1
|
Yu T, Luo J. Adverse events of extracorporeal ultrasound-guided high intensity focused ultrasound therapy. PLoS One 2011; 6:e26110. [PMID: 22194777 PMCID: PMC3237413 DOI: 10.1371/journal.pone.0026110] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/19/2011] [Indexed: 01/20/2023] [Imported: 08/29/2023] Open
Abstract
BACKGROUND High-intensity focused ultrasound (HIFU) is considered to be an alternative to surgery. Extracorporeal ultrasound-guided HIFU (USgFU) has been clinically used to treat solid tumors. Preliminary trials in a small sample of a Western population suggested that this modality was safe. Most trials are performed in China thereby providing comprehensive data for understanding the safety profile. The aim of this study was to evaluate adverse events of USgFU therapy. METHODS AND FINDINGS Clinical data were searched in 2 Chinese databases. Adverse events of USgFU were summarized and compared with those of magnetic resonance-guided HIFU (MRgFU; for uterine, bone or breast tumor) and transrectal ultrasound-guided HIFU (for prostate cancer or benign prostate hyperplasia). USgFU treatment was performed using 7 types of device. Side effects were evaluated in 13262 cases. There were fewer adverse events in benign lesions than in malignant lesions (11.81% vs. 21.65%, p<0.0001). Rates of adverse events greatly varied between the disease types (0-280%, p<0.0001) and between the applied HIFU devices in both malignant (10.58-44.38%, p<0.0001) and benign lesions (1.67-17.57%, p<0.0001). Chronological analysis did not demonstrate a decrease in the rate of adverse events. Based upon evaluable adverse events, incidences in USgFU were consistent with those in MRgFU or transrectal HIFU. Some side effects frequently occurred following transrectal HIFU were not reported in USgFU. Several events including intrahepatic metastasis, intraoperative high fever, and occlusions of the superior mesenteric artery should be of particular concern because they have not been previously noted. The types of adverse events suggested that they were ultrasonic lesions. CONCLUSION The frequency of adverse events depended on the location of the lesion and the type of HIFU device; however, side effects of USgFU were not yet understood. USgFU did not decrease the incidence of adverse events compared with MRgFU.
Collapse
|
Meta-Analysis |
14 |
36 |
2
|
Zhong X, Ran R, Gao S, Shi M, Shi X, Long F, Zhou Y, Yang Y, Tang X, Lin A, He W, Yu T, Han TL. Complex metabolic interactions between ovary, plasma, urine, and hair in ovarian cancer. Front Oncol 2022; 12:916375. [PMID: 35982964 PMCID: PMC9379488 DOI: 10.3389/fonc.2022.916375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] [Imported: 08/29/2023] Open
Abstract
Ovarian cancer (OC) is the third most common malignant tumor of women accompanied by alteration of systemic metabolism, yet the underlying interactions between the local OC tissue and other system biofluids remain unclear. In this study, we recruited 17 OC patients, 16 benign ovarian tumor (BOT) patients, and 14 control patients to collect biological samples including ovary plasma, urine, and hair from the same patient. The metabolic features of samples were characterized using a global and targeted metabolic profiling strategy based on Gas chromatography-mass spectrometry (GC-MS). Principal component analysis (PCA) revealed that the metabolites display obvious differences in ovary tissue, plasma, and urine between OC and non-malignant groups but not in hair samples. The metabolic alterations in OC tissue included elevated glycolysis (lactic acid) and TCA cycle intermediates (malic acid, fumaric acid) were related to energy metabolism. Furthermore, the increased levels of glutathione and polyunsaturated fatty acids (linoleic acid) together with decreased levels of saturated fatty acid (palmitic acid) were observed, which might be associated with the anti-oxidative stress capability of cancer. Furthermore, how metabolite profile changes across differential biospecimens were compared in OC patients. Plasma and urine showed a lower concentration of amino acids (alanine, aspartic acid, glutamic acid, proline, leucine, and cysteine) than the malignant ovary. Plasma exhibited the highest concentrations of fatty acids (stearic acid, EPA, and arachidonic acid), while TCA cycle intermediates (succinic acid, citric acid, and malic acid) were most concentrated in the urine. In addition, five plasma metabolites and three urine metabolites showed the best specificity and sensitivity in differentiating the OC group from the control or BOT groups (AUC > 0.90) using machine learning modeling. Overall, this study provided further insight into different specimen metabolic characteristics between OC and non-malignant disease and identified the metabolic fluctuation across ovary and biofluids.
