51
|
Huang D, Meran S, Nie SP, Midgley A, Wang J, Cui SW, Xie M, Phillips GO, Phillips AO. Cordyceps sinensis : Anti-fibrotic and inflammatory effects of a cultured polysaccharide extract. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bcdf.2017.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] [Imported: 05/12/2025]
|
|
7 |
9 |
52
|
Yan H, Cheng Q, Si J, Wang S, Wan Y, Kong X, Wang T, Zheng W, Rafique M, Li X, He J, Midgley AC, Zhu Y, Wang K, Kong D. Functionalization of in vivo tissue-engineered living biotubes enhance patency and endothelization without the requirement of systemic anticoagulant administration. Bioact Mater 2023; 26:292-305. [PMID: 36950151 PMCID: PMC10027480 DOI: 10.1016/j.bioactmat.2023.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/19/2023] [Accepted: 03/05/2023] [Indexed: 03/18/2023] [Imported: 05/12/2025] Open
Abstract
Vascular regeneration and patency maintenance, without anticoagulant administration, represent key developmental trends to enhance small-diameter vascular grafts (SDVG) performance. In vivo engineered autologous biotubes have emerged as SDVG candidates with pro-regenerative properties. However, mechanical failure coupled with thrombus formation hinder translational prospects of biotubes as SDVGs. Previously fabricated poly(ε-caprolactone) skeleton-reinforced biotubes (PBs) circumvented mechanical issues and achieved vascular regeneration, but orally administered anticoagulants were required. Here, highly efficient and biocompatible functional modifications were introduced to living cells on PB lumens. The 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-methoxy (DMPE)-PEG-conjugated anti-coagulant bivalirudin (DPB) and DMPE-PEG-conjugated endothelial progenitor cell (EPC)-binding TPS-peptide (DPT) modifications possessed functionality conducive to promoting vascular graft patency. Co-modification of DPB and DPT swiftly attained luminal saturation without influencing cell viability. DPB repellent of non-specific proteins, DPB inhibition of thrombus formation, and DPB protection against functional masking of DPT's EPC-capture by blood components, which promoted patency and rapid endothelialization in rat and canine artery implantation models without anticoagulant administration. This strategy offers a safe, facile, and fast technical approach to convey additional functionalization to living cells within tissue-engineered constructs.
Collapse
|
research-article |
2 |
8 |
53
|
Midgley AC, Woods EL, Jenkins RH, Brown C, Khalid U, Chavez R, Hascall V, Steadman R, Phillips AO, Meran S. Hyaluronidase-2 Regulates RhoA Signaling, Myofibroblast Contractility, and Other Key Profibrotic Myofibroblast Functions. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1236-1255. [PMID: 32201263 PMCID: PMC7254050 DOI: 10.1016/j.ajpath.2020.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/13/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022] [Imported: 05/12/2025]
Abstract
Hyaluronidase (HYAL)-2 is a weak, acid-active, hyaluronan-degrading enzyme broadly expressed in somatic tissues. Aberrant HYAL2 expression is implicated in diverse pathology. However, a significant proportion of HYAL2 is enzymatically inactive; thus the mechanisms through which HYAL2 dysregulation influences pathobiology are unclear. Recently, nonenzymatic HYAL2 functions have been described, and nuclear HYAL2 has been shown to influence mRNA splicing to prevent myofibroblast differentiation. Myofibroblasts drive fibrosis, thereby promoting progressive tissue damage and leading to multimorbidity. This study identifies a novel HYAL2 cytoplasmic function in myofibroblasts that is unrelated to its enzymatic activity. In fibroblasts and myofibroblasts, HYAL2 interacts with the GTPase-signaling small molecule ras homolog family member A (RhoA). Transforming growth factor beta 1–driven fibroblast-to-myofibroblast differentiation promotes HYAL2 cytoplasmic relocalization to bind to the actin cytoskeleton. Cytoskeletal-bound HYAL2 functions as a key regulator of downstream RhoA signaling and influences profibrotic myofibroblast functions, including myosin light-chain kinase–mediated myofibroblast contractility, myofibroblast migration, myofibroblast collagen/fibronectin deposition, as well as connective tissue growth factor and matrix metalloproteinase-2 expression. These data demonstrate that, in certain biological contexts, the nonenzymatic effects of HYAL2 are crucial in orchestrating RhoA signaling and downstream pathways that are important for full profibrotic myofibroblast functionality. In conjunction with previous data demonstrating the influence of HYAL2 on RNA splicing, these findings begin to explain the broad biological effects of HYAL2.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
