1
|
Zhai P, Zhang H, Li Q, Hu Z, Zhang H, Yang M, Xing C, Guo Y. SETBP1 activation upon MDM4-enhanced ubiquitination of NR3C1 triggers dissemination of colorectal cancer cells. Clin Exp Metastasis 2024; 41:747-764. [PMID: 38796806 DOI: 10.1007/s10585-024-10294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Colorectal cancer (CRC) presents a growing concern globally, marked by its escalating incidence and mortality rates, thus imposing a substantial health burden. This investigation delves into the role of nuclear receptor subfamily 3 group C member 1 (NR3C1) in CRC metastasis and explores the associated mechanism. Through a comprehensive bioinformatics analysis, NR3C1 emerged as a gene with diminished expression levels in CRC. This finding was corroborated by observations of a low-expression pattern of NR3C1 in both CRC tissues and cells. Furthermore, experiments involving NR3C1 knockdown revealed an exacerbation of proliferation, migration, and invasion of CRC cells in vitro. Subsequent assessments in mouse xenograft tumor models, established by injecting human HCT116 cells either through the tail vein or at the cecum termini, demonstrated a reduction in tumor metastasis to the lung and liver, respectively, upon NR3C1 knockdown. Functionally, NR3C1 (glucocorticoid receptor) suppressed SET binding protein 1 (SETBP1) transcription by binding to its promoter region. Notably, mouse double minute 4 (MDM4) was identified as an upstream regulator of NR3C1, orchestrating its downregulation via ubiquitination-dependent proteasomal degradation. Further investigations unveiled that SETBP1 knockdown suppressed migration and invasion, and epithelial to mesenchymal transition of CRC cells, consequently impeding in vivo metastasis in murine models. Conversely, upregulation of MDM4 exacerbated the metastatic phenotype of CRC cells, a propensity mitigated upon additional upregulation of NR3C1. In summary, this study elucidates a cascade wherein MDM4-mediated ubiquitination of NR3C1 enables the transcriptional activation of SETBP1, thereby propelling the dissemination of CRC cells.
Collapse
|
2
|
Zhai P, Zhang H, Li Q, Hu Z, Zhang H, Yang M, Xing C, Guo Y. Correction: SETBP1 activation upon MDM4-enhanced ubiquitination of NR3C1 triggers dissemination of colorectal cancer cells. Clin Exp Metastasis 2024; 41:815. [PMID: 39066930 DOI: 10.1007/s10585-024-10303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
|
3
|
Morvan A, Villalonga B, Mi X, Mandrà S, Bengtsson A, Klimov PV, Chen Z, Hong S, Erickson C, Drozdov IK, Chau J, Laun G, Movassagh R, Asfaw A, Brandão LTAN, Peralta R, Abanin D, Acharya R, Allen R, Andersen TI, Anderson K, Ansmann M, Arute F, Arya K, Atalaya J, Bardin JC, Bilmes A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Campero J, Chang HS, Chiaro B, Chik D, Chou C, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Debroy DM, Barba ADT, Demura S, Paolo AD, Dunsworth A, Faoro L, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Garcia G, Genois É, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Dau AG, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hoffmann MR, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lensky YD, Lester BJ, Lill AT, Liu W, Livingston WP, Locharla A, Malone FD, Martin O, Martin S, McClean JR, McEwen M, Miao KC, Mieszala A, Montazeri S, Mruczkiewicz W, Naaman O, Neeley M, Neill C, Nersisyan A, Newman M, Ng JH, Nguyen A, Nguyen M, Niu MY, O'Brien TE, Omonije S, Opremcak A, Petukhov A, Potter R, Pryadko LP, Quintana C, Rhodes DM, Rocque C, Rosenberg E, Rubin NC, Saei N, Sank D, Sankaragomathi K, Satzinger KJ, Schurkus HF, Schuster C, Shearn MJ, Shorter A, Shutty N, Shvarts V, Sivak V, Skruzny J, Smith WC, Somma RD, Sterling G, Strain D, Szalay M, Thor D, Torres A, Vidal G, Heidweiller CV, White T, Woo BWK, Xing C, Yao ZJ, Yeh P, Yoo J, Young G, Zalcman A, Zhang Y, Zhu N, Zobrist N, Rieffel EG, Biswas R, Babbush R, Bacon D, Hilton J, Lucero E, Neven H, Megrant A, Kelly J, Roushan P, Aleiner I, Smelyanskiy V, Kechedzhi K, Chen Y, Boixo S. Phase transitions in random circuit sampling. Nature 2024; 634:328-333. [PMID: 39385051 PMCID: PMC11464376 DOI: 10.1038/s41586-024-07998-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/28/2024] [Indexed: 10/11/2024]
Abstract
Undesired coupling to the surrounding environment destroys long-range correlations in quantum processors and hinders coherent evolution in the nominally available computational space. This noise is an outstanding challenge when leveraging the computation power of near-term quantum processors1. It has been shown that benchmarking random circuit sampling with cross-entropy benchmarking can provide an estimate of the effective size of the Hilbert space coherently available2-8. Nevertheless, quantum algorithms' outputs can be trivialized by noise, making them susceptible to classical computation spoofing. Here, by implementing an algorithm for random circuit sampling, we demonstrate experimentally that two phase transitions are observable with cross-entropy benchmarking, which we explain theoretically with a statistical model. The first is a dynamical transition as a function of the number of cycles and is the continuation of the anti-concentration point in the noiseless case. The second is a quantum phase transition controlled by the error per cycle; to identify it analytically and experimentally, we create a weak-link model, which allows us to vary the strength of the noise versus coherent evolution. Furthermore, by presenting a random circuit sampling experiment in the weak-noise phase with 67 qubits at 32 cycles, we demonstrate that the computational cost of our experiment is beyond the capabilities of existing classical supercomputers. Our experimental and theoretical work establishes the existence of transitions to a stable, computationally complex phase that is reachable with current quantum processors.
