1
|
Chen YY, Chen DQ, Chen L, Liu JR, Vaziri ND, Guo Y, Zhao YY. Microbiome-metabolome reveals the contribution of gut-kidney axis on kidney disease. J Transl Med 2019; 17:5. [PMID: 30602367 PMCID: PMC6317198 DOI: 10.1186/s12967-018-1756-4] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
Dysbiosis represents changes in composition and structure of the gut microbiome community (microbiome), which may dictate the physiological phenotype (health or disease). Recent technological advances and efforts in metagenomic and metabolomic analyses have led to a dramatical growth in our understanding of microbiome, but still, the mechanisms underlying gut microbiome-host interactions in healthy or diseased state remain elusive and their elucidation is in infancy. Disruption of the normal gut microbiota may lead to intestinal dysbiosis, intestinal barrier dysfunction, and bacterial translocation. Excessive uremic toxins are produced as a result of gut microbiota alteration, including indoxyl sulphate, p-cresyl sulphate, and trimethylamine-N-oxide, all implicated in the variant processes of kidney diseases development. This review focuses on the pathogenic association between gut microbiota and kidney diseases (the gut-kidney axis), covering CKD, IgA nephropathy, nephrolithiasis, hypertension, acute kidney injury, hemodialysis and peritoneal dialysis in clinic. Targeted interventions including probiotic, prebiotic and symbiotic measures are discussed for their potential of re-establishing symbiosis, and more effective strategies for the treatment of kidney diseases patients are suggested. The novel insights into the dysbiosis of the gut microbiota in kidney diseases are helpful to develop novel therapeutic strategies for preventing or attenuating kidney diseases and complications.
Collapse
|
Review |
6 |
271 |
2
|
Chen DQ, Cao G, Chen H, Argyopoulos CP, Yu H, Su W, Chen L, Samuels DC, Zhuang S, Bayliss GP, Zhao S, Yu XY, Vaziri ND, Wang M, Liu D, Mao JR, Ma SX, Zhao J, Zhang Y, Shang YQ, Kang H, Ye F, Cheng XH, Li XR, Zhang L, Meng MX, Guo Y, Zhao YY. Identification of serum metabolites associating with chronic kidney disease progression and anti-fibrotic effect of 5-methoxytryptophan. Nat Commun 2019; 10:1476. [PMID: 30931940 PMCID: PMC6443780 DOI: 10.1038/s41467-019-09329-0] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 03/06/2019] [Indexed: 12/27/2022] [Imported: 08/29/2023] Open
Abstract
Early detection and accurate monitoring of chronic kidney disease (CKD) could improve care and retard progression to end-stage renal disease. Here, using untargeted metabolomics in 2155 participants including patients with stage 1-5 CKD and healthy controls, we identify five metabolites, including 5-methoxytryptophan (5-MTP), whose levels strongly correlate with clinical markers of kidney disease. 5-MTP levels decrease with progression of CKD, and in mouse kidneys after unilateral ureteral obstruction (UUO). Treatment with 5-MTP ameliorates renal interstitial fibrosis, inhibits IκB/NF-κB signaling, and enhances Keap1/Nrf2 signaling in mice with UUO or ischemia/reperfusion injury, as well as in cultured human kidney cells. Overexpression of tryptophan hydroxylase-1 (TPH-1), an enzyme involved in 5-MTP synthesis, reduces renal injury by attenuating renal inflammation and fibrosis, whereas TPH-1 deficiency exacerbates renal injury and fibrosis by activating NF-κB and inhibiting Nrf2 pathways. Together, our results suggest that TPH-1 may serve as a target in the treatment of CKD.
Collapse
|
research-article |
6 |
194 |
3
|
Feng YL, Cao G, Chen DQ, Vaziri ND, Chen L, Zhang J, Wang M, Guo Y, Zhao YY. Microbiome-metabolomics reveals gut microbiota associated with glycine-conjugated metabolites and polyamine metabolism in chronic kidney disease. Cell Mol Life Sci 2019; 76:4961-4978. [PMID: 31147751 PMCID: PMC11105293 DOI: 10.1007/s00018-019-03155-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/28/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022] [Imported: 08/29/2023]
Abstract
Dysbiosis of the gut microbiome and related metabolites in chronic kidney disease (CKD) have been intimately associated with the prevalence of cardiovascular diseases. Unfortunately, thus far, there is a paucity of sufficient knowledge of gut microbiome and related metabolites on CKD progression partly due to the severely limited investigations. Using a 5/6 nephrectomized (NX) rat model, we carried out 16S rRNA sequence and untargeted metabolomic analyses to explore the relationship between colon's microbiota and serum metabolites. Marked decline in microbial diversity and richness was accompanied by significant changes in 291 serum metabolites, which were mediated by altered enzymatic activities and dysregulations of lipids, amino acids, bile acids and polyamines metabolisms. Interestingly, CCr was directly associated with some microbial genera and polyamine metabolism. However, SBP was directly related to certain microbial genera and glycine-conjugated metabolites in CKD rats. Administration of poricoic acid A (PAA) and Poria cocos (PC) ameliorated microbial dysbiosis as well as attenuated hypertension and renal fibrosis. In addition, treatments with PAA and PC lowered serum levels of microbial-derived products including glycine-conjugated compounds and polyamine metabolites. Collectively, the present study confirmed the CKD-associated gut microbial dysbiosis and identified a novel dietary and therapeutic strategy to improve the gut microbial dysbiosis and the associated metabolomic disorders and retarded the progression of kidney disease in the rat model of CKD.