8 |
54
|
Yang S, Zheng X, Qian M, Wang H, Wang F, Wei Y, Midgley AC, He J, Tian H, Zhao Q. Nitrate-Functionalized poly(ε-Caprolactone) Small-Diameter Vascular Grafts Enhance Vascular Regeneration via Sustained Release of Nitric Oxide. Front Bioeng Biotechnol 2021; 9:770121. [PMID: 34917597 PMCID: PMC8670382 DOI: 10.3389/fbioe.2021.770121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/04/2021] [Indexed: 01/04/2023] [Imported: 05/12/2025] Open
Abstract
Artificial small-diameter vascular grafts (SDVG) fabricated from synthetic biodegradable polymers, such as poly(ε-caprolactone) (PCL), exhibit beneficial mechanical properties but are often faced with issues impacting their long-term graft success. Nitric oxide (NO) is an important physiological gasotransmitter with multiple roles in orchestrating vascular tissue function and regeneration. We fabricated a functional vascular graft by electrospinning of nitrate-functionalized poly(ε-caprolactone) that could release NO in a sustained manner via stepwise biotransformation in vivo. Nitrate-functionalized SDVG (PCL/NO) maintained patency following abdominal arterial replacement in rats. PCL/NO promoted cell infiltration at 3-months post-transplantation. In contrast, unmodified PCL SDVG showed slow cell in-growth and increased incidence of neointima formation. PCL/NO demonstrated improved endothelial cell (EC) alignment and luminal coverage, and more defined vascular smooth muscle cell (VSMC) layer, compared to unmodified PCL SDVG. In addition, release of NO stimulated Sca-1+ vascular progenitor cells (VPCs) to differentiate and contribute to rapid luminal endothelialization. Furthermore, PCL/NO inhibited the differentiation of VPCs into osteopontin-positive cells, thereby preventing vascular calcification. Overall, PCL/NO demonstrated enhanced cell ingrowth, EC monolayer formation and VSMC layer regeneration; whilst inhibiting calcified plaque formation. Our results suggested that PCL/NO could serve as promising candidates for improved and long-term success of SDVG implants.
Collapse
|
|
4 |
8 |
55
|
Liu Q, Wang C, Zhu M, Liu J, Duan Q, Midgley AC, Liu R, Jiang B, Kong D, Chen Q, Zhuang J, Huang X. Self-Assembly of Heterogeneous Ferritin Nanocages for Tumor Uptake and Penetration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309271. [PMID: 38368258 PMCID: PMC11077646 DOI: 10.1002/advs.202309271] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Indexed: 02/19/2024] [Imported: 05/12/2025]
Abstract
Well-defined nanostructures are crucial for precisely understanding nano-bio interactions. However, nanoparticles (NPs) fabricated through conventional synthesis approaches often lack poor controllability and reproducibility. Herein, a synthetic biology-based strategy is introduced to fabricate uniformly reproducible protein-based NPs, achieving precise control over heterogeneous components of the NPs. Specifically, a ferritin assembly toolbox system is developed that enables intracellular assembly of ferritin subunits/variants in Escherichia coli. Using this strategy, a proof-of-concept study is provided to explore the interplay between ligand density of NPs and their tumor targets/penetration. Various ferritin hybrid nanocages (FHn) containing human ferritin heavy chains (FH) and light chains are accurately assembled, leveraging their intrinsic binding with tumor cells and prolonged circulation time in blood, respectively. Further studies reveal that tumor cell uptake is FH density-dependent through active binding with transferrin receptor 1, whereas in vivo tumor accumulation and tissue penetration are found to be correlated to heterogeneous assembly of FHn and vascular permeability of tumors. Densities of 3.7 FH/100 nm2 on the nanoparticle surface exhibit the highest degree of tumor accumulation and penetration, particularly in tumors with high permeability compared to those with low permeability. This study underscores the significance of nanoparticle heterogeneity in determining particle fate in biological systems.
