2a antigen-specific antibodies were elicited from the immunizations indicating a mixed Th1/Th2 response. Splenocytes from mice intramuscularly immunized with OVA plus WH1fungin responded to OVA CTL peptide stimulation resulting in an increase in CD8(+)TNF-α(+) and CD8(+)IFN-γ(+) T cell populations, and also an increase in CD4(+)TNF-α(+) T cells and CD4(+)IFN-γ(+) T cell populations was found from mice subcutaneously immunized with OVA plus WH1fungin when responded to OVA Th peptide stimulation. These results further suggest that WH1fungin helps to elicit humoral and cellular responses to OVA. The potential mechanism of WH1fungin as an immunoadjuvant was investigated. In vitro assays showed that WH1fungin could enter into RAW 264.7 cells, induce ROS accumulation, and increase the expression of cell surface markers and cytokines in cells. Further investigation suggested that WH1fungin might exert its adjuvant activity by ligating with TLR-2 in antigen present cells such as RAW 264.7. Taken together, WH1fungin is very potent as a novel adjuvant for development of vaccines in the future.
Collapse
|
|
13 |
12 |
30
|
Chlamydia muridarum Infection of Macrophages Stimulates IL-1 β Secretion and Cell Death via Activation of Caspase-1 in an RIP3-Independent Manner. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1592365. [PMID: 28660207 PMCID: PMC5474261 DOI: 10.1155/2017/1592365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 05/09/2017] [Indexed: 11/18/2022] [Imported: 06/09/2025]
Abstract
Chlamydiae are Gram-negative bacteria, which replicate exclusively in the infected host cells. Infection of the host cells by Chlamydiae stimulates the innate immune system leading to an inflammatory response, which is manifested not only by secretion of proinflammatory cytokines such as IL-1β from monocytes, macrophages, and dendritic cells, but also possibly by cell death mediated by Caspase-1 pyroptosis. RIP3 is a molecular switch that determines the development of necrosis or inflammation. However, the involvement of RIP3 in inflammasome activation by Chlamydia muridarum infection has not been clarified. Here, we assessed the role of RIP3 in synergy with Caspase-1 in the induction of IL-1β production in BMDM after either LPS/ATP or Chlamydia muridarum stimulation. The possibility of pyroptosis and necroptosis interplays and the role of RIP3 in IL-1β production during Chlamydia muridarum infection in BMDM was investigated as well. The data indicated that RIP3 is involved in NLRP3 inflammasome activation in LPS/ATP-stimulated BMDMs but not in Chlamydia muridarum infection. Pyroptosis occurred in BMDM after LPS/ATP stimulation or Chlamydia muridarum infection. Moreover, the results also illuminated the important role of the Caspase-1-mediated pyroptosis process which does not involve RIP3. Taken together, these observations may help shed new light on details in inflammatory signaling pathways activated by Chlamydia muridarum infection.
Collapse
|
Journal Article |
8 |
10 |
31
|
Zhang X, Liu T, Li Z, Feng Y, Corpe C, Liu S, Zhang J, He X, Liu F, Xu L, Shen L, Li S, Xia Q, Peng X, Zhou X, Chen W, Zhang X, Xu J, Wang J. Hepatomas are exquisitely sensitive to pharmacologic ascorbate (P-AscH -). Theranostics 2019; 9:8109-8126. [PMID: 31754384 PMCID: PMC6857065 DOI: 10.7150/thno.35378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/08/2019] [Indexed: 02/06/2023] [Imported: 06/09/2025] Open
Abstract
Rationale: Ascorbate is an essential micronutrient known for redox functions at normal physiologic concentrations. In recent decades, pharmacological ascorbate has been found to selectively kill tumour cells. However, the dosing frequency of pharmacologic ascorbate in humans has not yet been defined. Methods: We determined that among five hepatic cell lines, Huh-7 cells were the most sensitive to ascorbate. The effects of high-dose ascorbate on hepatoma were therefore assessed using Huh-7 cells and xenograft tumour mouse model. Results: In Huh-7 cells, ascorbate induced a significant increase in the percentage of cells in the G0/G1 phase, apoptosis and intracellular levels of ROS. High doses of ascorbate (4.0 pmol cell-1), but not low doses of ascorbate (1.0 pmol cell-1), also served as a pro-drug that killed hepatoma cells by altering mitochondrial respiration. Furthermore, in a Huh-7 cell xenograft tumour mouse model, intraperitoneal injection of ascorbate (4.0 g/kg/3 days) but not a lower dose of ascorbate (2.0 g/kg/3 days) significantly inhibited tumour growth. Gene array analysis of HCC tumour tissue from xenograft mice given IP ascorbate (4.0 g/kg/3 days) identified changes in the transcript levels of 192 genes/ncRNAs involved in insulin receptor signalling, metabolism and mitochondrial respiration. Consistent with the array data, gene expression levels of AGER, DGKK, ASB2, TCP10L2, Lnc-ALCAM-3, and Lnc-TGFBR2-1 were increased 2.05-11.35 fold in HCC tumour tissue samples from mice treated with high-dose ascorbate, and IHC staining analysis also verified that AGER/RAGE and DGKK proteins were up-regulated, which implied that AGER/RAGE and DGKK activation might be related to oxidative stress, leading to hepatoma cell death. Conclusions: Our studies identified multiple mechanisms are responsible for the anti-tumour activity of ascorbate and suggest high doses of ascorbate with less frequency will act as a novel therapeutic agent for liver cancer in vivo.
