51
|
Wang WH, Ma CG, Cui YS, Bai BY, Sheng ZM, Liu J, Li A, Zhang BG. Role of Prognostic Marker PRR11 in Immune Infiltration for Facilitating Lung Adenocarcinoma Progression. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2023; 36:862-868. [PMID: 37803898 DOI: 10.3967/bes2023.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/19/2023] [Indexed: 10/08/2023] [Imported: 09/03/2024]
Abstract
The PRR11 gene (Proline Rich 11) has been implicated in lung cancer; however, relationship between PRR11 and immune infiltration is not clearly understood. In this study, we used The Cancer Genome Atlas (TCGA) data to analyze the lung adenocarcinoma patients; PRR11 gene expression, clinicopathological findings, enrichment, and immune infiltration were also studied. PRR11 immune response expression assays in lung adenocarcinoma (LUAD) were performed using TIMER, and statistical analysis and visualization were conducted using R software. All data were verified using Gene Expression Profiling Interactive Analysis (GEPIA), and the Human Protein Atlas (HPA). We found that PRR11 was an important prognostic factor in patients with LUAD. PRR11 expression was correlated with tumor stage and progression. Gene Set Enrichment Analysis (GSEA) showed that PRR11 was enriched in the cell cycle regulatory pathways. Immune infiltration analysis revealed that the number of T helper 2 (Th2) cells increased when PRR11 was overexpressed. These results confirm the role of PRR11 as a prognostic marker of lung adenocarcinoma by controlling the cell cycle and influencing the immune system to facilitate lung cancer progression.
Collapse
|
Letter |
2 |
|
52
|
Duan WL, Wang XJ, Guo A, Gu LH, Sheng ZM, Luo H, Yang LX, Wang WH, Zhang BG. miR-141-3p promotes paclitaxel resistance by attenuating ferroptosis via the Keap1-Nrf2 signaling pathway in breast cancer. J Cancer 2024; 15:5622-5635. [PMID: 39308683 PMCID: PMC11414605 DOI: 10.7150/jca.96608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/08/2024] [Indexed: 09/25/2024] [Imported: 01/12/2025] Open
Abstract
Purpose: Breast cancer poses a huge threat to the lives and health of women worldwide. However, drug resistance makes the treatment of breast cancer challenging. This study aims to investigate the effect of miR-141-3p on paclitaxel resistance and its underlying mechanisms in breast cancer. Methods: Using bioinformatics analysis and qRT-PCR to explore the potential molecule miR-141-3p. Specific binding of miR-141-3p to Keap1 was determined by using a dual luciferase reporter assay. qRT-PCR and Western blot were utilized to observe the expression of miR-141-3p, Keap1, Nrf2, SLC7A11 and GPX4. GSH/GSSG content, MDA content and JC-1 assays were used to observe the ferroptosis levels of breast cancer cells. CCK-8 assay was used to observe the cell viability of breast cancer cells. Tumor subcutaneous transplantation experiment was used to understand the effect of miR-141-3p on paclitaxel resistance in breast cancer in vivo. Results: In the present study, miR-141-3p was found to be highly expressed and associated with poor prognosis in breast cancer. miR-141-3p inhibited Keap1 expression, promoted Nrf2 expression, and facilitated paclitaxel resistance in breast cancer cells. Inhibition of miR-141-3p promoted Keap1 expression, inhibited Nrf2 and its downstream SLC7A11-GSH-GPX4 signaling pathway, as well as promoted ferroptosis in cancer cells, and inhibited paclitaxel and RSL3 resistance. ML385 blocks the effect of miR-141-3p on paclitaxel resistance and ferroptosis resistance in breast cancer cells. In vivo, miR-141-3p mimics promoted paclitaxel resistance, whereas miR-141-3p inhibitors inhibited paclitaxel resistance in breast cancer cells. Conclusion: This work revealed that modulation of the Keap1-Nrf2 signaling pathway by miR-141-3p promoted paclitaxel resistance via regulating ferroptosis in breast cancer cells.