Collapse
|
Research Support, N.I.H., Extramural |
1 |
6 |
56
|
Li W, Wu P, Zhang Y, Midgley AC, Yuan X, Wu Y, Wang L, Wang Z, Zhu M, Kong D. Bilayered Polymeric Micro- and Nanofiber Vascular Grafts as Abdominal Aorta Replacements: Long-Term in Vivo Studies in a Rat Model. ACS APPLIED BIO MATERIALS 2019; 2:4493-4502. [PMID: 35021409 DOI: 10.1021/acsabm.9b00641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] [Imported: 05/12/2025]
|
|
6 |
5 |
57
|
Gu X, Liu Z, Tai Y, Zhou LY, Liu K, Kong D, Midgley AC, Zuo XC. Hydrogel and nanoparticle carriers for kidney disease therapy: trends and recent advancements. PROGRESS IN BIOMEDICAL ENGINEERING 2022; 4:022006. [DOI: 10.1088/2516-1091/ac6e18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025] [Imported: 05/12/2025]
Abstract
Abstract
Achieving local therapeutic agent concentration in the kidneys through traditional systemic administration routes have associated concerns with off-target drug effects and toxicity. Additionally, kidney diseases are often accompanied by co-morbidities in other major organs, which negatively impacts drug metabolism and clearance. To circumvent these issues, kidney-specific targeting of therapeutics aims to achieve the delivery of controlled doses of therapeutic agents, such as drugs, nucleic acids, peptides, or proteins, to kidney tissues in a safe and efficient manner. Current carrier material approaches implement macromolecular and polyplex hydrogel constructs, prodrug strategies, and nanoparticle (NP)-based delivery technologies. In the context of multidisciplinary and cross-discipline innovations, the medical and bioengineering research fields have facilitated the rapid development of kidney-targeted therapies and carrier materials. In this review, we summarize the current trends and recent advancements made in the development of carrier materials for kidney disease targeted therapies, specifically hydrogel and NP-based strategies for acute kidney disease, chronic kidney disease, and renal cell carcinoma. Additionally, we discuss the current limitations in carrier materials and their delivery mechanisms.
Collapse
|
|
3 |
4 |
58
|
Yang D, Feng Y, Yao X, Zhao B, Li D, Liu N, Fang Y, Midgley A, Liu D, Katsuyoshi N. Recent advances in bioactive nanocrystal-stabilized Pickering emulsions: Fabrication, characterization, and biological assessment. Compr Rev Food Sci Food Saf 2023; 22:946-970. [PMID: 36546411 DOI: 10.1111/1541-4337.13096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/07/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] [Imported: 05/12/2025]
Abstract
Numerous literatures have shown the advantages of Pickering emulsion (PE) for the delivery of bioactive ingredients in the fields of food, medicine, and cosmetics, among others. On this basis, the multi-loading mode of bioactives (internal phase encapsulation and/or loading at the interface) in small molecular bioactives nanocrystal-stabilized PE (BNC-PE) enables them higher loading efficiencies, controlled release, and synergistic or superimposed effects. Therefore, BNC-PE offers an efficacious delivery system. In this review, we briefly summarize BNC-PE fabrication and characterization, with a focus on the processes of possible evolution and absorption of differentially applied BNC-PE when interacting with the body. In addition, methods of monitoring changes and absorption of BNC-PE in vivo, from the nanomaterial perspective, are also introduced. The purpose of this review is to provide an accessible and comprehensive methodology for the characterization and evaluation of BNC-PE after formulation and preparation, especially in relation to biological assessment and detailed mechanisms throughout the absorption process of BNC-PE in vivo.
Collapse
|
Review |
2 |
3 |
59
|
Liu Z, Zhang X, Wang Y, Tai Y, Yao X, Midgley AC. Emergent Peptides of the Antifibrotic Arsenal: Taking Aim at Myofibroblast Promoting Pathways. Biomolecules 2023; 13:1179. [PMID: 37627244 PMCID: PMC10452577 DOI: 10.3390/biom13081179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] [Imported: 05/12/2025] Open
Abstract
Myofibroblasts are the principal effector cells driving fibrosis, and their accumulation in tissues is a fundamental feature of fibrosis. Essential pathways have been identified as being central to promoting myofibroblast differentiation, revealing multiple targets for intervention. Compared with large proteins and antibodies, peptide-based therapies have transpired to serve as biocompatible and cost-effective solutions to exert biomimicry, agonistic, and antagonistic activities with a high degree of targeting specificity and selectivity. In this review, we summarize emergent antifibrotic peptides and their utilization for the targeted prevention of myofibroblasts. We then highlight recent studies on peptide inhibitors of upstream pathogenic processes that drive the formation of profibrotic cell phenotypes. We also briefly discuss peptides from non-mammalian origins that show promise as antifibrotic therapeutics. Finally, we discuss the future perspectives of peptide design and development in targeting myofibroblasts to mitigate fibrosis.