Collapse
|
research-article |
6 |
155 |
4
|
Chen H, Cao G, Chen DQ, Wang M, Vaziri ND, Zhang ZH, Mao JR, Bai X, Zhao YY. Metabolomics insights into activated redox signaling and lipid metabolism dysfunction in chronic kidney disease progression. Redox Biol 2016; 10:168-178. [PMID: 27750081 PMCID: PMC5066525 DOI: 10.1016/j.redox.2016.09.014] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 01/25/2023] [Imported: 08/29/2023] Open
Abstract
Early detection is critical in prevention and treatment of kidney disease. However currently clinical laboratory and histopathological tests do not provide region-specific and accurate biomarkers for early detection of kidney disease. The present study was conducted to identify sensitive biomarkers for early detection and progression of tubulo-interstitial nephropathy in aristolochic acid I-induced rats at weeks 4, 8 and 12. Biomarkers were validated using aristolochic acid nephropathy (AAN) rats at week 24, adenine-induced chronic kidney disease (CKD) rats and CKD patients. Compared with control rats, AAN rats showed anemia, increased serum urea and creatinine, progressive renal interstitial fibrosis, activation of nuclear factor-kappa B, and up-regulation of pro-inflammatory, pro-oxidant, and pro-fibrotic proteins at weeks 8 and 12. However, no significant difference was found at week 4. Metabolomics identified 12-ketodeoxycholic acid, taurochenodesoxycholic acid, LPC(15:0) and docosahexaenoic acid as biomarkers for early detection of tubulo-interstitial nephropathy. With prolonging aristolochic acid I exposure, LPE(20:2), cholic acid, chenodeoxycholic acid and LPC(17:0) were identified as biomarkers for progression from early to advanced AAN and lysoPE(22:5), indoxyl sulfate, uric acid and creatinine as biomarkers of advanced AAN. These biomarkers were reversed by treatment of irbesartan and ergone in AAN rats at week 24 and adenine-induced CKD rats. In addition, these biomarkers were also reversed by irbesartan treatment in CKD patients.
Collapse
|
research-article |
9 |
142 |
5
|
Chen DQ, Cao G, Chen H, Liu D, Su W, Yu XY, Vaziri ND, Liu XH, Bai X, Zhang L, Zhao YY. Gene and protein expressions and metabolomics exhibit activated redox signaling and wnt/β-catenin pathway are associated with metabolite dysfunction in patients with chronic kidney disease. Redox Biol 2017; 12:505-521. [PMID: 28343144 PMCID: PMC5369369 DOI: 10.1016/j.redox.2017.03.017] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/06/2017] [Accepted: 03/21/2017] [Indexed: 11/27/2022] [Imported: 08/29/2023] Open
Abstract
Changes in plasma concentration of small organic metabolites could be due to their altered production or urinary excretion and changes in their urine concentration may be due to the changes in their filtered load, tubular reabsorption, and/or altered urine volume. Therefore, these factors should be considered in interpretation of the changes observed in plasma or urine of the target metabolite(s). Fasting plasma and urine samples from 180 CKD patients and 120 age-matched healthy controls were determined by UPLC-HDMS-metabolomics and quantitative real-time RT-PCR techniques. Compared with healthy controls, patients with CKD showed activation of NF-κB and up-regulation of pro-inflammatory and pro-oxidant mRNA and protein expression as well as down-regulation of Nrf2-associated anti-oxidant gene mRNA and protein expression, accompanied by activated canonical Wnt/β-catenin signaling. 124 plasma and 128 urine metabolites were identified and 40 metabolites were significantly altered in both plasma and urine. Plasma concentration and urine excretion of 25 metabolites were distinctly different between CKD and controls. They were related to amino acid, methylamine, purine and lipid metabolisms. Logistic regression identified four plasma and five urine metabolites. Parts of them were good correlated with eGFR or serum creatinine. 5-Methoxytryptophan and homocystine and citrulline were good correlated with both eGFR and creatinine. Clinical factors were incorporated to establish predictive models. The enhanced metabolite model showed 5-methoxytryptophan, homocystine and citrulline have satisfactory accuracy, sensitivity and specificity for predictive CKD. The dysregulation of CKD was related to amino acid, methylamine, purine and lipid metabolisms. 5-methoxytryptophan, homocystine and citrulline could be considered as additional GFR-associated biomarker candidates and for indicating advanced renal injury. CKD caused dysregulation of the plasma and urine metabolome, activation of inflammatory/oxidative pathway and Wnt/β-catenin signaling and suppression of antioxidant pathway.
Collapse
|
research-article |
8 |
140 |
6
|
Zhao YY, Wang HL, Cheng XL, Wei F, Bai X, Lin RC, Vaziri ND. Metabolomics analysis reveals the association between lipid abnormalities and oxidative stress, inflammation, fibrosis, and Nrf2 dysfunction in aristolochic acid-induced nephropathy. Sci Rep 2015; 5:12936. [PMID: 26251179 PMCID: PMC4528220 DOI: 10.1038/srep12936] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/13/2015] [Indexed: 12/31/2022] [Imported: 08/29/2023] Open
Abstract
Alternative medicines are commonly used for the disease prevention and treatment worldwide. Aristolochic acid (AAI) nephropathy (AAN) is a common and rapidly progressive interstitial nephropathy caused by ingestion of Aristolochia herbal medications. Available data on pathophysiology and molecular mechanisms of AAN are limited and were explored here. SD rats were randomized to AAN and control groups. AAN group was treated with AAI by oral gavage for 12 weeks and observed for additional 12 weeks. Kidneys were processed for histological evaluation, Western blotting, and metabolomics analyses using UPLC-QTOF/HDMS. The concentrations of two phosphatidylcholines, two diglycerides and two acyl-carnitines were significantly altered in AAI treated rats at week 4 when renal function and histology were unchanged. Data obtained on weeks 8 to 24 revealed progressive tubulointerstitial fibrosis, inflammation, renal dysfunction, activation of NF-κB, TGF-β, and oxidative pathways, impaired Nrf2 system, and profound changes in lipid metabolites including numerous PC, lysoPC, PE, lysoPE, ceramides and triglycerides. In conclusion, exposure to AAI results in dynamic changes in kidney tissue fatty acid, phospholipid, and glycerolipid metabolisms prior to and after the onset of detectable changes in renal function or histology. These findings point to participation of altered tissue lipid metabolism in the pathogenesis of AAN.
