1
|
Yang Q, Xue HM, Wong WT, Tian XY, Huang Y, Tsui SKW, Ng PKS, Wohlfart P, Li H, Xia N, Tobias S, Underwood MJ, He GW. AVE3085, an enhancer of endothelial nitric oxide synthase, restores endothelial function and reduces blood pressure in spontaneously hypertensive rats. Br J Pharmacol 2011; 163:1078-1085. [PMID: 21385179 PMCID: PMC3130953 DOI: 10.1111/j.1476-5381.2011.01308.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 01/03/2011] [Accepted: 01/31/2011] [Indexed: 01/17/2023] [Imported: 04/18/2025] Open
Abstract
BACKGROUND AND PURPOSE Nitric oxide (NO) plays an important role in endothelial function, and impaired NO production is involved in hypertension. Therefore, compounds that regulate endothelial NO synthase (eNOS) may be of therapeutic benefit. A novel, low molecular weight compound AVE3085 is a recently developed compound with the ability to enhance eNOS transcription. The present study investigated the effects of AVE3085 in endothelial dysfunction associated with hypertension. EXPERIMENTAL APPROACH Spontaneously hypertensive rats (SHRs) were treated with AVE 3085 (10 mg·kg·day(-1) , orally) for 4 weeks. Isometric force measurement was performed on rings of isolated aortae in organ baths. Protein expression of eNOS, phosphorylated-eNOS and nitrotyrosine in the aortae were examined by Western blotting. mRNA for eNOS in rat aortae were examined by reverse-transcriptase polymerase chain reaction (RT-PCR). KEY RESULTS AVE3085 greatly improved endothelium-dependent relaxations in the aortae of SHRs. This functional change was accompanied by up-regulated expression of eNOS protein and mRNA, enhanced eNOS phosphorylation and decreased formation of nitrotyrosine. Furthermore, AVE3085 treatment reduced the blood pressure in SHR without affecting that of hypertensive eNOS(-/-) mice. CONCLUSIONS AND IMPLICATIONS The eNOS-transcription enhancer AVE3085 restored impaired endothelial function in a hypertensive model. The present study provides a solid basis for the potential development of eNOS-targeting drugs to restore down-regulated eNOS, as a new strategy in hypertension.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antihypertensive Agents/administration & dosage
- Antihypertensive Agents/pharmacology
- Antihypertensive Agents/therapeutic use
- Aorta, Thoracic/cytology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/enzymology
- Benzodioxoles/administration & dosage
- Benzodioxoles/pharmacology
- Benzodioxoles/therapeutic use
- Blood Pressure/drug effects
- Blotting, Western
- Dose-Response Relationship, Drug
- Endothelial Cells/drug effects
- Endothelial Cells/enzymology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Hypertension/drug therapy
- Hypertension/enzymology
- Hypertension/physiopathology
- Indans/administration & dosage
- Indans/pharmacology
- Indans/therapeutic use
- Male
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
|
research-article |
14 |
36 |
2
|
Xuan C, Li H, Zhao JX, Wang HW, Wang Y, Ning CP, Liu Z, Zhang BB, He GW, Lun LM. Association between MTHFR polymorphisms and congenital heart disease: a meta-analysis based on 9,329 cases and 15,076 controls. Sci Rep 2014; 4:7311. [PMID: 25472587 PMCID: PMC4255188 DOI: 10.1038/srep07311] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/13/2014] [Indexed: 12/30/2022] [Imported: 04/18/2025] Open
Abstract
The aim of our study was to evaluate the association between polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene and the risk for congenital heart disease (CHD). Electronic literature databases were searched to identify eligible studies published before Jun, 2014. The association was assessed by the odds ratio (OR) with a 95% confidence interval (CI). The publication bias was explored using Begg's test. Sensitivity analysis was performed to evaluate the stability of the crude results. A total of 35 studies were included in this meta-analysis. For the MTHFR C677T polymorphism, we detected significant association in all genetic models for Asian children and the maternal population. Significant association was also detected in T vs. C for a Caucasian paediatric population (OR = 1.163, 95% CI: 1.008-1.342) and in both T vs. C (OR = 1.125, 95% CI: 1.043-1.214) and the dominant model (OR = 1.216, 95% CI:b1.096-1.348) for a Caucasian maternal population. For the MTHFR A1298C polymorphism, the association was detected in CC vs. AC for the Caucasian paediatric population (OR = 1.484, 95% CI: 1.035-2.128). Our results support the MTHFR -677T allele as a susceptibility factor for CHD in the Asian maternal population and the -1298 C allele as a risk factor in the Caucasian paediatric population.
Collapse
|
Meta-Analysis |
11 |
35 |
3
|
Gao G, Xuan C, Yang Q, Liu XC, Liu ZG, He GW. Identification of altered plasma proteins by proteomic study in valvular heart diseases and the potential clinical significance. PLoS One 2013; 8:e72111. [PMID: 24015209 PMCID: PMC3754973 DOI: 10.1371/journal.pone.0072111] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/06/2013] [Indexed: 12/15/2022] [Imported: 04/18/2025] Open
Abstract
BACKGROUND Little is known about genetic basis and proteomics in valvular heart disease (VHD) including rheumatic (RVD) and degenerative (DVD) valvular disease. The present proteomic study examined the hypothesis that certain proteins may be associated with the pathological changes in the plasma of VHD patients. METHODS AND RESULTS Differential protein analysis in the plasma identified 18 differentially expressed protein spots and 14 corresponding proteins or polypeptides by two-dimensional electrophoresis and mass spectrometry in 120 subjects. Two up-regulated (complement C4A and carbonic anhydrase 1) and three down-regulated proteins (serotransferrin, alpha-1-antichymotrypsin, and vitronectin) were validated by ELISA in enlarging samples. The plasma levels (n = 40 for each) of complement C4A in RVD (715.8±35.6 vs. 594.7±28.2 ng/ml, P = 0.009) and carbonic anhydrase 1 (237.70±15.7 vs. 184.7±10.8 U/L, P = 0.007) in DVD patients were significantly higher and that of serotransferrin (2.36±0.20 vs. 2.93±0.16 mg/ml, P = 0.025) and alpha-1-antichymotrypsin (370.0±13.7 vs. 413.0±11.6 µg/ml, P = 0.019) in RVD patients were significantly lower than those in controls. The plasma vitronectin level in both RVD (281.3±11.0 vs. 323.2±10.0 µg/ml, P = 0.006) and DVD (283.6±11.4 vs. 323.2±10.0 µg/ml, P = 0.011) was significantly lower than those in normal controls. CONCLUSIONS We have for the first time identified alterations of 14 differential proteins or polypeptides in the plasma of patients with various VHD. The elevation of plasma complement C4A in RVD and carbonic anhydrase 1 in DVD and the decrease of serotransferrin and alpha-1-antichymotrypsin in RVD patients may be useful biomarkers for these valvular diseases. The decreased plasma level of vitronectin - a protein related to the formation of valvular structure - in both RVD and DVD patients might indicate the possible genetic deficiency in these patients.