Collapse
|
research-article |
1 |
|
53
|
Duan WL, Wang XJ, Ma YP, Sheng ZM, Dong H, Zhang LY, Zhang BG, He MT. Therapeutic strategies targeting the NLRP3‑mediated inflammatory response and pyroptosis in cerebral ischemia/reperfusion injury (Review). Mol Med Rep 2024; 29:46. [PMID: 38275110 PMCID: PMC10835666 DOI: 10.3892/mmr.2024.13170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] [Imported: 09/03/2024] Open
Abstract
Ischemic stroke poses a major threat to human health. Therefore, the molecular mechanisms of cerebral ischemia/reperfusion injury (CIRI) need to be further clarified, and the associated treatment approaches require exploration. The NOD‑like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome serves an important role in causing CIRI, and its activation exacerbates the underlying injury. Activation of the NLRP3 inflammasome triggers the maturation and production of the inflammatory molecules IL‑1β and IL‑18, as well as gasdermin‑D‑mediated pyroptosis and CIRI damage. Thus, the NLRP3 inflammasome may be a viable target for the treatment of CIRI. In the present review, the mechanisms of the NLRP3 inflammasome in the intense inflammatory response and pyroptosis induced by CIRI are discussed, and the therapeutic strategies that target the NLRP3‑mediated inflammatory response and pyroptosis in CIRI are summarized. At present, certain drugs have already been studied, highlighting future therapeutic perspectives.
Collapse
|
Review |
1 |
|
54
|
Hao C, Sheng Z, Wang W, Feng R, Zheng Y, Xiao Q, Zhang B. Tumor-derived exosomal miR-148b-3p mediates M2 macrophage polarization via TSC2/mTORC1 to promote breast cancer migration and invasion. Thorac Cancer 2023; 14:1477-1491. [PMID: 37144254 PMCID: PMC10234784 DOI: 10.1111/1759-7714.14891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] [Imported: 09/03/2024] Open
Abstract
BACKGROUND Emerging evidence has revealed that tumor-associated macrophages (TAMs) and exosomes play a crucial role in the microenvironment for tumor growth. However, the mechanisms through which exosomal miRNAs modulate TAMs and tumor development in breast cancer are not fully understood. METHODS We constructed a macrophage model and an indirect coculture system consist of breast cancer cells and macrophages. Exosomes were isolated from BC cells culture supernatant and identified by transmission electron microscopy, Western blot and Nanosight LM10 system. The expression of miR-148b-3p in exosomes was determined by qRT-PCR and the effect of exosomal miR-148b-3p on macrophage polarization was measured using qRT-PCR and ELISA. The proliferation, migration and invasion of BC cells were estimated by EdU, wound healing assay and transwell assay. We employed bioinformatics, luciferase reporter assay and Western blot to identify the target gene of miR-148b-3p. Western blot was used to clarify the mechanism of exosomal miR-148b-3p mediated the crosstalk between BC cells and M2 macrophages. RESULTS Cancer-derived exosomes could induce M2 polarization of macrophages, which promoted the migration and invasion of breast cancer cells. We found that exosomal miR-148b-3p was overexpressed in breast cancer cell-derived exosomes and correlated with lymph node metastasis, late tumor stage and worse prognosis. Upregulated miR-148b-3p expression in exosomes modulated macrophage polarization by targeting TSC2, which promoted the proliferation and might affect migration and invasion of breast cancer cells. Interestingly, we found that exosomal miR-148b-3p could induce M2 macrophage polarization via the TSC2/mTORC1 signaling pathway in breast cancer. CONCLUSION Overall, our study elucidated that miR-148b-3p could be transported by exosomes from breast cancer cells to surrounding macrophages and induced M2 polarization by targeting TSC2, providing novel insights for breast cancer therapy.