Collapse
|
research-article |
3 |
8 |
3
|
Qian G, Wang L, Zheng X, Yu T. Deactivation of cisplatin-resistant human lung/ovary cancer cells with pyropheophorbide-α methyl ester-photodynamic therapy. Cancer Biol Ther 2017; 18:984-989. [PMID: 29059002 PMCID: PMC5718780 DOI: 10.1080/15384047.2017.1385683] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/24/2017] [Indexed: 12/15/2022] [Imported: 08/29/2023] Open
Abstract
The aim of this study was to determine whether photodynamic therapy (PDT) alone or combined with cisplatin (DDP), can deactivate cisplatin-resistant cancer cells. Human cancer cell lines A549 and SKOV3, and chemoresistant sublines A549/DDP and SKOV3/DDP, were subjected to PDT, DDP, or PDT combined with DDP. Cell viability and apoptosis were analyzed, and then intracellular reactive oxygen species (ROS) and proteins related to apoptosis were determined. PDT caused cell death, and PDT combined with DDP led to the highest percentage of dead cells in 4 cell lines; similar results were detected in ROS; a quantification evaluation manifested that the combined effect was addition. DDP increased the percentage of apoptotic cells, and the ROS level in A549 and SKOV3 cells, which was not observed in A549/DDP and SKOV3/DDP cells. Western blot revealed an increase of caspase 3 and Bax, and a decrease of Bcl-2, demonstrating the occurrence of apoptosis. The data suggest that PDT can efficiently deactivate resistant cells and enhance the action of DDP against resistant cancer cells.
Collapse
|
research-article |
8 |
8 |
4
|
Wang H, Luo Y, Ran R, Li X, Ling H, Wen F, Yu T. IDO1 Modulates the Sensitivity of Epithelial Ovarian Cancer Cells to Cisplatin through ROS/p53-Dependent Apoptosis. Int J Mol Sci 2022; 23:12002. [PMID: 36233312 PMCID: PMC9569641 DOI: 10.3390/ijms231912002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] [Imported: 08/29/2023] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme-containing dioxygenase that may play a part in chemoresistance in ovarian cancer. However, its role in cisplatin (DDP) resistance is unclear. Here, the expression level of IDO1 in tumors in platinum-resistant (n = 22) and -sensitive (n = 46) ovarian cancer patients was determined, and then how IDO1 modulated DDP resistance was explored in vitro and in vivo. The IDO1 expression level in platinum-resistant patients was higher than that in -sensitive patients, and a higher IDO1 level was correlated with poor prognosis in type II cancer patients. Up-regulating IDO1 decreased DDP-induced apoptosis in SKOV3 cells via inhibiting the ROS/p53 cell-death pathway, thereby attenuating cytotoxicity of DDP. Silencing IDO1 enhanced p53-dependent apoptosis by increasing ROS accumulation, thereby enhancing DDP against SKOV3 cells. Down-knocking IDO1 augmented the action of DDP in vivo. These data demonstrated that silencing IDO1 enhanced the efficacy of DDP by intensifying p53-dependent apoptosis, and that targeting IDO1 can be a strategy to modulate DDP-based chemotherapy for epithelial ovarian cancer.