Collapse
|
research-article |
6 |
10 |
32
|
Yu X, Zhang D, Shi B, Ren G, Peng X, Fang Z, Kozlowski M, Zhou X, Zhang X, Wu M, Wang C, Yuan Z. Oral administered particulate yeast-derived glucan promotes hepatitis B virus clearance in a hydrodynamic injection mouse model. PLoS One 2015; 10:e0123559. [PMID: 25856080 PMCID: PMC4391928 DOI: 10.1371/journal.pone.0123559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/05/2015] [Indexed: 01/04/2023] [Imported: 06/09/2025] Open
Abstract
Hepatitis B virus (HBV) persistent infection is associated with ineffective immune response for the clearance of virus. Immunomodulators represent an important class of therapeutics, which potentially could be beneficial for the treatment of HBV infection. The particulate yeast-derived glucan (PYDG) has been shown to enhance the innate and adaptive immune responses. We therefore, assessed the efficacy of PYDG in enhancing HBV specific immune responses by employing the hydrodynamic injection-based (HDI) HBV transfection mouse model. Mice were intragatric administered PYDG daily for 9 weeks post pAAV/HBV1.2 hydrodynamic injection. PYDG treatment significantly promoted HBV DNA clearance and production of HBsAb compared to control mice. PYDG treatment resulted in recruitment of macrophages, dendritic cells (DCs) and effector T cells to the liver microenvironment, accompanied by a significantly augmented DCs maturation and HBV-specific IFN-γ and TNF-α production by T cell. In addition, enhanced production of Th1 cytokines in liver tissue interstitial fluid (TIF) was associated with PYDG administration. Live imaging showed the accumulation of PYDG in the mouse liver. Our results demonstrate that PYDG treatment significantly enhances HBV-specific Th1 immune responses, accompanied by clearance of HBV DNA, and therefore holds promise for further development of therapeutics against chronic hepatitis B.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
10 |
33
|
Fang Z, Zhang Y, Zhu Z, Wang C, Hu Y, Peng X, Zhang D, Zhao J, Shi B, Shen Z, Wu M, Xu C, Chen J, Zhou X, Xie Y, Yu H, Zhang X, Li J, Hu Y, Kozlowski M, Bertoletti A, Yuan Z. Monocytic MDSCs homing to thymus contribute to age-related CD8+ T cell tolerance of HBV. J Exp Med 2022; 219:213051. [PMID: 35254403 PMCID: PMC8906470 DOI: 10.1084/jem.20211838] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] [Imported: 06/09/2025] Open
Abstract
Hepatitis B virus exposure in children usually develops into chronic hepatitis B (CHB). Although hepatitis B surface antigen (HBsAg)–specific CD8+ T cells contribute to resolve HBV infection, they are preferentially undetected in CHB patients. Moreover, the mechanism for this rarely detected HBsAg-specific CD8+ T cells remains unexplored. We herein found that the frequency of HBsAg-specific CD8+ T cells was inversely correlated with expansion of monocytic myeloid-derived suppressor cells (mMDSCs) in young rather than in adult CHB patients, and CCR9 was upregulated by HBsAg on mMDSCs via activation of ERK1/2 and IL-6. Sequentially, the interaction between CCL25 and CCR9 mediated thymic homing of mMDSCs, which caused the cross-presentation, transferring of peripheral HBsAg into the thymic medulla, and then promoted death of HBsAg-specific CD8+ thymocytes. In mice, adoptive transfer of mMDSCs selectively obliterated HBsAg-specific CD8+ T cells and facilitated persistence of HBV in a CCR9-dependent manner. Taken together, our results uncovered a novel mechanism for establishing specific CD8+ tolerance to HBsAg in chronic HBV infection.
Collapse
|
|
3 |
9 |
34
|
Zhu MM, Niu BW, Liu LL, Yang H, Qin BY, Peng XH, Chen LX, Liu Y, Wang C, Ren XN, Xu CH, Zhou XH, Li F. Development of a humanized HLA-A30 transgenic mouse model. Animal Model Exp Med 2022; 5:350-361. [PMID: 35791899 PMCID: PMC9434587 DOI: 10.1002/ame2.12225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/10/2022] [Imported: 06/09/2025] Open
Abstract
Background There are remarkable genetic differences between animal major histocompatibility complex (MHC) systems and the human leukocyte antigen (HLA) system. HLA transgenic humanized mouse model systems offer a much better method to study the HLA‐A‐related principal mechanisms for vaccine development and HLA‐A‐restricted responses against infection in human. Methods A recombinant gene encoding the chimeric HLA‐A30 monochain was constructed. This HHD molecule contains the following: α1‐α2 domains of HLA‐A30, α3 and cytoplasmic domains of H‐2Db, linked at its N‐terminus to the C‐terminus of human β2m by a 15‐amino‐acid peptide linker. The recombinant gene encoding the chimeric HLA‐A30 monochain cassette was introduced into bacterial artificial chromosome (BAC) CH502‐67J3 containing the HLA‐A01 gene locus by Red‐mediated homologous recombination. Modified BAC CH502‐67J3 was microinjected into the pronuclei of wild‐type mouse oocytes. This humanized mouse model was further used to assess the immune responses against influenza A virus (H1N1) pdm09 clinically isolated from human patients. Immune cell population, cytokine production, and histopathology in the lung were analyzed. Results We describe a novel human β2m‐HLA‐A30 (α1α2)‐H‐2Db (α3 transmembrane cytoplasmic) (HHD) monochain transgenic mouse strain, which contains the intact HLA‐A01 gene locus including 49 kb 5′‐UTR and 74 kb 3′‐UTR of HLA‐A01*01. Five transgenic lines integrated into the large genomic region of HLA‐A gene locus were obtained, and the robust expression of exogenous transgene was detected in various tissues from A30‐18# and A30‐19# lines encompassing the intact flanking sequences. Flow cytometry revealed that the introduction of a large genomic region in HLA‐A gene locus can influence the immune cell constitution in humanized mice. Pdm09 infection caused a similar immune response among HLA‐A30 Tg humanized mice and wild‐type mice, and induced the rapid increase of cytokines, including IFN‐γ, TNF‐α, and IL‐6, in both HLA‐A30 humanized Tg mice and wild‐type mice. The expression of HLA‐A30 transgene was dramatically promoted in tissues from A30‐9# line at 3 days post‐infection (dpi). Conclusions We established a promising preclinical research animal model of HLA‐A30 Tg humanized mouse, which could accelerate the identification of novel HLA‐A30‐restricted epitopes and vaccine development, and support the study of HLA‐A‐restricted responses against infection in humans.