Collapse
|
research-article |
12 |
34 |
4
|
Zhang X, Hou HT, Wang J, Liu XC, Yang Q, He GW. Plasma Proteomic Study in Pulmonary Arterial Hypertension Associated with Congenital Heart Diseases. Sci Rep 2016; 6:36541. [PMID: 27886187 PMCID: PMC5122864 DOI: 10.1038/srep36541] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] [Imported: 04/18/2025] Open
Abstract
Pulmonary arterial hypertension associated with congenital heart disease (CHD-PAH) has serious consequence and plasma protein profiles in CHD-PAH are unknown. We aimed to reveal the differential plasma proteins in 272 CHD patients with or without PAH. Various types of CHD-PAH were studied. Differential plasma proteins were first detected by iTRAQ proteomic technology and those with significant clinical relevance were selected for further ELISA validation in new cohort of patients. Among the 190 differential plasma proteins detected by iTRAQ, carbamoyl-phosphate synthetase I (CPSI, related to urea cycle and endogenous nitric oxide production) and complement factor H-related protein 2 (CFHR2, related to complement system and coagulant mechanism) were selected for further ELISA validation in new cohort of 152 patients. Both CPSI and CFHR2 were down-regulated with decreased plasma levels (p < 0.01). Thus, we for the first time in CHD-PAH patients identified a large number of differential plasma proteins. The decreased CPSI expression in CHD-PAH patients may reveal a mechanism related to endogenous nitric oxide and the decrease of CFHR2 protein may demonstrate the deficiency of the immune system and coagulation mechanism. The findings may open a new direction for translational medicine in CHD-PAH with regard to the diagnosis and progress of the disease.
Collapse
|
Randomized Controlled Trial |
9 |
24 |
5
|
Chen HX, Li MY, Jiang YY, Hou HT, Wang J, Liu XC, Yang Q, He GW. Role of the PPAR pathway in atrial fibrillation associated with heart valve disease: transcriptomics and proteomics in human atrial tissue. Signal Transduct Target Ther 2020; 5:4. [PMID: 32296022 PMCID: PMC6971265 DOI: 10.1038/s41392-019-0093-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/01/2019] [Indexed: 11/09/2022] [Imported: 04/18/2025] Open
|
Letter |
5 |
21 |
6
|
Jiang YY, Hou HT, Yang Q, Liu XC, He GW. Chloride Channels are Involved in the Development of Atrial Fibrillation - A Transcriptomic and proteomic Study. Sci Rep 2017; 7:10215. [PMID: 28860555 PMCID: PMC5579191 DOI: 10.1038/s41598-017-10590-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/11/2017] [Indexed: 11/23/2022] [Imported: 04/18/2025] Open
Abstract
Electrical and structural remodeling processes are contributors to the self-perpetuating nature of atrial fibrillation (AF). However, their correlation has not been clarified. In this study, human atrial tissues from the patients with rheumatic mitral valve disease in either sinus rhythm or persistent AF were analyzed using a combined transcriptomic and proteomic approach. An up-regulation in chloride intracellular channel (CLIC) 1, 4, 5 and a rise in type IV collagen were revealed. Combined with the results from immunohistochemistry and electron microscope analysis, the distribution of type IV collagen and effects of fibrosis on myocyte membrane indicated the possible interaction between CLIC and type IV collagen, confirmed by protein structure prediction and co-immunoprecipitation. These results indicate that CLICs play an important role in the development of atrial fibrillation and that CLICs and structural type IV collagen may interact on each other to promote the development of AF in rheumatic mitral valve disease.
Collapse
|
research-article |
8 |
18 |
7
|
Han J, Xu HH, Chen XL, Hu HR, Hu KM, Chen ZW, He GW. Total Flavone of Rhododendron Improves Cerebral Ischemia Injury by Activating Vascular TRPV4 to Induce Endothelium-Derived Hyperpolarizing Factor-Mediated Responses. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:8919867. [PMID: 30405745 PMCID: PMC6201489 DOI: 10.1155/2018/8919867] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 01/14/2023] [Imported: 04/18/2025]
Abstract
BACKGROUND Total flavonoids of Rhododendron (TFR) is extracted from Rhododendron, a herbal medicine widely used in China. The main components are flavone compounds such as warfarin, rutin, quercetin, and hyperoside. We investigated the role of TRPV4 channel in the TFR induced endothelium-dependent hyperpolarizing factor- (EDHF-) mediated responses against ischemia/reperfusion injury (IR) in cerebral IR (CIR) rats. METHODS The morphological changes of cerebral cortex, the relaxation of cerebral basal artery (CBA), and cell membrane potential recording were studied in CIR rats. The outward potassium current in smooth muscle cell was recorded by whole-cell patch clamp recording. The protein expression of TRPV4, SKca, and IKca was determined. Confocal laser was used to measure the Ca2+ fluorescence intensity. RESULTS After treatment with TFR, the number of pyramidal cells in brain tissue increased and the number of empty or lightly stained cells decreased and these effects were eliminated by using HC-067047, Apamin, or TRAM-34. TFR induced and EDHF-mediated dilatation and hyperpolarization in CBA were also attenuated by using these inhibitors. The increased outward current density elicited by TFR in acutely isolated CBA smooth muscle cells was abolished by using TRAM-34 and Apamin. TFR upregulated the protein expression of TRPV4, SKca, and IKca that was also eliminated by these inhibitors. Laser scanning showed that the increased mean fluorescence intensity of Ca2+ by CIR was decreased by using TFR and that this effect was again eliminated by the above inhibitors. CONCLUSIONS We conclude that in the CBA of the CIR rats the protective effect of TFR on ischemic cerebrovascular injury may be related to the activation of the TRPV4 in both endothelium and smooth muscle by increasing its expression and activity. The activation of TRPV4 channel in the endothelium may be linked to the opening of endothelial IKca/SKca channels that induces EDHF-mediated relaxation and hyperpolarization in the smooth muscle cell. In addition, the activation of TRPV4 in the smooth muscle cell in CBA may be linked with the activation of BKCa channel through a TRPV4-dependent pathway, reduce Ca2+ concentration in the cell, and relaxes the vessel. These findings may form a new therapeutic target for protection of ischemic brain injury and facilitate the use of Chinese medicine in brain protection.