Collapse
|
research-article |
3 |
7 |
5
|
Fang S, Luo Y, Zhang Y, Wang H, Liu Q, Li X, Yu T. NTNG1 Modulates Cisplatin Resistance in Epithelial Ovarian Cancer Cells via the GAS6/AXL/Akt Pathway. Front Cell Dev Biol 2021; 9:652325. [PMID: 34277602 PMCID: PMC8281315 DOI: 10.3389/fcell.2021.652325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022] [Imported: 08/29/2023] Open
Abstract
Cisplatin resistance is a challenge in the treatment of epithelial ovarian cancer. Here, clinical data showed that the level of netrin-G1 (NTNG1) in cisplatin-resistant cancer was higher than that in cisplatin-sensitive cancer (2.2-fold, p = 0.005); patients with a high NTNG1 level in cancer tissues had shorter progression-free survival (11.0 vs. 25.0 months, p = 0.010) and platinum-free interval (5.0 vs. 20.0 months, p = 0.021) compared with patients with a low level. Category- or stage-adjusted analyses demonstrated that the association between the NTNG1 level and prognosis occurred in type II or FIGO III/IV cancer. The basal level of NTNG1 in SKOV3/DDP cells (a cisplatin-resistant subline) was higher than that in SKOV3 cells; therefore, NTNG1 was overexpressed in SKOV3 cells, or silenced in SKOV3/DDP cells. Knocking in NTNG1 reduced the action of cisplatin to decrease cell death and apoptosis of SKOV3 cells, accompanied by upregulation of p-AXL, p-Akt and RAD51; however, opposite effects were observed in SKOV3/DDP cells after knocking down NTNG1. Co-immunoprecipitation demonstrated that NTNG1 bound GAS6/AXL. Silencing NTNG1 enhanced cisplatin effects in vivo, decreasing tumor volume/mass. These data suggested that a high NTNG1 level can result in cisplatin resistance in ovarian cancer cells via the GAS6/AXL/Akt pathway and that NTNG1 may be a useful target to overcome resistance.
Collapse
|
research-article |
4 |
6 |
6
|
Zhang Y, Luo L, Zheng X, Yu T. An Advanced Orthotopic Ovarian Cancer Model in Mice for Therapeutic Trials. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2585787. [PMID: 27110559 PMCID: PMC4821970 DOI: 10.1155/2016/2585787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/27/2022] [Imported: 08/29/2023]
Abstract
A nude mouse received subcutaneous injection of human ovarian cancer cells HO-8910PM to form a tumor, and then the tumor fragment was surgically transplanted to the ovary of a recipient mouse to establish an orthotopic cancer model. Tumors occurred in 100% of animals. A mouse displayed an ovarian mass, ascites, intraperitoneal spread, and lung metastasis at natural death. The mean survival time was 34.1 ± 17.2 days, with median survival time of 28.5 days. The findings indicated that the present mouse model can reflect the biological behavior of advanced human ovarian cancers. This in vivo model can be used to explore therapeutic means against chemoresistance and metastasis, and an effective treatment would prolong the survival time.
