1
|
Shi L, Zhang B, Sun X, Lu S, Liu Z, Liu Y, Li H, Wang L, Wang X, Zhao C. MiR-204 inhibits human NSCLC metastasis through suppression of NUAK1. Br J Cancer 2014; 111:2316-2327. [PMID: 25412236 PMCID: PMC4264457 DOI: 10.1038/bjc.2014.580] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/07/2014] [Accepted: 09/16/2014] [Indexed: 11/09/2022] [Imported: 09/03/2024] Open
Abstract
BACKGROUND Lung cancer is a leading cause of cancer-related mortality worldwide and non-small-cell lung carcinoma (NSCLC) is responsible for almost 80% of lung cancer-related deaths. Identifying novel molecules that can repress the invasiveness and metastasis of lung cancer will facilitate the development of new antilung cancer strategies. The aim of this study is to determine the roles of NUAK1 (a downstream of Akt) and miR-204 in the invasiveness and metastasis of NSCLC and to reveal the correlation between NUAK1 and miR-204. METHODS The expression of NUAK1 in primary human NSCLC tissues was evaluated by immunohistochemistry. Real-time PCR was employed to measure the expression level of miR-204. The effect of NUAK1 and miR204 on the prognosis of NSCLC patients was evaluated by log-rank test. The siRNA transfection was used to manipulate the expression levels of NUAK1 and miR204 in cancer cells. Chemotaxis assay, Scratch assay, and Matrigel invasion assay were performed to evaluate the migration and invasion of cells. Cellular F-actin measurement was used to measure F-actin polymerisation in lung cancer cells. Western blot was used to detect the expression levels of corresponding proteins. The Luciferase assay and RNA immunoprecipitation were used to confirm the actual binding site of miR-204 to 3'UTR of NUAK1. RESULTS Increased expression of NUAK1 is correlated with the invasiveness and metastasis of human NSCLC. Knockdown of NUAK1 inhibited cell migration and invasion. In addition, this study showed that NUAK1 influenced mTOR phosphorylation and induced the phosphorylation of p70S6K1 and eukaryotic initiation factor 4E-binding protein1 (4E-BP1), two downstream targets of mTOR in NSCLC cells. At the same time, decreased expression of miR-204 promoted NSCLC progression and, contrarily, manipulated upregulation of miR-204-inhibited cell migration and invasion. There is clinical relevance between miR-204 downregulation and NUAK1 upregulation in human NSCLC. Furthermore, we found that miR-204 inhibited NSCLC tumour invasion by directly targeting and downregulating NUAK1 expression. Finally, our data suggested that the downregulation of miR-204 was due to hypermethylation of its promoter region. CONCLUSIONS Our results indicate that NUAK1 is excessively expressed in NSCLC and plays important roles in NSCLC invasion. The miR-204 acts as a tumour suppressor by inhibiting NUAK1 expression in NSCLC. Both NUAK1 and miR-204 may serve as potential targets of NSCLC therapy.
Collapse
|
research-article |
11 |
89 |
2
|
Zhang B, Shi L, Lu S, Sun X, Liu Y, Li H, Wang X, Zhao C, Zhang H, Wang Y. Autocrine IL-8 promotes F-actin polymerization and mediate mesenchymal transition via ELMO1-NF-κB-Snail signaling in glioma. Cancer Biol Ther 2015; 16:898-911. [PMID: 25870011 PMCID: PMC4623112 DOI: 10.1080/15384047.2015.1028702] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/02/2015] [Accepted: 03/08/2015] [Indexed: 12/27/2022] [Imported: 09/03/2024] Open
Abstract
Glioma is the most common form of primary malignant brain cancers. Tumor cell invasiveness is a critical challenge in the clinical management of glioma patients. The invasive biological feature of glioma cell is stimulated by both autocrine and paracrine factors including chemokine IL-8. In this study, we report that the production of IL-8 is higher in glioma tissues and cells than adjacent nontumor tissues (ANT) and normal glial cells. Autocrine IL-8 can increase the invasive ability of glioma cells by binding to CXCR1. In addition, high expression of IL-8 indicates poor prognosis of glioma patients. Furthermore, IL-8 is capable of modulating cell migration and invasion by regulating the activation of RAC1 which resulted in cytoskeletal reorganisation in an ELMO1 dependent manner. Finally, we found that IL-8 could enhance mesenchymal transition(MT) of glioma cells by activating ELMO1-NF-κB-Snail signaling. Our data indicate that IL-8 autocrine is responsible for the invasive phenotype of glioma and IL-8 may be a useful prognostic marker for glioma and novel therapeutic target for glioma invasion intervention.