Collapse
|
research-article |
2 |
|
55
|
Sheng Z, Wang X, Zheng Y, Duan W, Cui J, Gu L, Gao X, Ma J, Cui M, Luo H, Wang W, Shi L, Li H, Zhang B. Genome-wide characterization of extrachromosomal circular DNA in breast cancer and its potential role in carcinogenesis and cancer progression. Cell Rep 2024; 43:114845. [PMID: 39418165 DOI: 10.1016/j.celrep.2024.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/01/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] [Imported: 01/12/2025] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are defined as distinct genomic entities of circular and mobile DNA molecules, but their molecular functions in and impact on breast cancer (BC) are rarely known. This study used Circle-seq to analyze eccDNAs from 19 BC tissues and 17 adjacent normal tissues. We found that eccDNAs are present on all chromosomes and enriched in seven eccDNA hotspot genes (HSGs) associated with the BC pathway. Several eccDNAs harboring entire genes (eccGenes) and eccDNAs harboring miRNAs (eccMIRs) were identified and linked to cancer-relevant pathways. Synthetic eccMIR6748, eccMIR6508, and eccMIR3142 elevated miRNA expression in MCF-7 cells, with eccMIR6748 promoting BC cell migration and invasion by upregulating miR-6748, which suppresses tumor suppressor candidate factor 5 (TUSC5) at the post-transcriptional level. eccMIR6748 also influences BC progression via the p38 mitogen-activated protein kinase (MAPK) signaling pathway. These findings suggest that eccDNAs, which contain functional genomic segments, play a role in BC initiation and progression, offering a dynamic source of genomic plasticity and potential as biomarkers and therapeutic targets.
Collapse
|
|
1 |
|
56
|
Cui M, Dong H, Duan W, Wang X, Liu Y, Shi L, Zhang B. The relationship between cancer associated fibroblasts biomarkers and prognosis of breast cancer: a systematic review and meta-analysis. PeerJ 2024; 12:e16958. [PMID: 38410801 PMCID: PMC10896086 DOI: 10.7717/peerj.16958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/25/2024] [Indexed: 02/28/2024] [Imported: 09/03/2024] Open
Abstract
BACKGROUND To elucidate the relationship between cancer-associated fibroblast (CAFs) biomarkers and the prognosis of breast cancer patients for individualized CAFs-targeting treatment. METHODOLOGY PubMed, Web of Science, Cochrane, and Embase databases were searched for CAFs-related studies of breast cancer patients from their inception to September, 2023. Meta-analysis was performed using R 4.2.2 software. Sensitivity analyses were performed to explore the sources of heterogeneity. Funnel plot and Egger's test were used to assess the publication bias. RESULTS Twenty-seven studies including 6,830 patients were selected. Univariate analysis showed that high expression of platelet-derived growth factor receptor-β (PDGFR-β) (P = 0.0055), tissue inhibitor of metalloproteinase-2 (TIMP-2) (P < 0.0001), matrix metalloproteinase (MMP) 9 (P < 0.0001), MMP 11 (P < 0.0001) and MMP 13 (P = 0.0009) in CAFs were correlated with reduced recurrence-free survival (RFS)/disease-free survival (DFS)/metastasis-free survival (MFS)/event-free survival (EFS) respectively. Multivariate analysis showed that high expression of α-smooth muscle actin (α-SMA) (P = 0.0002), podoplanin (PDPN) (P = 0.0008), and PDGFR-β (P = 0.0470) in CAFs was associated with reduced RFS/DFS/MFS/EFS respectively. Furthermore, PDPN and PDGFR-β expression in CAFs of poorly differentiated breast cancer patients were higher than that of patients with relatively better differentiated breast cancer. In addition, there is a positive correlation between the expression of PDPN and human epidermal growth factor receptor-2 (HER-2). CONCLUSIONS The high expression of α-SMA, PDPN, PDGFR-β in CAFs leads to worse clinical outcomes in breast cancer, indicating their roles as prognostic biomarkers and potential therapeutic targets.
