1
|
Klabukov I, Tenchurin T, Shepelev A, Baranovskii D, Mamagulashvili V, Dyuzheva T, Krasilnikova O, Balyasin M, Lyundup A, Krasheninnikov M, Sulina Y, Gomzyak V, Krasheninnikov S, Buzin A, Zayratyants G, Yakimova A, Demchenko A, Ivanov S, Shegay P, Kaprin A, Chvalun S. Biomechanical Behaviors and Degradation Properties of Multilayered Polymer Scaffolds: The Phase Space Method for Bile Duct Design and Bioengineering. Biomedicines 2023; 11:745. [PMID: 36979723 PMCID: PMC10044742 DOI: 10.3390/biomedicines11030745] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] [Imported: 10/06/2024] Open
Abstract
This article reports the electrospinning technique for the manufacturing of multilayered scaffolds for bile duct tissue engineering based on an inner layer of polycaprolactone (PCL) and an outer layer either of a copolymer of D,L-lactide and glycolide (PLGA) or a copolymer of L-lactide and ε-caprolactone (PLCL). A study of the degradation properties of separate polymers showed that flat PCL samples exhibited the highest resistance to hydrolysis in comparison with PLGA and PLCL. Irrespective of the liquid-phase nature, no significant mass loss of PCL samples was found in 140 days of incubation. The PLCL- and PLGA-based flat samples were more prone to hydrolysis within the same period of time, which was confirmed by the increased loss of mass and a significant reduction of weight-average molecular mass. The study of the mechanical properties of developed multi-layered tubular scaffolds revealed that their strength in the longitudinal and transverse directions was comparable with the values measured for a decellularized bile duct. The strength of three-layered scaffolds declined significantly because of the active degradation of the outer layer made of PLGA. The strength of scaffolds with the PLCL outer layer deteriorated much less with time, both in the axial (p-value = 0.0016) and radial (p-value = 0.0022) directions. A novel method for assessment of the physiological relevance of synthetic scaffolds was developed and named the phase space approach for assessment of physiological relevance. Two-dimensional phase space (elongation modulus and tensile strength) was used for the assessment and visualization of the physiological relevance of scaffolds for bile duct bioengineering. In conclusion, the design of scaffolds for the creation of physiologically relevant tissue-engineered bile ducts should be based not only on biodegradation properties but also on the biomechanical time-related behavior of various compositions of polymers and copolymers.
Collapse
|
research-article |
2 |
17 |
2
|
Klabukov I, Balyasin M, Krasilnikova O, Tenchurin T, Titov A, Krasheninnikov M, Mudryak D, Sulina Y, Shepelev A, Chvalun S, Dyuzheva T, Yakimova A, Sosin D, Lyundup A, Baranovskii D, Shegay P, Kaprin A. Angiogenic Modification of Microfibrous Polycaprolactone by pCMV-VEGF165 Plasmid Promotes Local Vascular Growth after Implantation in Rats. Int J Mol Sci 2023; 24:1399. [PMID: 36674913 PMCID: PMC9865169 DOI: 10.3390/ijms24021399] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] [Imported: 10/06/2024] Open
Abstract
Insufficient vascular growth in the area of artificial-material implantation contributes to ischemia, fibrosis, the development of bacterial infections, and tissue necrosis around the graft. The purpose of this study was to evaluate angiogenesis after implantation of polycaprolactone microfiber scaffolds modified by a pCMV-VEGF165-plasmid in rats. Influence of vascularization on scaffold degradation was also examined. We investigated flat microfibrous scaffolds obtained by electrospinning polycaprolactone with incorporation of the pCMV-VEGF-165 plasmid into the microfibers at concentrations of 0.005 ng of plasmid per 1 mg of polycaprolactone (0.005 ng/mg) (LCGroup) and 0.05 ng/mg (HCGroup). The samples were subcutaneously implanted in the interscapular area of rats. On days 7, 16, 33, 46, and 64, the scaffolds were removed, and a histological study with a morphometric evaluation of the density and diameter of the vessels and microfiber diameter was performed. The number of vessels was increased in all groups, as well as the resorption of the scaffold. On day 33, the vascular density in the HCGroup was 42% higher compared to the control group (p = 0.0344). The dose-dependent effect of the pCMV-VEGF165-plasmid was confirmed by enhanced angiogenesis in the HCGroup compared to the LCGroup on day 33 (p-value = 0.0259). We did not find a statistically significant correlation between scaffold degradation rate and vessel growth (the Pearson correlation coefficient was ρ = 0.20, p-value = 0.6134). Functionalization of polycaprolactone by incorporation of the pCMV-VEGF165 plasmid provided improved vascularization within 33 days after implantation, however, vessel growth did not seem to correlate with scaffold degradation rate.
