1
|
Klider LM, Marques AAM, Moreno KGT, da Silva GP, Mizuno GA, Farias KDS, Monteiro LM, de Almeida VP, Monchak IT, da Silva DB, Manfron J, Gasparotto Junior A. Pharmacological mechanisms involved in the diuretic activity of the ethanol-soluble fraction of Baccharis milleflora (Less.) DC. - An ethnopharmacological investigation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118629. [PMID: 39059687 DOI: 10.1016/j.jep.2024.118629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baccharis milleflora (Less.) DC. is a plant native to Brazil that is frequently used in traditional medicine as a diuretic and antihypertensive. However, even though it is traditionally used for these purposes, its diuretic and hypotensive effects have not been fully elucidated. AIM Investigate the cardiorenal effects of the ethanol-soluble fraction (ESBM) of Baccharis milleflora in normotensive rats. MATERIALS AND METHODS Cladodes of B. milleflora were analyzed using light and scanning electron microscopy to provide anatomical data to support quality control. Subsequently, the ESBM was obtained and analyzed using LC-DAD-MS, and its components were annotated. The acute toxicity of ESBM was assessed in female Wistar rats. The acute and prolonged diuretic and hypotensive effects were then studied in Wistar rats. Finally, we assessed the mechanisms responsible for the diuretic effects of ESBM, including the activity of renal Na+/K+/ATPase, angiotensin-converting enzyme, and erythrocyte carbonic anhydrase. Additionally, we also investigated the involvement of bradykinin, prostaglandins, and nitric oxide. RESULTS From LC-DAD-MS data, thirty-three metabolites were identified from ESBM, including chlorogenic acids, glycosylated phenolic derivatives, C-glycosylated flavones, and O-glycosylated flavonols. No signs of acute toxicity were observed in female rats. The findings showed that ESBM had significant diuretic and natriuretic effects, as well as a potassium-sparing effect. The treatment with ESBM was able to significantly decrease serum levels of creatinine and malondialdehyde, and also significantly increase levels of nitrite, an indirect marker of nitric oxide bioavailability. Furthermore, pre-treatment with L-NAME abolished all diuretic effects induced by ESBM. CONCLUSION This study presented important morpho-anatomical and phytochemical data that support the quality control of Baccharis milleflora. The ESBM exhibited a significant diuretic and natriuretic effect following acute and seven-days repeated treatment in Wistar rats, without affecting renal potassium elimination. These effects appear to be dependent on the activation of the nitric oxide-cyclic GMP pathway. This study suggests the potential use of B. milleflora preparations in clinical situations where a diuretic effect is needed.
Collapse
|
2
|
Lopes KS, Junior AG, Fillmore N, da Silva Gomes R. Cardiovascular-kidney-metabolic syndrome - An integrative review. Prog Cardiovasc Dis 2024:S0033-0620(24)00148-8. [PMID: 39486671 DOI: 10.1016/j.pcad.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
The American Heart Association recently defined the complex interactions among the cardiovascular, renal, and metabolic systems as CKM syndrome. To promote better patient outcomes, having a more profound understanding of CKM pathophysiology and pursuing holistic preventative and therapy strategies is critical. Despite many gaps in understanding CKM syndrome, this study attempts to elucidate two of these gaps: the new emerging biomarkers for screening and the role of inflammation in its pathophysiology. For this review, an extensive search for specific terms was conducted in the following databases: PubMed, Scopus, Web of Science, and Google Scholar. Studies were first assessed by title, abstract, keywords, and selected for portfolio according to eligibility criteria, which led to 38 studies. They provided background information about CKM syndrome; data suggested that serum uric acid, leptin, aldosterone, bilirubin, soluble neprilysin, lipocalin-type-prostaglandin-D-synthase, and endocan could be valuable biomarkers for CKM screening; and finally, the inflammation role in CKM.
Collapse
|
3
|
Machado CD, Farago PV, Costa CDM, Farias KS, Silva DB, Marques AAM, Moreno KGT, Pael LAB, da Silva MLF, Gasparotto Junior A, Manfron J. Acute toxicity and genotoxicity of Schinus molle L. aqueous extract/ethanol-soluble fraction in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118499. [PMID: 38936645 DOI: 10.1016/j.jep.2024.118499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schinus molle L. is a medicinal species belonging to the Anacardiaceae family. It is commonly referred to as "aroeira" and its leaves and roots are utilized for treating different pathological conditions. However, despite its widespread use in traditional medicine, there is a lack of in-depth toxicological studies. AIM To evaluate the acute toxicity and genotoxicity of S. molle aqueous extract/ethanol-soluble fraction in rats. MATERIAL AND METHODS First, a purified aqueous extract was obtained from the leaves of S. mole through infusion (referred to as EESM) and its compounds were identified using LC-DAD-MS data. Female rats were then subjected to acute oral toxicity tests using doses of 5, 50, 300, and 2000 mg/kg of ESSM. Studies on genetic material, including the micronucleus test and comet assay, were conducted on male and female Wistar rats using the same doses as in the acute toxicity test. For both assays, ESSM was administered orally. RESULTS The main metabolites annotated from ESSM were dimeric proanthocyanidins, phenylpropanoids acids, flavan-3-ols, simple organic acids (C6-C1), a flavonol di-O-glycosylated (rutin), and O-glycosylated megastigmane. The ESSM did not exhibit any acute toxic effects, such as changes in biochemical, hematologic, or histopathological analysis. Furthermore, no changes were observed in comet assay or micronucleus tests when rats were given doses of 5, 50, 300, or 2000 mg/kg of ESSM. CONCLUSION The results showed that the ESSM does not induce acute toxicity or exhibit genotoxicity up to a dose of 2000 mg/kg.