Collapse
|
|
3 |
8 |
35
|
Wu ZF, Zhou XH, Hu YW, Zhou LY, Gao YB, Peng XH, Yang XH, Zhang JY, Hu Y, Zeng ZC. TLR4-dependant immune response, but not hepatitis B virus reactivation, is important in radiation-induced liver disease of liver cancer radiotherapy. Cancer Immunol Immunother 2014; 63:235-45. [PMID: 24337704 PMCID: PMC11029679 DOI: 10.1007/s00262-013-1504-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 11/24/2013] [Indexed: 02/07/2023] [Imported: 06/09/2025]
Abstract
Toll-like receptor 4 (TLR4) is an important trigger of the immune response against hepatitis B virus (HBV) infection and liver injuries. The roles of HBV reactivation versus TLR4-dependant immune response may be critical factors in preventing radiation-induced liver diseases (RILDs) after liver cancer radiotherapy. This study consists of three phases. In the primary phase, livers of mutant TLR4 (TLR4(-)) mice were irradiated with 30 Gy in either the absence or presence of HBV infection. The latter was done by introduction of plasmid pAAV/HBV 1.2. In the advanced phase, RILDs were compared in normal TLR4 (TLR4(+)) versus TLR4(-) mice. In the validation phase, 28 liver cancer patients who had undergone radiotherapy before hepatectomy were enrolled. Liver biopsies near tumors, irradiated with 35-48 Gy, were used to construct tissue microarrays. HBV reactivation, TLR4 expression, and severity of RILDs were studied in both mouse and human. More HBV reactivation, without significant RILD, was observed in irradiated versus unirradiated TLR4(-) mice. RILD scores of TLR4(+) mice were higher than TLR4(-) mice. In humans, serious RILDs tended to develop in patients with high TLR4 expression, but not in patients with low TLR4 or high HBV surface antigen expression. High TLR4 expression was seen in only 2 of 12 HBV-reactive patients, but in HBV-nonreactive patients, it was seen in 6 of 9 (P < 0.03). In summary, RILDs correlated with high TLR4 expression, but not with HBV reactivation, which is inhibited in liver with high TLR4 expression after liver cancer radiotherapy.
Collapse
|
research-article |
11 |
7 |
36
|
Li F, Zhu M, Niu B, Liu L, Peng X, Yang H, Qin B, Wang M, Ren X, Zhou X. Generation and expression analysis of BAC humanized mice carrying HLA-DP401 haplotype. Animal Model Exp Med 2021; 4:116-128. [PMID: 34179719 PMCID: PMC8212823 DOI: 10.1002/ame2.12158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/17/2020] [Indexed: 11/13/2022] [Imported: 06/09/2025] Open
Abstract
Background Human leukocyte antigen (HLA)-DP is much less studied than other HLA class II antigens, that is, HLA-DR and HLA-DQ, etc. However, the accumulating data have suggested the important roles of DP-restricted responses in the context of cancer, allergy, and infectious disease. Lack of animal models expressing these genes as authentic cis-haplotypes blocks our understanding for the role of HLA-DP haplotypes in immunity. Methods To explore the potential cis-acting control elements involved in the transcriptional regulation of the HLA-DPA1/DPB1 gene, we performed the expression analysis using bacterial artificial chromosome (BAC)-based transgenic humanized mice in the C57BL/6 background, which carried the entire HLA-DP401 gene locus. We further developed a mouse model of Staphylococcus aureus pneumonia in HLA-DP401 humanized transgenic mice, and performed the analysis on the expression pattern of HLA-DP401 and immunological responses in the model. Results In this study, we screened and identified a BAC clone spanning the entire HLA-DP gene locus. DNA from this clone was analyzed for integrity by pulsed-field gel electrophoresis and then microinjected into fertilized mouse oocytes to produce transgenic founder animals. Nine sets of PCR primers for regional markers with an average distance of 15 kb between each primer were used to confirm the integrity of the transgene in the five transgenic lines carrying the HLA-DPA1/DPB1 gene. Transgene copy numbers were determined by real-time PCR analysis. HLA-DP401 gene expression was analyzed at the mRNA and protein level. Although infection with S aureus Newman did not alter the percentage of immune cells in the spleen and thymus from the HLA-DP401-H2-Aβ1 humanized mice. Increased expression of HLA-DP401 was observed in the thymus of the humanized mice infected by S aureus. Conclusions We generated several BAC transgenic mice, and analyzed the expression of HLA-DPA1/DPB1 in those mice. A model of Saureus-induced pneumonia in the HLA-DP401-H2-Aβ1-/- humanized mice was further developed, and S aureus infection upregulated the HLA-DP401 expression in thymus of those humanized mice. These findings demonstrate the potential of those HLA-DPA1/DPB1 transgenic humanized mice for developing animal models of infectious diseases and MHC-associated immunological diseases.