Collapse
|
research-article |
7 |
18 |
8
|
Bai XY, Zhang P, Yang Q, Liu XC, Wang J, Tong YL, Xiong SJ, Liu LH, Wang L, He GW. Suxiao jiuxin pill induces potent relaxation and inhibition on contraction in human artery and the mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:956924. [PMID: 24808920 PMCID: PMC3997901 DOI: 10.1155/2014/956924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 02/11/2014] [Indexed: 11/17/2022] [Imported: 04/18/2025]
Abstract
Suxiao Jiuxin Pill, a compound Chinese traditional medicine with main components of tetramethylpyrazine and borneol, is widely used for antiangina treatment in China but its pharmacological effect on human blood vessels is unknown. We investigated the effect and possible mechanism of SJP in the human internal mammary artery (IMA, n = 78) taken from patients undergoing coronary surgery. SJP caused full relaxation in KCl- (99.4 ± 10.5%, n = 6) and U46619- (99.9 ± 5.6%, n = 6) contracted IMA. Pretreatment of IMA with plasma concentrations of SJP (1 mg/mL), calculated from the plasma concentration of its major component borneol, significantly depressed the maximal contraction to KCl (from 35.8 ± 6.0 mN to 12.6 ± 5.6 mN, P = 0.03) and U46619 (from 19.4 ± 2.9 mN to 5.7 ± 2.4 mN, P = 0.007) while SJP at 10 mg/mL abolished the subsequent contraction. Endothelium denudation and inhibition of eNOS significantly altered the SJP-induced relaxation without changes of eNOS expression. We conclude that SJP has a potent inhibitory effect on the vasoconstriction mediated by a variety of vasoconstrictors in human arteries. The vasorelaxation involves both endothelium-dependent and -independent mechanisms. Thus, the effect of SJP on human arteries demonstrated in this study may prove to be particularly important in vasorelaxing therapy in cardiovascular disease.
Collapse
|
research-article |
11 |
13 |
9
|
Xuan C, Jia KG, Wang BB, Bai XY, Gao G, Yang Q, Wang XL, Liu XC, Ma X, He GW. Identification of two novel mutations of the HOMEZ gene in Chinese patients with isolated ventricular septal defect. Genet Test Mol Biomarkers 2013; 17:390-394. [PMID: 23574532 PMCID: PMC3634154 DOI: 10.1089/gtmb.2012.0435] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] [Imported: 04/18/2025] Open
Abstract
OBJECTIVES Ventricular septal defect (VSD) is the most common congenital heart disease (CHD). Genome-wide linkage analysis revealed a potential CHD susceptibility locus in the homeodomain leucine zipper-encoding (HOMEZ) gene in a South Indian population. The present study aimed to identify potential pathogenic mutations for HOMEZ and to provide insights into the etiology of isolated VSD in the Chinese population. METHODS Case-control mutational analysis was performed in 400 patients with isolated VSD and 400 healthy controls. Protein-coding exton of HOMEZ and their flanking sequences were amplified by polymerase chain reaction and sequenced on an ABI3730 Automated Sequencer. CLC workbench software was used to compare the conservatism of the HOMEZ protein with other multiple species. The ExPASy-ProtScale online tool was used to predicate the alignment of the hydrophobic features. RESULTS Two novel heterozygous missense mutations (c.116 C>T; c. 630T>A) were identified in HOMEZ gene exon-2. The two mutations lead to alanine to valine substitution at position 39 and serine to arginine at position 210, which are highly conserved among many species. The hydropathicity of the valine and arginine residue at the position 39 and 210 were significantly different from the wild type. CONCLUSIONS We have identified two novel heterozygous missense mutations in HOMEZ gene exon-2 in isolated VSD patients in the Chinese population and have found that these two mutations resulted in alteration of the hydropathicity of the HOMEZ protein. Therefore, the two missense mutations of the HOMEZ gene are directly linked with the etiology of isolated VSD in the Chinese population.
