1
|
Kieliszek M, Bano I. Selenium as an important factor in various disease states - a review. EXCLI J 2022; 21:948-966. [PMID: 36172072 PMCID: PMC9489890 DOI: 10.17179/excli2022-5137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] [Imported: 08/29/2023]
Abstract
Selenium (Se) is an element that has a pro-health effect on humans and animals. However, both the deficiency of this element and its excess may prove harmful to the body depending on the chemical form of the selenium, the duration of supplementation, and the human health condition. Many data indicate insufficient coverage of the demand for selenium in humans and animals due to its low content in soils and food products. A balance in the physiological process of the body can be achieved via the proper percentage of organically active minerals in the feed of animals as well as human beings. Selenium is a trace mineral of great importance to the body, required for the maintenance of a variety of its processes; primarily, selenium maintains immune endocrine, metabolic, and cellular homeostasis. Recently, this element has been emerging as a most promising treatment option for various disorders. Therefore, research based on Se has been increasing in recent times. The present review is designed to provide up-to-date information related to Se and its different forms as well as its effects on health.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159 C, 02-776 Warsaw, Poland,*To whom correspondence should be addressed: Marek Kieliszek, Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159 C, 02-776 Warsaw, Poland, E-mail: or
| | - Iqra Bano
- Department of Veterinary Physiology & Biochemistry, Shaheed Benazir Bhutto University of Veterinary and Animals Sciences Sakrand (SBBUVAS), 67210, Sindh, Pakistan
| |
Collapse
|
2
|
Kieliszek M, Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses. 2020;143:109878. [PMID: 32464491 DOI: 10.1016/j.mehy.2020.109878] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/09/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] [Imported: 08/29/2023]
Abstract
Selenium (Se) is a ubiquitous element akin to sulfur (S) existing in the Earth crust in various organic and inorganic forms. Selenium concentration varies greatly depending on the geographic area. Consequently, the content of selenium in food products is also variable. It is known that low Se is associated with increased incidence of cancer and heart diseases. Therefore, it is advisable to supplement diet with this element albeit in a proper form. Although blood increased concentrations of Se can be achieved with various pharmacological preparations, only one chemical form (sodium selenite) can offer a true protection. Sodium selenite, but not selenate, can oxidize thiol groups in the virus protein disulfide isomerase rendering it unable to penetrate the healthy cell membrane. In this way selenite inhibits the entrance of viruses into the healthy cells and abolish their infectivity. Therefore, this simple chemical compound can potentially be used in the recent battle against coronavirus epidemic.
Collapse
|
3
|
Kieliszek M, Błażejak S, Bzducha-Wróbel A, Kot AM. Effect of selenium on growth and antioxidative system of yeast cells. Mol Biol Rep 2019; 46:1797-1808. [PMID: 30734169 DOI: 10.1007/s11033-019-04630-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022] [Imported: 08/29/2023]
Abstract
Selenium exhibits health-promoting properties in humans and animals. Therefore, the development of selenium-enriched dietary supplements has been growing worldwide. However, it may also exhibit toxicity at higher concentrations, causing increased oxidative stress. Different species of yeasts may exhibit different tolerances toward selenium. Therefore, in this study, we aimed to determine the effect of selenium on growth and on the antioxidative system in Candida utilis ATCC 9950 and Saccharomyces cerevisiae ATCC MYA-2200 yeast cells. The results of this study have demonstrated that high doses of selenium causes oxidative stress in yeasts, thereby increasing the process of lipid peroxidation. In addition, we obtained an increased level of GSSG from aqueous solutions of yeast biomass grown with selenium supplementation (40-60 mg/L). Increased levels of selenium in aqueous solutions resulted in an increase in the activity of antioxidant enzymes, including glutathione peroxidase and glutathione reductase. These results should encourage future research on the possibility of a thorough understanding of antioxidant system functioning in yeast cells.