Collapse
|
research-article |
9 |
6 |
7
|
Liu Q, Li X, Luo Y, Wang H, Zhang Y, Yu T. Ultrasonically Enhanced ZD2767P-Carboxypeptidase G2 Deactivates Cisplatin-Resistant Human Lung Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9191233. [PMID: 36388164 PMCID: PMC9652066 DOI: 10.1155/2022/9191233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/08/2022] [Accepted: 06/02/2022] [Indexed: 04/03/2025] [Imported: 04/03/2025]
Abstract
The prodrug-enzyme regimen ZD2767P+CPG2 is limited by low efficacy. Here, ultrasound was used to modulate ZD2767P+CPG2 (i.e., ZD2767P+CPG2+US) against cisplatin-resistant human lung cancer cells. A549 and A549/DDP (resistant subline) cells received ZD2767P+CPG2 or ZD2767P+CPG2+US. Either ZD2767P+CPG2 or ZD2767P+CPG2+US led to cell death and apoptosis, and ZD2767P+CPG2+US produced stronger effects; comet assays revealed that these two means directly caused DNA double-strand break. Z-VAD-fmk and/or ferrostatin-1 increased the cell survival percentage, and Z-VAD-fmk decreased the apoptosis percentage. The level of transferrin was increased in treated cells, but those of ferroportin and glutathione peroxidase 4 (GPX4) were reduced, with higher intracellular levels of reactive oxygen species and of iron. Intracellular pharmacokinetics of ZD2767D (activated drug) indicated that the peak level, area under the drug level vs. time curve, and mean residence time in ZD2767P+CPG2+US were higher than those in ZD2767P+CPG2. Both ZD2767P+CPG2 and ZD2767P+CPG2+US were effective on xenograft tumors in nude mice; inhibitory rates were 39.7% and 63.5% in A549 tumors and 50.0% and 70.1% in A549/DDP tumors, respectively. A higher apoptosis level and a lower GPX4 level were noted in tumors receiving treatments. No severe adverse events were observed. These data demonstrated that ZD2767P+CPG2+US deactivated cancer cells via apoptosis and ferroptosis pathways, being a candidate therapy for cisplatin-resistant lung cancer.
Collapse
|
research-article |
3 |
3 |
8
|
Yu T, Fu X. Extracorporeal ultrasound-guided high intensity focused ultrasound: implications from the present clinical trials. ScientificWorldJournal 2014; 2014:537260. [PMID: 24982965 PMCID: PMC3997150 DOI: 10.1155/2014/537260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/16/2013] [Indexed: 01/20/2023] [Imported: 04/03/2025] Open
Abstract
Extracorporeal ultrasound-guided high intensity focused ultrasound (HIFU) has been clinically used for 15 years, and over 36000 cases have been reported. However, there yet lacked a consensus in the clinical values, suggesting the necessity of checking clinical findings. Clinical trials were searched and data reevaluated. HIFU was hardly performed alone; almost all present anticancer means have been applied during an HIFU treatment, and a specific regimen varied between trials; there were heterogeneity and disagreement between trials. The complexity made it difficult to distinguish the effect of HIFU. Based upon evaluable data, the efficacy of HIFU was similar to that of radio frequency, chemoembolization, chemotherapy, radiotherapy, or hormone therapy; a combined therapy did not improve the efficacy. The survival rate of HIFU plus radiotherapy was lower than that of radical surgery in liver cancers. Adverse events had no downtrend in the past years. HIFU was not a standardized procedure where the intensity and insonation mode were modified constantly throughout a treatment, limiting an evaluation from the perspective of ultrasonics. These implied that HIFU should be applied as an alternative at most occasions. The present clinical trials had defects making against the understating of HIFU.
Collapse
|
research-article |
11 |
3 |
9
|
Qian G, Yu T. Nanosecond Electric Pulses Induce Early and Late Phases of DNA Damage and Cell Death in Cisplatin-Resistant Human Ovarian Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4504895. [PMID: 30186858 PMCID: PMC6112222 DOI: 10.1155/2018/4504895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 12/20/2022] [Imported: 08/29/2023]
Abstract
Chemoresistance is a challenge for management of ovarian cancer, and therefore the response of resistant cells to nanosecond electric pulses (nsEP) was explored. Human ovarian cancer cell line COC1 and the cisplatin-resistant subline COC1/DDP were subjected to nsEP (32 ns, 10 kV/cm, 10 Hz pulse repletion frequency, and 10 min exposure duration), and then the cellular responses were followed. The percentages of dead cells and of comet-formed cells in the alkaline assay displayed two peak levels (i.e., 2 and 8 h after nsEP exposure), with the highest value noted at 8 h; the percentage of comet-formed cells in the neutral assay was increased at 8 h; the apoptotic percentage was increased at 8 h, with collapse of the mitochondrial membrane potential and the activation of caspase-3 and caspase-9. The comet assay demonstrated DNA single-strand break at 2 h and double-strand break at 8 h. nsEP resulted in lower cytotoxicity in COC1/DDP cells compared with COC1 cells. These findings indicated that nsEP induced early and late phases of DNA damage and cell death, and these two types of cell death may have distinct applications to treatments of chemoresistant ovarian cancers.