Collapse
|
research-article |
2 |
16 |
3
|
Klabukov I, Atiakshin D, Kogan E, Ignatyuk M, Krasheninnikov M, Zharkov N, Yakimova A, Grinevich V, Pryanikov P, Parshin V, Sosin D, Kostin AA, Shegay P, Kaprin AD, Baranovskii D. Post-Implantation Inflammatory Responses to Xenogeneic Tissue-Engineered Cartilage Implanted in Rabbit Trachea: The Role of Cultured Chondrocytes in the Modification of Inflammation. Int J Mol Sci 2023; 24:16783. [PMID: 38069106 PMCID: PMC10706106 DOI: 10.3390/ijms242316783] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] [Imported: 10/06/2024] Open
Abstract
Immune responses to tissue-engineered grafts made of xenogeneic materials remain poorly studied. The scope of current investigations is limited by the lack of information on orthotopically implanted grafts. A deeper understanding of these processes is of great importance since innovative surgical approaches include the implantation of xenogeneic decellularized scaffolds seeded by cells. The purpose of our work is to study the immunological features of tracheal repair during the implantation of tissue-engineered constructs based on human xenogeneic scaffolds modified via laser radiation in rabbits. The samples were stained with hematoxylin and Safranin O, and they were immunostained with antibodies against tryptase, collagen II, vimentin, and CD34. Immunological and inflammatory responses were studied by counting immune cells and evaluating blood vessels and collagen. Leukocyte-based inflammation prevailed during the implantation of decellularized unseeded scaffolds; meanwhile, plasma cells were significantly more abundant in tissue-engineered constructs. Mast cells were insignificantly more abundant in tissue-engineered construct samples. Conclusions: The seeding of decellularized xenogeneic cartilage with chondrocytes resulted in a change in immunological reactions upon implantation, and it was associated with plasma cell infiltration. Tissue-engineered grafts widely differed in design, including the type of used cells. The question of immunological response depending on the tissue-engineered graft composition requires further investigation.
Collapse
|
research-article |
2 |
12 |
4
|
Shestakova VA, Klabukov ID, Baranovskii DS, Krasilnikova M, Shegay PV, Kaprin AD. Assessment of Immunological Responses - A Novel Challenge in Tissue Engineering and Regenerative Medicine. BIOMEDICAL RESEARCH AND THERAPY 2022; 9:5384-5386. [DOI: 10.15419/bmrat.v9i11.776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/16/2022] [Indexed: 12/04/2022] [Imported: 10/06/2024]
|
|
3 |
6 |
5
|
Klabukov ID, Krasilnikova OA, Baranovskii DS, Ivanov SA, Shegay PV, Kaprin AD. Comment on: Regenerative medicine, organ bioengineering and transplantation. Br J Surg 2021; 108:e386. [PMID: 34370831 DOI: 10.1093/bjs/znab264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 11/14/2022] [Imported: 10/06/2024]
|
Comment |
4 |
5 |
6
|
Klabukov ID, Kondrasheva I. Hard and soft tissue engineering for peri-implant defects: the regenerative dentistry as a quadruple target for tissue repair. INT J POLYM MATER PO 2025:1-2. [DOI: 10.1080/00914037.2025.2463473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/03/2025] [Indexed: 04/01/2025] [Imported: 04/01/2025]
|
|
1 |
|
7
|
Klabukov ID, Krasilnikova OA, Baranovskii DS. Quantitative human physiology: An introduction guide for advanced tissue engineering. Biotechnol J 2021; 17:e2100481. [PMID: 34605205 DOI: 10.1002/biot.202100481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/30/2021] [Indexed: 11/07/2022] [Imported: 10/06/2024]
|
|
4 |
|
8
|
Klabukov ID, Baranovskii DS, Shegay PV, Kaprin AD. Pitfalls and promises of bile duct alternatives: There is plenty of room in the regenerative surgery. World J Gastroenterol 2023; 29:4701-4705. [PMID: 37662863 PMCID: PMC10472900 DOI: 10.3748/wjg.v29.i30.4701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] [Imported: 10/06/2024] Open
Abstract