Collapse
|
research-article |
12 |
11 |
10
|
Zuo JY, Chen HX, Liu ZG, Yang Q, He GW. Identification and functional analysis of variants of MYH6 gene promoter in isolated ventricular septal defects. BMC Med Genomics 2022; 15:213. [PMID: 36209093 PMCID: PMC9548206 DOI: 10.1186/s12920-022-01365-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022] [Imported: 04/18/2025] Open
Abstract
BACKGROUND Ventricular septal defect is the most common form of congenital heart diseases. MYH6 gene has a critical effect on the growth and development of the heart but the variants in the promoter of MYH6 is unknown. PATIENTS AND METHODS In 604 of the subjects (311 isolated and sporadic ventricular septal defect patients and 293 healthy controls), DNA was extracted from blood samples and MYH6 gene promoter region variants were analyzed by sequencing. Further functional verification was performed by cellular experiments using dual luciferase reporter gene analysis, electrophoretic mobility shift assays, and bioinformatics analysis. RESULTS Nine variants were identified in the MYH6 gene promoter and two of those variants [g.4085G>C(rs1222539675) and g.4716G>A(rs377648095)] were only found in the ventricular septal defect patients. Cellular function experiments showed that these two variants reduced the transcriptional activity of the MYH6 gene promoter (p < 0.001). Further analysis with online JASPAR database suggests that these variants may alter a set of putative transcription factor binding sites that possibly lead to changes in myosin subunit expression and ventricular septal defect formation. CONCLUSIONS Our study for the first time identifies variants in the promoter region of the MYH6 gene in Chinese patients with isolated and sporadic ventricular septal defect. These variants significantly reduced MYH6 gene expression and affected transcription factor binding sites and therefore are pathogenic. The present study provides new insights in the role of the MYH6 gene promoter region to better understand the genetic basis of VSD formation.
Collapse
|
research-article |
3 |
9 |
11
|
Li ZX, Guo ZP, Liu XC, Kong XR, Jing WB, Chen TN, Lu WL, He GW. Surgical treatment of tricuspid regurgitation after mitral valve surgery: a retrospective study in China. J Cardiothorac Surg 2012; 7:30. [PMID: 22490269 PMCID: PMC3348082 DOI: 10.1186/1749-8090-7-30] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/10/2012] [Indexed: 12/05/2022] [Imported: 04/18/2025] Open
Abstract
BACKGROUND Functional tricuspid regurgitation (TR) occurs in patients with rheumatic mitral valve disease even after mitral valve surgery. The aim of this study was to analyze surgical results of TR after previous successful mitral valve surgery. METHODS From September 1996 to September 2008, 45 patients with TR after previous mitral valve replacement underwent second operation for TR. In those, 43 patients (95.6%) had right heart failure symptoms (edema of lower extremities, ascites, hepatic congestion, etc.) and 40 patients (88.9%) had atrial fibrillation. Twenty-six patients (57.8%) were in New York Heart Association (NYHA) functional class III, and 19 (42.2%) in class IV. Previous operations included: 41 for mechanical mitral valve replacement (91.1%), 4 for bioprosthetic mitral valve replacement (8.9%), and 7 for tricuspid annuloplasty (15.6%). RESULTS The tricuspid valves were repaired with Kay's (7 cases, 15.6%) or De Vega technique (4 cases, 8.9%). Tricuspid valve replacement was performed in 34 cases (75.6%). One patient (2.2%) died. Postoperative low cardiac output (LCO) occurred in 5 patients and treated successfully. Postoperative echocardiography showed obvious reduction of right atrium and ventricle. The anterioposterior diameter of the right ventricle decreased to 25.5 ± 7.1 mm from 33.7 ± 6.2 mm preoperatively (P < 0. 05). CONCLUSION TR after mitral valve replacement in rheumatic heart disease is a serious clinical problem. If it occurs or progresses late after mitral valve surgery, tricuspid valve annuloplasty or replacement may be performed with satisfactory results. Due to the serious consequence of untreated TR, aggressive treatment of existing TR during mitral valve surgery is recommended.
Collapse
|
Evaluation Study |
13 |
8 |
12
|
Xuan C, Wang BB, Gao G, Bai XY, Yang Q, Liu XC, Jing WB, Ma X, He GW. A novel variation of PLAGL1 in Chinese patients with isolated ventricular septal defect. Genet Test Mol Biomarkers 2012; 16:984-987. [PMID: 22784302 PMCID: PMC3422556 DOI: 10.1089/gtmb.2012.0003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] [Imported: 04/18/2025] Open
Abstract
AIMS Ventricular septal defect (VSD) is the most common congenital heart disease (CHD). A number of genetic studies have linked the gene of PLAGL1 to the etiology of CHD. The present study aimed to identify potential pathogenic mutations for PLAGL1 and to provide insights into the etiology of isolated VSD. METHODS Case-control mutational analysis was performed in 300 patients with isolated VSD and 300 healthy controls. Two protein-coding extons of PLAGL1 and their partial flanking intron sequences were amplified by polymerase chain reaction and sequenced on an ABI3730 Automated Sequencer. CLC workbench software was used to compare the conservatism of PLAGL1 protein with other multiple species. RESULTS Neither missense nor frame-shift mutations were detected in two protein-coding extons of PLAGL1. But a novel synonymous variation (c.486A>G, p. E162E) was detected in protein-coding exon-2. The glutamic that translated with the mutational codon is conservative when compared with other species. CONCLUSIONS We detected a synonymous variation in the protein-coding exon-2 of PLAGL1 in isolated VSD patients. It is possible that the etiology of isolated VSD might not be directly linked with this mutation, but might be associated with other patterns of gene expression regulation in PLAGL1, such as in the methylation-dependent manner.
Collapse
|
research-article |
13 |
8 |
13
|
Han J, He GW, Chen ZW. Protective Effect and Mechanism of Total Flavones from Rhododendron simsii Planch on Endothelium-Dependent Dilatation and Hyperpolarization in Cerebral Ischemia-Reperfusion and Correlation to Hydrogen Sulphide Release in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:904019. [PMID: 25050128 PMCID: PMC4090445 DOI: 10.1155/2014/904019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/12/2014] [Accepted: 05/12/2014] [Indexed: 12/26/2022] [Imported: 04/18/2025]
Abstract
We for the first time investigated the effect and mechanism of the total flavones of Rhododendron simsii Planch (TFR), a widely-used Chinese herb for a thousand years, on vasodilatation and hyperpolarization in middle cerebral artery (MCA) of rats subject to global cerebral ischemia-reperfusion (CIR). TFR (11~2700 mg/L) evoked dose-dependent vasodilation and hyperpolarization in MCA of both sham and CIR that were partially inhibited by 30 μM N-nitro-L-arginine-methyl-ester and 10 μM indomethacin and further attenuated by endogenous H2S synthese-CSE inhibitor PPG (100 μM) or Ca(2+)-activated potassium channel (Kca) inhibitor TEA (1 mM). In whole-cell patch clamp recording, TFR remarkably enhanced the outward current that was inhibited by TEA. CIR increased CSE mRNA expression and the contents of H2S that were further increased by TFR. We conclude that, in MCA of CIR rats, TFR induces non-NO and non-PGI2-mediated effects of vasodilatation and hyperpolarization involving Kca and increases CSE mRNA expression level in endothelial cells and H2S content in the cerebrum. These findings suggest that the response induced by TFR is potentially related to endothelium-derived hyperpolarizing factor mediated by the endogenous H2S and promote the use of TFR in protection of brain from ischemia-reperfusion injury.