Collapse
|
Meta-Analysis |
1 |
|
57
|
Dong H, Ma YP, Cui MM, Qiu ZH, He MT, Zhang BG. Recent advances in potential therapeutic targets of ferroptosis‑associated pathways for the treatment of stroke (Review). Mol Med Rep 2024; 30:128. [PMID: 38785160 PMCID: PMC11134507 DOI: 10.3892/mmr.2024.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] [Imported: 09/03/2024] Open
Abstract
Stroke is a severe neurological disease that is associated with high rates of morbidity and mortality, and the underlying pathological processes are complex. Ferroptosis fulfills a significant role in the progression and treatment of stroke. It is well established that ferroptosis is a type of programmed cell death that is distinct from other forms or types of cell death. The process of ferroptosis involves multiple signaling pathways and regulatory mechanisms that interact with mechanisms inherent to stroke development. Inducers and inhibitors of ferroptosis have been shown to exert a role in the onset of this cell death process. Furthermore, it has been shown that interfering with ferroptosis affects the occurrence of stroke, indicating that targeting ferroptosis may offer a promising therapeutic approach for treating patients of stroke. Hence, the present review aimed to summarize the latest progress that has been made in terms of using therapeutic interventions for ferroptosis as treatment targets in cases of stroke. It provides an overview of the relevant pathways and molecular mechanisms that have been investigated in recent years, highlighting the roles of inducers and inhibitors of ferroptosis in stroke. Additionally, the intervention potential of various types of Traditional Chinese Medicine is also summarized. In conclusion, the present review provides a comprehensive overview of the potential therapeutic targets afforded by ferroptosis‑associated pathways in stroke, offering new insights into how ferroptosis may be exploited in the treatment of stroke.
Collapse
|
Review |
1 |
|
58
|
Fan L, Wang X, Cheng C, Wang S, Li X, Cui J, Zhang B, Shi L. Inhibitory Effect and Mechanism of Ursolic Acid on Cisplatin-Induced Resistance and Stemness in Human Lung Cancer A549 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:1307323. [PMID: 37089712 PMCID: PMC10121351 DOI: 10.1155/2023/1307323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/21/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023] [Imported: 09/03/2024]
Abstract
The survival rate of lung cancer patients remains low largely due to chemotherapy resistance during treatment, and cancer stem cells (CSCs) may hold the key to targeting this resistance. Cisplatin is a chemotherapy drug commonly used in cancer treatment, yet the mechanisms of intrinsic cisplatin resistance have not yet been determined because lung CSCs are hard to identify. In this paper, we proposed a mechanism relating to the function of ursolic acid (UA), a new drug, in reversing the cisplatin resistance of lung cancer cells regulated by CSCs. Human lung cancer cell line A549 was selected as the model cell and treated to become a cisplatin-resistant lung cancer cell line (A549-CisR), which was less sensitive to cisplatin and showed an enhanced capability of tumor sphere formation. Furthermore, in the A549-CisR cell line expression, levels of pluripotent stem cell transcription factors Oct-4, Sox-2, and c-Myc were increased, and activation of the Jak2/Stat3 signaling pathway was promoted. When UA was applied to the cisplatin-resistant cells, levels of the pluripotent stem cell transcription factors were restrained by the inhibition of the Jak2/Stat3 signaling pathway, which reduced the enrichment of tumor stem cells, and in turn, reversed cisplatin resistance in lung cancer cells. Hence, as a potential antitumor drug, UA may be able to inhibit the enrichment of the lung CSC population by inhibiting the activation of the Jak2-Stat3 pathway and preventing the resistance of lung cancer cells to cisplatin.
Collapse
|
research-article |
2 |
|
59
|
Gao Y, Shi L, Cao Z, Zhu X, Li F, Wang R, Xu J, Zhong J, Zhang B, Lu S. Erratum: Telocinobufagin inhibits the epithelial-to-mesenchymal transition of breast cancer cells through the PI3K/Akt/Snail signaling pathway. Oncol Lett 2021; 21:242. [PMID: 33664806 PMCID: PMC7882880 DOI: 10.3892/ol.2021.12503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] [Imported: 09/03/2024] Open
Abstract
[This corrects the article DOI: 10.3892/ol.2018.8349.].