Current abdominal surgery has several approaches for biliary reconstruction. However, the creation of functional and clinically applicable bile duct substitutes still represents an unmet need. In the paper by Miyazawa and colleagues, approaches to the creation of bile duct alternatives were summarized, and the reasons for the lack of development in this area were explained. The history of bile duct surgery since the nineteenth century was also traced, leading to the conclusion that the use of bioabsorbable materials holds promise for the creation of bile duct substitutes in the future. We suggest three ideas that may stimulate progress in the field of bile duct substitute creation. First, a systematic analysis of the causative factors leading to failure or success in the creation of bile duct substitutes may help to develop more effective approaches. Second, the regeneration of a bile duct is delicately balanced between epithelialization and subsequent submucosal maturation within limited time frames, which may be more apparent when using quantitative models to estimate outcomes. Third, the utilization of the organism's endogenous regeneration abilities may enhance the creation of bile duct substitutes. We are convinced that an interdisciplinary approach, including quantitative methods, machine learning, and deep retrospective analysis of the causes that led to success and failure in studies on the creation of bile duct substitutes, holds great value. Additionally, more attention should be directed towards the balance of epithelialization and submucosal maturation rates, as well as induced angiogenesis. These ideas deserve further investigation to pave the way for bile duct restoration with physiologically relevant outcomes.
Collapse
|
Letter to the Editor |
2 |
|
9
|
Klabukov ID, Baranovskii DS. The Engineering Biology Problems Book: Bridging the gap between biomedicine and engineering. BIOMEDICAL RESEARCH AND THERAPY 2023; 10:5801-5803. [DOI: 10.15419/bmrat.v10i8.821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/20/2023] [Indexed: 10/06/2024] [Imported: 10/06/2024]
|
|
2 |
|
10
|
Klabukov I, Smirnova A, Evstratova E, Baranovskii D. Development of a biodegradable prosthesis through tissue engineering: the lack of the physiological abstractions prevents bioengineering innovations. Ann Hepatol 2024; 30:101587. [PMID: 39293785 DOI: 10.1016/j.aohep.2024.101587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024] [Imported: 10/06/2024]
|
Letter |
1 |
|
11
|
Klabukov I, Shestakova V, Krasilnikova O, Smirnova A, Abramova O, Baranovskii D, Atiakshin D, Kostin AA, Shegay P, Kaprin AD. Refinement of Animal Experiments: Replacing Traumatic Methods of Laboratory Animal Marking with Non-Invasive Alternatives. Animals (Basel) 2023; 13:3452. [PMID: 38003070 PMCID: PMC10668729 DOI: 10.3390/ani13223452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] [Imported: 10/06/2024] Open
Abstract
Reliable methods for identifying rodents play an important role in ensuring the success of preclinical studies. However, animal identification remains a trivial laboratory routine that is not often discussed, despite the fact that more than 6 million rodents are used in animal studies each year. Currently, there are extensive regulations in place to ensure adequate anesthesia and to reduce animal suffering during experiments. At the same time, not enough attention is paid to the comfort of rodents during routine identification procedures, which can be painful and cause some complications. In order to achieve the highest ethical standards in laboratory research, we must minimize animal discomfort during the identification phase. In this article, we discuss traumatic methods of identification and describe several painless methods for marking in long-term experimental studies. The use of non-traumatic and non-invasive methods requires the renewal of marks as they fade and additional handling of the rodents. Laboratory personnel must be trained in stress-minimizing handling techniques to make mark renewal less stressful.
Collapse
|
Review |
2 |
|
12
|
Klabukov I, Baranovskii D. Advancing dermatology: artificial intelligence-based solutions to reducing the risk of misdiagnosis. Clin Exp Dermatol 2024; 49:731-732. [PMID: 37706593 DOI: 10.1093/ced/llad320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/29/2023] [Indexed: 09/15/2023] [Imported: 10/06/2024]
Abstract
Artificial intelligence has potential applications in dermatology in reducing rates of misdiagnosis. Despite evidence-based recommendations, misdiagnosis still occurs due to the complexity of the problem. Multispectral imaging, such as near- and far-infrared imaging, has the potential to aid in the identification of skin malignancies.