Collapse
|
4
|
Shah SN, Younis W, Junior AG, Manzoor W, Malik MNH, Mushtaq MN, Munir MU, Bashir A, Bibi S, Talha M, Livero FADR. Diuretic and Anti-hyperuricemic Effects of Geranyl Acetate in Rats. Curr Med Chem 2024; 31:CMC-EPUB-142804. [PMID: 39234901 DOI: 10.2174/0109298673300632240823061848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Geranyl acetate, a compound found in plant oils, has been studied for its potential effects on renal and cardiovascular ailments. OBJECTIVE This study aimed to investigate the diuretic and anti-hyperuricemic properties of geranyl acetate in male Wistar rats using a hyperuricemia-induced rat model. METHODS Molecular docking studies were conducted to assess geranyl acetate's interactions with various targets. in vitro studies were performed to evaluate its scavenging ability and inhibition of xanthine oxidase, urease, and acetylcholinesterase. Subsequently, we administered different doses of geranyl acetate (25, 50, and 100 mg/kg) and a reference drug (furosemide) to the rats to assess their acute and repeated dose diuretic effects over seven days. To understand the diuretic mechanism, we used inhibitors, such as L-- NAME, indomethacin, and atropine, prior to administering geranyl acetate. We also tested the anti-hyperuricemic potential of geranyl acetate on hyperuricemic rats. RESULTS Molecular docking suggested strong binding between geranyl acetate and nitric oxide synthase. in vitro studies showed significant free radical scavenging activity and and inhibition of acetylcholinesterase, xanthine oxidase, and urease. The 100 mg/kg dose exhibited the most promising diuretic effects, with nitric oxide appearing to influence its action. Uric acid excretion increased at this dose, resembling allopurinol effects. CONCLUSION Geranyl acetate has demonstrated significant diuretic and anti-hyperuricemic effects, likely influenced by nitric oxide release and inhibition of enzymes, like xanthine oxidase and urease. The findings have suggested potential benefits for individuals with kidney ailments, hypertension, and gout.
Collapse
|
5
|
Moreno KGT, Marques AAM, da Silva GP, Bertoncelo LA, Pessoal LB, Gonçalves LD, Dos Santos AC, Souza RIC, Silva DB, Gasparotto Junior A. Cardioprotective Effects of Aloysia polystachya Essential Oil on a Rat Model with Multiple Cardiovascular Risk Factors. PLANTA MEDICA 2024; 90:708-716. [PMID: 38631368 DOI: 10.1055/a-2294-6922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Traditional medicine is a frequently utilized method to treat cardiovascular disease and its primary risk factors, including hypertension and dyslipidemia. Aloysia polystachya is a species that is commonly employed to treat various pathological conditions, and it has already been identified as having some cardioprotective effects. This study aimed to investigate the protective effects of the essential oil extracted from the leaves of A. polystachya in a rat model that simulates multiple cardiovascular risk factors. We evaluate the acute toxicity, as well as the cardioprotective effects, by giving different doses of A. polystachya essential oil (1.47 mg/kg, 4.40 mg/kg, and 13.20 mg/kg) over a period of 42 days. The control group was treated with rosuvastatin (5 mg/kg). At the end of the treatments, the renal function, electrocardiography, blood pressure, vascular reactivity, serum biochemical profile, and organ histopathology were evaluated. The main compounds identified in the essential oil of A. polystachya using gas chromatography coupled with mass spectrometry were beta-myrcene (1.08%), limonene (40.13%), and carvone (56.47%). The essential oil of A. polystachya not only lacks acute toxicity but also mitigates the reduction in the excretion of sodium, chloride, and creatinine in urine. Furthermore, it reduces electrocardiographic abnormalities and decreases blood pressure levels. Moreover, this treatment prevents an elevation in markers of inflammation and oxidative stress in the bloodstream. Our findings indicate significant cardioprotective effects of the essential oil of A. polystachya against multiple risk factors for cardiovascular diseases in hypertensive rats.
Collapse
|
6
|
de Azevedo MM, Lívero FADR, Tinelli SBB, da Silva JV, de Almeida DAT, Martines MAU, Prada AL, Rodríguez Amado JR, Gasparotto Junior A. NO-cGMP-K + Channels Pathways Participate in the Antihypertensive Effects of Attalea phalerata Martius ex Spreng Oil-Loaded Nanocapsules. Pharmaceutics 2024; 16:842. [PMID: 39065538 PMCID: PMC11279957 DOI: 10.3390/pharmaceutics16070842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Attalea phalerata Martius ex Spreng is a palm tree that is widely distributed in the Central-West region of Brazil. In this study, we investigated whether the oil-loaded nanocapsules of A. phalerata (APON) have acute and long-lasting antihypertensive effects in male spontaneously hypertensive rats (SHR), as well as explored the underlying molecular mechanisms. APON was prepared using the interfacial polymer deposition method. The particle size, polydispersity index, and zeta potential were investigated using dynamic and electrophoretic light scattering. The antihypertensive effects of APON (administered at doses of 1, 3, and 10 mg/kg) were evaluated after acute intraduodenal administration and after 7 days of oral treatment. To investigate the molecular pathways involved, we used pharmacological antagonists and inhibitors that target prostaglandin/cyclic adenosine monophosphate, nitric oxide/cyclic guanosine monophosphate, and potassium channels. Both acute and prolonged administration of APON (at doses of 3 and 10 mg/kg) resulted in a significant reduction in systolic, diastolic, and mean arterial pressure. Prior treatment with a non-selective nitric oxide synthase inhibitor (Nω-nitro-L-arginine methyl ester), guanylyl cyclase inhibitor (methylene blue), or non-selective calcium-sensitive K+ channel blocker (tetraethylammonium) abolished the antihypertensive effects of APON. Our study showed that A. phalerata oil-loaded nanocapsules have a significant antihypertensive effect in SHR after both short-term and long-term (7-day) use. This effect seems to rely on the vascular endothelium function and involves the NO-cGMP-K+ channel pathway. This research suggests a new direction for future studies to definitively prove the therapeutic benefits of APON in treating cardiovascular disease.
