1
|
Manwar R, Kratkiewicz K, Mahmoodkalayeh S, Hariri A, Papadelis C, Hansen A, Pillers DAM, Gelovani J, Avanaki K. Development and characterization of transfontanelle photoacoustic imaging system for detection of intracranial hemorrhages and measurement of brain oxygenation: Ex-vivo. PHOTOACOUSTICS 2023; 32:100538. [PMID: 37575972 PMCID: PMC10413353 DOI: 10.1016/j.pacs.2023.100538] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/28/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] [Imported: 08/29/2023]
Abstract
We have developed and optimized an imaging system to study and improve the detection of brain hemorrhage and to quantify oxygenation. Since this system is intended to be used for brain imaging in neonates through the skull opening, i.e., fontanelle, we called it, Transfontanelle Photoacoustic Imaging (TFPAI) system. The system is optimized in terms of optical and acoustic designs, thermal safety, and mechanical stability. The lower limit of quantification of TFPAI to detect the location of hemorrhage and its size is evaluated using in-vitro and ex-vivo experiments. The capability of TFPAI in measuring the tissue oxygenation and detection of vasogenic edema due to brain blood barrier disruption are demonstrated. The results obtained from our experimental evaluations strongly suggest the potential utility of TFPAI, as a portable imaging modality in the neonatal intensive care unit. Confirmation of these findings in-vivo could facilitate the translation of this promising technology to the clinic.
Collapse
|
2
|
Lee J, Beirami MJ, Ebrahimpour R, Puyana C, Tsoukas M, Avanaki K. Optical coherence tomography confirms non-malignant pigmented lesions in phacomatosis pigmentokeratotica using a support vector machine learning algorithm. Skin Res Technol 2023; 29:e13377. [PMID: 37357662 PMCID: PMC10228288 DOI: 10.1111/srt.13377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/19/2023] [Indexed: 06/27/2023] [Imported: 08/29/2023]
Abstract
INTRODUCTION Phacomatosis pigmentokeratotica (PPK), an epidermal nevus syndrome, is characterized by the coexistence of nevus spilus and nevus sebaceus. Within the nevus spilus, an extensive range of atypical nevi of different morphologies may manifest. Pigmented lesions may fulfill the ABCDE criteria for melanoma, which may prompt a physician to perform a full-thickness biopsy. MOTIVATION Excisions result in pain, mental distress, and physical disfigurement. For patients with a significant number of nevi with morphologic atypia, it may not be physically feasible to biopsy a large number of lesions. Optical coherence tomography (OCT) is a non-invasive imaging modality that may be used to visualize non-melanoma and melanoma skin cancers. MATERIALS AND METHOD In this study, we used OCT to image pigmented lesions with morphologic atypia in a patient with PPK and assessed their quantitative optical properties compared to OCT cases of melanoma. We implement a support vector machine learning algorithm with Gabor wavelet transformation algorithm during post-image processing to extract optical properties and calculate attenuation coefficients. RESULTS The algorithm was trained and tested to extract and classify textural data. CONCLUSION We conclude that implementing this post-imaging machine learning algorithm to OCT images of pigmented lesions in PPK has been able to successfully confirm benign optical properties. Additionally, we identified remarkable differences in attenuation coefficient values and tissue optical characteristics, further defining separating benign features of pigmented lesions in PPK from malignant features.
Collapse
|
3
|
Nasri D, Manwar R, Kaushik A, Er EE, Avanaki K. Photoacoustic imaging for investigating tumor hypoxia: a strategic assessment. Theranostics 2023; 13:3346-3367. [PMID: 37351178 PMCID: PMC10283067 DOI: 10.7150/thno.84253] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/29/2023] [Indexed: 06/24/2023] [Imported: 08/29/2023] Open
Abstract
Hypoxia causes the expression of signaling molecules which regulate cell division, lead to angiogenesis, and further, in the tumor microenvironment, promote resistance to chemotherapy and radiotherapy, and induce metastasis. Photoacoustic imaging (PAI) takes advantage of unique absorption characteristics of chromophores in tissues and provides the opportunity to construct images with a high degree of spatial and temporal resolution. In this review, we discuss the physiologic characteristics of tumor hypoxia, and current applications of PAI using endogenous (label free imaging) and exogenous (organic and inorganic) contrast agents. Features of various methods in terms of their efficacy for determining physiologic and proteomic phenomena are analyzed. This review demonstrates that PAI has the potential to understand tumor growth and metastasis development through measurement of regulatory molecule concentrations, oxygen gradients, and vascular distribution.