Collapse
|
research-article |
4 |
6 |
37
|
Tao J, Yin L, Wu A, Zhang J, Zhang J, Shi H, Liu S, Niu L, Xu L, Feng Y, Lian S, Li L, Zeng L, Meng X, Zhou X, Liu T, Zhang L. PDIA2 Bridges Endoplasmic Reticulum Stress and Metabolic Reprogramming During Malignant Transformation of Chronic Colitis. Front Oncol 2022; 12:836087. [PMID: 35860571 PMCID: PMC9289542 DOI: 10.3389/fonc.2022.836087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/02/2022] [Indexed: 12/03/2022] [Imported: 06/09/2025] Open
Abstract
Background Chronic inflammation contributes to approximately 20% of cancers; the underlying mechanisms are still elusive. Here, using an animal model of colitis to colon-cancerous transformation, we demonstrated that endoplasmic reticulum (ER) stress couples with metabolic reprogramming to promote a malignant transformation of chronic inflammation. Methods The animal model for chronic colitis to colon-cancerous transformation was established in C57BL/6N mice by azoxymethane (AOM) and dextran sodium sulfate (DSS) treatments. The differential proteins in control and AOM/DSS-treated colon mucosa were determined using proteomic analysis; the kinetics of metabolic modifications were monitored by mitochondrial oxygen flux, extracellular acidification, and targeted metabolomics; the molecule linker between ER stress and metabolic modifications were identified by coimmunoprecipitation, KEGG pathway analysis, and the subcutaneous tumor model using gene-specific knockdown colon cancer cells. Tissue array analysis were used to evaluate the differential protein in cancer and cancer-adjacent tissues. Results AOM/DSS treatment induced 38 tumors in 10 mice at the 14th week with the mean tumor size 9.35 ± 3.87 mm2, which was significantly decreased to 5.85 ± 0.95 mm2 by the ER stress inhibitor 4-phenylbutyric acid (4PBA). Seven differential proteins were determined from control (1,067 ± 48) and AOM/DSS-treated mucosa (1,077 ± 59); the level of ER protein PDIA2 (protein disulfide isomerase-associated 2) was increased over 7-fold in response to AOM/DSS treatment. PDIA2 interacted with 420 proteins that were involved in 8 signaling pathways, in particular with 53 proteins in metabolic pathways. PDIA2 translocated from ER to mitochondria and interacted with the components of complexes I and II to inhibit oxophosphorylation but increase glycolysis. Knockdown PDIA2 in colon cancer cells restored the metabolic imbalance and significantly repressed tumor growth in the xenograft animal model. 4PBA therapy inhibited the AOM/DSS-mediated overexpression of PDIA2 and metabolic modifications and suppressed colon cancer growth. In clinic, PDIA2 was overexpressed in colon cancer tissues rather than cancer-adjacent tissues and was related with the late stages and lymph node metastasis of colon cancer. Conclusions Persistent ER stress reprograms the metabolism to promote the malignant transformation of chronic colitis; PDIA2 serves as a molecule linker between ER stress and metabolic reprogramming. The inhibition of ER stress restores metabolic homeostasis and attenuates the cancerous transformation of chronic inflammation.
Collapse
|
|
3 |
6 |
38
|
Yu L, Wang L, Hu G, Ren L, Qiu C, Li S, Zhou X, Chen S, Chen R. Reprogramming alternative macrophage polarization by GATM-mediated endogenous creatine synthesis: A potential target for HDM-induced asthma treatment. Front Immunol 2022; 13:937331. [PMID: 36177049 PMCID: PMC9513582 DOI: 10.3389/fimmu.2022.937331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] [Imported: 06/09/2025] Open
Abstract
Cellular energy metabolism plays a crucial role in the regulation of macrophage polarization and in the execution of immune functions. A recent study showed that Slc6a8-mediated creatine uptake from exogenous supplementation modulates macrophage polarization, yet little is known about the role of the de novo creatine de novobiosynthesis pathway in macrophage polarization. Here, we observed that glycine amidinotransferase (GATM), the rate-limiting enzyme for creatine synthesis, was upregulated in alternative (M2) polarized macrophages, and was dependent on the transcriptional factor STAT6, whereas GATM expression was suppressed in the classical polarized (M1) macrophage. Next, we revealed that exogenous creatine supplementation enhanced IL-4-induced M2 polarization, confirming recent work. Furthermore, we revealed that genetic ablation of GATM did not affect expression of M1 marker genes (Nos2, IL1b, IL12b) or the production of nitric oxide in both peritoneal macrophages (PMs) and bone marrow-derived macrophages (BMDMs). By contrast, expression levels of M2 markers (Arg1, Mrc1, Ccl17 and Retnla) were lower following GATM deletion. Moreover, we found that deletion of GATM in resident alveolar macrophages (AMs) significantly blocked M2 polarization but with no obvious effect on the number of cells in knockout mice. Lastly, an upregulation of GATM was found in lung tissue and bronchoalveolar lavage fluid macrophages from HDM-induced asthmatic mice. Our study uncovers a previously uncharacterized role for the de novo creatine biosynthesis enzyme GATM in M2 macrophage polarization, which may be involved in the pathogenesis of related inflammatory diseases such as an T helper 2 (Th2)-associated allergic asthma.