Collapse
|
Letter |
1 |
|
13
|
Klabukov I, Smirnova A, Yakimova A, Kabakov AE, Atiakshin D, Petrenko D, Shestakova VA, Sulina Y, Yatsenko E, Stepanenko VN, Ignatyuk M, Evstratova E, Krasheninnikov M, Sosin D, Baranovskii D, Ivanov S, Shegay P, Kaprin AD. Oncomatrix: Molecular Composition and Biomechanical Properties of the Extracellular Matrix in Human Tumors. JOURNAL OF MOLECULAR PATHOLOGY 2024; 5:437-453. [DOI: 10.3390/jmp5040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] [Imported: 01/12/2025] Open
Abstract
The extracellular matrix is an organized three-dimensional network of protein-based molecules and other macromolecules that provide structural and biochemical support to tissues. Depending on its biochemical and structural properties, the extracellular matrix influences cell adhesion and signal transduction and, in general, can influence cell differentiation and proliferation through specific mechanisms of chemical and mechanical sensing. The development of body tissues during ontogenesis is accompanied by changes not only in cells but also in the composition and properties of the extracellular matrix. Similarly, tumor development in carcinogenesis is accompanied by a continuous change in the properties of the extracellular matrix of tumor cells, called ‘oncomatrix’, as the tumor matures, from the development of the primary focus to the stage of metastasis. In this paper, the characteristics of the composition and properties of the extracellular matrix of tumor tissues are considered, as well as changes to the composition and properties of the matrix during the evolution of the tumor and metastasis. The extracellular matrix patterns of tumor tissues can be used as biomarkers of oncological diseases as well as potential targets for promising anti-tumor therapies.
Collapse
|
|
1 |
|
14
|
Klabukov I, Baranovskii D. Stem Cells and Their Derivatives: Unlocking the Promising Potential of Minimally Manipulated Cells for In Situ Tissue Engineering. Cell Transplant 2024; 33:9636897231221846. [PMID: 38235753 PMCID: PMC10798098 DOI: 10.1177/09636897231221846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/14/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] [Imported: 10/06/2024] Open
Abstract
We've read with great interest the article by Smolinska et al. entitled "Stem Cells and Their Derivatives: An Implication for the Regeneration of Nonunion Fractures" regarding the recent scientific studies dealing with the treatment of nonunion fractures in clinical and preclinical settings using Mesenchymal Stem Cell (MSC)-based therapeutic techniques. Bone tissue regeneration is a dynamic process that involves the restoration of damaged or lost bone structure and function. Traditional approaches such as autografts and allografts, platelet rich plasma (PRP) treatment and cell therapies, have limitations, including donor site morbidity and immunologic concerns, as well as cell culture and processing requirements. In contrast, the use of minimally manipulated cells that do not require culturing has emerged as a promising alternative that offers several advantages in bone tissue regeneration.