Collapse
|
research-article |
11 |
7 |
14
|
Guo ZP, Hou HT, Jing R, Song ZG, Liu XC, He GW. Plasma protein profiling in patients undergoing coronary artery bypass grafting surgery and clinical significance. Oncotarget 2017; 8:60528-60538. [PMID: 28947991 PMCID: PMC5601159 DOI: 10.18632/oncotarget.16366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/15/2017] [Indexed: 12/05/2022] [Imported: 04/18/2025] Open
Abstract
This study was designed to identify the protein profiling in patients with triple vessel coronary artery disease (CAD) undergoing CABG, in order to detect CAD-related differential proteins in these patients. CABG patients with triple vessel disease with/without left main stenosis (n =160) were compared to normal coronary angiographic subjects (n =160). Plasma samples of 20 males and 20 females in each group were analyzed with iTRAQ technique. ELISA test was used to test the chosen proteins from iTRAQ results in plasma samples from a new cohort of the CABG group (n=120, male/femal=61/59) and control (n =120, male/female=60/60). iTRAQ detected 544 proteins with 35 up-regulated and 41 down-regulated (change fold > 1.2 or < 0.83, p < 0.05). Three proteins including platelet factor 4 (PF4), coagulation factor XIII B chain (F13B), and secreted frizzled-related protein 1 (sFRP1) were selected for validation by using ELISA that demonstrated significant up-regulation of PF4 and sFRP1 (p < 0.05). There was a positive correlation between these proteins and CAD (p < 0.05) and myocardial infarction history (p < 0.05). Thus, we for the first time have found 76 proteins differentially expressed in plasma of CABG patients. The thrombotic disease/inflammation progress-related protein PF4 and sFRP1, a member of the Wnt/fz signal-transduction pathway and related to myocardial repair, are significantly up-regulated in triple-vessel disease with/without left main stenosis. PF4 may be developed as a biomarker for the diagnosis of the severity of CAD requiring CABG procedure.
Collapse
|
research-article |
8 |
6 |
15
|
Li XY, Hou HT, Chen HX, Wang ZQ, He GW. Increased circulating levels of tumor necrosis factor-like cytokine 1A and decoy receptor 3 correlate with SYNTAX score in patients undergoing coronary surgery. J Int Med Res 2018; 46:5167-5175. [PMID: 30213220 PMCID: PMC6300958 DOI: 10.1177/0300060518793787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/16/2018] [Indexed: 12/25/2022] [Imported: 04/18/2025] Open
Abstract
OBJECTIVE Chronic inflammation of the arteries is a critical mechanism responsible for coronary atherosclerosis. We aimed to determine if tumor necrosis factor (TNF)-like cytokine 1A (TL1A) and decoy receptor 3 (DcR3) were involved in promoting atherosclerosis. METHODS We compared plasma levels of TL1A and DcR3 in patients with coronary artery disease (CAD) undergoing coronary artery bypass grafting (n=40) and patients without CAD group (n=37, normal coronary artery angiogram) by enzyme-linked immunosorbent assay. We also analyzed the correlation between CAD and SYNTAX scores. RESULTS Plasma levels of TL1A and DcR3 were significantly higher in the CAD compared with the no-CAD group. Multivariate analysis showed that TL1A and DcR3 were significantly correlated with the presence of CAD, and receiver operating characteristic curve analysis indicated that both TL1A and DcR3 showed high sensitivity and specificity for diagnosing CAD. Furthermore, TL1A was positively and significantly correlated with SYNTAX score in CAD patients. CONCLUSIONS CAD patients requiring coronary artery bypass grafting have high circulating levels of both TL1A and DcR3, which may thus be useful biomarkers for diagnosing severe CAD. Furthermore, plasma levels of TL1A correlate with SYNTAX score, supporting its potential use as an indicator of the severity of CAD.
Collapse
|
research-article |
7 |
4 |
16
|
Zhang JM, Liu XC, Liu ZG, Zhao L, Yang L, Liu TW, He GW. Comparison of effects of extra-thoracic paraaortic counterpulsation to intraaortic balloon pump on circulatory support in acute heart failure. J Cardiothorac Surg 2015; 10:173. [PMID: 26602754 PMCID: PMC4659167 DOI: 10.1186/s13019-015-0349-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 10/28/2015] [Indexed: 11/29/2022] [Imported: 04/18/2025] Open
Abstract
BACKGROUND Previously designed intra-thoracic paraaortic counterpulsation device has limited stroke volume and may depress the lung to cause complications. The purpose of this study was to evaluate the hemodynamic effects of an extra-thoracic paraaortic counterpulsation device (ETPACD) in comparison to intraaortic balloon pump (IABP) in an animal model with acute heart failure. METHODS The acute heart failure model was successfully induced by snaring branch of anterior descending coronary artery in sheep (weighting, 38-50 kg, n = 8). The ETPACD is a single port, 65-ml stroke volume blood chamber designed to be connected to descending aorta through a valveless graft and placed extra-thorax. In comparison, a standard clinical 40-ml IABP was placed in the descending aorta. The hemodynamic indices of both devices were recorded during counterpulsation assistance. Two of the sheep were allowed to survive for 1 week to examine the prolonged effect. RESULTS Both ETPACD and IABP increased cardiac output with higher effect of ETPACD (13.52 % vs. 8.19 % in IABP, P < 0.05) and on mean diastolic aortic pressure (26.73 % vs. 12.58 % in IABP, P < 0.01). Both ETPACD and IABP also produced a greater reduction in left ventricular end-diastolic pressure (26.77 % vs. 23.08 %, P > 0.05). The ETPACD increased left carotid artery flow more significantly the IABP (18.00 % vs. 9.19 % , P < 0.05). In two of the sheep allowed to survive for 1 week, the device worked well with no complications and there was no thrombus formation in the chamber of ETPACD. CONCLUSIONS This study demonstrated that both ETPACD and IABP provided benefit of circulatory support in acute heart failure with better effect on hemodynamic parameters provided by ETPACD. Therefore, ETPACD with theoretical larger stroke volume may become a promising counterpulsation device for treatment of heart failure.