Collapse
|
research-article |
10 |
138 |
7
|
Liu JR, Miao H, Deng DQ, Vaziri ND, Li P, Zhao YY. Gut microbiota-derived tryptophan metabolism mediates renal fibrosis by aryl hydrocarbon receptor signaling activation. Cell Mol Life Sci 2021; 78:909-922. [PMID: 32965514 PMCID: PMC11073292 DOI: 10.1007/s00018-020-03645-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/31/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023] [Imported: 08/29/2023]
Abstract
The gut microbiota has a crucial effect on regulating the intestinal mucosal immunity and maintaining intestinal homeostasis both in health and in disease state. Many effects are mediated by gut microbiota-derived metabolites and tryptophan, an essential aromatic amino acid, is considered important among many metabolites in the crosstalk between gut microbiota and the host. Kynurenine, serotonin, and indole derivatives are derived from the three major tryptophan metabolism pathways modulated by gut microbiota directly or indirectly. Aryl hydrocarbon receptor (AHR) is a cytoplasmic ligand-activated transcription factor involved in multiple cellular processes. Tryptophan metabolites as ligands can activate AHR signaling in various diseases such as inflammation, oxidative stress injury, cancer, aging-related diseases, cardiovascular diseases (CVD), and chronic kidney diseases (CKD). Accumulated uremic toxins in the body fluids of CKD patients activate AHR and affect disease progression. In this review, we will elucidate the relationship between gut microbiota-derived uremic toxins by tryptophan metabolism and AHR activation in CKD and its complications. This review will provide therapeutic avenues for targeting CKD and concurrently present challenges and opportunities for designing new therapeutic strategies against renal fibrosis.
Collapse
|
Review |
4 |
128 |
8
|
Zhang ZH, Wei F, Vaziri ND, Cheng XL, Bai X, Lin RC, Zhao YY. Metabolomics insights into chronic kidney disease and modulatory effect of rhubarb against tubulointerstitial fibrosis. Sci Rep 2015; 5:14472. [PMID: 26412413 PMCID: PMC4585987 DOI: 10.1038/srep14472] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/01/2015] [Indexed: 01/30/2023] [Imported: 08/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a major public health problem worldwide. Rhubarb has been shown to have nephroprotective and anti-fibrotic activities in patients with CKD. However, bioactive fractions and biochemical mechanism of anti-fibrotic properties of rhubarb remain unclear. Here we applied ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry together with univariate and multivariate statistical analyses to investigate the urinary metabolite profile in rats with adenine-induced CKD treated with the petroleum ether (PE)-, ethyl acetate (EA)- and n-butanol (BU)- extracts of rhubarb. Significant differences in renal function, kidney histopathology as well as metabolic profiles were observed between CKD and control rats. Changes in these parameters reflected characteristic phenotypes of CKD rats. We further identified a series of differential urinary metabolites for CKD rats, suggesting metabolic dysfunction in pathway of amino acid, purine, taurine, and choline metabolisms. Treatment with EA, BU and PE extracts of rhubarb improved renal function and histopathological abnormalities including interstitial fibrosis and inflammation, and either fully or partially reversed the abnormalities of the urinary metabolites. Among them, the nephroprotective effect of EA extract was stronger than BU and PE extracts. This work provides important mechanistic insights into the CKD and nephroprotective effects of different rhubarb extract against tubulo-interstitial fibrosis.
Collapse
|
research-article |
10 |
126 |
9
|
Zhang ZH, Vaziri ND, Wei F, Cheng XL, Bai X, Zhao YY. An integrated lipidomics and metabolomics reveal nephroprotective effect and biochemical mechanism of Rheum officinale in chronic renal failure. Sci Rep 2016; 6:22151. [PMID: 26903149 PMCID: PMC4763304 DOI: 10.1038/srep22151] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/08/2016] [Indexed: 02/08/2023] [Imported: 01/23/2025] Open
Abstract
Chronic renal failure (CRF) is a major public health problem worldwide. Earlier studies have revealed salutary effects of rhubarb extracts in CRF. In this study, we employed lipidomic and metabolomic approaches to identify the plasma biomarkers and to determine the effect of treatment with petroleum ether, ethyl acetate and n-butanol extracts of rhubarb in a rat model of CRF with adenine-induced chronic tubulointerstitial nephropathy. In addition, clinical biochemistry, histological evaluation and pro-fibrotic protein expression were analyzed. Significant changes were found between the CRF and control groups representing characteristic phenotypes of rats with CRF. Treatment with the three rhubarb extracts improved renal injury and dysfunction, either fully or partially reversed the plasma metabolites abnormalities and attenuated upregulation of pro-fibrotic proteins including TGF-β1, α-SMA, PAI-1, CTGF, FN and collagen-1. The nephroprotective effect of ethyl acetate extract was better than other extracts. The differential metabolites were closely associated with glycerophospholipid, fatty acid and amino acid metabolisms. The results revealed a strong link between renal tubulointerstitial fibrosis and glycerophospholipid metabolism and L-carnitine metabolism in the development of CRF. Amelioration of CRF with the three rhubarb extracts was associated with the delayed development and/or reversal the disorders in key metabolites associated with adenine-induced CRF.
Collapse
|
research-article |
9 |
117 |
10
|
Zhao YY, Feng YL, Bai X, Tan XJ, Lin RC, Mei Q. Ultra performance liquid chromatography-based metabonomic study of therapeutic effect of the surface layer of Poria cocos on adenine-induced chronic kidney disease provides new insight into anti-fibrosis mechanism. PLoS One 2013; 8:e59617. [PMID: 23555727 PMCID: PMC3608665 DOI: 10.1371/journal.pone.0059617] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 02/15/2013] [Indexed: 11/17/2022] [Imported: 08/29/2023] Open
Abstract
The surface layer of Poria cocos (Fu-Ling-Pi, FLP) is commonly used in traditional Chinese medicine and its diuretic effect was confirmed in rat. Ultra performance liquid chromatography/quadrupole time-of-flight high-sensitivity mass spectrometry and a novel mass spectrometry(Elevated Energy) data collection technique was employed to investigate metabonomic characteristics of chronic kidney disease (CKD) induced from adenine excess and the protective effects of FLP. Multiple metabolites are detected in the CKD and are correlated with progressive renal injury. Among these biomarkers, lysoPC(18∶0), tetracosahexaenoic acid, lysoPC(18∶2), creatinine, lysoPC (16∶0) and lysoPE(22∶0/0∶0) in the FLP-treated group were completely reversed to levels in the control group which lacked CKD. Combined with biochemistry and histopathology results, the changes in serum metabolites indicate that the perturbations of phospholipids metabolism, energy metabolism and amino acid metabolism are related to adenine-induced CKD and to the interventions of FLP on all the three metabolic pathways. FLP may regulate the metabolism of these biomarkers, especially their efficient utilization within the context of CKD. Furthermore, these biomarkers might serve as characteristics to explain the mechanisms of FLP.