Collapse
|
article-commentary |
1 |
|
15
|
Klabukov I, Shatveryan G, Bagmet N, Aleshina O, Ivanova E, Savina V, Gilmutdinova I, Atiakshin D, Ignatyuk M, Baranovskii D, Shegay P, Kaprin A, Eremin I, Chardarov N. Local Application of Minimally Manipulated Autologous Stromal Vascular Fraction (SVF) Reduces Inflammation and Improves Bilio-Biliary Anastomosis Integrity. Int J Mol Sci 2024; 26:222. [PMID: 39796076 PMCID: PMC11720677 DOI: 10.3390/ijms26010222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/12/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] [Imported: 02/03/2025] Open
Abstract
Bilio-biliary anastomosis (BBA) is a critical surgical procedure that is performed with the objective of restoring bile duct continuity. This procedure is often required in cases where there has been an injury to the extrahepatic bile ducts or during liver transplantation. Despite advances in surgical techniques, the healing of BBA remains a significant challenge, with complications such as stricture formation and leakage affecting patient outcomes. The stromal vascular fraction (SVF), a heterogeneous cell population derived from adipose tissue, has demonstrated promise in regenerative medicine due to its rich content of stem cells, endothelial progenitor cells, and growth factors. The objective of this study was to evaluate the potential of locally administered autologous SVF to enhance the healing of BBAs. Bilio-biliary anastomosis was performed on a swine model (female Landrace pigs). Six swine were divided into two groups: the treatment group (n = 3) received a local application of autologous SVF around the anastomosis site immediately following BBA formation, while the control group (n = 3) received saline. The primary outcomes were assessed over an eight-week period post-surgery, and included anastomosis healing, stricture formation, and bile leakage. Histological analysis was performed to evaluate fibrosis, angiogenesis, and inflammation. Immunohistochemistry was conducted to assess healing-related markers (CD34, α-SMA) and the immunological microenvironment (CD3, CD10, tryptase). The SVF-treated group exhibited significantly enhanced healing of the BBA. Histological examination revealed increased angiogenesis and reduced fibrosis in the SVF group. Immunohistochemical staining demonstrated higher vascular density in the anastomosed area of the SVF-treated group (390 vs. 210 vessels per 1 mm2, p = 0.0027), as well as a decrease in wall thickness (1.9 vs. 1.0 mm, p = 0.0014). There were no statistically significant differences in mast cell presence (p = 0.40). Immunohistochemical staining confirmed the overexpression of markers associated with tissue repair. Local injections of autologous SVF at the site of BBA have been demonstrated to significantly enhance healing and promote tissue regeneration. These findings suggest that SVF could be a valuable adjunctive therapy in BBA surgery, potentially improving surgical outcomes. However, further investigation is needed to explore the clinical applicability and long-term benefits of this novel approach in clinical practice as a minimally manipulated cell application.
Collapse
|
research-article |
1 |
|
16
|
Klabukov I, Yatsenko E, Baranovskii D. The effects of mesenchymal stromal cells and platelet-rich plasma treatments on cutaneous wound healing: ignoring the possibility of adverse events and side effects could compromise study results. Arch Dermatol Res 2023; 316:35. [PMID: 38085349 DOI: 10.1007/s00403-023-02783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] [Imported: 10/06/2024]
Abstract
Common medical events may be associated with decreased immunologic activity and dysregulation of functional epithelial and neuronal tissues caused by growth factors and vesicle secretion by stem and somatic cells. Systemic injection of MSCs has been shown to reduce the immune response mainly through paracrine mechanisms, but some points related to the possibility of adverse events and side effects should be clarified. Flow cytometry for at least 20 cell markers is crucial to assess cell senescence and overall cell viability. Thus, adverse events and unreasonable expectations from cell therapy can be prevented. We believe that by using the precision cell phenotyping kits in clinical trials, many undesirable side effects related to misconceptions about the origin of the cells can be avoided.
Collapse
|
Letter |
2 |
|
17
|
Klabukov I, Baranovskii D. Heterogeneous outcomes of autologous chondrocyte implantation for full-thickness cartilage damage: Surprise from macrophage and mast cell responses. Knee Surg Sports Traumatol Arthrosc 2024; 32:2490-2491. [PMID: 39072798 DOI: 10.1002/ksa.12381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] [Imported: 10/06/2024]
|
Editorial |
1 |
|
18
|
Klabukov I, Kabakov AE, Yakimova A, Baranovskii D, Sosin D, Atiakshin D, Ignatyuk M, Yatsenko E, Rybachuk V, Evstratova E, Eygel D, Kudlay D, Stepanenko V, Shegay P, Kaprin AD. Tumor-Associated Extracellular Matrix Obstacles for CAR-T Cell Therapy: Approaches to Overcoming. Curr Oncol 2025; 32:79. [PMID: 39996879 PMCID: PMC11854105 DOI: 10.3390/curroncol32020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] [Imported: 04/01/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy yields good results in the treatment of various hematologic malignancies. However, the efficacy of CAR-T cell therapy against solid tumors has proven to be limited, primarily because the tumor-associated extracellular matrix (ECM) creates an intractable barrier for the cytotoxic CAR-T cells that are supposed to kill cancer cells. This review unravels the multifaceted role of the tumor-associated ECM in impeding CAR-T cell infiltration, survival, and functions within solid tumors. We analyze the situations when intratumoral ECM limits the efficacy of CAR-T cell therapy by being a purely physical barrier that complicates lymphocyte penetration/migration and also acts as an immunosuppressive factor that impairs the antitumor activities of CAR-T cells. In addition, we highlight promising approaches such as engineering CAR-T cells with improved capabilities to penetrate and migrate into/through the intratumoral ECM, combination therapies aimed at attenuating the high density and immunosuppressive potential of the intratumoral ECM, and others that enable overcoming ECM-related obstacles. A detailed overview of the data of relevant studies not only helps to better understand the interactions between CAR-T cells and the intratumoral ECM but also outlines potential ways to more effectively use CAR-T cell therapy against solid tumors.