Collapse
Affiliation(s)
- Marek Kieliszek
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland.
| | - Stanisław Błażejak
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Anna Bzducha-Wróbel
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Anna M Kot
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| |
Collapse
|
4
|
Kieliszek M, Lipinski B. Pathophysiological significance of protein hydrophobic interactions: An emerging hypothesis. Med Hypotheses 2018; 110:15-22. [PMID: 29317059 DOI: 10.1016/j.mehy.2017.10.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/09/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022] [Imported: 08/29/2023]
Abstract
Fibrinogen is a unique protein that is converted into an insoluble fibrin in a single enzymatic event, which is a characteristic feature of fibrinogen due to its susceptibility to fibrinolytic degradation and dissolution. Although thrombosis is a result of activated blood coagulation, no explanation is being offered for the persistent presence of fibrin deposits in the affected organs. A classic example is stroke, in which the thrombolytic therapy is effective only during the first 3-4 h after the onset of thrombosis. This phenomenon can now be explained in terms of the modification of fibrinogen structure induced by hydroxyl radicals generated during the period of ischemia caused, in turn, by the blocking of the blood flow within the obstructed vessels. Fibrinogen modification involves intra-to intermolecular disulfide rearrangement induced by the reductive power of hydroxyl radicals that result in the exposition of buried hydrophobic epitopes. Such epitopes react readily with each other forming linkages stronger than the peptide covalent bonds, thus rendering them resistant to the proteolytic degradation. Also, limited reduction of human serum albumin (HSA) generates hydrophobic polymers that form huge insoluble complexes with fibrinogen. Consequently, such insoluble copolymers can be deposited within the circulation of various organs leading to their dysfunction. In conclusion, the study of protein hydrophobic interactions induced by a variety of nutritional and/or environmental factors can provide a rational explanation for a number of pathologic conditions including cardiovascular, neurologic, and other degenerative diseases including cancer.
Collapse
|
5
|
Kieliszek M, Lipinski B, Błażejak S. Application of Sodium Selenite in the Prevention and Treatment of Cancers. Cells 2017; 6:E39. [PMID: 29064404 DOI: 10.3390/cells6040039] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 11/16/2022] [Imported: 08/29/2023] Open
Abstract
Selenium is an essential trace element that occurs in nature, in both inorganic and organic forms. This element participates in numerous biochemical processes, including antioxidant potential, but the mechanism of its anti-cancer action is still not well known. It should be noted that the anti-cancer properties of selenium depends on its chemical form, therapeutic doses, and the tumor type. Higher nutritional doses of selenium can stimulate human immune system. There are several hypotheses concerning the anticancer activity of selenium, including oxidation of sulfhydryl groups in proteins causing their conformational alterations. Conformational changes in proteins have the ability to weaken the activity of enzymes involved in the metabolism of cancer cells. In case of human fibrinogen sodium selenite, but not selenate, it inhibits protein disulfide exchange reactions, thus preventing formation of a hydrophobic polymer termed parafibrin, circulatory accumulation, of which is associated with numerous degenerative diseases. Parafibrin can specifically form a protein coat around tumor cells that is completely resistant to degradation induced with lymphocyte protease. In this way, cancer cells become protected against destruction by the organism's immune system. Other possible mechanisms of anticancer action of selenium are being still investigated.
Collapse
|
6
|
Kieliszek M, Błażejak S, Kurek E. Binding and Conversion of Selenium in Candida utilis ATCC 9950 Yeasts in Bioreactor Culture. Molecules 2017; 22:molecules22030352. [PMID: 28245620 PMCID: PMC6155356 DOI: 10.3390/molecules22030352] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/02/2017] [Accepted: 02/22/2017] [Indexed: 11/16/2022] [Imported: 08/29/2023] Open
Abstract
Selenium is considered an essential component of all living organisms. The use of yeasts as a selenium supplement in human nutrition has gained much interest over the last decade. The accumulation and biochemical transformation of selenium in yeast cells is particularly interesting to many researchers. In this article, we present the results of the determination of selenium and selenomethionine content in the biomass of feed yeast Candida utilis ATCC 9950 obtained from the culture grown in a bioreactor. The results indicated that C. utilis cells performed the biotransformation of inorganic selenium(IV) to organic derivatives (e.g., selenomethionine). Selenium introduced (20–30 mg Se4+∙L−1) to the experimental media in the form of sodium(IV) selenite (Na2SeO3) salt caused a significant increase in selenium content in the biomass of C. utilis, irrespective of the concentration. The highest amount of selenium (1841 μg∙gd.w.−1) was obtained after a 48-h culture in media containing 30 mg Se4+∙L−1. The highest content of selenomethionine (238.8 μg∙gd.w.−1) was found after 48-h culture from the experimental medium that was supplemented with selenium at a concentration of 20 mg Se4+∙L−1. Biomass cell in the cultures supplemented with selenium ranged from 1.5 to 14.1 g∙L−1. The results of this study indicate that yeast cell biomass of C. utilis enriched mainly with the organic forms of selenium can be a valuable source of protein. It creates the possibility of obtaining selenium biocomplexes that can be used in the production of protein-selenium dietary supplements for animals and humans
Collapse
Affiliation(s)
- Marek Kieliszek
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland.