Collapse
|
7
|
Dalmagro M, Donadel G, Moraes Pinc M, Becker Viana AP, Klein EJ, da Silva EA, Cassemiro NS, Silva DB, Gasparotto Junior A, de Almeida Canoff JR, Lourenço ELB, Hoscheid J. Exploring antioxidant and α-glucosidase inhibition in Eugenia L. extracts: a comprehensive phytochemical study. Nat Prod Res 2024:1-7. [PMID: 38738742 DOI: 10.1080/14786419.2024.2352868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
This study analysed extracts obtained from the leaves of Eugenia uniflora, E. involucrata, and E. myrcianthes to determine their chemical composition, antioxidative properties, and α-glucosidase inhibitory capacity. By using liquid chromatography with a diode array detector, we identified chlorogenic acids, flavonoids, tannins, proanthocyanidins, saponins, and triterpenes in the extracts. The antioxidant activities of the extracts were found to be directly related to their total phenolic, flavonoid content and enzyme inhibition. The E. uniflora aqueous extract showed significant inhibition of α-glucosidase (IC50 0.98 µg mL-1), indicating its potential as a non-competitive inhibitor for managing Diabetes Mellitus. This study contributes to the existing knowledge on the chemical and biological aspects of Eugenia genus.
Collapse
|
8
|
Acácio BR, Prada AL, Neto SF, Gomes GB, Perdomo RT, Nazario CED, Neto ES, Martines MAU, de Almeida DAT, Gasparotto Junior A, Amado JRR. Cytotoxicity, anti-inflammatory effect, and acute oral toxicity of a novel Attalea phalerata kernel oil-loaded nanocapsules. Biomed Pharmacother 2024; 174:116308. [PMID: 38626517 DOI: 10.1016/j.biopha.2024.116308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 04/18/2024] Open
Abstract
The kernel oil of the Attalea phalerata Mart. Ex Spreng (Acurí) is traditionally used in several Latin American countries to treat respiratory problems, inflammation, and fever. However, it cannot be found on the literature any attend to use this oil in pharmaceutical formulation. In this paper, it was developed Acurí oil-loaded nanocapsules, and it was evaluated the cytotoxicity against cancer cells, the antinflammatory activity and the oral acute toxicity in rats. Acurí oil contains lauric acid as the predominant saturated fatty acid (433.26 mg/g) and oleic acid as the main unsaturated fatty acid (180.06 mg/g). The Acurí oil-loaded nanocapsules showed a size of 237 nm, a polydispersity index of 0.260, and a high ζ-potential of -78.75 mV. It was obtained an encapsulation efficiency of 88.77%, and the nanocapsules remain stable on the shelf for 180 days. The nanocapsules showed a rapid release profile (98.25% in 40 minutes). Nanocapsules at a dose of 10 mg/kg exhibit an anti-inflammatory effect similar to indomethacin at the same dose. The nanocapsules showed excellent antiproliferative effect and selectivity index against prostate tumor cells (IC50 2.09 µg/mL, SI=119.61) and kidney tumor cells (IC50 3.03 µg/mL, SI=82.50). Both Acurí oil and Acurí oil-loaded nanocapsules are nontoxic at a dose of 2000 mg/kg. Additionally, they reduce serum triglyceride and total cholesterol levels in rat and could find application in nutraceutical formulations. The Acurí oil-loaded nanocapsules emerge as a promising candidate for new antitumor therapies.
Collapse
|
9
|
Cestari AP, Gasparotto FM, Kassuya CAL, Lacerda TMR, Donadel G, Moura CS, Ceranto DB, Jacomassi E, Alberton O, Tramontini SB, Bertoncello LA, Gasparotto Junior A, Lourenço ELB. Ateroprotective effects of Plinia cauliflora in. New Zealand rabbits: beyond the lipid-lowering effect. Front Pharmacol 2024; 15:1244632. [PMID: 38283628 PMCID: PMC10811141 DOI: 10.3389/fphar.2024.1244632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024] Open
Abstract
Introduction: Plinia cauliflora [Mart.] Kausel (Myrtaceae), popularly known as "jabuticaba," is a fruit species native to Brazil. Despite extensive widespread usage, its antiatherosclerotic properties' impact remains unknown. Thus, the present study aimed to investigate the cardioprotective effects of a preparation obtained from the fruit peels of P. cauliflora (EEPC). Methods: Male New Zealand rabbits received a 1% cholesterol-supplemented diet for 60 days. On the thirtieth day, the animals were divided into five experimental groups and received, once a day, by the oral route, the EEPC (10, 30, and 100 mg/kg), simvastatin (2.5 mg/kg), or vehicle for 30 days. At the end of the experimental period, peripheral blood and arterial branch samples were collected. The levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), malondialdehyde (MDA), nitrotyrosine (NT), nitrite, interleukin 1 beta (IL-1b), interleukin 6 (IL-6), soluble inter-cellular adhesion molecule-1 (sICAM-1), and soluble vascular cell adhesion molecule-1 (sVCAM-1) levels were measured. Moreover, the catalase and superoxide dismutase levels were measured on the arterial samples. Histopathological analysis and arterial morphometry were also performed. Results and discussion: The oral administration of ESEG significantly lowered the levels of lipids in rabbits that were fed a CRD diet. This treatment also adjusted the protective system against oxidation in the arteries by decreasing the oxidation of lipids and proteins. Additionally, the levels of IL-1b, IL-6, sICAM-1, and sVCAM-1 in the bloodstream decreased significantly, and this was accompanied by a reduction of atherosclerotic lesions in all branches of the arteries. The findings suggest that EEPC may be a possible option for additional management of atherosclerosis.
Collapse
|
10
|
Gasparotto Junior A. Pharmacological Advances for Treatment in Hypertension. Pharmaceuticals (Basel) 2023; 17:39. [PMID: 38256873 PMCID: PMC10818466 DOI: 10.3390/ph17010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Hypertension plays a significant role in the development of cardiovascular disease and renal diseases, which can heighten the likelihood of experiencing related conditions like myocardial infarction, stroke, and heart failure [...].