Collapse
|
Review |
2 |
3 |
60
|
Sun Q, Shen Z, Liang X, He Y, Kong D, Midgley AC, Wang K. Progress and Current Limitations of Materials for Artificial Bile Duct Engineering. MATERIALS 2021; 14:ma14237468. [PMID: 34885623 PMCID: PMC8658964 DOI: 10.3390/ma14237468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 01/30/2023] [Imported: 05/12/2025]
Abstract
Bile duct injury (BDI) and bile tract diseases are regarded as prominent challenges in hepatobiliary surgery due to the risk of severe complications. Hepatobiliary, pancreatic, and gastrointestinal surgery can inadvertently cause iatrogenic BDI. The commonly utilized clinical treatment of BDI is biliary-enteric anastomosis. However, removal of the Oddi sphincter, which serves as a valve control over the unidirectional flow of bile to the intestine, can result in complications such as reflux cholangitis, restenosis of the bile duct, and cholangiocarcinoma. Tissue engineering and biomaterials offer alternative approaches for BDI treatment. Reconstruction of mechanically functional and biomimetic structures to replace bile ducts aims to promote the ingrowth of bile duct cells and realize tissue regeneration of bile ducts. Current research on artificial bile ducts has remained within preclinical animal model experiments. As more research shows artificial bile duct replacements achieving effective mechanical and functional prevention of biliary peritonitis caused by bile leakage or obstructive jaundice after bile duct reconstruction, clinical translation of tissue-engineered bile ducts has become a theoretical possibility. This literature review provides a comprehensive collection of published works in relation to three tissue engineering approaches for biomimetic bile duct construction: mechanical support from scaffold materials, cell seeding methods, and the incorporation of biologically active factors to identify the advancements and current limitations of materials and methods for the development of effective artificial bile ducts that promote tissue regeneration.
Collapse
|
Review |
4 |
3 |
61
|
Organic persistent luminescence imaging for biomedical applications. Mater Today Bio 2022; 17:100481. [PMID: 36388456 PMCID: PMC9647223 DOI: 10.1016/j.mtbio.2022.100481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/08/2022] [Imported: 05/12/2025] Open
Abstract
Persistent luminescence is a unique visual phenomenon that occurs after cessation of excitation light irradiation or following oxidization of luminescent molecules. The energy stored within the molecule is released in a delayed manner, resulting in luminescence that can be maintained for seconds, minutes, hours, or even days. Organic persistent luminescence materials (OPLMs) are highly robust and their facile modification and assembly into biocompatible nanostructures makes them attractive tools for in vivo bioimaging, whilst offering an alternative to conventional fluorescence imaging materials for biomedical applications. In this review, we give attention to the existing limitations of each class of OPLM-based molecular bioimaging probes based on their luminescence mechanisms, and how recent research progress has driven efforts to circumvent their shortcomings. We discuss the multifunctionality-focused design strategies, and the broad biological application prospects of these molecular probes. Furthermore, we provide insights into the next generation of OPLMs being developed for bioimaging techniques.
Collapse
|
|
3 |
2 |
62
|
Recent advances of interfacial and rheological property based techno-functionality of food protein amyloid fibrils. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] [Imported: 05/12/2025]
|
|
3 |
2 |
63
|
Zhang Q, Sun T, Yu F, Liu W, Gao J, Chen J, Zheng H, Liu J, Miao C, Guo H, Tian W, Su M, Guo Y, Liu X, Pei Y, Wang Z, Chen S, Mu C, Lam SM, Shui G, Li Z, Yu Z, Zhang Y, Chen G, Lu C, Midgley AC, Li C, Bian X, Liao X, Wang Y, Xiong W, Zhu H, Li Y, Chen Q. PAFAH2 suppresses synchronized ferroptosis to ameliorate acute kidney injury. Nat Chem Biol 2024; 20:835-846. [PMID: 38287154 DOI: 10.1038/s41589-023-01528-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 12/14/2023] [Indexed: 01/31/2024] [Imported: 05/12/2025]
Abstract
Synchronized ferroptosis contributes to nephron loss in acute kidney injury (AKI). However, the propagation signals and the underlying mechanisms of the synchronized ferroptosis for renal tubular injury remain unresolved. Here we report that platelet-activating factor (PAF) and PAF-like phospholipids (PAF-LPLs) mediated synchronized ferroptosis and contributed to AKI. The emergence of PAF and PAF-LPLs in ferroptosis caused the instability of biomembranes and signaled the cell death of neighboring cells. This cascade could be suppressed by PAF-acetylhydrolase (II) (PAFAH2) or by addition of antibodies against PAF. Genetic knockout or pharmacological inhibition of PAFAH2 increased PAF production, augmented synchronized ferroptosis and exacerbated ischemia/reperfusion (I/R)-induced AKI. Notably, intravenous administration of wild-type PAFAH2 protein, but not its enzymatically inactive mutants, prevented synchronized tubular cell death, nephron loss and AKI. Our findings offer an insight into the mechanisms of synchronized ferroptosis and suggest a possibility for the preventive intervention of AKI.