Collapse
|
|
3 |
3 |
39
|
Li F, Niu B, Liu L, Zhu M, Yang H, Qin B, Peng X, Chen L, Xu C, Zhou X. Characterization of genetic humanized mice with transgenic HLA DP401 or DRA but deficient in endogenous murine MHC class II genes upon Staphylococcus aureus pneumonia. Animal Model Exp Med 2023; 6:585-597. [PMID: 37246733 PMCID: PMC10757210 DOI: 10.1002/ame2.12331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/09/2023] [Indexed: 05/30/2023] [Imported: 06/09/2025] Open
Abstract
BACKGROUND Staphylococcus aureus can cause serious infections by secreting many superantigen exotoxins in "carrier" or "pathogenic" states. HLA DQ and HLA DR humanized mice have been used as a small animal model to study the role of two molecules during S. aureus infection. However, the contribution of HLA DP to S. aureus infection is unknown yet. METHODS In this study, we have produced HLA DP401 and HLA DRA0101 humanized mice by microinjection of C57BL/6J zygotes. Neo-floxed IAβ+/- mice were crossbred with Ella-Cre and further crossbred with HLA DP401 or HLA-DRA0101 humanized mice. After several rounds of traditional crossbreeding, we finally obtained HLA DP401-IAβ-/- and HLA DRA-IAβ-/- humanized mice, in which human DP401 or DRA0101 molecule was introduced into IAβ-/- mice deficient in endogenous murine MHC class II molecules. A transnasal infection murine model of S. aureus pneumonia was induced in the humanized mice by administering 2 × 108 CFU of S. aureus Newman dropwise into the nasal cavity. The immune responses and histopathology changes were further assessed in lungs in these infected mice. RESULTS We evaluated the local and systemic effects of S. aureus delivered intranasally in HLA DP401-IAβ-/- and HLA DRA-IAβ-/- transgenic mice. S. aureus Newman infection significantly increased the mRNA level of IL 12p40 in lungs in humanized mice. An increase in IFN-γ and IL-6 protein was observed in HLA DRA-IAβ-/- mice. We observed a declining trend in the percentage of F4/80+ macrophages in lungs in HLA DP401-IAβ-/- mice and a decreasing ratio of CD4+ to CD8+ T cells in lungs in IAβ-/- mice and HLA DP401-IAβ-/- mice. A decreasing ratio of Vβ3+ to Vβ8+ T cells was also found in the lymph node of IAβ-/- mice and HLA DP401-IAβ-/- mice. S. aureus Newman infection resulted in a weaker pathological injury in lungs in IAβ-/- genetic background mice. CONCLUSION These humanized mice will be an invaluable mouse model to resolve the pathological mechanism of S. aureus pneumonia and study what role DP molecule plays in S. aureus infection.
Collapse
|
research-article |
2 |
1 |
40
|
Chen L, Wang C, Li S, Yu X, Liu X, Ren R, Liu W, Zhou X, Zhang X, Zhou X. Involvement of Lysosome Membrane Permeabilization and Reactive Oxygen Species Production in the Necrosis Induced by Chlamydia muridarum Infection in L929 Cells. J Microbiol Biotechnol 2017; 26:790-8. [PMID: 26838343 DOI: 10.4014/jmb.1510.10082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] [Imported: 06/09/2025]
Abstract
Chlamydiae, obligate intracellular bacteria, are associated with a variety of human diseases. The chlamydial life cycle undergoes a biphasic development: replicative reticulate bodies (RBs) phase and infectious elementary bodies (EBs) phase. At the end of the chlamydial intracellular life cycle, EBs have to be released to the surrounded cells. Therefore, the interactions between Chlamydiae and cell death pathways could greatly influence the outcomes of Chlamydia infection. However, the underlying molecular mechanisms remain elusive. Here, we investigated host cell death after Chlamydia infection in vitro, in L929 cells, and showed that Chlamydia infection induces cell necrosis, as detected by the propidium iodide (PI)-Annexin V double-staining flow-cytometric assay and Lactate dehydrogenase (LDH) release assay. The production of reactive oxygen species (ROS), an important factor in induction of necrosis, was increased after Chlamydia infection, and inhibition of ROS with specific pharmacological inhibitors, diphenylene iodonium (DPI) or butylated hydroxyanisole (BHA), led to significant suppression of necrosis. Interestingly, live-cell imaging revealed that Chlamydia infection induced lysosome membrane permeabilization (LMP). When an inhibitor upstream of LMP, CA-074-Me, was added to cells, the production of ROS was reduced with concomitant inhibition of necrosis. Taken together, our results indicate that Chlamydia infection elicits the production of ROS, which is dependent on LMP at least partially, followed by induction of host-cell necrosis. To our best knowledge, this is the first live-cell-imaging observation of LMP post Chlamydia infection and report on the link of LMP to ROS to necrosis during Chlamydia infection.