| | - Stanisław Błażejak
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland.
| | - Eliza Kurek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland.
| |
Collapse
|
7
|
Kieliszek M, Błażejak S. Current Knowledge on the Importance of Selenium in Food for Living Organisms: A Review. Molecules 2016; 21:molecules21050609. [PMID: 27171069 PMCID: PMC6274134 DOI: 10.3390/molecules21050609] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 12/21/2022] [Imported: 08/29/2023] Open
Abstract
Selenium is one of the elements classified within the group of micronutrients which are necessary in trace amounts for the proper functioning of organisms. Selenium participates in the protection of cells against excess H2O2, in heavy metal detoxification, and regulation of the immune and reproductive systems as well. It also ensures the proper functioning of the thyroid gland. Selenium induces the occurrence of the selenoprotein synthesis process involved in the antioxidant defense mechanism of the organism. Recent years have brought much success in the studies on selenium. Anticarcinogenic properties of selenium against some cancers have been reported. Supplementation is increasingly becoming a solution to this problem. A large number of different supplementation methods are promoting studies in this area. Slight differences in the selenium content can result in excess or deficiency, therefore supplementation has to be done carefully and cautiously.
Collapse
Affiliation(s)
- Marek Kieliszek
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland.
| | - Stanisław Błażejak
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland.
| |
Collapse
|
8
|
Kieliszek M, Błażejak S, Płaczek M. Spectrophotometric evaluation of selenium binding by Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 yeast. J Trace Elem Med Biol 2016; 35:90-6. [PMID: 27049131 DOI: 10.1016/j.jtemb.2016.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/21/2016] [Accepted: 01/28/2016] [Indexed: 01/30/2023] [Imported: 08/29/2023]
Abstract
In this study, the ability of selenium binding the biomas of Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 was investigated. Sodium selenite(IV) salts were added to the experimental media at concentrations of 10, 20, 40, and 60 mg Se(4+) L(-1). In the tested concentration range, one concentration reported a significant reduction in the biomass yield of both yeast strains. Intense growth was observed for C. utilis yeast, which reached the highest biomass yield of 15 gd.w.L(-1) after 24h cultivation in the presence of 10mg Se(4+) L(-1). Based on the use of spectrophotometric method for the determination of selenium content by using Variamine Blue as a chromogenic agent, efficient accumulation of this element in the biomass of the investigated yeast was observed. The highest amount of selenium, that is, 5.64 mg Se(4+)gd.w.(-1), was bound from the environment by S. cerevisiae ATCC MYA-2200 cultured in the presence of 60 mg Se(4+) L(-1) medium 72h Slightly less amount, 5.47 mg Se(4+) gd.w.(-1), was absorbed by C. utilis ATCC 9950 during similar cultural conditions. Based on the results of the biomass yield and the use of selenium from the medium, it can be observed that yeasts of the genus Candida are more efficient in binding this element, and this property finds practical application in the production of selenium-enriched yeast.
Collapse
Affiliation(s)
- Marek Kieliszek
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland.