Collapse
|
research-article |
7 |
3 |
10
|
Wen F, Ling H, Ran R, Li X, Wang H, Liu Q, Li M, Yu T. LPCAT3 regulates the proliferation and metastasis of serous ovarian cancer by modulating arachidonic acid. Transl Oncol 2025; 52:102256. [PMID: 39733744 PMCID: PMC11743812 DOI: 10.1016/j.tranon.2024.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024] [Imported: 04/03/2025] Open
Abstract
BACKGROUND Lysophosphatidylcholine acyltransferase 3 (LPCAT3) promotes ferroptosis through the incorporating polyunsaturated fatty acids into membrane phospholipids, however, its role in serous ovarian cancer remains unclear. Here explored cancer proliferation and metastasis after modulating LPCAP3. METHODS LPCAT3 protein in ovarian cancer tissues was detected using bioinformatic and immunohistoche mical assays. Cell behaviors were observed after up- or down-regulating LPCAT3. Lipid metabolites were determined, and then the pathway enrichment analysis was performed. RESULTS The expression level of LPCAT3 in serous ovarian cancer tissues was lower than that in other types of ovarian cancer, and high expression was associated with a longer survival time. Overexpressing LPCAT3 reduced cell proliferation, migration and invasion via enhancing ferroptosis and decreasing the survival signaling; these behaviors were enhanced in LPCAT3-downknocked cells, where a higher abundance of arachidonic acid was observed followed by up-regulation of the downstream survival signaling. In vivo, up-regulation of LPCAT3 decreased tumor growth, but down-regulation enhanced tumor growth and metastasis. CONCLUSIONS LPCAT3 modulated metabolism of arachidonic acid, thereby regulating ferroptosis and the survival signaling to determine cancer growth and metastasis.
Collapse
|
research-article |
1 |
|
11
|
Yu T, Li X. Development of ZD2767P-carboxypeptidase G2-ultrasound therapy against cisplatin-resistant cancer. Front Oncol 2023; 13:1151613. [PMID: 37274240 PMCID: PMC10233003 DOI: 10.3389/fonc.2023.1151613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] [Imported: 08/29/2023] Open
|
discussion |
2 |
|
12
|
Yu T, Li X, Yu T, Chen M, Sun Y, Ran R. Intracellular Pharmacokinetics of Activated Drugs in a Prodrug-Enzyme-Ultrasound System: Evaluations on ZD2767P+CPG2+US. ACS Med Chem Lett 2024; 15:739-745. [PMID: 38746880 PMCID: PMC11089658 DOI: 10.1021/acsmedchemlett.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/03/2025] [Imported: 04/03/2025] Open
Abstract
Intracellular pharmacokinetics (PK) of activated drugs is a window to understanding the pharmacodynamics of prodrug-enzyme-ultrasound therapy. Herein PK of ZD2767D (i.e., activated drug) in the ZD2767P+CPG2+US system on A549, A549/DDP, SKOV3, and SKOV3/DDP cells were evaluated (A549/DDP and SKOV3/DDP were cisplatin-resistant sublines). The noncompartment model under extravascular input mode was deemed appropriate for evaluating drug level vs time curves; Cmax, AUClast, MRTlast, Vz, and Cl can reflect the PK feature, but t1/2, AUCinf, and MRTinf were irrational; higher accumulation and slower elimination characterized the PK mechanism of ZD2767P+CPG2+US; enhanced permeability and retention effect can be assessed with Cmax, AUClast, MRTlast, and tlast; ultrasound equivalently modulated Cmax and AUClast in sensitive and resistant cells. The experimental design and dose proportionality were discussed.
Collapse
|
brief-report |
1 |
|