Collapse
|
4
|
Lee J, Benavides J, Manwar R, Puyana C, May J, Tsoukas M, Avanaki K. Noninvasive imaging exploration of phacomatosis pigmentokeratotica using high-frequency ultrasound and optical coherence tomography: Can biopsy of PPK patients be avoided? Skin Res Technol 2023; 29:e13279. [PMID: 37113090 PMCID: PMC10234170 DOI: 10.1111/srt.13279] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/03/2023] [Indexed: 04/05/2023] [Imported: 08/29/2023]
Abstract
BACKGROUND Phacomatosis pigmentokeratotica (PPK) is a distinct and rare type of epidermal nevus syndrome characterized by coexisting nonepidermolytic organoid sebaceous nevus (SN) with one or more speckled lentiginous nevi (SLN). Atypical nevi including compound Spitz and compound dysplastic may manifest within regions of SLN. Patients with PPK, or similar atypical nevus syndromes, may be subject to a significant lifetime number of biopsies, leading to pain, scarring, anxiety, financial burden, and decreased quality of life. The current literature includes case reports, genetics, and associated extracutaneous symptoms of PPK, but use of noninvasive imaging techniques have not been explored. We aim to investigate the value of high-frequency ultrasound (HFUS) and optical coherence tomography (OCT) in discriminating morphological features of pigmented lesions and nevus sebaceous within one patient with PPK. MATERIALS AND METHODS Two modalities, (1) HFUS imaging, based on acoustic properties and (2) OCT imaging, based on optical properties, were used to image a patient with PPK. Benign pigmented lesions, which may raise clinical suspicion for significant atypia, and nevus sebaceous, were selected on different areas of the body to be studied. RESULTS Five pigmented lesions and one area of nevus sebaceous were imaged and analyzed for noninvasive features. Distinct patterns of hypoechoic features were seen on HFUS and OCT. CONCLUSION HFUS provides a deep view of the tissue, with ability to differentiate gross structures beneath the skin. OCT provides a smaller penetration depth and a higher resolution. We have described noninvasive features of atypical nevi and nevus sebaceous on HFUS and OCT, which indicate benign etiology.
Collapse
|
5
|
Transfontanelle photoacoustic imaging for in-vivo cerebral oxygenation measurement. Sci Rep 2022; 12:15394. [PMID: 36100615 PMCID: PMC9470703 DOI: 10.1038/s41598-022-19350-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] [Imported: 08/29/2023] Open
Abstract
The capability of photoacoustic (PA) imaging to measure oxygen saturation through a fontanelle has been demonstrated in large animals in-vivo. We called this method, transfontanelle photoacoustic imaging (TFPAI). A surgically induced 2.5 cm diameter cranial window was created in an adult sheep skull to model the human anterior fontanelle. The performance of the TFPAI has been evaluated by comparing the PA-based predicted results against the gold standard of blood gas analyzer measurements.
Collapse
|
6
|
Couplants in Acoustic Biosensing Systems. CHEMOSENSORS 2022; 10:181. [PMID: 35909809 PMCID: PMC9169999 DOI: 10.3390/chemosensors10050181] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 12/19/2022] [Imported: 08/29/2023]
Abstract
Acoustic biosensors are widely used in physical, chemical, and biosensing applications. One of the major concerns in acoustic biosensing is the delicacy of the medium through which acoustic waves propagate and reach acoustic sensors. Even a small airgap diminishes acoustic signal strengths due to high acoustic impedance mismatch. Therefore, the presence of a coupling medium to create a pathway for an efficient propagation of acoustic waves is essential. Here, we have reviewed the chemical, physical, and acoustic characteristics of various coupling material (liquid, gel-based, semi-dry, and dry) and present a guide to determine a suitable application-specific coupling medium.