Collapse
|
research-article |
12 |
97 |
11
|
Chen L, Chen DQ, Liu JR, Zhang J, Vaziri ND, Zhuang S, Chen H, Feng YL, Guo Y, Zhao YY. Unilateral ureteral obstruction causes gut microbial dysbiosis and metabolome disorders contributing to tubulointerstitial fibrosis. Exp Mol Med 2019; 51:1-18. [PMID: 30918245 PMCID: PMC6437207 DOI: 10.1038/s12276-019-0234-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022] [Imported: 08/29/2023] Open
Abstract
Chronic kidney disease (CKD) increases the risk and prevalence of cardiovascular disease (CVD) morbidity and mortality. Recent studies have revealed marked changes in the composition of the microbiome and the metabolome and their potential influence in renal disease and CVD via the accumulation of microbial-derived uremic toxins. However, the effect of unilateral ureteral obstruction (UUO) on the gut microbiome and circulating metabolites is unknown. Male Sprague-Dawley rats were randomized to UUO and sham-operated control groups. Renal histology, colonic microbiota, and plasma metabolites were examined two weeks later. We employed 16S rRNA sequence and untargeted metabolomic analyses to explore the changes in colonic microbiota and plasma metabolites and their relationship with tubulointerstitial fibrosis (TIF). The UUO rats exhibited tubular atrophy and dilatation, interstitial fibrosis and inflammatory cell infiltration in the obstructed kidney. UUO rats showed significant colonic enrichment and depletion of genera. Significant differences were identified in 219 plasma metabolites involved in lipid, amino acid, and bile acid metabolism, which were consistent with gut microbiota-related metabolism. Interestingly, tryptophan and its metabolites kynurenine, 5-hydroxytryptophan and 5-hydroxytryptamine levels, which were linked with TIF, correlated with nine specific genera. Plasma tryptophan level was positively correlated with Clostridium IV, Turicibacter, Pseudomonas and Lactobacillales, and negatively correlated with Oscillibacter, Blautia, and Intestinimonas, which possess the genes encoding tryptophan synthase (K16187), indoleamine 2,3-dioxygenase (K00463) and tryptophan 2,3-dioxygenase (K00453) and their corresponding enzymes (EC:1.13.11.52 and EC:1.13.11.11) that exacerbate TIF. In conclusion, UUO results in profound changes in the gut microbiome and circulating metabolites, events that contribute to the pathogenesis of inflammation and TIF.
Collapse
|
research-article |
6 |
76 |
12
|
Li SS, Sun Q, Hua MR, Suo P, Chen JR, Yu XY, Zhao YY. Targeting the Wnt/β-Catenin Signaling Pathway as a Potential Therapeutic Strategy in Renal Tubulointerstitial Fibrosis. Front Pharmacol 2021; 12:719880. [PMID: 34483931 PMCID: PMC8415231 DOI: 10.3389/fphar.2021.719880] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] [Imported: 01/23/2025] Open
Abstract
The Wnt/β-catenin signaling pathway plays important roles in embryonic development and tissue homeostasis. Wnt signaling is induced, and β-catenin is activated, associated with the development and progression of renal fibrosis. Wnt/β-catenin controls the expression of various downstream mediators such as snail1, twist, matrix metalloproteinase-7, plasminogen activator inhibitor-1, transient receptor potential canonical 6, and renin-angiotensin system components in epithelial cells, fibroblast, and macrophages. In addition, Wnt/β-catenin is usually intertwined with other signaling pathways to promote renal interstitial fibrosis. Actually, given the crucial of Wnt/β-catenin signaling in renal fibrogenesis, blocking this signaling may benefit renal interstitial fibrosis. There are several antagonists of Wnt signaling that negatively control Wnt activation, and these include soluble Fzd-related proteins, the family of Dickkopf 1 proteins, Klotho and Wnt inhibitory factor-1. Furthermore, numerous emerging small-molecule β-catenin inhibitors cannot be ignored to prevent and treat renal fibrosis. Moreover, we reviewed the knowledge focusing on anti-fibrotic effects of natural products commonly used in kidney disease by inhibiting the Wnt/β-catenin signaling pathway. Therefore, in this review, we summarize recent advances in the regulation, downstream targets, role, and mechanisms of Wnt/β-catenin signaling in renal fibrosis pathogenesis. We also discuss the therapeutic potential of targeting this pathway to treat renal fibrosis; this may shed new insights into effective treatment strategies to prevent and treat renal fibrosis.
Collapse
|
Review |
4 |
58 |
13
|
Zhang ZH, Li MH, Liu D, Chen H, Chen DQ, Tan NH, Ma SC, Zhao YY. Rhubarb Protect Against Tubulointerstitial Fibrosis by Inhibiting TGF-β/Smad Pathway and Improving Abnormal Metabolome in Chronic Kidney Disease. Front Pharmacol 2018; 9:1029. [PMID: 30271345 PMCID: PMC6146043 DOI: 10.3389/fphar.2018.01029] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/24/2018] [Indexed: 12/01/2022] [Imported: 01/23/2025] Open
Abstract
Tubulointerstitial fibrosis is the final common pathway for all kidney diseases leading to chronic kidney disease (CKD). TGF-β/Smad signaling pathway plays a key role in renal fibrosis. Previous studies have revealed that rhubarb extracts attenuated the increase of transforming growth factor-β 1 (TGF-β1) in CKD rats. To gain an in-depth insight into the mechanism of the anti-fibrotic activities of the rhubarb extracts, we investigated the influence of rhubarb extracts on TGF-β/Smad signaling pathway and the influence on metabolome in a rat model of CKD with adenine-induced chronic tubulointerstitial nephropathy. Male Sprague-Dawley rats were divided into four groups, including control, CKD, CKD + petroleum ether extract, CKD + ethyl acetate extract, and CKD + n-butanol extract groups. Kidneys harvested on the week three were evaluated for renal fibrosis, the expression of proteins in TGF-β/Smad signaling pathway and metabolomic study. We found rhubarb extracts suppressed TGF-β/Smad3-mediated renal fibrosis by reducing the TGF-β1, transforming growth factor-β receptor I (TGF-β RI), transforming growth factor-β receptor II (TGF-β RII), Smad2, p-Smad2, Smad3, p-Smad3, and Smad4, meanwhile increased Smad7. In addition, rhubarb extracts mitigated renal injury and dysfunction, and either fully or partially reversed the abnormalities of tissue metabolites. Thus, rebalancing the disorder of TGF-β/Smad signaling and metabolic dysfunction by treatment with rhubarb extracts may represent as an effective therapy for CKD associated with fibrosis.