Collapse
|
Published Erratum |
4 |
|
60
|
Ding D, Zhang K, Yang H, Liu J, Yao H, Zhang B. Polyelectrolyte complex coatings based on PSS/CTAB for enhanced antifogging and antibacterial performances. PROGRESS IN ORGANIC COATINGS 2025; 199:108957. [DOI: 10.1016/j.porgcoat.2024.108957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] [Imported: 04/02/2025]
|
|
1 |
|
61
|
Sheng Z, Wang X, Ding X, Zheng Y, Guo A, Cui J, Ma J, Duan W, Dong H, Zhang H, Cui M, Su W, Zhang B. Exosomal miRNA-92a derived from cancer-associated fibroblasts promote invasion and metastasis in breast cancer by regulating G3BP2. Cell Signal 2024; 119:111182. [PMID: 38640983 DOI: 10.1016/j.cellsig.2024.111182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024] [Imported: 09/03/2024]
Abstract
Cancer-associated Fibroblasts (CAFs) exert a tumor-promoting effect in various cancers, including breast cancer. CAFs secrete exosomes containing miRNA and proteins, influencing the tumor microenvironment. In this study, we identified CAF-derived exosomes that transport functional miR-92a from CAFs to tumor cells, thereby intensifying the aggressiveness of breast cancer. CAFs downregulate the expression of G3BP2 in breast cancer cells, and a significant elevation in miR-92a levels in CAF-derived exosomes was observed. Both in vitro and in vivo experiments demonstrate that miR-92a enhances breast cancer cell migration and invasion by directly targeting G3BP2, functioning as a tumor-promoting miRNA. We validated that the RNA-binding proteins SNRPA facilitate the transfer of CAF-derived exosomal miR-92a to breast cancer cells. The reduction of G3BP2 protein by CAF-derived exosomes releases TWIST1 into the nucleus, promoting epithelial-mesenchymal transition (EMT) and further exacerbating breast cancer progression. Moreover, CAF-derived exosomal miR-92a induces tumor invasion and metastasis in mice. Overall, our study reveals that CAF-derived exosomal miR-92a serves as a promoter in the migration and invasion of breast cancer cells by reducing G3BP2 and may represent a potential novel tumor marker for breast cancer.
Collapse
|
|
1 |
|
62
|
Zhang B, Zhang Y, Ma S, Zhang H. Slippery liquid-infused porous surface (SLIPS) with super-repellent and contact-killing antimicrobial performances. Colloids Surf B Biointerfaces 2022; 220:112878. [PMID: 36215899 DOI: 10.1016/j.colsurfb.2022.112878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 10/14/2022] [Imported: 04/02/2025]
Abstract
Slippery liquid-filled porous surfaces (SLIPS) have attracted extensive research attention for their unique repellent properties, but such surfaces typically lack essential bactericidal activity and cannot defend against the spread of bacteria once bacterial contamination occurs. Herein, a slippery liquid-infused porous surface (SLIPS), endowed with both super-repellent and contact-killing antimicrobial performances is reported. Firstly, polystyrene (PS) based porous structures are developed via a facile microphase separation technique with poly(ethylene glycol) (PEG) as the sacrifice template. The porous surface was then covalently modified by 3-(trimethoxysilyl)propyl dimethyl undecyl ammonium chloride (QAC-Silane) to get the contact-killing antimicrobial performances. After lubricant (silicone oil) is introduced to the porous structure, the SLIPS surface demonstrates remarkably high super-repellence against both Gram-positive and negative bacteria, and also maintains essential contact-killing antimicrobial activities from the fixed QAC-11 groups, once the infused lubricant was depleted. Also, this surface demonstrates a reduced coefficient of friction (COF) of ∼56% as compared to that of the control flat surface. Moreover, this SLIPS surface can be easily realized on various substrates, such as silica glass, polycarbonate (PC), polyethylene terephthalate (PET), polyethylene (PE) and silicone catheter tube. Owing to its simple, low-cost and fast fabrication approach, this kind of surface may find unique biomedical applications where an effective antibacterial performance and lubricity are highly needed.