Collapse
|
research-article |
10 |
56 |
3
|
Yan Z, Sheng Z, Zheng Y, Feng R, Xiao Q, Shi L, Li H, Yin C, Luo H, Hao C, Wang W, Zhang B. Cancer-associated fibroblast-derived exosomal miR-18b promotes breast cancer invasion and metastasis by regulating TCEAL7. Cell Death Dis 2021; 12:1120. [PMID: 34853307 PMCID: PMC8636636 DOI: 10.1038/s41419-021-04409-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022] [Imported: 09/03/2024]
Abstract
Studies have shown that cancer-associated fibroblasts (CAFs) play an irreplaceable role in the occurrence and development of tumors. Therefore, exploring the action and mechanism of CAFs on tumor cells is particularly important. In this study, we compared the effects of CAFs-derived exosomes and normal fibroblasts (NFs)-derived exosomes on breast cancer cells migration and invasion. The results showed that exosomes from both CAFs and NFs could enter into breast cancer cells and CAFs-derived exosomes had a more enhancing effect on breast cancer cells migration and invasion than NFs-derived exosomes. Furthermore, microRNA (miR)-18b was upregulated in CAFs-derived exosomes, and CAFs-derived exosomes miR-18b can promote breast cancer cell migration and metastasis by specifically binding to the 3'UTR of Transcription Elongation Factor A Like 7 (TCEAL7). The miR-18b-TCEAL7 pathway promotes nuclear Snail ectopic activation by activating nuclear factor-kappa B (NF-κB), thereby inducing epithelial-mesenchymal transition (EMT) and promoting cell invasion and metastasis. Moreover, CAFs-derived exosomes miR-18b could promote mouse xenograft model tumor metastasis. Overall, our findings suggest that CAFs-derived exosomes miR-18b promote nuclear Snail ectopic by targeting TCEAL7 to activate the NF-κB pathway, thereby inducing EMT, invasion, and metastasis of breast cancer. Targeting CAFs-derived exosome miR-18b may be a potential treatment option to overcome breast cancer progression.
Collapse
|
research-article |
4 |
55 |
4
|
Sun Z, Zhang B, Cui T. Long non-coding RNA XIST exerts oncogenic functions in pancreatic cancer via miR-34a-5p. Oncol Rep 2018; 39:1591-1600. [PMID: 29393501 PMCID: PMC5868395 DOI: 10.3892/or.2018.6245] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/29/2017] [Indexed: 12/11/2022] [Imported: 04/02/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) have been implicated in the occurrence and progression of multiple cancers. In the present study, we investigated the role of lncRNA X inactive-specific transcript (XIST) in the development and progression of pancreatic cancer (PC). Firstly, we found that lncRNA XIST was markedly upregulated in PC tissues and PC cell lines, respectively. Overexpression of XIST significantly promoted the proliferation, migration and invasion, and suppressed cell apoptosis of BxPC-3 cells; knockdown of XIST significantly inhibited the proliferation, migration and invasion, and accelerated cell apoptosis of PANC-1 cells. Furthermore, BxPC-3 and PANC-1 cells transfected with different vectors were injected subcutaneously into nude mice to explore tumor formation. We found that XIST promoted tumor formation in vivo. Subsequently, we found that microRNA-34a-5p (miR‑34a-5p) was downregulated in PC tissues, and predicted a poor prognosis in PC patients. In addition, the results indicated that miR-34a-5p is a target gene of XIST and was significantly negatively correlated with XIST. More importantly, we found that miR-34a-5p rescued the facilitation of malignant behavior mediated by XIST. These results indicated that XIST and miR-34a-5p may be potential effective therapeutic targets for PC.
Collapse
|
research-article |
7 |
32 |
5
|
Zhang L, Liu Q, Mu Q, Zhou D, Li H, Zhang B, Yin C. MiR-429 suppresses proliferation and invasion of breast cancer via inhibiting the Wnt/β-catenin signaling pathway. Thorac Cancer 2020; 11:3126-3138. [PMID: 32961031 PMCID: PMC7606009 DOI: 10.1111/1759-7714.13620] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] [Imported: 09/03/2024] Open
Abstract
BACKGROUND microRNAs (miRNAs) have been verified as molecular targets for regulating tumor proliferation, invasion, and metastasis in tumor progression. However, the relationship between miRNAs and cellular energy metabolism in breast cancer still needs to be clarified. This study aimed to investigate the role of miR-429 in breast cancer progression. METHODS Bioinformatic analyses were employed to detect the relationship between miR-429 and cancer-related signaling pathways. We used a Kaplan-Meier curve to analyze survival rate in patients with high or low expression of miR-429. We used real-time quantitative PCR (RT-qPCR) to detect the expression of miR-429 in different cell lines. Sh-con, over-miR-429, miR-429 inhibitor, and sh-inhibitor control were transfected. Colony formation and EDU assay were used to detect the proliferation of transfected cells. Wound healing and transwell assays were performed to detect the mobility and invasion ability of transfected cells. Western blot assay was used to detect relative protein expression in transfected cells and different tissues. Bioinformatic analyses were conducted to detect the target proteins expression in different breast cancer databases. Dual luciferase reporter assay was used to confirm the binding site between miR-429 and fibronectin 1 (FN1). RESULTS The results of our study indicate that MiR-429 and its target genes are associated with cancer-related signaling pathways and that higher miR-429 expression corresponds with a better prognosis. When miR-429 was overexpressed, the proliferation, invasion of MDA-MB-231 were inhibited. MiR-429 was able to suppress the Wnt/β-catenin signaling pathway, and FN1 overexpression could rescue the influence of over-miR-429. CONCLUSIONS The results of our study suggest that miR-429 suppresses the proliferation and invasion of breast cancer via inhibiting the Wnt/β-catenin signaling pathway.