Collapse
|
Comparative Study |
10 |
4 |
17
|
Yuan C, Hou HT, Chen HX, Wang J, Wang ZQ, Chen TN, Novakovic A, Marinko M, Yang Q, Liu ZG, He GW. Hydrogen sulfide-mediated endothelial function and the interaction with eNOS and PDE5A activity in human internal mammary arteries. J Int Med Res 2019; 47:3778-3791. [PMID: 31155983 PMCID: PMC6726794 DOI: 10.1177/0300060519847386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/09/2019] [Indexed: 12/20/2022] [Imported: 04/18/2025] Open
Abstract
OBJECTIVE To investigate the role of hydrogen sulfide (H2S) in human internal mammary arteries (IMA) and its interaction with endothelial nitric oxide synthase (eNOS) and phosphodiesterase (PDE)5A activity. METHODS Human IMA segments from patients undergoing coronary artery bypass grafting (CABG) were studied by myography for acetylcholine and sodium hydrosulfide (NaHS)-induced relaxation. Locations of 3-mercaptopyruvate sulfurtransferase (3-MPST) and cysteine aminotransferase (CAT) were examined immunohistochemically. Levels of H2S, eNOS, phosphorylated-eNOSser1177, and PDE5A were measured. RESULTS In IMA segments from 47 patients, acetylcholine-induced relaxation (resistant to NG-nitro-L-arginine and indomethacin) was significantly attenuated by aminooxyacetic acid or L-aspartate (CAT inhibitors), iberiotoxin (large-conductance calcium-activated K+ channel blocker), TRAM-34 plus apamin (intermediate- and small-conductance Ca2+-activated K+ channel blockers) or glibenclamide (ATP-sensitive K+ channel blocker). 3-MPST and mitochondrial CAT were found in endothelial and smooth muscle cells while cytosolic CAT was located only in endothelial cells. Acetylcholine significantly increased the H2S levels. The H2S donor, NaHS, increased eNOS phosphorylation and down-regulated PDE5A. CONCLUSIONS Human conduit artery endothelium releases H2S under basal and stimulated conditions, involving the 3-MPST/CAT pathway, eNOS phosphorylation, PDE5A activity, and potassium channels. These findings may provide new therapeutic targets for treating vasospasm in CABG grafts and facilitate the development of new vasodilator drugs.
Collapse
|
research-article |
6 |
4 |
18
|
Yin XY, Chen HX, Chen Z, Yang Q, Han J, He GW. Genetic Variants of ISL1 Gene Promoter Identified from Congenital Tetralogy of Fallot Patients Alter Cellular Function Forming Disease Basis. Biomolecules 2023; 13:358. [PMID: 36830727 PMCID: PMC9953631 DOI: 10.3390/biom13020358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 02/15/2023] [Imported: 04/18/2025] Open
Abstract
Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease in newborns. ISL1 is a master transcription factor in second heart field development, whereas the roles of ISL1 gene promoter variants in TOF patients have not been genetically investigated. Total DNA extraction from 601 human subjects, including 308 TOF patients and 293 healthy controls, and Sanger sequencing were performed. Four variants (including one novel heterozygous variant) within the ISL1 gene promoter were only found in TOF patients. Functional analysis of DNA sequence variants was performed by using the dual-luciferase reporter assay and demonstrated that three of the four variants significantly decreased the transcriptional activity of ISL1 gene promoter in HL-1 cells (p < 0.05). Further, the online JASPAR database and electrophoretic mobility shift assay showed that the three variants affected the binding of transcription factors and altered ISL1 expression levels. In conclusion, the current study for the first time demonstrated that the variants identified from the ISL1 gene promoter region are likely involved in the development of TOF by affecting the transcriptional activity and altering the ISL1 expression level. Therefore, these findings may provide new insights into the molecular etiology and potential therapeutic strategy of TOF.
Collapse
|
research-article |
2 |
3 |
19
|
Chen Z, Chen HX, Hou HT, Yin XY, Yang Q, He GW. Pathophysiological Role of Variants of the Promoter Region of CITED2 Gene in Sporadic Tetralogy of Fallot Patients with Cellular Function Verification. Biomolecules 2022; 12:1644. [PMID: 36358994 PMCID: PMC9687598 DOI: 10.3390/biom12111644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2023] [Imported: 04/18/2025] Open
Abstract
Tetralogy of Fallot (TOF) is a common congenital heart malformation. Genetic variants in the CITED2 coding region are known to be significantly associated with cardiac malformation, but the role of variants in the CITED2 promoter region in the development of TOF remains unclear. In this study, we investigated CITED2 promoter variants in the DNA of 605 subjects, including 312 TOF patients and 293 unrelated healthy controls, by Sanger sequencing. We identified nine CITED2 gene promoter variants (including one novel heterozygous variant). Six were found only in patients with TOF and none in the control group. The transcriptional activity of the CITED2 gene promoter in mouse cardiomyocyte (HL-1) cells was significantly altered by the six variants (p < 0.05). The results of the electrophoretic mobility change assay and JASPAR database analysis showed that these variants generated or destroyed a series of possible transcription factor binding sites, resulting in changes in the CITED2 protein expression. We conclude that CITED2 promoter variants in TOF patients affect transcriptional activity and may be involved in the occurrence and progression of TOF. These findings may provide new insights into molecular pathogenesis and potential therapeutic insights in patients with TOF.