Collapse
|
7
|
Manwar R, Islam MT, Ranjbaran SM, Avanaki K. Transfontanelle photoacoustic imaging: ultrasound transducer selection analysis. BIOMEDICAL OPTICS EXPRESS 2022; 13:676-693. [PMID: 35284180 PMCID: PMC8884197 DOI: 10.1364/boe.446087] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 05/11/2023] [Imported: 08/29/2023]
Abstract
Transfontanelle ultrasound imaging (TFUI) is the conventional approach for diagnosing brain injury in neonates. Despite being the first stage imaging modality, TFUI lacks accuracy in determining the injury at an early stage due to degraded sensitivity and specificity. Therefore, a modality like photoacoustic imaging that combines the advantages of both acoustic and optical imaging can overcome the existing TFUI limitations. Even though a variety of transducers have been used in TFUI, it is essential to identify the transducer specification that is optimal for transfontanelle imaging using the photoacoustic technique. In this study, we evaluated the performance of 6 commercially available ultrasound transducer arrays to identify the optimal characteristics for transfontanelle photoacoustic imaging. We focused on commercially available linear and phased array transducer probes with center frequencies ranging from 2.5MHz to 8.5MHz which covers the entire spectrum of the transducer arrays used for brain imaging. The probes were tested on both in vitro and ex vivo brain tissue, and their performance in terms of transducer resolution, size, penetration depth, sensitivity, signal to noise ratio, signal amplification and reconstructed image quality were evaluated. The analysis of selected transducers in these areas allowed us to determine the optimal transducer for transfontanelle imaging, based on vasculature depth and blood density in tissue using ex vivo sheep brain. The outcome of this evaluation identified the two most suitable ultrasound transducer probes for transfontanelle photoacoustic imaging.
Collapse
|
8
|
Mahmoodkalayeh S, Kratkiewicz K, Manwar R, Shahbazi M, Ansari MA, Natarajan G, Asano E, Avanaki K. Wavelength and pulse energy optimization for detecting hypoxia in photoacoustic imaging of the neonatal brain: a simulation study. BIOMEDICAL OPTICS EXPRESS 2021; 12:7458-7477. [PMID: 35003846 PMCID: PMC8713673 DOI: 10.1364/boe.439147] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/10/2021] [Accepted: 10/20/2021] [Indexed: 05/03/2023] [Imported: 08/29/2023]
Abstract
Cerebral hypoxia is a severe injury caused by oxygen deprivation to the brain. Hypoxia in the neonatal period increases the risk for the development of neurological disorders, including hypoxic-ischemic encephalopathy, cerebral palsy, periventricular leukomalacia, and hydrocephalus. It is crucial to recognize hypoxia as soon as possible because early intervention improves outcomes. Photoacoustic imaging, using at least two wavelengths, through a spectroscopic analysis, can measure brain oxygen saturation. Due to the spectral coloring effect arising from the dependency of optical properties of biological tissues to the wavelength of light, choosing the right wavelength-pair for efficient and most accurate oxygen saturation measurement and consequently quantifying hypoxia at a specific depth is critical. Using a realistic neonate head model and Monte Carlo simulations, we found practical wavelength-pairs that quantified regions with hypoxia most accurately at different depths down to 22 mm into the cortex neighboring the lateral ventricle. We also demonstrated, for the first time, that the accuracy of the sO2 measurement can be increased by adjusting the level of light energy for each wavelength-pair. Considering the growing interest in photoacoustic imaging of the brain, this work will assist in a more accurate use of photoacoustic spectroscopy and help in the clinical translation of this promising imaging modality. Please note that explaining the effect of acoustic aberration of the skull is not in the scope of this study.
Collapse
|
9
|
Matchynski JI, Manwar R, Kratkiewicz KJ, Madangopal R, Lennon VA, Makki KM, Reppen AL, Woznicki AR, Hope BT, Perrine SA, Conti AC, Avanaki K. Direct measurement of neuronal ensemble activity using photoacoustic imaging in the stimulated Fos-LacZ transgenic rat brain: A proof-of-principle study. PHOTOACOUSTICS 2021; 24:100297. [PMID: 34522608 PMCID: PMC8426561 DOI: 10.1016/j.pacs.2021.100297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/28/2021] [Accepted: 08/28/2021] [Indexed: 05/16/2023] [Imported: 08/29/2023]
Abstract
Measuring neuroactivity underlying complex behaviors facilitates understanding the microcircuitry that supports these behaviors. We have developed a functional and molecular photoacoustic tomography (F/M-PAT) system which allows direct imaging of Fos-expressing neuronal ensembles in Fos-LacZ transgenic rats with a large field-of-view and high spatial resolution. F/M-PAT measures the beta-galactosidase catalyzed enzymatic product of exogenous chromophore X-gal within ensemble neurons. We used an ex vivo imaging method in the Wistar Fos-LacZ transgenic rat, to detect neuronal ensembles in medial prefrontal cortex (mPFC) following cocaine administration or a shock-tone paired stimulus. Robust and selective F/M-PAT signal was detected in mPFC neurons after both conditions (compare to naive controls) demonstrating successful and direct detection of Fos-expressing neuronal ensembles using this approach. The results of this study indicate that F/M-PAT can be used in conjunction with Fos-LacZ rats to monitor neuronal ensembles that underlie a range of behavioral processes, such as fear learning or addiction.