Collapse
|
|
1 |
2 |
64
|
Qi C, Liu X, Zhi D, Tai Y, Liu Y, Sun Q, Wang K, Wang S, Midgley AC, Kong D. Erratum to: Exosome-mimicking nanovesicles derived from efficacy-potentiated stem cell membrane and secretome for regeneration of injured tissue. NANO RESEARCH 2022; 15:7754-7756. [DOI: 10.1007/s12274-022-4483-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025] [Imported: 05/12/2025]
|
|
3 |
1 |
65
|
Wan J, Jiang J, Yu X, Zhou J, Wang Y, Fu S, Wang J, Liu Y, Dong Y, Midgley AC, Wang S. Injectable biomimetic hydrogel based on modified chitosan and silk fibroin with decellularized cartilage extracellular matrix for cartilage repair and regeneration. Int J Biol Macromol 2025; 298:140058. [PMID: 39832583 DOI: 10.1016/j.ijbiomac.2025.140058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025] [Imported: 05/12/2025]
Abstract
Cartilage defect repair remains a challenge for clinicians due to the limited self-healing capabilities of cartilage. Microenvironment-specific biomimetic hydrogels have shown great potential in cartilage regeneration because of their excellent biological properties. In this study, a hydrogel system consisting of p-hydroxybenzene propanoic acid-modified chitosan (PC), silk fibroin (SF) and decellularized cartilage extracellular matrix (DCM) was prepared. Under the catalysis of horseradish peroxidase (HRP), the phenol hydroxyl groups on PC and SF were crosslinked to form a hydrogel. DCM incorporation into the hydrogel facilitated an emulation of the natural cartilage extracellular matrix. The synthesized injectable hydrogels could fill irregular defects and formed network structures that promoted cell adhesion and proliferation. In vitro experiments demonstrated that the hydrogels had biocompatibility and promoted chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). The DCM-derived hydrogel exhibited low immunogenicity in vivo, and in the treatment of both rabbit trochlear groove cartilage defects and goat femoral condyle cartilage defects, the hydrogel accelerated the cartilage regeneration. In summary, our developed composite hydrogel system in the study offers a potential strategy for the effective repair of cartilage defects.
Collapse
|
|
1 |
|
66
|
Jin Z, Midgley AC. Natural Biological Solutions for Chronic Pathological Problems. Biomolecules 2024; 14:1248. [PMID: 39456181 PMCID: PMC11506686 DOI: 10.3390/biom14101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] [Imported: 05/12/2025] Open
Abstract
Naturally sourced biomolecules and their derivatives have had significant historical impacts in terms of their biomedical application [...].
Collapse
|
Editorial |
1 |
|
67
|
Liu Y, Chen S, Huang H, Midgley AC, Han Z, Han ZC, Li Q, Li Z. Ligand-Tethered Extracellular Vesicles Mediated RNA Therapy for Liver Fibrosis. Adv Healthc Mater 2025; 14:e2403068. [PMID: 39520385 DOI: 10.1002/adhm.202403068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/15/2024] [Indexed: 11/16/2024] [Imported: 05/12/2025]
Abstract
Liver fibrosis poses a significant global health burden, in which hepatic stellate cells (HSCs) play a crucial role. Targeted nanomedicine delivery systems directed at HSCs have shown immense potential in the treatment of liver fibrosis. Herein, a bioinspired material, engineered therapeutic miR-181a-5p (a miRNA known to inhibit fibrotic signaling pathways) and targeted moiety hyaluronic acid (HA) co-functionalized extracellular vesicles (EVs) are developed. HA is incorporated onto the surface of EVs using DSPE-PEG as a linker, allowing preferential binding to CD44 receptors, which are overexpressed on activated HSCs. Our results confirmed enhanced cellular uptake and improved payload delivery, as evidenced by the increased intracellular abundance of miR-181a-5p in activated HSCs and fibrotic livers. HA-equipped EVs loaded with miR-181a-5p (DPH-EVs@miR) significantly reduce HSC activation and extracellular matrix (ECM) deposition by inhibiting the TGF-β/Smad signaling pathway, thus alleviating the progression of liver fibrosis. Additionally, DPH-EVs@miR improves liver function, ameliorates inflammatory infiltration, and mitigates hepatocyte apoptosis, demonstrating superior hepatic protective effects. Collectively, this study reports a prospective nanovesicle therapeutic platform loaded with therapeutic miRNA and targeting motifs for liver fibrosis. The biomarker-guided EV-engineering technology utilized in this study provides a promising tool for nanomedicine and precision medicine.