Collapse
|
|
3 |
|
63
|
Li H, Mu Q, Zhang G, Shen Z, Zhang Y, Bai J, Zhang L, Zhou D, Zheng Q, Shi L, Su W, Yin C, Zhang B. Author Correction: Linc00426 accelerates lung adenocarcinoma progression by regulating miR-455-5p as a molecular sponge. Cell Death Dis 2024; 15:564. [PMID: 39103357 PMCID: PMC11300437 DOI: 10.1038/s41419-024-06952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] [Imported: 09/03/2024]
|
Published Erratum |
1 |
|
64
|
Pan QX, Zhu CY, Dong J, Zhang B, Cui L, Zhang CY. Integration of a copper-based metal-organic framework with an ionic liquid for electrochemically discriminating cysteine enantiomers. Analyst 2023; 148:3476-3482. [PMID: 37401671 DOI: 10.1039/d3an00793f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023] [Imported: 09/03/2024]
Abstract
The identification of cysteine enantiomers is of great significance in the biopharmaceutical industry and medical diagnostics. Herein, we develop an electrochemical sensor to discriminate cysteine (Cys) enantiomers based on the integration of a copper metal-organic framework (Cu-MOF) with an ionic liquid. Because the combine energy of D-cysteine (D-Cys) with Cu-MOF (-9.905 eV) is lower than that of L-cysteine (L-Cys) with Cu-MOF (-9.694 eV), the decrease in the peak current of the Cu-MOF/GCE induced by D-Cys is slightly higher than that induced by L-Cys in the absence of an ionic liquid. In contrast, the combine energy of L-Cys with an ionic liquid (-1.084 eV) is lower than that of D-Cys with an ionic liquid (-1.052 eV), and the ionic liquid is easier to cross-link with L-Cys than with D-Cys. When an ionic liquid is present, the decrease in the peak current of the Cu-MOF/GCE induced by D-Cys is much higher than that induced by L-Cys. Consequently, this electrochemical sensor can efficiently discriminate D-Cys from L-Cys, and it can sensitively detect D-Cys with a detection limit of 0.38 nM. Moreover, this electrochemical sensor exhibits good selectivity, and it can accurately measure the spiked D-Cys in human serum with a recovery ratio of 100.2-102.6%, with wide applications in biomedical research and drug discovery.
Collapse
|
|
2 |
|
65
|
Duan WL, Ma YP, Wang XJ, Ma CS, Han B, Sheng ZM, Dong H, Zhang LY, Li PA, Zhang BG, He MT. N6022 attenuates cerebral ischemia/reperfusion injury-induced microglia ferroptosis by promoting Nrf2 nuclear translocation and inhibiting the GSNOR/GSTP1 axis. Eur J Pharmacol 2024; 972:176553. [PMID: 38574838 DOI: 10.1016/j.ejphar.2024.176553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024] [Imported: 09/03/2024]
Abstract
Stroke poses a significant risk of mortality, particularly among the elderly population. The pathophysiological process of ischemic stroke is complex, and it is crucial to elucidate its molecular mechanisms and explore potential protective drugs. Ferroptosis, a newly recognized form of programmed cell death distinct from necrosis, apoptosis, and autophagy, is closely associated with the pathophysiology of ischemic stroke. N6022, a selective inhibitor of S-nitrosoglutathione reductase (GSNOR), is a "first-in-class" drug for asthma with potential therapeutic applications. However, it remains unclear whether N6022 exerts protective effects in ischemic stroke, and the precise mechanisms of its action are unknown. This study aimed to investigate whether N6022 mitigates cerebral ischemia/reperfusion (I/R) injury by reducing ferroptosis and to elucidate the underlying mechanisms. Accordingly, we established an oxygen-glucose deprivation/reperfusion (OGD/R) cell model and a middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model to mimic cerebral I/R injury. Our data, both in vitro and in vivo, demonstrated that N6022 effectively protected against I/R-induced brain damage and neurological deficits in mice, as well as OGD/R-induced BV2 cell damage. Mechanistically, N6022 promoted Nrf2 nuclear translocation, enhancing intracellular antioxidant capacity of SLC7A11-GPX4 system. Furthermore, N6022 interfered with the interaction of GSNOR with GSTP1, thereby boosting the antioxidant capacity of GSTP1 and attenuating ferroptosis. These findings provide novel insights, showing that N6022 attenuates microglial ferroptosis induced by cerebral I/R injury through the promotion of Nrf2 nuclear translocation and inhibition of the GSNOR/GSTP1 axis.