Collapse
|
Journal Article |
8 |
|
41
|
Li S, Li C, Chen L, Yang H, Ren X, Xu C, Wu B, Wang C, Ling Y, Shen Y, Lu H, Liu W, Zhou X. Comparative transcriptome analyses of immune responses to LPS in peripheral blood mononuclear cells from the giant panda, human, mouse, and monkey. Front Genet 2023; 13:1053655. [PMID: 36685921 PMCID: PMC9852843 DOI: 10.3389/fgene.2022.1053655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/05/2022] [Indexed: 01/08/2023] [Imported: 06/09/2025] Open
Abstract
Gram-negative bacteria are major pathogens that can cause illnesses in giant pandas. Lipopolysaccharides (LPS), components of Gram-negative bacteria, can activate immune responses in mammals (i.e., humans and mice) through recognition by toll-like receptors (TLRs). However, the giant pandas' immune response to LPS stimulation and the differences between the giant panda and other mammals are not fully known. In this study, we administrated peripheral blood mononuclear cells (PBMCs) from giant pandas, humans, C57BL/6 mice, and rhesus monkeys by LPS treatment at 6 h followed by RNA sequencing (RNA-seq), respectively, with control of non-stimulation. KEGG analyses of differentially expressed genes (DEGs) pathways indicated that LPS could activate the classic signaling pathway of NF-κB in PBMCs from those four tested species. Thus, similar to the other three species, NF-κB is an LPS-responsive regulator of innate immune responses in giant pandas. Furthermore, the expression patterns of adapter genes, inflammatory cytokine genes, chemokines, interferon genes, cytokine genes related to cell growth and development, costimulatory molecules, Th1/Th2 cytokine genes, Th17 cytokine genes, Th9, and Th22 cytokine genes were compared among giant pandas and three other species. Our data indicated that in addition to the similar expression patterns of certain genes among giant pandas and other species, the unique expression pattern response to LPS in giant pandas was also discovered. Furthermore, Th9, Th17, and Th22 cells might be involved in the response to LPS in giant pandas at this tested time point. This study reveals that LPS-induced immune responses have different sensitivities and response timelines in giant pandas compared with other mammals. This study facilitates further understanding of the role of the TLR signaling pathway and the immune system in giant pandas, which might be helpful for disease prevention and protection.
Collapse
|
research-article |
2 |
|
42
|
Niu B, Liu L, Gao Q, Zhu M, Chen L, Peng X, Qin B, Zhou X, Li F. Genetic mutation of Tas2r104/Tas2r105/Tas2r114 cluster leads to a loss of taste perception to denatonium benzoate and cucurbitacin B. Animal Model Exp Med 2024; 7:324-336. [PMID: 38155461 PMCID: PMC11228091 DOI: 10.1002/ame2.12357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/18/2023] [Indexed: 12/30/2023] [Imported: 06/09/2025] Open
Abstract
BACKGROUND Bitter taste receptors (Tas2rs) are generally considered to sense various bitter compounds to escape the intake of toxic substances. Bitter taste receptors have been found to widely express in extraoral tissues and have important physiological functions outside the gustatory system in vivo. METHODS To investigate the physiological functions of the bitter taste receptor cluster Tas2r106/Tas2r104/Tas2r105/Tas2r114 in lingual and extraoral tissues, multiple Tas2rs mutant mice and Gnat3 were produced using CRISPR/Cas9 gene-editing technique. A mixture containing Cas9 and sgRNA mRNAs for Tas2rs and Gnat3 gene was microinjected into the cytoplasm of the zygotes. Then, T7EN1 assays and sequencing were used to screen genetic mutation at the target sites in founder mice. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunostaining were used to study the expression level of taste signaling cascade and bitter taste receptor in taste buds. Perception to taste substance was also studied using two-bottle preference tests. RESULTS We successfully produced several Tas2rs and Gnat3 mutant mice using the CRISPR/Cas9 technique. Immunostaining results showed that the expression of GNAT3 and PLCB2 was not altered in Tas2rs mutant mice. But qRT-PCR results revealed the changed expression profile of mTas2rs gene in taste buds of these mutant mice. With two-bottle preference tests, these mutant mice eliminate responses to cycloheximide due to genetic mutation of Tas2r105. In addition, these mutant mice showed a loss of taste perception to quinine dihydrochloride, denatonium benzoate, and cucurbitacin B (CuB). Gnat3-mediated taste receptor and its signal pathway contribute to CuB perception. CONCLUSIONS These findings implied that these mutant mice would be a valuable means to understand the biological functions of TAS2Rs in extraoral tissues and investigate bitter compound-induced responses mediated by these TAS2Rs in many extraoral tissues.