Collapse
|
|
1 |
|
68
|
Zhang J, Zhao M, Xi Z, Liu X, Feng L, Bai J, Zhan X, Zhang C, Midgley AC, Liu Y. Pistol Ribozyme-Driven Catalytic Spherical Nucleic Acid Integrates Gene and Chemotherapy for Enhanced Cancer Therapy. J Am Chem Soc 2025; 147:9424-9440. [PMID: 40063899 DOI: 10.1021/jacs.4c16613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] [Imported: 05/12/2025]
Abstract
Gene-targeted therapies are revolutionizing cancer treatment due to their high specificity and low toxicity. Among these, ribozymes hold promise as independent gene therapy agents capable of directly cleaving target mRNAs. The pistol ribozyme, discovered in 2015, stands out for its compact structure and robust cleavage activity, making it a promising candidate for RNA silencing under physiological conditions. However, its clinical application is limited by nuclease susceptibility and biological barrier penetration. To overcome these obstacles, this study presents an innovative gene-regulation strategy incorporating engineered pistol ribozymes into a spherical nucleic acid (SNA) nanocarrier. This catalytic SNA nanocarrier, built on a DNA core-shell framework, combines the ribozyme with doxorubicin (Dox) to form the ApRz-CS/Dox nanoplatform. The design of ApRz-CS/Dox features a homopolymerized DNA core and a reticular DNA shell, enhancing stability. Tumor-targeting aptamers are arranged on its surface, directing it specifically to cancer cells. Within the target cells, the ribozyme is released in response to overexpressed miR-21, facilitating the cleavage of polo-like kinase 1 mRNA. This integrated approach effectively combines gene therapy with the chemotherapeutic effects of Dox, addressing the challenges associated with the delivery of newly developed nucleic acid drugs and offering a promising strategy for enhanced cancer treatment.
Collapse
|
|
1 |
|
69
|
Liu Q, Gao Z, Zhang X, Duan Q, Zhang Y, Midgley AC, Jiao L, Liu R, Zhu M, Kong D, Zhuang J, Huang X. Assembly of Genetically Engineered Ionizable Protein Nanocage-based Nanozymes for Intracellular Superoxide Scavenging. Nat Commun 2025; 16:1123. [PMID: 39875380 PMCID: PMC11775132 DOI: 10.1038/s41467-025-56414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] [Imported: 05/12/2025] Open
Abstract
Nanozymes play a pivotal role in mitigating excessive oxidative stress, however, determining their specific enzyme-mimicking activities for intracellular free radical scavenging is challenging due to endo-lysosomal entrapment. In this study, we employ a genetic engineering strategy to generate ionizable ferritin nanocages (iFTn), enabling their escape from endo-lysosomes and entry into the cytoplasm. Specifically, ionizable repeated Histidine-Histidine-Glutamic acid (9H2E) sequences are genetically incorporated into the outer surface of human heavy chain FTn, followed by the assembly of various chain-like nanostructures via a two-armed polyethylene glycol (PEG). Utilizing endosome-escaping ability, we design iFTn-based tetrameric cascade nanozymes with high superoxide dismutase- and catalase-mimicking activities. The in vivo protective effects of these ionizable cascade nanozymes against cardiac oxidative injury are demonstrated in female mouse models of cardiac ischemia-reperfusion (IR). RNA-sequencing analysis highlight the crucial role of these nanozymes in modulating superoxide anions-, hydrogen peroxide- and mitochondrial functions-relevant genes in IR injured cardiac tissue. These genetically engineered ionizable protein nanocarriers provide opportunities for developing ionizable drug delivery systems.
Collapse
|
research-article |
1 |
|
70
|
Zhang P, Zhao X, Zhang S, Li G, Midgley AC, Fang Y, Zhao M, Nishinari K, Yao X. The important role of cellular mechanical microenvironment in engineering structured cultivated meat: Recent advances. Curr Res Food Sci 2024; 9:100865. [PMID: 39416367 PMCID: PMC11481608 DOI: 10.1016/j.crfs.2024.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] [Imported: 05/12/2025] Open
Abstract
Cultivated meat (CM) provides a potential solution to meet the rising demand for eco-friendly meat supply systems. Recent efforts focus on producing CM that replicates the architecture and textural toughness of natural skeletal muscle. Significance of the regulated role of cellular microenvironment in myogenesis has been reinforced by the substantial influence of mechanical cues in mediating the muscle tissue organization. However, the formation of structured CM has not been adequately described in context of the mechanical microenvironment. In this review, we provide an updated understanding of the myogenesis process within mechanically dynamic three-dimensional microenvironments, discuss the effects of environmental mechanical factors on muscle tissue regeneration and how cell mechanics respond to the mechanical condition, and further highlight the role of mechanical cues as important references in constructing a sustainable Hydrocolloids-based biomaterials for CM engineering. These findings help to overcome current limitations in improving the textural properties of CM.