Collapse
|
research-article |
5 |
25 |
6
|
Luan S, Wan H, Wang S, Li H, Zhang B. Efficacy and safety of olanzapine/fluoxetine combination in the treatment of treatment-resistant depression: a meta-analysis of randomized controlled trials. Neuropsychiatr Dis Treat 2017; 13:609-620. [PMID: 28280343 PMCID: PMC5338977 DOI: 10.2147/ndt.s127453] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] [Imported: 04/02/2025] Open
Abstract
BACKGROUND Whether olanzapine/fluoxetine combination (OFC) is superior to olanzapine or fluoxetine monotherapy in patients with treatment-resistant depression (TRD) remains controversial. Thus, we conducted this meta-analysis of randomized controlled trials (RCTs) to compare the efficacy and safety of OFC with olanzapine or fluoxetine monotherapy for patients with TRD. MATERIALS AND METHODS RCTs published in PubMed, Embase, Web of Science, and the ClinicalTrials.gov registry were systematically reviewed to assess the efficacy and safety of OFC. Outcomes included mean changes from baseline in Montgomery-Asberg Depression Rating Scale (MADRS), Clinical Global Impression-Severity (CGI-S), Hamilton Rating Scale for Anxiety (HAM-A), Brief Psychiatric Rating Scale (BPRS) scores, response rate, remission rate, and adverse events. Results were expressed with weighted mean difference (WMD) with 95% confidence intervals (CIs) and risk ratio (RR) with 95% CIs. RESULTS A total of five RCTs with 3,020 patients met the inclusion criteria and were included in this meta-analysis. Compared with olanzapine or fluoxetine monotherapy, OFC was associated with greater changes from baseline in MADRS (WMD =-3.37, 95% CI: -4.76, -1.99; P<0.001), HAM-A (WMD =-1.82, 95% CI: -2.25, -1.40; P<0.001), CGI-S (WMD =-0.37, 95% CI: -0.45, -0.28; P<0.001), and BPRS scores (WMD =-1.46, 95% CI: -2.16, -0.76; P<0.001). Moreover, OFC had significantly higher response rate (RR =1.35, 95% CI: 1.12, 1.63; P=0.001) and remission rate (RR =1.71, 95% CI: 1.31, 2.23; P<0.001). The incidence of treatment-related adverse events was similar between the OFC and monotherapy groups (RR =1.01, 95% CI: 0.94, 1.08; P=0.834). CONCLUSION OFC is more effective than olanzapine or fluoxetine monotherapy in the treatment of patients with TRD. Our results provided supporting evidence for the use of OFC in TRD. However, considering the limitations in this study, more large-scale, well-designed RCTs are needed to confirm these findings.
Collapse
|
research-article |
8 |
15 |
7
|
Li H, Mu Q, Zhang G, Shen Z, Zhang Y, Bai J, Zhang L, Zhou D, Zheng Q, Shi L, Su W, Yin C, Zhang B. Linc00426 accelerates lung adenocarcinoma progression by regulating miR-455-5p as a molecular sponge. Cell Death Dis 2020; 11:1051. [PMID: 33311443 PMCID: PMC7732829 DOI: 10.1038/s41419-020-03259-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] [Imported: 09/03/2024]
Abstract
Increasing lines of evidence indicate the role of long non-coding RNAs (LncRNAs) in gene regulation and tumor development. Hence, it is important to elucidate the mechanisms of LncRNAs underlying the proliferation, metastasis, and invasion of lung adenocarcinoma (LUAD). We employed microarrays to screen LncRNAs in LUAD tissues with and without lymph node metastasis and revealed their effects on LUAD. Among them, Linc00426 was selected for further exploration in its expression, the biological significance, and the underlying molecular mechanisms. Linc00426 exhibits ectopic expression in LUAD tissues and cells. The ectopic expression has been clinically linked to tumor size, lymphatic metastasis, and tumor differentiation of patients with LUAD. The deregulation of Linc00426 contributes to a notable impairment in proliferation, invasion, metastasis, and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Mechanistically, the deregulation of Linc00426 could reduce cytoskeleton rearrangement and matrix metalloproteinase expression. Meanwhile, decreasing the level of Linc00426 or increasing miR-455-5p could down-regulate the level of UBE2V1. Thus, Linc00426 may act as a competing endogenous RNA (ceRNA) to abate miR-455-5p-dependent UBE2V1 reduction. We conclude that Linc00426 accelerates LUAD progression by acting as a molecular sponge to regulate miR-455-5p, and may be a potential novel tumor marker for LUAD.