Collapse
|
11
|
Lopes KS, Marques AAM, Moreno KGT, dos Santos AC, Souza RIC, Lourenço ELB, Oliveira RJ, Gomes RDS, Lívero FADR, Gasparotto Junior A. Cardioprotective Effects of Solidago microglossa DC. in Nicotine-Treated Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:6611569. [PMID: 38161789 PMCID: PMC10756737 DOI: 10.1155/2023/6611569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 01/03/2024]
Abstract
Solidago microglossa DC. (Asteraceae), "arnica brasileira," is a Brazilian species popularly used to treat hypertension or renal ailments. This study investigated the cardioprotective effects of standardized S. microglossa extract (EESM) in nicotine-treated spontaneously hypertensive rats (SHRs). Moreover, the molecular mechanisms involved in the cardiovascular effects were also investigated. The acute toxicity was evaluated in female Wistar rats. Afterwards, six-month-old male spontaneously hypertensive rats received the EESM (14, 28, and 56 mg/kg), hydrochlorothiazide (25 mg/kg), and vehicle (filtered water; 0.1 mL/100 g) once daily for 28 days. All treatments were associated with 1.8 mg/kg of nicotine. At the end of the experimental period, the renal function, electrocardiographic profile, blood pressure, ventricular function, biochemical parameter, and mesenteric vascular bed reactivity were evaluated. Relative organ weights and cardiac morphometry were also investigated. Nicotine treatment in 6-month-old SHRs induced a significant reduction in renal function, with reduced urinary volume and lower renal elimination of sodium and creatinine. In addition, serum markers of the redox state and blood pressure levels remained significantly elevated, contributing to changes in vascular reactivity and left ventricular hypertrophy associated with reduced ventricular function. After 28 days of treatment, we found that the highest dose of EESM could mitigate all renal and cardiovascular changes developed by the nicotine-treated hypertensive rats. This study presented EESM as a possible cardioprotective drug that prevents cardiovascular dysfunctions in nicotine-treated hypertensive rats. Our data suggest EESM as a potential adjuvant therapy when cardioprotective effects are required.
Collapse
|
12
|
Monteiro LM, Klider LM, Marques AAM, Farago PV, Emiliano J, Souza RIC, dos Santos AC, dos Santos VLP, Wang M, Cassemiro NS, Silva DB, Khan IA, Gasparotto Junior A, Manfron J. The Cardiorenal Effects of Piper amalago Are Mediated by the Nitric Oxide/Cyclic Guanosine Monophosphate Pathway and the Voltage-Dependent Potassium Channels. Pharmaceuticals (Basel) 2023; 16:1630. [PMID: 38004495 PMCID: PMC10675251 DOI: 10.3390/ph16111630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Piper amalago L. is used in Brazilian traditional medicine to treat inflammation, chest pain, and anxiety. This study aimed to investigate the safety and the renal and cardiovascular effects of the volatile oil (VO) and the aqueous (AE) and hydroalcoholic (HE) extracts from P. amalago. The gas chromatography-mass spectrometry analyses identified 47 compounds in the VO, with β-cyclogermacrene, spathulenol, β-phellandrene, and α-pinene standing out. Among the 47 compounds also found in AE and HE by liquid chromatography-mass spectrometry, glycosylated flavones, organic acids, amino acids, and amides were highlighted. Some examples of these compounds are methoxy-methylenedioxy cis-cinnamoyl pyrrolidine, methoxy-methylenedioxy trans-cinnamoyl pyrrolidine, and cyclobutene-2,4-bis-(1,3-benzodioxol-5-methoxy-6-yl)-1,3-dicarboxapyrrolidide. The acute toxicity experiments were conducted on female rats (n = 5). The cardiorenal assays (n = 8) and evaluations of vasodilatory effects on the mesenteric vascular bed (n = 5) were conducted on male rats. In either extract or VO, there were no mortality or changes in relative weights or histopathological analysis of the organs. Urinary volume and renal electrolyte excretion were elevated significantly during repeated dose 7-day treatment with different preparations from P. amalago. None of the preparations induced hypotension or changes in cardiac electrical activity. Only HE promoted significant vasodilatory effects in rats' isolated mesenteric vascular beds. These effects were completely abolished in the presence of L-NAME plus 4-aminopyridine. Therefore, P. amalago leaves are safe and present diuretic activity after acute and repeated dose administration over 7 days. Moreover, the HE induced significant vasodilator response in rats' mesenteric vascular beds by NO/cGMP pathway and voltage-dependent K+ channels activation.
Collapse
|
13
|
Moser JC, da Silva RDCV, Costa P, da Silva LM, Cassemiro NS, Gasparotto Junior A, Silva DB, de Souza P. Role of K + and Ca 2+ Channels in the Vasodilator Effects of Plectranthus barbatus (Brazilian Boldo) in Hypertensive Rats. Cardiovasc Ther 2023; 2023:9948707. [PMID: 38024105 PMCID: PMC10673663 DOI: 10.1155/2023/9948707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Plectranthus barbatus, popularly known as Brazilian boldo, is used in Brazilian folk medicine to treat cardiovascular disorders including hypertension. This study investigated the chemical profile by UFLC-DAD-MS and the relaxant effect by using an isolated organ bath of the hydroethanolic extract of P. barbatus (HEPB) leaves on the aorta of spontaneously hypertensive rats (SHR). A total of nineteen compounds were annotated from HEPB, and the main metabolite classes found were flavonoids, diterpenoids, cinnamic acid derivatives, and organic acids. The HEPB promoted an endothelium-dependent vasodilator effect (~100%; EC50 ~347.10 μg/mL). Incubation of L-NAME (a nonselective nitric oxide synthase inhibitor; EC50 ~417.20 μg/mL), ODQ (a selective inhibitor of the soluble guanylate cyclase enzyme; EC50 ~426.00 μg/mL), propranolol (a nonselective α-adrenergic receptor antagonist; EC50 ~448.90 μg/mL), or indomethacin (a nonselective cyclooxygenase enzyme inhibitor; EC50 ~398.70 μg/mL) could not significantly affect the relaxation evoked by HEPB. However, in the presence of atropine (a nonselective muscarinic receptor antagonist), there was a slight reduction in its vasorelaxant effect (EC50 ~476.40 μg/mL). The addition of tetraethylammonium (a blocker of Ca2+-activated K+ channels; EC50 ~611.60 μg/mL) or 4-aminopyridine (a voltage-dependent K+ channel blocker; EC50 ~380.50 μg/mL) significantly reduced the relaxation effect of the extract without the interference of glibenclamide (an ATP-sensitive K+ channel blocker; EC50 ~344.60 μg/mL) or barium chloride (an influx rectifying K+ channel blocker; EC50 ~360.80 μg/mL). The extract inhibited the contractile response against phenylephrine, CaCl2, KCl, or caffeine, similar to the results obtained with nifedipine (voltage-dependent calcium channel blocker). Together, the HEPB showed a vasorelaxant effect on the thoracic aorta of SHR, exclusively dependent on the endothelium with the participation of muscarinic receptors and K+ and Ca2+ channels.