Collapse
|
|
1 |
|
66
|
Wei SH, Hu J, Sheng Z, Zhang Q, Zhang J, Zhang B, Liu M, Zhang CY. Construction of Fluorescent G-Quadruplex Nanowires for Label-Free and Accurate Monitoring of Circular RNAs in Breast Cancer Cells and Tissues with Low Background. Anal Chem 2024; 96:599-605. [PMID: 38156620 DOI: 10.1021/acs.analchem.3c05116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] [Imported: 09/03/2024]
Abstract
Circular RNAs (circRNAs) represent an emerging category of endogenous transcripts characterized by long half-life time, covalently closed structures, and cell-/tissue-specific expression patterns, making them potential disease biomarkers. Herein, we demonstrate the construction of fluorescent G-quadruplex nanowires for label-free and accurate monitoring of circular RNAs in breast cancer cells and tissues by integrating proximity ligation-rolling circle amplification cascade with lighting up G-quadruplex. The presence of target circRNA facilitates the SplintR ligase-mediated ligation of the padlock probe. Upon the addition of primers, the ligated padlock probe can serve as a template to initiate subsequent rolling circle amplification (RCA), generating numerous long G-quadruplex nanowires that can incorporate with thioflavin T (ThT) to generate a remarkably improved fluorescence signal. Benefiting from good specificity of SplintR ligase-mediated ligation reaction and exponential amplification efficiency of RCA, this strategy can sensitively detect target circRNA with a limit of detection of 4.65 × 10-18 M. Furthermore, this method can accurately measure cellular circRNA expression with single-cell sensitivity and discriminate the circRNA expression between healthy para-carcinoma tissues and breast cancer tissues, holding great potential in studying the pathological roles of circRNA and clinic diagnostics.
Collapse
|
|
1 |
|
67
|
Duan WL, Gu LH, Guo A, Wang XJ, Ding YY, Zhang P, Zhang BG, Li Q, Yang LX. Molecular mechanisms of programmed cell death and potential targeted pharmacotherapy in ischemic stroke (Review). Int J Mol Med 2025; 56:103. [PMID: 40341937 PMCID: PMC12081036 DOI: 10.3892/ijmm.2025.5544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/15/2025] [Indexed: 05/11/2025] [Imported: 06/04/2025] Open
Abstract
Stroke poses a threat to the elderly, being the second leading cause of death and the third leading cause of disability worldwide. Ischemic stroke (IS), resulting from arterial occlusion, accounts for ~85% of all strokes. The pathophysiological processes involved in IS are intricate and complex. Currently, tissue plasminogen activator (tPA) is the only Food and Drug Administration‑approved drug for the treatment of IS. However, due to its limited administration window and the risk of symptomatic hemorrhage, tPA is applicable to only ~10% of patients with stroke. Additionally, the reperfusion process associated with thrombolytic therapy can further exacerbate damage to brain tissue. Therefore, a thorough understanding of the molecular mechanisms underlying IS‑induced injury and the identification of potential protective agents is critical for effective IS treatment. Over the past few decades, advances have been made in exploring potential protective drugs for IS. The present review summarizes the specific mechanisms of various forms of programmed cell death (PCD) induced by IS and highlights potential protective drugs targeting different PCD pathways investigated over the last decade. The present review provides a theoretical foundation for basic research and insights for the development of pharmacotherapy for IS.