Collapse
|
research-article |
5 |
11 |
8
|
Zhou DD, Li HL, Liu W, Zhang LP, Zheng Q, Bai J, Hu YQ, Yin CG, Lv SJ, Zhang BG. miR-193a-3p Promotes the Invasion, Migration, and Mesenchymal Transition in Glioma through Regulating BTRC. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8928509. [PMID: 33628829 PMCID: PMC7886567 DOI: 10.1155/2021/8928509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022] [Imported: 09/03/2024]
Abstract
BACKGROUND The present study is aimed at exploring the specific expression of miR-193a-3p and the mechanism underlying miR-193a-3p-mediated mesenchymal transition (MT), invasion, and migration in glioma. METHODS The gene expression profile datasets of GSE39486 and GSE25676 were downloaded from the National Center for Biotechnology (NCBI). Data regarding the expression of miR-193a-3p and survival curves were derived from Chinese Glioma Genome Atlas (CGGA). Online websites including miRWalk, DIANA, and starbase were employed to predict the target genes for miR-193a-3p. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed by the Omicsbean online software. Module analysis of the protein-protein interaction (PPI) networks was performed by the plug-in Molecular Complex Detection (MCODE), and the degrees of genes were calculated by CytoHubba plug-in of Cytoscape. Survival curves were based on the Gene Expression Profile Interaction Analysis (GEPIA). Transwell, wound healing, and Western blot experiments were performed to investigate the effects of miR-193a-3p and beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) on the invasion, migration, and MT of glioma. RESULTS miR-193a-3p was highly expressed in glioma tissues and significantly correlated with poor survival in patients with glioma. The target genes for miR-193a-3p were involved in many cancer-related signaling pathways. The PPI showed 11 genes with both high degrees and MCODE scores in the network. Survival analysis demonstrated that the expression of BTRC was significantly correlated with the prognosis of patients with glioma. The results from the transwell, wound healing, and Western blot analyses suggested that miR-193a-3p promoted the invasion, migration, and MT of glioma cells, which could be reversed by BTRC. CONCLUSIONS miR-193a-3p was upregulated in patients with glioma and could affect the invasion, migration, and MT of glioma by regulating BTRC.
Collapse
|
research-article |
4 |
8 |
9
|
Bai J, Li H, Chen X, Chen L, Hu Y, Liu L, Zhao Y, Zuo W, Zhang B, Yin C. LncRNA-AC009948.5 promotes invasion and metastasis of lung adenocarcinoma by binding to miR-186-5p. Front Oncol 2022; 12:949951. [PMID: 36059662 PMCID: PMC9437580 DOI: 10.3389/fonc.2022.949951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] [Imported: 09/03/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) has been confirmed to play a crucial role in the development and progression of various cancer types. Here we evaluated the expression profiles of LncRNAs in Lung adenocarcinoma (LUAD) tissues and identified a novel LncRNA, termed LncRNA-AC009948.5. However, the role and potential molecular mechanisms of this novel LncRNA in LUAD carcinogenesis is unknown. METHODS Regarding the public databases and based on integrating bioinformatics analyses, we determined whether LncRNA-AC009948.5 exerts its oncogenic functions via sponging miR-186-5p in LUAD. Furthermore, we determined whether NCAPG2 was a downstream target of miR-186-5p. Moreover, the expression level and biological function of LncRNA-AC009948.5 in LUAD were determined by qRT-PCR, cell apoptosis, Edu, transwell, wound healing and western blot assays. Besides, xenograft mice were established for validation. We explored the expression of LncRNA-AC009948.5 and its roles in the prognosis of LUAD. RESULTS LncRNA expression microarray data indicate that LncRNA-AC009948.5 is upregulated in LUAD samples. The present study confirmed the upregulation of LncRNA-AC009948.5 in LUAD tissues and cells. Encreased expression of LncRNA-AC009948.5 was correlated with tumor size, lymph nodes, distant metastasis and histological grade, and poor prognosis.LncRNA-AC009948.5 knockdown significantly inhibited cell proliferation, migration, and invasion in vitro, as well as tumorigenesis and metastasis in vivo. Conversely, LncRNA-AC009948.5 upregulated had opposite effects. Mechanistically, we elucidated that LncRNA-AC009948.5 could directly bind to miR-186-5p and subsequently suppress expression of the target gene of NCAPG2. CONCLUSIONS LncRNA-AC009948.5 promotes lung adenocarcinoma cells metastasis via the miR-186-5p/NCAPG2 axis and activation of the EMT process. Which may serve as potential targets for the treatment of LUAD in the future.