Collapse
|
research-article |
3 |
3 |
20
|
Chen Z, Chen HX, Hou HT, Yin XY, Yang Q, Han J, He GW. Genetic Variants of CITED2 Gene Promoter in Human Atrial Septal Defects: Case-Control Study and Cellular Functional Verification. J Cardiovasc Dev Dis 2022; 9:321. [PMID: 36286273 PMCID: PMC9604052 DOI: 10.3390/jcdd9100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] [Imported: 04/18/2025] Open
Abstract
Atrial septal defect (ASD) is one of the most common forms of congenital heart disease (CHD). Genetic variants in the coding region of the CITED2 gene are known to be significantly correlated with CHD, but the role of variants in the promoter region of CITED2 is unknown. We investigated variants in the promoter of the CITED2 gene in 625 subjects (332 ASD and 293 healthy controls) through Sanger sequencing. Four variants in the CITED2 gene promoter were found only in eight ASD patients with zero occurrence in the control subjects (one case of g.4078A>C(rs1165649373), one case of g.4240C>A(rs1235857801), four cases of g.4935C>T(rs111470468), two cases of g.5027C>T(rs112831934)). Cellular functional analysis showed that these four variants significantly changed the transcriptional activity of the CITED2 gene promoter in HEK-293 and HL-1 cells. Electrophoretic mobility change assay results and JASPAR database analysis demonstrated that these variants created or destroyed a series of possible transcription factor binding sites, resulting in changes in the expression of CITED2 protein. We conclude that the variants of CITED2 promoter in ASD patients affect the transcriptional activity and are likely involved in the occurrence and development of ASD. These findings provide new perspectives on the pathogenesis and potential therapeutic insights of ASD.
Collapse
|
research-article |
3 |
|
21
|
Chen Z, Chen HX, Hou HT, Yin XY, Yang Q, He GW. Identification and Functional Verification of CITED2 Gene Promoter Region in Patients with Patent Ductus Arteriosus. Int J Mol Sci 2023; 24:16204. [PMID: 38003393 PMCID: PMC10671043 DOI: 10.3390/ijms242216204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023] [Imported: 04/18/2025] Open
Abstract
Patent ductus arteriosus (PDA) is a common congenital heart disease. CITED2 plays an important role in the development of the heart, and genetic variants in its coding region are significantly associated with cardiac malformations. However, the role of variants in the promoter region of CITED2 in the development of PDA remains unclear. We extracted the peripheral blood of 646 subjects (including 353 PDA patients and 293 unrelated healthy controls) for sequencing. We identified 13 promoter variants of the CITED2 gene (including 2 novel heterozygous variants). Of the 13 variants, 10 were found only in PDA patients. In mouse cardiomyocytes (HL-1) and rat cardiac myocytes (RCM), the transcriptional activity of the CITED2 gene promoter was significantly changed by the variants (p < 0.05). The results of the experiments of electrophoretic mobility indicated that these variants may affect the transcription of the CITED2 gene by influencing the binding ability of transcription factors. These results, combined with the JASPAR database analysis, showed that the destruction/production of transcription factor binding sites due to the variants in the promoter region of the CITED2 gene may directly or indirectly affect the binding ability of transcription factors. Our results suggest for the first time that variants at the CITED2 promoter region may cause low expression of CITED2 protein related to the formation of PDA.
Collapse
|
research-article |
2 |
|
22
|
Sun WT, Chen HX, Hou HT, Xue HM, Yang Q, He GW. Protein post-translational modification crotonylation of TXN and GLO1 in artery and vein grafts for coronary artery surgery. Redox Biol 2025; 82:103608. [PMID: 40138913 PMCID: PMC11986619 DOI: 10.1016/j.redox.2025.103608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/28/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025] [Imported: 04/18/2025] Open
Abstract
A key problem in coronary artery bypass grafting (CABG) is the lower long-term patency of the saphenous vein (SV) compared to internal thoracic artery (ITA). The potential strategies to improve the long-term patency of the vein graft include developing drugs to block unfavorable pathways in the vein and even to change the protein structure of the vein towards arterial structure. It is therefore important to understand the differences of the protein structure between arterial and venous grafts. Using post-translational modification (PTM) proteomics, we systematically investigated differences between ITA and SV with regard to a vascular stenosis-related PTM crotonylation. Crotonylome and PTM crotonylation in paired ITA and SV segments (n = 150) from patients undergoing CABG surgery were performed by proteomics analysis with further validation. To elucidate the underlying mechanisms, we focused on three crotonylated enzymatic proteins with anti-oxidative effects-thioredoxin (TXN), glyoxalase 1 (GLO1), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) - whose crotonylation patterns were systematically investigated. The functional validation was performed using both site-mutation experiments in HEK293 cells and pharmacological inhibitors in ex vivo cultured ITA/SV tissue specimens. Comprehensive crotonyl-proteomics demonstrated 3652 proteins are differentially-expressed and 411 proteins are differentially-crotonylated in ITA/SV segments. In the identified crotonylated proteins, SV demonstrated significantly higher levels compared to ITA. Notably, SV showed higher crotonylation levels on TXN-K3, GLO1-K157, and GAPDH-K61, which were associated with decreased enzymatic activity, elevated methylglyoxal (MGO) accumulation, and increased oxidative stress. Inhibition of CREB-binding protein (CBP) reversed oxidative stress in SV by suppressing crotonylation of the three enzymes. In Hek293 cells, both site-specific and comprehensive crotonylation decreased the activities of TXN/GLO1/GAPDH, which in turn triggered the accumulation of MGO. Overexpression of histone deacetylases HDAC1 and HDAC3 showed the opposite effect, restoring enzyme function. This study is the first to reveal significant differences in PTM crotonylation between human ITA and SV, shedding light on the biological mechanisms underlying the functional disparities between these grafts. These differences impact the enzymatic activity of key proteins involved in oxidative stress, providing insights into the molecular basis of graft performance. Importantly, these findings form a scientific basis for developing specific methods including new anti-oxidative drugs and gene therapy to target on crotonylation in the vein graft in order to improve the long-term graft patency.