Collapse
|
14
|
Rodrigues Albuquerque E, Ratti da Silva G, de Abreu Braga F, Pelegrini Silva E, Sposito Negrini K, Rodrigues Fracasso JA, Pires Guarnier L, Jacomassi E, Ribeiro-Paes JT, da Silva Gomes R, Gasparotto Junior A, Lívero FADR. Bridging the Gap: Exploring the Preclinical Potential of Pereskia grandifolia in Metabolic-Associated Fatty Liver Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:8840427. [PMID: 38026733 PMCID: PMC10653969 DOI: 10.1155/2023/8840427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/02/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a complex condition characterized by steatosis and metabolic disturbances. Risk factors such as diabetes, cigarette smoking, and dyslipidaemia contribute to its development and progression. Effective and safe therapies for MAFLD are urgently needed. Pereskia grandifolia has shown potential as an alternative treatment, but its effectiveness against liver disease remains unexplored. This research aims to determine the hepatoprotective properties of P. grandifolia using a model of MAFLD. The study was carried out through various phases to assess the safety and efficacy of the ethanol-soluble fraction of P. grandifolia. Initially, an in vitro assay was performed to assess cell viability. This was followed by an acute toxicity test conducted in rats to determine the safety profile of the extract. Subsequently, the anti-inflammatory properties of P. grandifolia were examined in macrophages. For the MAFLD study, diabetic Wistar rats were made diabetic and exposed to a high fat diet and cigarette smoke, for 4 weeks. During the last 2 weeks, the rats were orally given either the vehicle (negative control group; C-), P. grandifolia (30, 100, and 300 mg/kg), or insulin in addition to simvastatin. A basal group of rats not exposed to these risk factors was also assessed. Blood samples were collected to measure cholesterol, triglycerides, glucose, ALT, and AST levels. Liver was assessed for lipid and oxidative markers, and liver histopathology was examined. P. grandifolia showed no signs of toxicity. It demonstrated anti-inflammatory effects by inhibiting phagocytosis and macrophage spreading. The MAFLD model induced liver abnormalities, including increased AST, ALT, disrupted lipid profile, oxidative stress, and significant hepatic damage. However, P. grandifolia effectively reversed these changes, highlighting its potential as a therapeutic agent. These findings emphasize the significance of P. grandifolia in mitigating hepatic consequences associated with various risk factors.
Collapse
|
15
|
Munir S, Hafeez R, Younis W, Malik MNH, Munir MU, Manzoor W, Razzaq MA, Pessoa LB, Lopes KS, Lívero FADR, Gasparotto Junior A. The Protective Effect of Citronellol against Doxorubicin-Induced Cardiotoxicity in Rats. Biomedicines 2023; 11:2820. [PMID: 37893193 PMCID: PMC10604204 DOI: 10.3390/biomedicines11102820] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Citronellol has been reported to have anti-inflammatory, anti-cancer, and antihypertensive activities, but its effect on myocardial ischemia is still unclear. The aim of this study was to investigate the therapeutic effects and pharmacological mechanisms of citronellol on ischemia. Therefore, a rat model of myocardial ischemia was established using the doxorubicin (DOX) model. To induce cardiotoxicity, the rats were given DOX (2.5 mg/kg) intraperitoneally over a 14-day period. Group I served as the control and received tween 80 (0.2%), group II received the vehicle and DOX, group III received the standard drug dexrazoxane and DOX, whereas groups IV, V, and VI were treated orally with citronellol (25, 50, and 100 mg/kg) and DOX, respectively. After treatment, the rats were euthanized, and blood samples were collected to assess the levels of serum cardiac markers, lipid profiles, and tissue antioxidant enzymes. The gene expressions of eNOS, PPAR-g, IL-10, VEGF, and NFkB-1 were also determined using real-time polymerase chain reactions. Simultaneous treatment with DOX and citronellol reduced cardiac antioxidant enzymes and lipid biomarkers in a dose-dependent manner. Citronellol also increased the expression of anti-inflammatory cytokines while reducing the expression of pro-inflammatory cytokines. Therefore, it can be concluded that citronellol may have potential cardioprotective effects in preventing DOX-induced cardiotoxicity.
Collapse
|
16
|
Paes de Almeida V, Tolouei SEL, Minteguiaga M, Chaves DSDA, Heiden G, Khan SI, Trott J, Wang M, Dellacassa E, Raman V, Farago PV, Khan IA, Gasparotto Junior A, Manfron J. Chemical Profiles and Cytotoxic Activities of Essential Oils from Six Species of Baccharis Subgenus Coridifoliae (Asteraceae). Chem Biodivers 2023; 20:e202300862. [PMID: 37647349 DOI: 10.1002/cbdv.202300862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Several Baccharis species are popularly known in traditional medicine as "carquejas", "vassouras", "ervas-santas" and "mio-mios", and are used as anti-inflammatories, digestives, and diuretics. This study aimed to investigate the chemical compositions and cytotoxic activities of essential oils (EOs) of six Baccharis species belonging to subgenus Coridifoliae, namely B. albilanosa, B. coridifolia, B. erigeroides, B. napaea, B. ochracea, and B. pluricapitulata. GC/MS analyses of the EOs showed that the oxygenated sesquiterpenes spathulenol (7.32-38.22 %) and caryophyllene oxide (10.83-16.75 %) were the major components for all the species. The EOs of almost all species were cytotoxic against cancer (BT-549, KB, SK-MEL and SK-OV-3) and normal kidney (VERO and LLC-PK1) cell lines, whereas B. erigeroides EO showed cytotoxicity only against LLC-PK1. This article augments the current knowledge about the chemical-biological properties of Baccharis subgenus Coridifoliae and discusses the therapeutic potentials of these economically unexploited plants.