Collapse
|
research-article |
3 |
6 |
10
|
Gao Y, Shi L, Cao Z, Zhu X, Li F, Wang R, Xu J, Zhong J, Zhang B, Lu S. Telocinobufagin inhibits the epithelial-mesenchymal transition of breast cancer cells through the phosphoinositide 3-kinase/protein kinase B/extracellular signal-regulated kinase/Snail signaling pathway. Oncol Lett 2018; 15:7837-7845. [PMID: 29725474 PMCID: PMC5920466 DOI: 10.3892/ol.2018.8349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 02/13/2018] [Indexed: 12/18/2022] [Imported: 09/03/2024] Open
Abstract
Telocinobufagin (TBG), an active ingredient of Venenumbufonis, exhibits an immunomodulatory activity. However, its antimetastatic activity in breast cancer remains unknown. The present study investigated whether TBG prevents breast cancer metastasis and evaluated its regulatory mechanism. TBG inhibited the migration and invasion of 4T1 breast cancer cells. Furthermore, TBG triggered the collapse of F-actin filaments in breast cancer. The epithelial-mesenchymal transition (EMT) markers, vimentin and fibronectin, were downregulated following TBG treatment. However, E-cadherin was upregulated following TBG treatment. Snail, a crucial transcriptional factor of EMT, was downregulated following TBG treatment. Signaling pathway markers, including phosphorylated protein kinase B (P-Akt), p-mechanistic target of rapamycin (mTOR) and p-extracellular signal-regulated kinase (ERK), were decreased following TBG treatment. The same results were obtained from in vivo experiments. In conclusion, in vitro and in vivo experiments reveal that TBG inhibited migration, invasion and EMT via the phosphoinositide 3-kinase (PI3K)/Akt/ERK/Snail signaling pathway in breast cancer.
Collapse
|
research-article |
7 |
2 |
11
|
Cui JY, Ma J, Gao XX, Sheng ZM, Pan ZX, Shi LH, Zhang BG. Unraveling the role of cancer-associated fibroblasts in colorectal cancer. World J Gastrointest Oncol 2024; 16:4565-4578. [PMID: 39678792 PMCID: PMC11577382 DOI: 10.4251/wjgo.v16.i12.4565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 11/12/2024] [Imported: 01/12/2025] Open
Abstract
Within the intricate milieu of colorectal cancer (CRC) tissues, cancer-associated fibroblasts (CAFs) act as pivotal orchestrators, wielding considerable influence over tumor progression. This review endeavors to dissect the multifaceted functions of CAFs within the realm of CRC, thereby highlighting their indispensability in fostering CRC malignant microenvironment and indicating the development of CAFs-targeted therapeutic interventions. Through a comprehensive synthesis of current knowledge, this review delineates insights into CAFs-mediated modulation of cancer cell proliferation, invasiveness, immune evasion, and neovascularization, elucidating the intricate web of interactions that sustain the pro-tumor metabolism and secretion of multiple factors. Additionally, recognizing the high level of heterogeneity within CAFs is crucial, as they encompass a range of subtypes, including myofibroblastic CAFs, inflammatory CAFs, antigen-presenting CAFs, and vessel-associated CAFs. Innovatively, the symbiotic relationship between CAFs and the intestinal microbiota is explored, shedding light on a novel dimension of CRC pathogenesis. Despite remarkable progress, the orchestrated dynamic functions of CAFs remain incompletely deciphered, underscoring the need for continued research endeavors for therapeutic advancements in CRC management.