Collapse
|
research-article |
1 |
|
23
|
Zhou J, Hou HT, Chen HX, Song Y, Zhou XL, Zhang LL, Xue HM, Yang Q, He GW. Plasma Exosomal Proteomics Identifies Differentially Expressed Proteins as Biomarkers for Acute Myocardial Infarction. Biomolecules 2025; 15:583. [PMID: 40305362 PMCID: PMC12025292 DOI: 10.3390/biom15040583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 05/02/2025] [Imported: 06/04/2025] Open
Abstract
Myocardial infarction (MI), including ST-elevation MI (STEMI) and non-ST-elevation MI (NSTEMI), has been the leading cause of hospitalization and death. Exosomes participate in many physiological and pathological processes and have important effects on cell communication and function. This study analyzed the proteomic characteristics of plasma exosomes with the discovery of exosomal differentially expressed proteins (DEPs) in MI patients. Proteomics technology was used to identify the plasma exosomal DEPs in 41 patients in STEMI, NSTEMI, unstable angina, and CONTROL groups, and 406 exosomal DEPs were discovered. Further, 36 selected exosomal DEPs were validated with parallel reaction monitoring (PRM) in a new cohort of STEMI, NSTEMI, and CONTROL groups, and 7 were successfully verified. There were three (F13A1, TSPAN33, and YWHAZ) in the STEMI group and six (F13A1, TSPAN33, ITGA2B, GP9, GP5, and PPIA) in the NSTEMI group, and all were down-regulated compared to the CONTROL group with high sensitivity and specificity in MI that may be developed as biomarkers for MI and may become possible therapeutic targets for MI. Bioinformatics analysis revealed that these seven exosomal DEPs are of great significance in the molecular mechanism of MI. Therefore, the present study has provided insights to further explore the pathological mechanism and possible therapeutic targets in MI.
Collapse
|
research-article |
1 |
|
24
|
Hou HT, Wang XC, Chen HX, Wang J, Yang Q, He GW. Lysine 2-hydroxyisobutyrylation of HXK1 alters energy metabolism and K ATP channel function in the atrium from patients with atrial fibrillation. Cell Commun Signal 2025; 23:117. [PMID: 40033384 PMCID: PMC11874433 DOI: 10.1186/s12964-025-02108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/14/2025] [Indexed: 03/05/2025] [Imported: 04/18/2025] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common form of arrhythmia and is a growing clinical problem. Post-translational modifications (PTMs) constitute crucial epigenetic mechanisms but modification of lysine 2-hydroxyisobutyrylation (Khib) in AF is still unknown. This study aimed to investigate the role and mechanism of Khib in AF. METHODS PTM proteomics was applied in the human atrial tissue from AF and sinus rhythm patients with heart valve disease during cardiac surgery to identify the Khib sites. The functional changes of differential modification sites were further validated at the cellular level. Cellular electrophysiology was performed to record the ion channel current and action potential duration (APD). RESULTS The modification of 124 Khib sites in 35 proteins and 67 sites in 48 proteins exhibited significant increase or decrease in AF compared to sinus rhythm. Ten Khib sites were included in energy metabolism-related signaling pathways (HXK1, TPIS, PGM1, and ODPX in glycolysis; MDHC and IDH3A in tricarboxylic acid cycle; NDUS2, ETFB, ADT3, and ATPB in oxidative respiratory chain). Importantly, decreased HXK1 K418hib regulated by HDAC2 attenuated the original chemical binding domain between HXK1 and glucose, inhibited the binding ability between HXK1 and glucose, and reduced catalytic ability of the enzyme, resulting in low production of glucose-6-phosphate and ATP. Further, it also increased Kir6.2 protein and the current of KATP channel, and decreased APD. CONCLUSIONS This study demonstrates the importance of Khib to catalysis of HXK1 and reveals molecular mechanisms of HXK1 K418hib in AF, providing new insight into strategies of AF.
Collapse
|
research-article |
1 |
|
25
|
Zhou J, Hou HT, Song Y, Zhou XL, Chen HX, Zhang LL, Xue HM, Yang Q, He GW. Metabolomics Analysis Identifies Differential Metabolites as Biomarkers for Acute Myocardial Infarction. Biomolecules 2024; 14:532. [PMID: 38785939 PMCID: PMC11117998 DOI: 10.3390/biom14050532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] [Imported: 04/18/2025] Open
Abstract
Myocardial infarction (MI), including ST-segment elevation MI (STEMI) and non-ST-segment elevation MI (NSTEMI), is still a leading cause of death worldwide. Metabolomics technology was used to explore differential metabolites (DMs) as potential biomarkers for early diagnosis of STEMI and NSTEMI. In the study, 2531 metabolites, including 1925 DMs, were discovered. In the selected 27 DMs, 14 were successfully verified in a new cohort, and the AUC values were all above 0.8. There were 10 in STEMI group, namely L-aspartic acid, L-acetylcarnitine, acetylglycine, decanoylcarnitine, hydroxyphenyllactic acid, ferulic acid, itaconic acid, lauroylcarnitine, myristoylcarnitine, and cis-4-hydroxy-D-proline, and 5 in NSTEMI group, namely L-aspartic acid, arachidonic acid, palmitoleic acid, D-aspartic acid, and palmitelaidic acid. These 14 DMs may be developed as biomarkers for the early diagnosis of MI with high sensitivity and specificity. These findings have particularly important clinical significance for NSTEMI patients because these patients have no typical ECG changes.
Collapse
|
research-article |
1 |
|