Collapse
|
17
|
Pinc MM, Dalmagro M, da Cruz Alves Pereira E, Donadel G, Thomaz RT, da Silva C, Macruz PD, Jacomassi E, Gasparotto Junior A, Hoscheid J, Lourenço ELB, Alberton O. Extraction Methods, Chemical Characterization, and In Vitro Biological Activities of Plinia cauliflora (Mart.) Kausel Peels. Pharmaceuticals (Basel) 2023; 16:1173. [PMID: 37631088 PMCID: PMC10459866 DOI: 10.3390/ph16081173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Plinia cauliflora (Mart.) Kausel, popularly known as jabuticaba, possesses bioactive compounds such as flavonoids, tannins, and phenolic acids, known for their antioxidant, antibacterial, wound healing, and cardioprotective effects. Therefore, this study aimed to standardize the P. cauliflora fruit peel extraction method, maximize phenolic constituents, and evaluate their antioxidative and antimicrobial effects. Various extraction methods, including vortex extraction with and without precipitation at 25, 40, and 80 °C, and infusion extraction with and without precipitation, were performed using a completely randomized design. Extraction without precipitation (E - P) showed the highest yield (57.9%). However, the precipitated extraction (E + P) method displayed a yield of 45.9%, higher levels of phenolic derivatives, and enhanced antioxidant capacity. Major compounds, such as D-psicose, D-glucose, and citric acid, were identified through gas chromatography-mass spectrometry (GC-MS) analysis. Ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis identified citric acid, hexose, flavonoids, tannins, and quercetin as the major compounds in the extracts. Furthermore, the extracts exhibited inhibitory effects against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli bacteria. In conclusion, the E + P method efficiently obtained extracts with high content of bioactive compounds showing antioxidant and antimicrobial capacities with potential application as a dietary supplement.
Collapse
|
18
|
Dalmagro M, Pinc MM, Donadel G, Tominc GC, Jacomassi E, Lourenço ELB, Gasparotto Junior A, Boscarato AG, Belettini ST, Alberton O, Prochnau IS, Bariccatti RA, de Almeida RM, Rossi de Aguiar KMF, Hoscheid J. Bioprospecting a Film-Forming System Loaded with Eugenia uniflora L. and Tropaeolum majus L. Leaf Extracts for Topical Application in Treating Skin Lesions. Pharmaceuticals (Basel) 2023; 16:1068. [PMID: 37630984 PMCID: PMC10459946 DOI: 10.3390/ph16081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Natural products can be used as complements or as alternatives to synthetic drugs. Eugenia uniflora and Tropaeolum majus are natives of Brazil and have antimicrobial, anti-inflammatory, and antioxidant activities. This study aimed to develop a film-forming system (FFS) loaded with plant extracts with the potential for treating microbial infections. E. uniflora and T. majus leaf extracts were prepared and characterized, and the individual and combined antioxidant and antimicrobial activities were evaluated. The FFS was developed with different concentrations of polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) and analyzed for physicochemical characteristics. The combination of extracts showed a superior antioxidant effect compared to the individual extracts, justifying the use of the blend. FFS prepared with 4.5% PVA, 4.5% PVP, 7.81% E. uniflora extract, and 3.90% T. majus extract was adhesive, lacked scale formation, presented good malleability, and had a suitable pH for topical application. In addition, the viscosity at rest was satisfactory for maintaining stability; water solubility was adequate; skin permeation was low; and the antimicrobial effect was superior to that of the individual extracts. Therefore, the developed FFS is promising for the differentiated treatment of skin lesions through topical application.
Collapse
|
19
|
Razzaq MA, Younis W, Malik MNH, Alsahli TG, Jahan S, Ehsan R, Gasparotto Junior A, Bashir A. Pulegone Prevents Hypertension through Activation of Muscarinic Receptors and Cyclooxygenase Pathway in L-NAME-Induced Hypertensive Rats. Cardiovasc Ther 2023; 2023:8166840. [PMID: 37214130 PMCID: PMC10195173 DOI: 10.1155/2023/8166840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 05/24/2023] Open
Abstract
The current study was designed to determine pulegone's antihypertensive and vasoprotective activity in L-NAME-induced hypertensive rats. Firstly, the hypotensive dose-response relationship of pulegone was evaluated in normotensive anesthetized rats using the invasive method. Secondly, the mechanism involved in hypotensive activity was determined in the presence of pharmacological drugs such as atropine/muscarinic receptor blocker (1 mg/kg), L-NAME/NOS inhibitor (20 mg/kg), and indomethacin/COX inhibitor (5 mg/kg) in anesthetized rats. Furthermore, studies were carried out to assess the preventive effect of pulegone in L-NAME-induced hypertensive rats. Hypertension was induced in rats by administering L-NAME (40 mg/kg) orally for 28 days. Rats were divided into six groups which were treated orally with tween 80 (placebo), captopril (10 mg/kg), and different doses of pulegone (20 mg/kg, 40 mg/kg, and 80 mg/kg). Blood pressure, urine volume, sodium, and body weight were monitored weekly. After 28 days, the effect of pulegone on lipid profile, hepatic markers, antioxidant enzymes, and nitric oxide was estimated from the serum of treated rats. Moreover, plasma mRNA expression of eNOS, ACE, ICAM1, and EDN1 was measured using real-time PCR. Results show that pulegone dose-dependently decreased blood pressure and heart rate in normotensive rats, with the highest effect at 30 mg/kg/i.v. The hypotensive effect of pulegone was reduced in the presence of atropine and indomethacin, whereas L-NAME did not change its hypotensive effect. Concurrent treatment with pulegone for four weeks in L-NAME-treated rats caused a reduction in both systolic blood pressure and heart rate, reversed the reduced levels of serum nitric oxide (NO), and ameliorated lipid profile and oxidative stress markers. Treatment with pulegone also improved the vascular response to acetylcholine. Plasma mRNA expression of eNOS was reduced, whereas ACE, ICAM1, and EDN1 levels were high in the L-NAME group, which was facilitated by pulegone treatment. To conclude, pulegone prevented L-NAME-induced hypertension by demonstrating a hypotensive effect through muscarinic receptors and cyclooxygenase pathway, indicating its use as a potential candidate in managing hypertension.