Collapse
|
Review |
1 |
|
12
|
Dong H, Sun K, Wang X, Cui M, Ma Y, Li K, Duan W, Zhang H, Zhang L, Sheng Z, He M, Zhang B. Repurposed genipin targeting UCP2 exhibits antitumor activity through inducing ferroptosis in glioblastoma. Acta Biochim Biophys Sin (Shanghai) 2024; 57:403-414. [PMID: 39523775 PMCID: PMC11986454 DOI: 10.3724/abbs.2024168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/20/2024] [Indexed: 11/16/2024] [Imported: 05/04/2025] Open
Abstract
Uncoupling protein-2 (UCP2) controls the antioxidant response and redox homeostasis in cancer and is considered a potent molecular target for cancer treatment. However, the specific mechanism of UCP2 inhibition and its role in glioblastoma (GBM) have not yet been elucidated. Here, we attempt to identify a UCP2 inhibitor and study the underlying molecular mechanism in GBM. Bioinformatics analysis and immunohistochemistry are used to validate the high expression of UCP2 in GBM and its prognostic significance. Drug intervention and tumor xenograft experiments are conducted to determine the inhibitory effect of genipin, a UCP2 inhibitor, on UCP2. The mitochondrial membrane potential and key ferroptosis genes are examined to determine the occurrence of ferroptosis. High expression of UCP2 in GBM is associated with poor prognosis, and inhibiting UCP2 can alleviate the malignant behavior of GBM tumors. Genipin can downregulate the expression of GPX4 and upregulate the expression of ACSL4 by inhibiting UCP2, leading to ferroptosis and alleviating the malignant behavior of tumors. In summary, UCP2 is a potential therapeutic target for GBM. Genipin, which targets UCP2, effectively inhibits GBM development by inducing ferroptosis in vivo and in vitro. These findings indicate that genipin treatment based on UCP2 targeting has potential therapeutic applications with a clinical perspective for the treatment of GBM patients.
Collapse
|
research-article |
1 |
|
13
|
Duan WL, Wang XJ, Guo A, Gu LH, Sheng ZM, Luo H, Yang LX, Wang WH, Zhang BG. miR-141-3p promotes paclitaxel resistance by attenuating ferroptosis via the Keap1-Nrf2 signaling pathway in breast cancer. J Cancer 2024; 15:5622-5635. [PMID: 39308683 PMCID: PMC11414605 DOI: 10.7150/jca.96608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/08/2024] [Indexed: 09/25/2024] [Imported: 01/12/2025] Open
Abstract
Purpose: Breast cancer poses a huge threat to the lives and health of women worldwide. However, drug resistance makes the treatment of breast cancer challenging. This study aims to investigate the effect of miR-141-3p on paclitaxel resistance and its underlying mechanisms in breast cancer. Methods: Using bioinformatics analysis and qRT-PCR to explore the potential molecule miR-141-3p. Specific binding of miR-141-3p to Keap1 was determined by using a dual luciferase reporter assay. qRT-PCR and Western blot were utilized to observe the expression of miR-141-3p, Keap1, Nrf2, SLC7A11 and GPX4. GSH/GSSG content, MDA content and JC-1 assays were used to observe the ferroptosis levels of breast cancer cells. CCK-8 assay was used to observe the cell viability of breast cancer cells. Tumor subcutaneous transplantation experiment was used to understand the effect of miR-141-3p on paclitaxel resistance in breast cancer in vivo. Results: In the present study, miR-141-3p was found to be highly expressed and associated with poor prognosis in breast cancer. miR-141-3p inhibited Keap1 expression, promoted Nrf2 expression, and facilitated paclitaxel resistance in breast cancer cells. Inhibition of miR-141-3p promoted Keap1 expression, inhibited Nrf2 and its downstream SLC7A11-GSH-GPX4 signaling pathway, as well as promoted ferroptosis in cancer cells, and inhibited paclitaxel and RSL3 resistance. ML385 blocks the effect of miR-141-3p on paclitaxel resistance and ferroptosis resistance in breast cancer cells. In vivo, miR-141-3p mimics promoted paclitaxel resistance, whereas miR-141-3p inhibitors inhibited paclitaxel resistance in breast cancer cells. Conclusion: This work revealed that modulation of the Keap1-Nrf2 signaling pathway by miR-141-3p promoted paclitaxel resistance via regulating ferroptosis in breast cancer cells.
Collapse
|
research-article |
1 |
|
14
|
Duan WL, Wang XJ, Ma YP, Sheng ZM, Dong H, Zhang LY, Zhang BG, He MT. Therapeutic strategies targeting the NLRP3‑mediated inflammatory response and pyroptosis in cerebral ischemia/reperfusion injury (Review). Mol Med Rep 2024; 29:46. [PMID: 38275110 PMCID: PMC10835666 DOI: 10.3892/mmr.2024.13170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] [Imported: 09/03/2024] Open
Abstract
Ischemic stroke poses a major threat to human health. Therefore, the molecular mechanisms of cerebral ischemia/reperfusion injury (CIRI) need to be further clarified, and the associated treatment approaches require exploration. The NOD‑like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome serves an important role in causing CIRI, and its activation exacerbates the underlying injury. Activation of the NLRP3 inflammasome triggers the maturation and production of the inflammatory molecules IL‑1β and IL‑18, as well as gasdermin‑D‑mediated pyroptosis and CIRI damage. Thus, the NLRP3 inflammasome may be a viable target for the treatment of CIRI. In the present review, the mechanisms of the NLRP3 inflammasome in the intense inflammatory response and pyroptosis induced by CIRI are discussed, and the therapeutic strategies that target the NLRP3‑mediated inflammatory response and pyroptosis in CIRI are summarized. At present, certain drugs have already been studied, highlighting future therapeutic perspectives.