| | - Stanisław Błażejak
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Maciej Płaczek
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| |
Collapse
|
9
|
Kieliszek M, Błażejak S, Bzducha-Wróbel A, Kurcz A. Effects of Selenium on Morphological Changes in Candida utilis ATCC 9950 Yeast Cells. Biol Trace Elem Res 2016; 169:387-93. [PMID: 26166197 PMCID: PMC4717171 DOI: 10.1007/s12011-015-0415-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/15/2015] [Indexed: 01/27/2023] [Imported: 08/29/2023]
Abstract
This paper presents the results of microscopic examinations of the yeast cells cultured in yeast extract-peptone-dextrose (YPD) media supplemented with sodium selenite(IV). The analysis of the morphological changes in yeast cells aimed to determine whether the selected selenium doses and culturing time may affect this element accumulation in yeast cell structures in a form of inorganic or organic compounds, as a result of detoxification processes. The range of characteristic morphological changes in yeasts cultivated in experimental media with sodium selenite(IV) was observed, including cell shrinkage and cytoplasm thickening of the changes within vacuole structure. The processes of vacuole disintegration were observed in aging yeast cells in culturing medium, which may indicate the presence of so-called ghost cells lacking intracellular organelles The changes occurring in the morphology of yeasts cultured in media supplemented with sodium selenite were typical for stationary phase of yeast growth. From detailed microscopic observations, larger surface area of the cell (6.03 μm(2)) and yeast vacuole (2.17 μm(2)) were noticed after 24-h culturing in the medium with selenium of 20 mg Se(4+)/L. The coefficient of shape of the yeast cells cultured in media enriched with sodium selenite as well as in the control YPD medium ranged from 1.02 to 1.22. Elongation of cultivation time (up to 48 and 72 h) in the media supplemented with sodium selenite caused a reduction in the surface area of the yeast cell and vacuole due to detoxification processes.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland.
| | - Stanisław Błażejak
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Anna Bzducha-Wróbel
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Agnieszka Kurcz
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| |
Collapse
|
10
|
Kieliszek M, Błażejak S, Gientka I, Bzducha-Wróbel A. Accumulation and metabolism of selenium by yeast cells. Appl Microbiol Biotechnol 2015; 99:5373-82. [PMID: 26003453 PMCID: PMC4464373 DOI: 10.1007/s00253-015-6650-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 11/30/2022] [Imported: 08/29/2023]
Abstract
This paper examines the process of selenium bioaccumulation and selenium metabolism in yeast cells. Yeast cells can bind elements in ionic from the environment and permanently integrate them into their cellular structure. Up to now, Saccharomyces cerevisiae, Candida utilis, and Yarrowia lipolytica yeasts have been used primarily in biotechnological studies to evaluate binding of minerals. Yeast cells are able to bind selenium in the form of both organic and inorganic compounds. The process of bioaccumulation of selenium by microorganisms occurs through two mechanisms: extracellular binding by ligands of membrane assembly and intracellular accumulation associated with the transport of ions across the cytoplasmic membrane into the cell interior. During intracellular metabolism of selenium, oxidation, reduction, methylation, and selenoprotein synthesis processes are involved, as exemplified by detoxification processes that allow yeasts to survive under culture conditions involving the elevated selenium concentrations which were observed. Selenium yeasts represent probably the best absorbed form of this element. In turn, in terms of wide application, the inclusion of yeast with accumulated selenium may aid in lessening selenium deficiency in a diet.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland,
| | | | | | | |
Collapse
|
11
|
Kieliszek M, Misiewicz A. Microbial transglutaminase and its application in the food industry. A review. Folia Microbiol (Praha) 2013; 59:241-50. [PMID: 24198201 PMCID: PMC3971462 DOI: 10.1007/s12223-013-0287-x] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 10/14/2013] [Indexed: 12/19/2022] [Imported: 08/29/2023]
Abstract
The extremely high costs of manufacturing transglutaminase from animal origin (EC 2.3.2.13) have prompted scientists to search for new sources of this enzyme. Interdisciplinary efforts have been aimed at producing enzymes synthesised by microorganisms which may have a wider scope of use. Transglutaminase is an enzyme that catalyses the formation of isopeptide bonds between proteins. Its cross-linking property is widely used in various processes: to manufacture cheese and other dairy products, in meat processing, to produce edible films and to manufacture bakery products. Transglutaminase has considerable potential to improve the firmness, viscosity, elasticity and water-binding capacity of food products. In 1989, microbial transglutaminase was isolated from Streptoverticillium sp. Its characterisation indicated that this isoform could be extremely useful as a biotechnological tool in the food industry. Currently, enzymatic preparations are used in almost all industrial branches because of their wide variety and low costs associated with their biotechnical production processes. This paper presents an overview of the literature addressing the characteristics and applications of transglutaminase.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Microbiology, Institute of Agricultural and Food Biotechnology, Rakowiecka, 36 St., 02-532, Warsaw, Poland,
| | | |
Collapse
|