Collapse
|
research-article |
7 |
56 |
14
|
Yu XY, Sun Q, Zhang YM, Zou L, Zhao YY. TGF-β/Smad Signaling Pathway in Tubulointerstitial Fibrosis. Front Pharmacol 2022; 13:860588. [PMID: 35401211 PMCID: PMC8987592 DOI: 10.3389/fphar.2022.860588] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022] [Imported: 01/23/2025] Open
Abstract
Chronic kidney disease (CKD) was a major public health problem worldwide. Renal fibrosis, especially tubulointerstitial fibrosis, is final manifestation of CKD. Many studies have demonstrated that TGF-β/Smad signaling pathway plays a crucial role in renal fibrosis. Therefore, targeted inhibition of TGF-β/Smad signaling pathway can be used as a potential therapeutic measure for tubulointerstitial fibrosis. At present, a variety of targeting TGF-β1 and its downstream Smad proteins have attracted attention. Natural products used as potential therapeutic strategies for tubulointerstitial fibrosis have the characteristics of acting on multiple targets by multiple components and few side effects. With the continuous research and technique development, more and more molecular mechanisms of natural products have been revealed, and there are many natural products that inhibited tubulointerstitial fibrosis via TGF-β/Smad signaling pathway. This review summarized the role of TGF-β/Smad signaling pathway in tubulointerstitial fibrosis and natural products against tubulointerstitial fibrosis by targeting TGF-β/Smad signaling pathway. Additionally, many challenges and opportunities are presented for inhibiting renal fibrosis in the future.
Collapse
|
Systematic Review |
3 |
54 |
15
|
Zhao YY, Chen H, Tian T, Chen DQ, Bai X, Wei F. A pharmaco-metabonomic study on chronic kidney disease and therapeutic effect of ergone by UPLC-QTOF/HDMS. PLoS One 2014; 9:e115467. [PMID: 25535749 PMCID: PMC4275224 DOI: 10.1371/journal.pone.0115467] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/23/2014] [Indexed: 11/25/2022] [Imported: 08/29/2023] Open
Abstract
Chronic kidney disease (CKD) is an important public health problem. Ergone has been proved to prevent the progression of CKD. UPLC-QTOF/HDMS was employed for metabolic profiling of adenine-induced CKD and to investigate the nephroprotective effects of ergone. Pharmacology parameters including blood biochemistry, histopathological evaluation and Western blot analysis were performed concurrently. The UPLC-MS data were analyzed by partial least squares-discriminate analysis, correlation analysis, heatmap analysis and mapped to KEGG pathways. Blood and serum biochemistry were observed to be significantly different in the CKD group than in the control group. In conjunction with biochemistry, histopathology and protein expression results, identified metabolites indicated perturbations in fatty acid metabolism, purine metabolism and amino acid metabolism as changes associated with adenine-induced CKD and the interventions of ergone. Upregulated expression of TGF-β1, ED-1, CTGF, bFGF and collagen I was observed in the CKD group. However, downregulated expression of these proteins was observed after oral administration of ergone. These results suggest that expression changes in these proteins had implications for fatty acid metabolism, purine metabolism and amino acid metabolism in the development of CKD and that ergone treatment could delay the development of CKD by normalizing or blocking abnormal changes in biomarker metabolites and protein expression in the CKD group.
Collapse
|
research-article |
11 |
52 |
16
|
Zhao H, Chen L, Yang T, Feng YL, Vaziri ND, Liu BL, Liu QQ, Guo Y, Zhao YY. Aryl hydrocarbon receptor activation mediates kidney disease and renal cell carcinoma. J Transl Med 2019; 17:302. [PMID: 31488157 PMCID: PMC6727512 DOI: 10.1186/s12967-019-2054-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] [Imported: 08/29/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a well-known ligand-activated cytoplasmic transcription factor that contributes to cellular responses against environmental toxins and carcinogens. AhR is activated by a range of structurally diverse compounds from the environment, microbiome, natural products, and host metabolism, suggesting that AhR possesses a rather promiscuous ligand binding site. Increasing studies have indicated that AhR can be activated by a variety of endogenous ligands and induce the expression of a battery of genes. AhR regulates a variety of physiopathological events, including cell proliferation, differentiation, apoptosis, adhesion and migration. These new roles have expanded our understanding of the AhR signalling pathways and endogenous metabolites interacting with AhR under homeostatic and pathological conditions. Recent studies have demonstrated that AhR is linked to cardiovascular disease (CVD), chronic kidney disease (CKD) and renal cell carcinoma (RCC). In this review, we summarize gut microbiota-derived ligands inducing AhR activity in patients with CKD, CVD, diabetic nephropathy and RCC that may provide a new diagnostic and prognostic approach for complex renal damage. We further highlight polyphenols from natural products as AhR agonists or antagonists that regulate AhR activity. A better understanding of structurally diverse polyphenols and AhR biological activities would allow us to illuminate their molecular mechanism and discover potential therapeutic strategies targeting AhR activation.