Collapse
|
Review |
1 |
|
15
|
Hao C, Sheng Z, Wang W, Feng R, Zheng Y, Xiao Q, Zhang B. Tumor-derived exosomal miR-148b-3p mediates M2 macrophage polarization via TSC2/mTORC1 to promote breast cancer migration and invasion. Thorac Cancer 2023; 14:1477-1491. [PMID: 37144254 PMCID: PMC10234784 DOI: 10.1111/1759-7714.14891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] [Imported: 09/03/2024] Open
Abstract
BACKGROUND Emerging evidence has revealed that tumor-associated macrophages (TAMs) and exosomes play a crucial role in the microenvironment for tumor growth. However, the mechanisms through which exosomal miRNAs modulate TAMs and tumor development in breast cancer are not fully understood. METHODS We constructed a macrophage model and an indirect coculture system consist of breast cancer cells and macrophages. Exosomes were isolated from BC cells culture supernatant and identified by transmission electron microscopy, Western blot and Nanosight LM10 system. The expression of miR-148b-3p in exosomes was determined by qRT-PCR and the effect of exosomal miR-148b-3p on macrophage polarization was measured using qRT-PCR and ELISA. The proliferation, migration and invasion of BC cells were estimated by EdU, wound healing assay and transwell assay. We employed bioinformatics, luciferase reporter assay and Western blot to identify the target gene of miR-148b-3p. Western blot was used to clarify the mechanism of exosomal miR-148b-3p mediated the crosstalk between BC cells and M2 macrophages. RESULTS Cancer-derived exosomes could induce M2 polarization of macrophages, which promoted the migration and invasion of breast cancer cells. We found that exosomal miR-148b-3p was overexpressed in breast cancer cell-derived exosomes and correlated with lymph node metastasis, late tumor stage and worse prognosis. Upregulated miR-148b-3p expression in exosomes modulated macrophage polarization by targeting TSC2, which promoted the proliferation and might affect migration and invasion of breast cancer cells. Interestingly, we found that exosomal miR-148b-3p could induce M2 macrophage polarization via the TSC2/mTORC1 signaling pathway in breast cancer. CONCLUSION Overall, our study elucidated that miR-148b-3p could be transported by exosomes from breast cancer cells to surrounding macrophages and induced M2 polarization by targeting TSC2, providing novel insights for breast cancer therapy.
Collapse
|
research-article |
2 |
|
16
|
Cui M, Dong H, Duan W, Wang X, Liu Y, Shi L, Zhang B. The relationship between cancer associated fibroblasts biomarkers and prognosis of breast cancer: a systematic review and meta-analysis. PeerJ 2024; 12:e16958. [PMID: 38410801 PMCID: PMC10896086 DOI: 10.7717/peerj.16958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/25/2024] [Indexed: 02/28/2024] [Imported: 09/03/2024] Open
Abstract
BACKGROUND To elucidate the relationship between cancer-associated fibroblast (CAFs) biomarkers and the prognosis of breast cancer patients for individualized CAFs-targeting treatment. METHODOLOGY PubMed, Web of Science, Cochrane, and Embase databases were searched for CAFs-related studies of breast cancer patients from their inception to September, 2023. Meta-analysis was performed using R 4.2.2 software. Sensitivity analyses were performed to explore the sources of heterogeneity. Funnel plot and Egger's test were used to assess the publication bias. RESULTS Twenty-seven studies including 6,830 patients were selected. Univariate analysis showed that high expression of platelet-derived growth factor receptor-β (PDGFR-β) (P = 0.0055), tissue inhibitor of metalloproteinase-2 (TIMP-2) (P < 0.0001), matrix metalloproteinase (MMP) 9 (P < 0.0001), MMP 11 (P < 0.0001) and MMP 13 (P = 0.0009) in CAFs were correlated with reduced recurrence-free survival (RFS)/disease-free survival (DFS)/metastasis-free survival (MFS)/event-free survival (EFS) respectively. Multivariate analysis showed that high expression of α-smooth muscle actin (α-SMA) (P = 0.0002), podoplanin (PDPN) (P = 0.0008), and PDGFR-β (P = 0.0470) in CAFs was associated with reduced RFS/DFS/MFS/EFS respectively. Furthermore, PDPN and PDGFR-β expression in CAFs of poorly differentiated breast cancer patients were higher than that of patients with relatively better differentiated breast cancer. In addition, there is a positive correlation between the expression of PDPN and human epidermal growth factor receptor-2 (HER-2). CONCLUSIONS The high expression of α-SMA, PDPN, PDGFR-β in CAFs leads to worse clinical outcomes in breast cancer, indicating their roles as prognostic biomarkers and potential therapeutic targets.