Collapse
|
research-article |
1 |
|
43
|
Zhang H, Zhou X, McQuade T, Li J, Chan FKM, Zhang J. Erratum: Corrigendum: Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 2012. [DOI: 10.1038/nature10976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] [Imported: 06/09/2025]
|
|
13 |
|
44
|
Ren X, Zhou X. Humanized mouse models for human viral hepatitis and related liver diseases. CHINESE SCIENCE BULLETIN 2019; 64:3070-3076. [DOI: 10.1360/n972019-00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2025] [Imported: 06/09/2025]
|
|
6 |
|
45
|
Li J, Peng X, Zhong H, Liu S, Shi J, Zhou X, Li B. Sleep deprivation during pregnancy leads to poor fetal outcomes in Sprague-Dawley rats. J Reprod Immunol 2023; 160:104166. [PMID: 37925864 DOI: 10.1016/j.jri.2023.104166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023] [Imported: 06/09/2025]
Abstract
Sleep deprivation is a common problem during pregnancy, but its impact on the fetus remains unclear. We aimed to investigate the effect of sleep deprivation during pregnancy on fetal outcomes and its mechanism in Sprague-Dawley rats. Sleep deprivation was performed from gestational day(GD) 1-19 using a multiplatform method for 18 h/day. Rats were sacrificed on GD20, and their blood and placentas were collected. Fetal and placental parameters were ascertained. Melatonin, adrenocorticotropic hormone (ACTH) and corticosterone were also measured in serum. The levels of arylalkylamine N-acetyltransferase (AANAT) and two melatonin receptors MT1 and MT2, in placental tissues were detected by western blotting. The inflammatory status and oxidative stress in serum and placentas were investigated. Miscarriage and intrauterine growth restriction were observed in the sleep deprivation group. Sleep deprivation resulted in an increased fetal absorption rate, while fetal weight, crown-rump length and placental weight were reduced. Placental histopathology showed that the labyrinth ratio in the sleep deprivation group was significantly reduced, with hypoplastic villi and obviously decreased blood vessels. Sleep deprivation decreased melatonin in serum and the expression of AANAT, MT1 and MT2 in placental tissues, elevated the oxidative stress products 8-hydroxy-deoxyguanosine (8-OHdG) and malondialdehyde(MDA) in serum and 4-hydroxynonenal (4HNE) in the placenta, and decreased the antioxidants superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) in serum. Serum proinflammatory cytokines including interleukin-1-beta (IL-1β), interleukin-6 (IL-6), necrotizing factor-alpha (TNF-α), and interleukin-8(IL-8), were all elevated by sleep deprivation, and the inflammatory regulatory factor nuclear factor-κB p65 (NF-κB p65) in the placenta was enhanced when examined by immunohistochemistry. Corticosterone levels were comparable between the two groups, although ACTH levels were elevated significantly in the sleep deprivation group. Our study revealed that sleep deprivation during pregnancy can adversely impact fetal outcomes. Melatonin may play an important role in this pathology through the oxido-inflammatory process.
Collapse
|
|
2 |
|
46
|
Wang C, Zai W, Zhao K, Li Y, Shi B, Wu M, Zhou X, Kozlowski M, Zhang X, Fang Z, Yuan Z. Potential role of liver-resident CD3 + macrophages in HBV clearance in a mouse hepatitis B model. JHEP Rep 2025; 7:101323. [PMID: 40143948 PMCID: PMC11937660 DOI: 10.1016/j.jhepr.2024.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 03/28/2025] [Imported: 06/09/2025] Open
Abstract
Background & Aims Chronic HBV infection usually causes cirrhosis and hepatocellular carcinoma. Comparative investigations of acute and chronic HBV cases would help determine the immune responses crucial for viral clearance. Methods A fast-cleared HBV mouse model was established in Alb-Cre mice via hydrodynamic injection of HBV plasmid, while persistent HBV model mice were generated via recombinant covalently closed circular DNA-adeno-associated virus 8 infection. The single-cell transcriptomes of CD45+ intrahepatic non-parenchymal cells from these mice were conducted. Multiplexed immunohistochemistry and flow cytometry were used to confirm the findings from single-cell transcriptomes. Transwell, coculture, and adoptive transfer experiments were performed to study the generation and functions of macrophages. Results Twenty-four clusters of immune cells were identified. Myeloid cells, including granulocytes, monocytes, and dendritic cells, are activated early in HBV fast-cleared mice. Significantly, a cluster of CD3+ macrophages was found in the viral clearance phase, which was confirmed in liver tissue from five acute patients with HBV. These cells highly expressed CXCL1, tumor necrosis factor alpha, and HBsAg-specific T cell receptors. The transwell assay revealed that CD3+ macrophages originate from macrophages (n = 6). T cells and anti-HBsAg antibodies are indispensable for their differentiation, which was further confirmed in T- and/or B-cell-deficient mice. Interestingly, these CD3+ macrophages capable of killing peptide-loaded hepatocytes and engulfing IgG-coated beads were persistently detectable in the mouse liver for 10 weeks after HBV clearance. The expression levels of CD5L and Bcl2, two classical antiapoptotic proteins, increased (p <0.001), suggesting that the CD3+ macrophages are long-term resident populations. Finally, adoptive transfer of CD3+ macrophages accelerated HBV clearance in mice (n = 5, p <0.01). Conclusions We identified long-term polyfunctional CD3+ macrophages residing in HBV fast-cleared livers that could help elucidate the immune responses involved in eliminating HBV. Impact and implications The liver is a special organ with unique immune characteristics and tolerance to foodborne antigens. Chronic infections can develop in newborns after exposure to HBV; however, acute infections usually occur in adults, indicating that immune cells in the liver tissue microenvironment can also effectively fight against the virus. Nevertheless, the mechanisms involved in acute HBV infection have rarely been studied. In this study, we identified a macrophage population with both T cell and macrophage characteristics in the livers of acute HBV model mice and revealed that these macrophages play important roles in HBV clearance. Moreover, we confirmed that this population is derived from macrophages in the presence of virus-specific T cells and antibodies. This finding highlights the complexity of antiviral immune responses in liver microenvironments.