Collapse
Key Words
- ANSI, American national standards institute
- AP, anterior-posterior
- Brain
- CNR, contrast-to-noise ratio
- Cocaine
- DMSO, dimethyl sulfoxide
- DV, dorsal-ventral
- F/M-PAT, functional molecular photoacoustic tomography
- FOV, field-of-view
- Fear conditioning
- Fos
- GRIN, gradient-index
- IL, infralimbic cortex
- ML, medial-lateral
- Neuronal ensemble
- OCT, optical coherence tomography
- OPO, optical parametric oscillator
- PA, photoacoustic
- PBS, phosphate buffer saline
- PL, prelimbic cortex
- Photoacoustic imaging
- SNR, signal-to-noise ratio
- US, ultrasound
- X-gal
- X-gal, beta-D-galactosidase
- fMRI, functional magnetic resonance imaging
- mPFC, medial prefrontal cortex
Collapse
|
10
|
Kratkiewicz K, Manwar R, Zhou Y, Mozaffarzadeh M, Avanaki K. Technical considerations in the Verasonics research ultrasound platform for developing a photoacoustic imaging system. BIOMEDICAL OPTICS EXPRESS 2021; 12:1050-1084. [PMID: 33680559 PMCID: PMC7901326 DOI: 10.1364/boe.415481] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 05/20/2023] [Imported: 08/29/2023]
Abstract
Photoacoustic imaging (PAI) is an emerging functional and molecular imaging technology that has attracted much attention in the past decade. Recently, many researchers have used the vantage system from Verasonics for simultaneous ultrasound (US) and photoacoustic (PA) imaging. This was the motivation to write on the details of US/PA imaging system implementation and characterization using Verasonics platform. We have discussed the experimental considerations for linear array based PAI due to its popularity, simple setup, and high potential for clinical translatability. Specifically, we describe the strategies of US/PA imaging system setup, signal generation, amplification, data processing and study the system performance.
Collapse
|
11
|
Hessler M, Jalilian E, Xu Q, Reddy S, Horton L, Elkin K, Manwar R, Tsoukas M, Mehregan D, Avanaki K. Melanoma Biomarkers and Their Potential Application for In Vivo Diagnostic Imaging Modalities. Int J Mol Sci 2020; 21:E9583. [PMID: 33339193 PMCID: PMC7765677 DOI: 10.3390/ijms21249583] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022] [Imported: 08/29/2023] Open
Abstract
Melanoma is the deadliest form of skin cancer and remains a diagnostic challenge in the dermatology clinic. Several non-invasive imaging techniques have been developed to identify melanoma. The signal source in each of these modalities is based on the alteration of physical characteristics of the tissue from healthy/benign to melanoma. However, as these characteristics are not always sufficiently specific, the current imaging techniques are not adequate for use in the clinical setting. A more robust way of melanoma diagnosis is to "stain" or selectively target the suspect tissue with a melanoma biomarker attached to a contrast enhancer of one imaging modality. Here, we categorize and review known melanoma diagnostic biomarkers with the goal of guiding skin imaging experts to design an appropriate diagnostic tool for differentiating between melanoma and benign lesions with a high specificity and sensitivity.
Collapse
|
12
|
Manwar R, Li X, Mahmoodkalayeh S, Asano E, Zhu D, Avanaki K. Deep learning protocol for improved photoacoustic brain imaging. JOURNAL OF BIOPHOTONICS 2020; 13:e202000212. [PMID: 33405275 PMCID: PMC10906453 DOI: 10.1002/jbio.202000212] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 05/20/2023] [Imported: 08/29/2023]
Abstract
One of the key limitations for the clinical translation of photoacoustic imaging is penetration depth that is linked to the tissue maximum permissible exposures (MPE) recommended by the American National Standards Institute (ANSI). Here, we propose a method based on deep learning to virtually increase the MPE in order to enhance the signal-to-noise ratio of deep structures in the brain tissue. The proposed method is evaluated in an in vivo sheep brain imaging experiment. We believe this method can facilitate clinical translation of photoacoustic technique in brain imaging, especially in transfontanelle brain imaging in neonates.
Collapse
|