Collapse
|
Review |
6 |
51 |
17
|
Luo LP, Suo P, Ren LL, Liu HJ, Zhang Y, Zhao YY. Shenkang Injection and Its Three Anthraquinones Ameliorates Renal Fibrosis by Simultaneous Targeting IƙB/NF-ƙB and Keap1/Nrf2 Signaling Pathways. Front Pharmacol 2021; 12:800522. [PMID: 35002735 PMCID: PMC8729217 DOI: 10.3389/fphar.2021.800522] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] [Imported: 08/29/2023] Open
Abstract
Oxidative stress and inflammation are important and critical mediators in the development and progression of chronic kidney disease (CKD) and its complications. Shenkang injection (SKI) has been widely used to treat patients with CKD. Although the anti-oxidative and anti-inflammatory activity was involved in SKI against CKD, its bioactive components and underlying mechanism remain enigmatic. A rat model of adenine-induced chronic renal failure (CRF) is associated with, and largely driven by, oxidative stress and inflammation. Hence, we identified the anti-oxidative and anti-inflammatory components of SKI and further revealed their underlying mechanism in the adenine-induced CRF rats. Compared with control rats, the levels of creatinine, urea, uric acid, total cholesterol, triglyceride, and low-density lipoprotein cholesterol in serum were significantly increased in the adenine-induced CRF rats. However, treatment with SKI and its three anthraquinones including chrysophanol, emodin, and rhein could reverse these aberrant changes. They could significantly inhibit pro-fibrotic protein expressions including collagen I, α-SMA, fibronectin, and vimentin in the kidney tissues of the adenine-induced CRF rats. Of note, SKI and rhein showed the stronger inhibitory effect on these pro-fibrotic protein expressions than chrysophanol and emodin. Furthermore, they could improve dysregulation of IƙB/NF-ƙB and Keap1/Nrf2 signaling pathways. Chrysophanol and emodin showed the stronger inhibitory effect on the NF-κB p65 protein expression than SKI and rhein. Rhein showed the strongest inhibitory effect on p65 downstream target gene products including NAD(P)H oxidase subunits (p47phox, p67phox, and gp91phox) and COX-2, MCP-1, iNOS, and 12-LO in the kidney tissues. However, SKI and rhein showed the stronger inhibitory effect on the significantly downregulated anti-inflammatory and anti-oxidative protein expression nuclear Nrf2 and its target gene products including HO-1, catalase, GCLC, and NQO1 in the Keap1/Nrf2 signaling pathway than chrysophanol and emodin. This study first demonstrated that SKI and its major components protected against renal fibrosis by inhibiting oxidative stress and inflammation via simultaneous targeting IƙB/NF-ƙB and Keap1/Nrf2 signaling pathways, which illuminated the potential molecular mechanism of anti-oxidative and anti-inflammatory effects of SKI.
Collapse
|
research-article |
4 |
50 |
18
|
Chen DQ, Cao G, Zhao H, Chen L, Yang T, Wang M, Vaziri ND, Guo Y, Zhao YY. Combined melatonin and poricoic acid A inhibits renal fibrosis through modulating the interaction of Smad3 and β-catenin pathway in AKI-to-CKD continuum. Ther Adv Chronic Dis 2019; 10:2040622319869116. [PMID: 31452866 PMCID: PMC6696851 DOI: 10.1177/2040622319869116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/22/2019] [Indexed: 01/22/2023] [Imported: 08/29/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is one of the major risk factors for progression to chronic kidney disease (CKD) and renal fibrosis. However, effective therapies remain poorly understood. Here, we examined the renoprotective effects of melatonin and poricoic acid A (PAA) isolated from the surface layer of Poria cocos, and investigated the effects of combined therapy on the interaction of TGF-β/Smad and Wnt/β-catenin in a rat model of renal ischemia-reperfusion injury (IRI) and hypoxia/reoxygenation (H/R) or TGF-β1-induced HK-2 cells. METHODS Western blot and immunohistochemical staining were used to examine protein expression, while qRT-PCR was used to examine mRNA expression. Coimmunoprecipitation, chromatin immunoprecipitation, RNA interference, and luciferase reporter gene analysis were employed to explore the mechanisms of PAA and melatonin's renoprotective effects. RESULTS PAA and combined therapy exhibited renoprotective and antifibrotic effects, but the underlying mechanisms were different during AKI-to-CKD continuum. Melatonin suppressed Smad-dependent and Smad-independent pathways, while PAA selectively inhibited Smad3 phosphorylation through distrupting the interactions of Smad3 with TGFβRI and SARA. Further studies demonstrated that the inhibitory effects of melatonin and PAA were partially depended on Smad3, especially PAA. Melatonin and PAA also inhibited the Wnt/β-catenin pathway and its profibrotic downstream targets, and PAA performed better. We further determined that IRI induced a nuclear Smad3/β-catenin complex, while melatonin and PAA disturbed the interaction of Smad3 and β-catenin, and supplementing with PAA could enhance the inhibitory effects of melatonin on the TGF-β/Smad and Wnt/β-catenin pathways. CONCLUSIONS Combined melatonin and PAA provides a promising therapeutic strategy to treat renal fibrosis during the AKI-to-CKD continuum.
Collapse
|
research-article |
6 |
44 |
19
|
Dou F, Miao H, Wang JW, Chen L, Wang M, Chen H, Wen AD, Zhao YY. An Integrated Lipidomics and Phenotype Study Reveals Protective Effect and Biochemical Mechanism of Traditionally Used Alisma orientale Juzepzuk in Chronic Kidney Disease. Front Pharmacol 2018; 9:53. [PMID: 29472858 PMCID: PMC5809464 DOI: 10.3389/fphar.2018.00053] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 01/15/2018] [Indexed: 01/02/2023] [Imported: 01/23/2025] Open
Abstract
Alisma orientale Juzepzuk (AO) is widely used for various diuretic and nephropathic treatments in traditional Chinese medicines (TCM). In a clinical setting, AO is used as both a lipid-lowering and tubular interstitial fibrosis agent. However, the mechanisms of AO for the treatment of renal interstitial fibrosis and abnormal lipid metabolism are not well-understood. In this study, pharmacological and UPLC-HDMS-based lipidomic approaches were employed to investigate the lipid-lowering and tubular interstitial fibrosis effect of AO on rats with adenine-induced chronic kidney disease (CKD). Rats with CKD showed increased serum levels of creatinine and urea, tubular damage, and tubular interstitial fibrosis. Moreover, multiple lipid species were identified in CKD rats. Among these lipids, polyunsaturated fatty acid, eicosapentaenoic acid, 8,9-epoxyeicosatrienoic acid, and docosahexaenoic acid levels were significantly decreased in CKD rats compared to control rats. In CKD rats, up-regulation of the NF-κB pathway may impair polyunsaturated fatty acid metabolism, causing renal fibrosis. In addition, CKD rats showed significantly decreased diglyceride levels and increased triglyceride levels compared to the control group. Pathway over-representation analysis demonstrated that 30 metabolic pathways were associated with lipid species. AO treatment suppressed up-regulation of inflammation, and partly restored the deregulation of polyunsaturated fatty acids and glycerolipids metabolism. Our results indicated that AO treatment attenuated renal fibrosis by down-regulating inflammation, and mitigating lipid metabolism in CKD rats. In conclusion, this study has identified the therapeutic lipid-lowering and anti-fibrosis effects of AO on CKD.