Collapse
|
Meta-Analysis |
1 |
|
17
|
Dong H, Ma YP, Cui MM, Qiu ZH, He MT, Zhang BG. Recent advances in potential therapeutic targets of ferroptosis‑associated pathways for the treatment of stroke (Review). Mol Med Rep 2024; 30:128. [PMID: 38785160 PMCID: PMC11134507 DOI: 10.3892/mmr.2024.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] [Imported: 09/03/2024] Open
Abstract
Stroke is a severe neurological disease that is associated with high rates of morbidity and mortality, and the underlying pathological processes are complex. Ferroptosis fulfills a significant role in the progression and treatment of stroke. It is well established that ferroptosis is a type of programmed cell death that is distinct from other forms or types of cell death. The process of ferroptosis involves multiple signaling pathways and regulatory mechanisms that interact with mechanisms inherent to stroke development. Inducers and inhibitors of ferroptosis have been shown to exert a role in the onset of this cell death process. Furthermore, it has been shown that interfering with ferroptosis affects the occurrence of stroke, indicating that targeting ferroptosis may offer a promising therapeutic approach for treating patients of stroke. Hence, the present review aimed to summarize the latest progress that has been made in terms of using therapeutic interventions for ferroptosis as treatment targets in cases of stroke. It provides an overview of the relevant pathways and molecular mechanisms that have been investigated in recent years, highlighting the roles of inducers and inhibitors of ferroptosis in stroke. Additionally, the intervention potential of various types of Traditional Chinese Medicine is also summarized. In conclusion, the present review provides a comprehensive overview of the potential therapeutic targets afforded by ferroptosis‑associated pathways in stroke, offering new insights into how ferroptosis may be exploited in the treatment of stroke.
Collapse
|
Review |
1 |
|
18
|
Li H, Mu Q, Zhang G, Shen Z, Zhang Y, Bai J, Zhang L, Zhou D, Zheng Q, Shi L, Su W, Yin C, Zhang B. Author Correction: Linc00426 accelerates lung adenocarcinoma progression by regulating miR-455-5p as a molecular sponge. Cell Death Dis 2024; 15:564. [PMID: 39103357 PMCID: PMC11300437 DOI: 10.1038/s41419-024-06952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] [Imported: 09/03/2024]
|
Published Erratum |
1 |
|
19
|
Wang W, Zhang B, Wu Z, Hou C, Li M, Zhang T. Pathological features and immunohistochemical characteristics of clear cell (glycogen-rich) urothelial carcinoma: a case report and systematic review of the literature. Discov Oncol 2025; 16:132. [PMID: 39920483 PMCID: PMC11806162 DOI: 10.1007/s12672-025-01813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025] [Imported: 04/02/2025] Open
Abstract
Clear cell (glycogen-rich) urothelial carcinoma is an exceedingly rare variant of invasive urothelial carcinoma, distinguished by the presence of abundant cytoplasmic glycogen, which imparts a clear appearance to the tumor cells under histological examination. In this case report, the diagnosis was established through histopathological evaluation with hematoxylin and eosin (HE) staining, immunohistochemical analysis, and the identification of significant cytoplasmic glycogen accumulation. The patient, an 89-year-old male, was admitted on July 24, 2024, presenting with painless gross hematuria persisting for one week. Abdominal ultrasound and CT urography revealed a soft tissue mass on the right side of the bladder wall, measuring 30 × 30 mm, with a broad base connected to the bladder wall. The mass exhibited significant enhancement on contrast-enhanced scans, raising suspicion for malignancy. Microscopic examination revealed two distinct tumor cell morphologies: the conventional urothelial carcinoma pattern and a clear nest-like morphology, with the latter comprising over 70% of the tumor. Immunohistochemical staining for GATA-3, CK7, PAS, PAS-D, CAIX, PAX8, and RCC confirmed the diagnosis of clear cell (glycogen-rich) urothelial carcinoma. This rare variant of invasive urothelial carcinoma underscores the need for detailed diagnostic analysis to inform prognosis and treatment strategies. There have been similar cases reported before, involving a 57-year-old male-patient (Sahetia et al. in Ind J Cancer 60:575-577, 2023).
Collapse
|
research-article |
1 |
|