Collapse
|
20
|
Boeing T, Reis Lívero FAD, de Souza P, de Almeida DAT, Donadel G, Lourenço ELB, Gasparotto Junior A. Natural Products as Modulators of Mitochondrial Dysfunctions Associated with Cardiovascular Diseases: Advances and Opportunities. J Med Food 2023; 26:279-298. [PMID: 37186894 DOI: 10.1089/jmf.2022.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The mitochondria have an important role in modulating cell cycle progression, cell survival, and apoptosis. In the adult heart, the cardiac mitochondria have a unique spatial arrangement and occupy nearly one-third the volume of a cardiomyocyte, being highly efficient for converting the products of glucose or fatty acid metabolism into adenosine triphosphate (ATP). In cardiomyocytes, the decline of mitochondrial function reduces ATP generation and increases the production of reactive oxygen species, which generates impaired heart function. This is because mitochondria play a key role in maintaining cytosolic calcium concentration and modulation of muscle contraction, as ATP is required to dissociate actin from myosin. Beyond that, mitochondria have a significant role in cardiomyocyte apoptosis because it is evident that patients who have cardiovascular diseases (CVDs) have increased mitochondrial DNA damage to the heart and aorta. Many studies have shown that natural products have mitochondria-modulating effects in cardiac diseases, determining them as potential candidates for new medicines. This review outlines the leading plant secondary metabolites and natural compounds derived from microorganisms as modulators of mitochondrial dysfunctions associated with CVDs.
Collapse
|
21
|
Santos AFD, Souza MMQ, Amaral EC, Albuquerque ER, Bortoloti DS, Gasparotto Junior A, Lourenço ELB, Lovato ECW, Lívero FADR. Bacopa monnieri in Patients with Parkinson's Disease: A Pilot Study. J Med Food 2023; 26:114-119. [PMID: 36800346 DOI: 10.1089/jmf.2022.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Bacopa monnieri (L.) Wettst. could be of interest in the control of symptoms of Parkinson's disease, but clinical evidence of its efficacy is lacking. This clinical trial assessed the effects of an extract of B. monnieri on parameters that are related to Parkinson's diseases. Twenty volunteers with Parkinson's disease were recruited for a primary, interventional, controlled, parallel, double-blind clinical study. The volunteers were assigned to treatment with either a commercial B. monnieri extract (225 or 450 mg/day) or placebo. The Parkinson's Disease Quality-of-Life (PDQL) questionnaire was applied, and motor activity was assessed before treatment and 30, 60, and 90 days after treatment with the B. monnieri extract or placebo. Characteristics such as age, body weight, and height were also collected. No differences in parkinsonian and systemic symptoms, emotional function, or social function were observed between. The delta percent (Δ%) showed time-dependent improvements in emotional function with B. monnieri treatment at the daily dose of 450 mg. A strong correlation was found between quality of life and motor outcomes at baseline and 30 days of treatment with B. monnieri, and a moderate correlation for 60 and 90 days of treatment with B. monnieri when compared with baseline time. A moderate correlation was found between motor outcomes and Hoehn and Yahr stages at baseline. Our results suggest that B. monnieri extract can improve emotional function in Parkinson's disease patients, but further clinical trials are needed to confirm this possibility.
Collapse
|
22
|
Gasparotto Junior A, Lívero FADR, Acco A. Editorial: Biologically active products as therapeutic options for the treatment of cardiovascular diseases related to liver injury. Front Pharmacol 2022; 13:1041020. [DOI: 10.3389/fphar.2022.1041020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
|
23
|
Terço Leite PR, Lorençone BR, Moreno KGT, Lopes KS, Marques AAM, Fortini CS, Palozi RAC, Dalmagro M, Kassuya CAL, Dos Santos AC, Salvador MJ, Gasparotto Junior A. The NO-cGMP-K+ Channel Pathway Participates in Diuretic and Cardioprotective Effects of Blutaparon portulacoides in Spontaneously Hypertensive Rats. PLANTA MEDICA 2022; 88:1152-1162. [PMID: 35299274 DOI: 10.1055/a-1690-3566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Blutaparon portulacoides is a Brazilian plant species that is widely used in folk medicine. The present study investigated the role of an aqueous extract of B. portulacoides against hypertension in spontaneously hypertensive rats. The aqueous extract of B. portulacoides was obtained from the whole plant. Its chemical profile was analyzed by ultraperformance liquid chromatography-tandem mass spectrometry. The acute toxicity of the aqueous extract of B. portulacoides was evaluated in female Wistar rats. Male 6-month-old spontaneously hypertensive rats then received the aqueous extract of B. portulacoides (30, 100, and 300 mg/kg), hydrochlorothiazide (25 mg/kg), or vehicle once daily for 28 days. On days 1, 14, and 28, the diuretic effects of the aqueous extract of B. portulacoides were evaluated. The role of prostaglandins and the nitric oxide-cyclic guanosine monophosphate-potassium channel pathway in the diuretic activity of the aqueous extract of B. portulacoides was also investigated. At the end of the treatment, hepatic and renal biochemical markers, serum nitrotyrosine, malondialdehyde, nitrite, and aldosterone levels, and angiotensin-converting enzyme activity were measured. The electrocardiographic profile, blood pressure, and renal vascular reactivity were also assessed. The heart, kidneys, and liver were collected to determine relative organ weight, histopathology, and cardiac morphometry. Caffeic acid, ferulic acid, and several flavonoids were identified in the aqueous extract of B. portulacoides. No signs of toxicity were observed. Prolonged treatment with the aqueous extract of B. portulacoides (300 mg/kg) induced significant diuretic activity by activating the nitric oxide-cyclic guanosine monophosphate-potassium channel pathway. These effects reduced blood pressure and oxidative stress and prevented renal vascular dysfunction and left ventricular hypertrophy that was induced by hypertension. Overall, the present data suggest that the aqueous extract of B. portulacoides has important diuretic and cardioprotective effects by activation of the nitric oxide-cyclic guanosine monophosphate-potassium channel pathway.