Collapse
|
research-article |
7 |
43 |
20
|
Ren LL, Miao H, Wang YN, Liu F, Li P, Zhao YY. TGF-β as A Master Regulator of Aging-Associated Tissue Fibrosis. Aging Dis 2023; 14:1633-1650. [PMID: 37196129 PMCID: PMC10529747 DOI: 10.14336/ad.2023.0222] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/22/2023] [Indexed: 05/19/2023] [Imported: 01/23/2025] Open
Abstract
Fibrosis is the abnormal accumulation of extracellular matrix proteins such as collagen and fibronectin. Aging, injury, infections, and inflammation can cause different types of tissue fibrosis. Numerous clinical investigations have shown a correlation between the degree of liver and pulmonary fibrosis in patients and telomere length and mitochondrial DNA content, both of which are signs of aging. Aging involves the gradual loss of tissue function over time, which results in the loss of homeostasis and, ultimately, an organism's fitness. A major feature of aging is the accumulation of senescent cells. Senescent cells abnormally and continuously accumulate in the late stages of life, contributing to age-related fibrosis and tissue deterioration, among other aging characteristics. Furthermore, aging generates chronic inflammation, which results in fibrosis and decreases organ function. This finding suggests that fibrosis and aging are closely related. The transforming growth factor-beta (TGF-β) superfamily plays a crucial role in the physiological and pathological processes of aging, immune regulation, atherosclerosis, and tissue fibrosis. In this review, the functions of TGF-β in normal organs, aging, and fibrotic tissues is discussed: TGF-β signalling is altered with age and is an indicator of pathology associated with tissue fibrosis. In addition, this review discusses the potential targeting of noncoding.
Collapse
|
Review |
2 |
40 |
21
|
Chen H, Wang MC, Chen YY, Chen L, Wang YN, Vaziri ND, Miao H, Zhao YY. Alisol B 23-acetate attenuates CKD progression by regulating the renin-angiotensin system and gut-kidney axis. Ther Adv Chronic Dis 2020; 11:2040622320920025. [PMID: 32547719 PMCID: PMC7249553 DOI: 10.1177/2040622320920025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/18/2020] [Indexed: 01/18/2023] [Imported: 08/29/2023] Open
Abstract
BACKGROUND Increasing evidence suggests a link between the gut microbiome and various diseases including hypertension and chronic kidney disease (CKD). However, studies examining the efficacy of controlling blood pressure and inhibiting the renin-angiotensin system (RAS) in preventing CKD progression are limited. METHODS In the present study, we used 5/6 nephrectomised (NX) and unilateral ureteral obstructed (UUO) rat models and cultured renal tubular epithelial cells and fibroblasts to test whether alisol B 23-acetate (ABA) can attenuate renal fibrogenesis by regulating blood pressure and inhibiting RAS. RESULTS ABA treatment re-established dysbiosis of the gut microbiome, lowered blood pressure, reduced serum creatinine and proteinuria, suppressed expression of RAS constituents and inhibited the epithelial-to-mesenchymal transition in NX rats. Similarly, ABA treatment inhibited expression of collagen I, fibronectin, vimentin, α-smooth muscle actin and fibroblast-specific protein 1 at both mRNA and protein levels in UUO rats. ABA was also effective in suppressing activation of the transforming growth factor-β (TGF-β)/Smad3 and preserving Smad7 expression in both NX and UUO rats. In vitro experiments demonstrated that ABA treatment inhibited the Wnt/β-catenin and mitochondrial-associated caspase pathways. CONCLUSION These data suggest that ABA attenuated renal fibrosis through a mechanism associated with re-establishing dysbiosis of the gut microbiome and regulating blood pressure, and Smad7-mediated inhibition of Smad3 phosphorylation. Thus, we demonstrate ABA as a promising candidate for treatment of CKD by improving the gut microbiome and regulating blood pressure.
Collapse
|
research-article |
5 |
23 |
22
|
Miao H, Zhang Y, Yu X, Zou L, Zhao Y. Membranous nephropathy: Systems biology-based novel mechanism and traditional Chinese medicine therapy. Front Pharmacol 2022; 13:969930. [PMID: 36176440 PMCID: PMC9513429 DOI: 10.3389/fphar.2022.969930] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/10/2022] [Indexed: 12/05/2022] [Imported: 01/23/2025] Open
Abstract
Membranous nephropathy (MN) is a renal-limited non-inflammatory autoimmune disease in the glomerulus, which is the second or third main cause of end-stage kidney diseases in patients with primary glomerulonephritis. Substantial achievements have increased our understanding of the aetiology and pathogenesis of murine and human MN. The identification of nephritogenic autoantibodies against neutral endopeptidase, phospholipase A2 receptor (PLA2R) and thrombospondin type-1 domain-containing 7A (THSD7A) antigens provide more specific concept-driven intervention strategies for treatments by specific B cell-targeting monoclonal antibodies to inhibit antibody production and antibody-antigen immune complex deposition. Furthermore, additional antibody specificities for antigens have been discovered, but their pathogenic effects are uncertain. Although anti-PLA2R and anti-THSD7A antibodies as a diagnostic marker is widely used in MN patients, many questions including autoimmune response development, antigenic epitopes, and podocyte damage signalling pathways remain unresolved. This review describes the current available evidence regarding both established and novel molecular mechanisms based on systems biology approaches (gut microbiota, long non-coding RNAs, metabolite biomarkers and DNA methylation) in MN, with an emphasis on clinical findings. This review further summarizes the applications of traditional Chinese medicines such as Tripterygium wilfordii and Astragalus membranaceus for MN treatment. Lastly, this review considers how the identification of novel antibodies/antigens and unresolved questions and future challenges reveal the pathogenesis of MN.