Collapse
|
Review |
1 |
|
71
|
Zhang Q, Sun T, Yu F, Liu W, Gao J, Chen J, Zheng H, Liu J, Miao C, Guo H, Tian W, Su M, Guo Y, Liu X, Pei Y, Wang Z, Chen S, Mu C, Lam SM, Shui G, Li Z, Yu Z, Zhang Y, Chen G, Lu C, Midgley AC, Li C, Bian X, Liao X, Wang Y, Xiong W, Zhu H, Li Y, Chen Q. Author Correction: PAFAH2 suppresses synchronized ferroptosis to ameliorate acute kidney injury. Nat Chem Biol 2024; 20:934. [PMID: 38316917 DOI: 10.1038/s41589-024-01566-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] [Imported: 05/12/2025]
|
Published Erratum |
1 |
|
72
|
Li Y, Liu S, Zhang J, Wang Y, Lu H, Zhang Y, Song G, Niu F, Shen Y, Midgley AC, Li W, Kong D, Zhu M. Elastic porous microspheres/extracellular matrix hydrogel injectable composites releasing dual bio-factors enable tissue regeneration. Nat Commun 2024; 15:1377. [PMID: 38355941 PMCID: PMC10866888 DOI: 10.1038/s41467-024-45764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] [Imported: 05/12/2025] Open
Abstract
Injectable biomaterials have garnered increasing attention for their potential and beneficial applications in minimally invasive surgical procedures and tissue regeneration. Extracellular matrix (ECM) hydrogels and porous synthetic polymer microspheres can be prepared for injectable administration to achieve in situ tissue regeneration. However, the rapid degradation of ECM hydrogels and the poor injectability and biological inertness of most polymeric microspheres limit their pro-regenerative capabilities. Here, we develop a biomaterial system consisting of elastic porous poly(l-lactide-co-ε-caprolactone) (PLCL) microspheres mixed with ECM hydrogels as injectable composites with interleukin-4 (IL-4) and insulin-like growth factor-1 (IGF-1) dual-release functionality. The developed multifunctional composites have favorable injectability and biocompatibility, and regulate the behavior of macrophages and myogenic cells following injection into muscle tissue. The elicited promotive effects on tissue regeneration are evidenced by enhanced neomusle formation, vascularization, and neuralization at 2-months post-implantation in a male rat model of volumetric muscle loss. Our developed system provides a promising strategy for engineering bioactive injectable composites that demonstrates desirable properties for clinical use and holds translational potential for application as a minimally invasive and pro-regenerative implant material in multiple types of surgical procedures.
Collapse
|
research-article |
1 |
|
73
|
Sun X, Li Y, He Y, Cheng L, Wang L, Wei J, Chen J, Du L, Shen Z, Xie Y, Midgley AC, Jiang W, Yoshida S. Aberrant expression of GTPase-activating protein ARAP1 triggers circular dorsal ruffles associated with malignancy in hepatocellular carcinoma Hep3B cells. Cell Commun Signal 2025; 23:75. [PMID: 39934854 PMCID: PMC11816549 DOI: 10.1186/s12964-025-02084-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] [Imported: 05/12/2025] Open
Abstract
BACKGROUND Circular dorsal ruffles (CDRs) are large and rounded membrane ruffles that function as precursors of macropinocytosis. We recently reported that CDRs form in Hep3B hepatocellular carcinoma (HCC) cells, but not in Huh7 and HepG2 HCC cells or LO2 cells, suggesting that an unknown molecular mechanism implicates CDRs in Hep3B malignancy through macropinocytosis uptake of excessive extracellular nutrients. In this study, we investigated the cellular role and the mechanism of CDRs in Hep3B cells by focusing on the GTPase-activating protein ARAP1. METHODS ARAP1 knock-out (KO) cells were generated. Confocal microscopy and high-resolution scanning electron microscopy (SEM) were used for identification of the target proteins and structure analysis, respectively. Proteasome inhibitor MG132, mitochondrial function inhibitor CCCP, ARF1 inhibitor Golgicide A, and macropinocytosis inhibitor EIPA were used to investigate the molecular mechanism. Cell proliferation and Transwell migration/invasion assays were used to investigate the role of ARAP1 in cellular malignancy. RESULTS ARAP1 was localized to CDRs, which had reduced size following ARAP1 KO. CDRs comprised small vertical lamellipodia, the expression pattern of which was disrupted in ARAP1 KO cells. Extracellular solute uptake, rate of cell growth, and malignant potential were attenuated in KO cells. ARAP1 was also localized to mitochondria in Hep3B cells but not in the control cell lines. Mitochondrial fission protein was increased in KO cells. CCCP treatment blocked CDRs in Hep3B cells but not in controls. Surprisingly, ARAP1 expression level in Hep3B cells was lower than in Huh7, HepG2, and LO2 cells. MG132 treatment increased the ARAP1 levels in Hep3B cells, but not in Huh7 cells, revealing that ARAP1 is actively degraded in Hep3B cells. CONCLUSIONS These results strongly suggest that the aberrant expression of ARAP1 in Hep3B cells modulates CDRs via mitochondrial function, thereby resulting in excess uptake of nutrients as an initial event in cancer development. Based on these findings, we propose that the molecular mechanisms underlying the formation of CDRs, focusing on ARAP1, may serve as an effective therapeutic target in some types of HCC and cancers.