Collapse
|
Review |
1 |
|
19
|
Klabukov I, Skornyakova E. "Review of current and potential applications of mesenchymal stem cells in exotic animal species": biotechnological challenges and prospects of cell therapies. J Am Vet Med Assoc 2024; 262:1021. [PMID: 39032514 DOI: 10.2460/javma.262.8.1021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] [Imported: 10/06/2024]
|
|
1 |
|
20
|
Klabukov ID, Lyundup AV, Dyuzheva TG, Tyakht AV. BILIARY MICROBIOTA AND BILE DUCT DISEASES. ANNALS OF THE RUSSIAN ACADEMY OF MEDICAL SCIENCES 2017; 72:172-179. [DOI: 10.15690/vramn787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] [Imported: 10/06/2024]
Abstract
Traditionally, the biliary tract has been considered to be normally sterile, and the presence of microorganisms in bile is a marker of a pathological process. This assumption was confirmed by failure in allocation of bacterial strains from the normal bile duct. The paper provides rationale for a phenomenon of the normal biliary microbiota as a separate functional layer which protects a biliary tract from colonization by exogenous microorganisms. We revealed the potential of metagenomic data for prevention of infectious diseases, post-operative complications of reconstructive interventions including bile duct stenting and implantation the tissue-engineered structures exposed to the risks of colonization with pathogenic / exogenous microorganisms. The methods based on preserving homeostasis of normal biliary microbiota ecosystem can be used for prevention of hepatobiliary diseases and treatment of biliary tract inflammatory diseases.
Collapse
|
|
8 |
|
21
|
Klabukov ID, Yakimova AO, Baranovskii DS, Yatsenko EM, Petrov VA, Zhavoronkov LP, Ivanov SA, Shegay PV, Kaprin AD. Foresight into the Future of Genetic Engineering and Radiobiology: 100 Years from the Beginning of N.V. Timofeeff-Ressovsky’s Scientific Career. BIOL BULL+ 2023; 50:3407-3412. [DOI: 10.1134/s1062359023120129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/30/2023] [Accepted: 04/05/2023] [Indexed: 10/06/2024] [Imported: 10/06/2024]
|
|
2 |
|
22
|
Klabukov ID, Yakimova AO, Baranovskii DS, Yatsenko EM, Petrov VA, Zhavoronkov LP, Ivanov SA, Shegai PV, Kaprin AD. Foreshadowing the Future of Genetic Engineering and Radiobiology: 100 Years From the Beginning of N.V. Timofeeff-Ressovsky’s Scientific Work. РАДИАЦИОННАЯ БИОЛОГИЯ. РАДИОЭКОЛОГИЯ 2023; 63:311-317. [DOI: 10.31857/s0869803123030086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] [Imported: 10/06/2024]
Abstract
The year 2021 was marked with a significant date – 100 years ago, brilliant radiobiologist and geneticist N.V. Timofeeff-Ressovsky started his scientific work. Among the new directions developed by him from 1921 to 1981 were physical biology, basic principles of genetic engineering, amplifier principle, and population radiobiology. It is noteworthy that many of his ideas were developed in the former Department of Radiation Genetics and General Radiobiology of the Institute of Medical Radiology in Obninsk, which is now called the Experimental Sector of the A. Tsyb Medical Radiological Research Centrе. Our work reveals the interconnections of Timofeeff-Ressovsky’s works with the activities of his contemporaries and productive ideas of today.
Collapse
|
|
2 |
|