Collapse
|
research-article |
1 |
|
47
|
Tang S, Li M, Chen L, Dai A, Liu Z, Wu M, Yang J, Hao H, Liang J, Zhou X, Qian Z. Codelivery of SARS-CoV-2 Prefusion-Spike Protein with CBLB502 by a Dual-Chambered Ferritin Nanocarrier Potentiates Systemic and Mucosal Immunity. ACS APPLIED BIO MATERIALS 2022; 5:3329-3337. [PMID: 35737819 PMCID: PMC9236219 DOI: 10.1021/acsabm.2c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] [Imported: 06/09/2025]
Abstract
Thousands of breakthrough infections are confirmed after intramuscular (i.m.) injection of the approved vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Two major factors might contribute to breakthrough infections. One is the emergence of mutant variants of SARS-CoV-2, and the other is that i.m. injection has an inefficient ability to activate mucosal immunity in the upper respiratory tract. Here, we devised a dual-chambered nanocarrier that can codeliver the adjuvant CBLB502 with prefusion-spike (pre-S) onto a ferritin nanoparticle. This vaccine enabled enhanced systemic and local mucosal immunity in the upper and lower respiratory tract. Further, codelivery of CBLB502 with pre-S induced a Th1/Th2-balanced immunoglobulin G response. Moreover, the codelivery nanoparticle showed a Th1-biased cellular immune response as the release of splenic INF-γ was significantly heightened while the level of IL-4 was elevated to a moderate extent. In general, the developed dual-chambered nanoparticle can trigger multifaceted immune responses and shows great potential for mucosal vaccine development.
Collapse
|
research-article |
3 |
|
48
|
Ren XN, Ren RR, Yang H, Qin BY, Peng XH, Chen LX, Li S, Yuan MJ, Wang C, Zhou XH. Human liver chimeric mouse model based on diphtheria toxin-induced liver injury. World J Gastroenterol 2017; 23:4935-4941. [PMID: 28785147 PMCID: PMC5526763 DOI: 10.3748/wjg.v23.i27.4935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/01/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
AIM To establish an inducible liver injury mouse model and transplant human hepatocytes to obtain liver-humanized mice. METHODS We crossed three mouse strains, including albumin (Alb)-cre transgenic mice, inducible diphtheria toxin receptor (DTR) transgenic mice and severe combined immune deficient (SCID)-beige mice, to create Alb-cre/DTR/SCID-beige (ADSB) mice, which coincidentally harbor Alb-cre and DTR transgenes and are immunodeficient. As the Cre expression is driven by the liver-specific promoter Alb (encoding ALB), the DTR stop signal flanked by two loxP sites can be deleted in the ADSB mice, resulting in DTR expression in the liver. ADSB mice aged 8-10 wk were injected intraperitoneally (i.p.) with diphtheria toxin (DT) and liver damage was assessed by serum alanine aminotransferase (ALT) level. Two days later, mouse livers were sampled for histological analysis, and human hepatocytes were transplanted into the livers on the same day. A human ALB enzyme-linked immunosorbent assay was performed 7, 14, 21 and 28 d after transplantation. Human CD68 immunohistochemistry was performed 30 and 90 d after transplantation. RESULTS We crossed Alb-cre with DTR and SCID-beige mice to obtain ADSB mice. These mice were found to have liver damage 4 d after i.p. injection of 2.5 ng/g bodyweight DT. Bodyweight began to decrease on day 2, increased on day 7, and was lowest on day 4 (range, 10.5%-13.4%). Serum ALT activity began to increase on day 2 and reached a peak value of 289.7 ± 16.2 IU/mL on day 4, then returned to background values on day 7. After transplantation of human liver cells, peripheral blood human ALB level was 1580 ± 454.8 ng/mL (range, 750.2-3064.9 ng/mL) after 28 d and Kupffer cells were present in the liver at 30 d in ADSB mice. CONCLUSION Human hepatocytes were successfully repopulated in the livers of ADSB mice. The inducible mouse model of humanized liver in ADSB mice may have functional applications, such as hepatocyte transplantation, hepatic regeneration and drug metabolism.
Collapse
MESH Headings
- Alanine Transaminase/blood
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Cell Proliferation
- Diphtheria Toxin/toxicity
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- Heparin-binding EGF-like Growth Factor/genetics
- Heparin-binding EGF-like Growth Factor/metabolism
- Hepatocytes/physiology
- Hepatocytes/transplantation
- Humans
- Immunohistochemistry
- Integrases/genetics
- Liver/cytology
- Liver/metabolism
- Liver/pathology
- Liver Failure, Acute/blood
- Liver Failure, Acute/etiology
- Liver Failure, Acute/pathology
- Mice
- Mice, SCID
- Mice, Transgenic
- Transplantation, Heterologous
Collapse
|
Basic Study |
8 |
|