Collapse
|
24
|
Lopes KS, Marques AAM, Moreno KGT, Lorençone BR, Leite PRT, da Silva GP, Dos Santos AC, Souza RIC, Gasparotto FM, Cassemiro NS, Lourenço ELB, Klider LM, Manfron J, Silva DB, Gasparotto Junior A. Small conductance calcium-activated potassium channels and nitric oxide/cGMP pathway mediate cardioprotective effects of Croton urucurana Baill. In hypertensive rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115255. [PMID: 35398499 DOI: 10.1016/j.jep.2022.115255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Croton urucurana Baill. (Euphorbiaceae), popularly known as 'sangue de dragão' is a Brazilian species widely used in traditional medicine for cardiovascular ailments. AIM To investigate the cardiovascular effects of the C. urucurana extract in spontaneously hypertensive rats (SHRs). MATERIALS AND METHODS Leaves from C. urucurana were collected and morphoanatomically characterized. The ethanol-soluble fraction (ESCU) was obtained and analyzed by LC-DAD-MS. Using female Wistar rats we investigated the acute toxicity of ESCU. Then, SHRs (six months old) received vehicle, hydrochlorothiazide (25 mg/kg), or ESCU (30, 100, 300 mg/kg) for 28 days. At the beginning and at the end of treatments, urine samples were obtained to assess renal function. At the end of the trial period, the blood pressure, mesenteric vascular beds (MVBs) reactivity, and electrocardiographic profile were evaluated. Serum angiotensin-converting enzyme activity, as well as urea, creatinine, sodium, potassium, nitrite, malondialdehyde, nitrotyrosine, and aldosterone levels were determined. Relative organ weights and histopathological analysis were performed. Finally, the cardiac function on a Langendorff system, as well as the molecular mechanisms involved in the vasodilator effects of ESCU in MVBs were also investigated. RESULTS The compounds annotated from ESCU by LC-DAD-MS included mainly phenylpropanoid derivatives, alkaloids, O-glycosylated megastigmanes, glycosylated flavonoids, flavan-3-ols, and others, such as quercetin O-deoxyhexosyl-hexoside, magnoflorine, reticuline, and taspine. None of the animals showed any signs of toxicity. Male SHRs treated only with the vehicle showed important cardiovascular changes, including a reduction in renal function, increase in serum oxidative stress, and hemodynamic, electrocardiographic, and morphological changes typical of hypertensive disease. Moreover, parameters of cardiac function, including left ventricular developed pressure, peak rate of contraction, peak rate of relaxation, and the rate pressure product were significantly altered, showing a significant impairment of ventricular function. All ESCU-doses presented a significant cardioprotective effect in SHRs rats. The 28-day treatment normalized the hemodynamic, electrocardiographic, morphological, and renal impairments, as well as reversed the changes in ventricular function induced by hypertension. In MVBs with an intact endothelium, ESCU (0.1, 0.3, and 1 mg) dose-dependently induced vasodilation. Endothelium removal or the inhibition of nitric oxide synthase prevented the vasodilatory effect of ESCU. Perfusion with a physiological saline solution that contained KCl, tetraethylammonium, or apamin also abolished the vasodilatory effect of ESCU. CONCLUSION Prolonged ESCU-treatment showed significant cardioprotective effects in SHRs. Moreover, the data showed the role of nitric oxide and calcium-activated small conductance potassium channels in the cardiovascular effects of ESCU.
Collapse
|
25
|
Moreno KGT, Marques AAM, da Silva GP, Lourençone BR, Fortini CS, Leite PRT, dos Santos AC, Souza RIC, da Siva LI, Gasparotto Junior A. A New Approach for the Development of Multiple Cardiovascular Risk Factors in Two Rat Models of Hypertension. Pharmaceuticals (Basel) 2022; 15:ph15070853. [PMID: 35890152 PMCID: PMC9318210 DOI: 10.3390/ph15070853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death among non-communicable diseases. There is a lack of valid animal models that mimic associations among multiple cardiovascular risk factors in humans. The present study developed an animal model that uses multiple cardiovascular risk factors—namely, hypertension, hypothyroidism, and a high-fat diet (HFD). Two models of hypertension were used: renovascular hypertension (two-kidney, one clip [2K1C]) and spontaneously hypertensive rats (SHRs). The naive group was composed of normotensive rats. Twelve weeks after surgery to induce renovascular hypertension, rats in the 2K1C and SHR groups underwent thyroidectomy. The HFD was then implemented for 6 weeks. Renal function, serum redox status, biochemical CVD markers, electrocardiographic profile, blood pressure, mesenteric vascular bed reactivity, histopathology, and morphometry were investigated. Both experimental models induced dyslipidemia, renal function impairment, and hepatic steatosis, accompanied by higher levels of different inflammatory markers and serum oxidative stress. These alterations contributed to end-organ damage in all hypertensive rats. Our findings corroborate a viable alternative model that involves multiple cardiovascular risk factors and resembles conditions that are seen in humans. Both models mimicked CVD, but our data show that SHRs exhibit more significant pathophysiological changes.
Collapse
|