Collapse
|
Review |
1 |
|
68
|
Yu WJ, Zhang BG, Chen LM, Wang SX, Feng WG, Du CQ, Liu SM, Zhao CL. Lentiviral-mediated RNA interference targeting the PLK1gene inhibits invasion and metastasis of esophageal squamous cell carcinoma cells. Shijie Huaren Xiaohua Zazhi 2013; 21:2128. [DOI: 10.11569/wcjd.v21.i22.2128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] [Imported: 09/03/2024] Open
|
基础研究 |
12 |
|
69
|
邓 梓, 肖 钦, 郑 远, 冯 瑞, 盛 智, 张 宝. [CCL18 Promotes the Invasion of Lung Adenocarcinoma through ANXA2]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:461-467. [PMID: 34120429 PMCID: PMC8317094 DOI: 10.3779/j.issn.1009-3419.2021.103.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 11/05/2022] [Imported: 09/03/2024]
Abstract
BACKGROUND ANXA2 plays a very important role in cancer progression. chemokine ligand 18 (CCL18) is associated with the invasion, migration, metastasis and poor prognosis of lung adenocarcinoma (LUAD). In this study, we aimed to explore whether CCL18 promotes LUAD invasion through ANXA2, and its role and molecular mechanism in LUAD invasion. METHODS Western blot was used to detect ANXA2 expression in LUAD tissues and adjacent non-tumor tissues, the transfection efficiency of SiANXA2#2 in cells and the role of ANXA2 as an upstream regulator in the AKT/cofilin signaling pathway. In vitro cytological experiments such as chemotaxis experiment and transwell invasion test was used to explore the mechanism of ANXA2 on LUAD metastasis. F-actin polymerization experiment and Western blot were used to detect whether invasion ability alteration of SiANXA2#2 A549 cells are related to F-actin. RESULTS Western blot analysis showed that compared with adjacent non-tumor tissues, the protein expression level of ANXA2 in cancer tissues increased (P<0.05). In the chemotaxis experiment and invasion experiment, the chemotaxis and invasion ability induced by CCL18 decreased when ANXA2 knockdowned (P<0.05). Compared with the control group, F-actin polymerization was significantly lower in ANXA2 knockdown group, while phosphorylation of AKT at Ser473 and Thr308 and phosphorylation of Cofilin and LIMK were reduced in ANXA2 knockdown group (P<0.05). CONCLUSIONS ANXA2 knockdown can reduce the invasive effect of CCL18 on LUAD cells by reducing phosphorylation of AKT and downstream pathways.
Collapse
|
research-article |
4 |
|
70
|
Yin C, Li H, Zhang B, Liu Y, Lu G, Lu S, Sun L, Qi Y, Li X, Chen W. Expression of Concern to: RAGE-binding S100A8/A9 promotes the migration and invasion of human breast cancer cells through actin polymerization and epithelial-mesenchymal transition. Breast Cancer Res Treat 2024; 206:679. [PMID: 38842619 DOI: 10.1007/s10549-024-07392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] [Imported: 09/03/2024]
|
Letter |
1 |
|
71
|
Wang W, Zhang B, Wu Z, Hou C, Li M, Zhang T. Pathological features and immunohistochemical characteristics of clear cell (glycogen-rich) urothelial carcinoma: a case report and systematic review of the literature. Discov Oncol 2025; 16:132. [PMID: 39920483 PMCID: PMC11806162 DOI: 10.1007/s12672-025-01813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025] [Imported: 04/02/2025] Open
Abstract
Clear cell (glycogen-rich) urothelial carcinoma is an exceedingly rare variant of invasive urothelial carcinoma, distinguished by the presence of abundant cytoplasmic glycogen, which imparts a clear appearance to the tumor cells under histological examination. In this case report, the diagnosis was established through histopathological evaluation with hematoxylin and eosin (HE) staining, immunohistochemical analysis, and the identification of significant cytoplasmic glycogen accumulation. The patient, an 89-year-old male, was admitted on July 24, 2024, presenting with painless gross hematuria persisting for one week. Abdominal ultrasound and CT urography revealed a soft tissue mass on the right side of the bladder wall, measuring 30 × 30 mm, with a broad base connected to the bladder wall. The mass exhibited significant enhancement on contrast-enhanced scans, raising suspicion for malignancy. Microscopic examination revealed two distinct tumor cell morphologies: the conventional urothelial carcinoma pattern and a clear nest-like morphology, with the latter comprising over 70% of the tumor. Immunohistochemical staining for GATA-3, CK7, PAS, PAS-D, CAIX, PAX8, and RCC confirmed the diagnosis of clear cell (glycogen-rich) urothelial carcinoma. This rare variant of invasive urothelial carcinoma underscores the need for detailed diagnostic analysis to inform prognosis and treatment strategies. There have been similar cases reported before, involving a 57-year-old male-patient (Sahetia et al. in Ind J Cancer 60:575-577, 2023).
Collapse
|
research-article |
1 |
|