Collapse
|
research-article |
1 |
|
74
|
Li L, Yao X, Li G, Guo Q, Yue J, Liu W, Fang Y, Midgley A, Zhao M, Nishinari K. Recent progress of artificial cells in structure design, functionality and the prospects in food biotechnology. Mater Today Bio 2025; 31:101565. [PMID: 40026621 PMCID: PMC11869102 DOI: 10.1016/j.mtbio.2025.101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/02/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] [Imported: 05/12/2025] Open
Abstract
Artificial cells have bridged the gap between non-living systems and biological cells. In recent years, artificial cells designed to simulate cellular structure and function have garnered significant attention. These artificial cells demonstrate vast potential for advancements in various biomedical areas, including simulating cell structure and function, creating innovative biosensors, facilitating bioactives transport, enabling micro and nanoreactors, and improving the targeted therapy for chronic foodborne diseases. In the interdisciplinary field of artificial cell construction, based on their constituent components, these systems can be categorized into lipid/polymer vesicles, coacervate, colloidosome, and metal-organic framework (MOF) artificial cells. They are anticipated to significantly enhance advancements in food science, particularly in cellular structure optimization, precise nutrition delivery, targeted nutrient release, and rapid detection methods. Consequently, this paper will comprehensively cover the historical background, fabrication techniques, and structural characteristics of artificial cells. From a functional design perspective, this review examines the growth and division mechanisms, energy production processes, encapsulation and reaction vessels, carriers, and information exchange systems of artificial cells. Ultimately, it provides a comprehensive evaluation of the safety of artificial cells from both biological and environmental viewpoints, to introduce and expand the application scenarios of this innovative biotechnology in food science.
Collapse
|
Review |
1 |
|
75
|
Yang Y, Zhang X, Yan H, Zhao R, Zhang R, Zhu L, Zhang J, Midgley AC, Wan Y, Wang S, Qian M, Zhao Q, Ai D, Wang T, Kong D, Huang X, Wang K. Versatile Design of NO-Generating Proteolipid Nanovesicles for Alleviating Vascular Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401844. [PMID: 38884204 PMCID: PMC11336937 DOI: 10.1002/advs.202401844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/23/2024] [Indexed: 06/18/2024] [Imported: 05/12/2025]
Abstract
Vascular injury is central to the pathogenesis and progression of cardiovascular diseases, however, fostering alternative strategies to alleviate vascular injury remains a persisting challenge. Given the central role of cell-derived nitric oxide (NO) in modulating the endogenous repair of vascular injury, NO-generating proteolipid nanovesicles (PLV-NO) are designed that recapitulate the cell-mimicking functions for vascular repair and replacement. Specifically, the proteolipid nanovesicles (PLV) are versatilely fabricated using membrane proteins derived from different types of cells, followed by the incorporation of NO-generating nanozymes capable of catalyzing endogenous donors to produce NO. Taking two vascular injury models, two types of PLV-NO are tailored to meet the individual requirements of targeted diseases using platelet membrane proteins and endothelial membrane proteins, respectively. The platelet-based PLV-NO (pPLV-NO) demonstrates its efficacy in targeted repair of a vascular endothelium injury model through systemic delivery. On the other hand, the endothelial cell (EC)-based PLV-NO (ePLV-NO) exhibits suppression of thrombosis when modified onto a locally transplanted small-diameter vascular graft (SDVG). The versatile design of PLV-NO may enable a promising therapeutic option for various vascular injury-evoked cardiovascular diseases.
Collapse
|
research-article |
1 |
|