Collapse
|
Review |
3 |
23 |
23
|
Chen DQ, Wu XQ, Chen L, Hu HH, Wang YN, Zhao YY. Poricoic acid A as a modulator of TPH-1 expression inhibits renal fibrosis via modulating protein stability of β-catenin and β-catenin-mediated transcription. Ther Adv Chronic Dis 2020; 11:2040622320962648. [PMID: 33062239 PMCID: PMC7534062 DOI: 10.1177/2040622320962648] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] [Imported: 08/29/2023] Open
Abstract
BACKGROUND Renal fibrosis is the common feature of chronic kidney disease (CKD). However, few drugs specifically target fibrogenesis due to the lack of an effective therapeutic target. Hence, it is urgent to find a therapeutic strategy that inhibits renal fibrosis. Here, we identified that poricoic acid A (PAA) as the modulator of tryptophan hydroxylase-1 (TPH-1), the key enzyme in tryptophan metabolism, exerted potent anti-fibrotic effects in the kidney. METHODS Lentiviral vector, luciferase reporter activity assay and co-immunoprecipitation were used. The animal model of unilateral ureteral obstruction and adenine-induced chronic renal failure as well as transforming growth factor (TGF)-β1-treated epithelial cells NRK-52E and fibroblasts NRK-49F were used. RESULTS TPH-1 was gradually decreased during CKD progression, while PAA treatment significantly increased TPH-1 expression to suppress renal fibrosis. Pharmacological overexpression of TPH-1 by PAA treatment exhibited anti-fibrosis and was linked to Wnt/β-catenin signaling activity. TPH-1 exhibited anti-fibrotic effects by suppressing epithelial cell injury and fibroblast activation, and PAA promoted TPH-1 expression and then suppressed the Wnt/β-catenin signaling pathway via regulating the protein stability of β-catenin and β-catenin-mediated transcription. TPH-1 overexpression enhanced the anti-fibrotic effects of PAA, while TPH-1 deficiency weakened the anti-fibrotic effects of PAA, indicating that TPH-1 was required for the anti-fibrotic effects of PAA. CONCLUSION PAA as a modulator of TPH-1 expression attenuated renal fibrosis through regulating the Wnt/β-catenin signaling pathway by acting on the protein stability of β-catenin and β-catenin-mediated transcription. TPH-1 was required for PAA to exert anti-fibrosis.
Collapse
|
research-article |
5 |
22 |
24
|
Miao H, Liu F, Wang YN, Yu XY, Zhuang S, Guo Y, Vaziri ND, Ma SX, Su W, Shang YQ, Gao M, Zhang JH, Zhang L, Zhao YY, Cao G. Targeting Lactobacillus johnsonii to reverse chronic kidney disease. Signal Transduct Target Ther 2024; 9:195. [PMID: 39098923 PMCID: PMC11298530 DOI: 10.1038/s41392-024-01913-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/10/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] [Imported: 01/23/2025] Open
Abstract
Accumulated evidence suggested that gut microbial dysbiosis interplayed with progressive chronic kidney disease (CKD). However, no available therapy is effective in suppressing progressive CKD. Here, using microbiomics in 480 participants including healthy controls and patients with stage 1-5 CKD, we identified an elongation taxonomic chain Bacilli-Lactobacillales-Lactobacillaceae-Lactobacillus-Lactobacillus johnsonii correlated with patients with CKD progression, whose abundance strongly correlated with clinical kidney markers. L. johnsonii abundance reduced with progressive CKD in rats with adenine-induced CKD. L. johnsonii supplementation ameliorated kidney lesion. Serum indole-3-aldehyde (IAld), whose level strongly negatively correlated with creatinine level in CKD rats, decreased in serum of rats induced using unilateral ureteral obstruction (UUO) and 5/6 nephrectomy (NX) as well as late CKD patients. Treatment with IAld dampened kidney lesion through suppressing aryl hydrocarbon receptor (AHR) signal in rats with CKD or UUO, and in cultured 1-hydroxypyrene-induced HK-2 cells. Renoprotective effect of IAld was partially diminished in AHR deficiency mice and HK-2 cells. Our further data showed that treatment with L. johnsonii attenuated kidney lesion by suppressing AHR signal via increasing serum IAld level. Taken together, targeting L. johnsonii might reverse patients with CKD. This study provides a deeper understanding of how microbial-produced tryptophan metabolism affects host disease and discovers potential pathways for prophylactic and therapeutic treatments for CKD patients.
Collapse
|
research-article |
1 |
21 |
25
|
Chen YY, Wang MC, Wang YN, Hu HH, Liu QQ, Liu HJ, Zhao YY. Redox signaling and Alzheimer's disease: from pathomechanism insights to biomarker discovery and therapy strategy. Biomark Res 2020; 8:42. [PMID: 32944245 PMCID: PMC7488504 DOI: 10.1186/s40364-020-00218-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022] [Imported: 01/23/2025] Open
Abstract
ABSTRACT Aging and average life expectancy have been increasing at a rapid rate, while there is an exponential risk to suffer from brain-related frailties and neurodegenerative diseases as the population ages. Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide with a projected expectation to blossom into the major challenge in elders and the cases are forecasted to increase about 3-fold in the next 40 years. Considering the etiological factors of AD are too complex to be completely understood, there is almost no effective cure to date, suggesting deeper pathomechanism insights are urgently needed. Metabolites are able to reflect the dynamic processes that are in progress or have happened, and metabolomic may therefore provide a more cost-effective and productive route to disease intervention, especially in the arena for pathomechanism exploration and new biomarker identification. In this review, we primarily focused on how redox signaling was involved in AD-related pathologies and the association between redox signaling and altered metabolic pathways. Moreover, we also expatiated the main redox signaling-associated mechanisms and their cross-talk that may be amenable to mechanism-based therapies. Five natural products with promising efficacy on AD inhibition and the benefit of AD intervention on its complications were highlighted as well.
Collapse
|
Review |
5 |
21 |