Collapse
|
4
|
Wang B, Xing AY, Li GX, Liu L, Xing C. SNHG14 promotes triple-negative breast cancer cell proliferation, invasion, and chemoresistance by regulating the ERK/MAPK signaling pathway. IUBMB Life 2024. [PMID: 39266460 DOI: 10.1002/iub.2910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/06/2024] [Indexed: 09/14/2024]
Abstract
The functional role and molecular mechanisms of small-nucleolar RNA host gene 14 (SNHG14) in triple-negative breast cancer (TNBC) progression remain unclear. The expression levels of SNHG14 in breast cancer samples and cell lines were determined using real-time quantitative polymerase chain reaction. Cell proliferation, migration, and invasion abilities were detected using MTS and transwell assays. By RNA sequencing, differentially expressed genes were identified between the SNHG14 siRNA and the negative control group. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were used to predict the targets and pathways regulated by SNHG14. pRAF, pMEK, and pERK expression were measured by western blot. The xenograft model was constructed to access the biological function of SNHG14 in vivo. A minimal patient-derived xenograft model was established to evaluate the sensitivity to chemotherapy drugs. Our data indicated that SNHG14 expression was increased in TNBC tissues and cell lines. SNHG14 knockdown attenuated the proliferation, migration, and invasion abilities of TNBC cells both in vivo and in vitro. High SNHG14 expression was associated with lymph node metastasis and a high Ki67 index. The targets of SNHG14 were mainly enriched in the MAPK signaling pathway. pRAF, pMEK, and pERK expression were downregulated after being transfected with SNHG14 siRNA. Compared with the negative control group, the expression of CACNA1I, DUSP8, FGF17, FGFR4, FOS, PDGFRB, and DDIT3 was increased, and the expression of MKNK1 was decreased in the SNHG14 siRNA group. Minimal patient-derived xenograft model demonstrated that knockdown of SNHG14 enhanced the sensitivity to Docetaxel in vivo. Compared with the DMSO group, the proliferation of Docetaxel-resistant MDA-MB-231 cells was decreased in Dabrafenib, PD184352, and FR180204 treatment groups. SNHG14 knockdown inhibits TNBC progression by regulating the ERK/MAPK signaling pathway, which provides evidence for SNHG14 as a potential target for TNBC therapy.
Collapse
|
5
|
Wu Z, Zou J, Xie H, Wang J, Huang Y, Liu F, Xing C. LncRNA ALMS1-IT1 modulates ferroptosis and immune evasion in colorectal cancer through activating STAT3. J Cell Mol Med 2024; 28:e70103. [PMID: 39334527 PMCID: PMC11436373 DOI: 10.1111/jcmm.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant malignancy within the digestive system, characterized by high incidence and mortality rates. In recent years, molecular targeted therapy has been introduced as a supplementary strategy in CRC management, complementing traditional modalities such as surgery, radiation and chemotherapy. The identification of novel therapeutic targets for CRC remains critically important. Ferroptosis, a unique form of programmed cell death distinct from apoptosis and necrosis, is characterized by cellular damage resulting from iron-induced lipid peroxidation, leading to cell death. This study utilizes a combination of bioinformatics analysis and clinical specimen validation to demonstrate that the long non-coding RNA (lncRNA) ALMS1-IT1 is significantly upregulated in CRC tissues and strongly associated with ferroptosis. Through a series of experimental investigations, we have determined that ALMS1-IT1 negatively regulates ferroptosis in CRC cells, thereby promoting cancer growth and metastasis, acting as an oncogenic factor. Furthermore, we explored the molecular interactions of ALMS1-IT1, revealing its role in activating STAT3 protein phosphorylation. This activation enhances the immune evasion capabilities of CRC cells. Rescue experiments indicated that STAT3 activation is essential for ALMS1-IT1's suppression of ferroptosis, immune evasion and oncogenic behaviour in CRC. Our findings underscore the critical biological role of ALMS1-IT1 in the progression of CRC and suggest its potential as a target for drug development.
Collapse
|
6
|
Zhou Y, Liu J, Ma S, Yang X, Zou Z, Lu W, Wang T, Sun C, Xing C. Fabrication of polymeric sorafenib coated chitosan and fucoidan nanoparticles: Investigation of anticancer activity and apoptosis in colorectal cancer cells. Heliyon 2024; 10:e34316. [PMID: 39130440 PMCID: PMC11315206 DOI: 10.1016/j.heliyon.2024.e34316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
The most prevalent form of colon cancer also ranks high among cancer-related deaths globally. Traditional chemotherapy drugs do not provide sufficient therapeutic efficacy, and advanced colon cancer demonstrates considerable resistance to chemotherapy. As an oral kinase inhibitor, sorafenib (SOR) suppresses the growth of tumour cells, the formation of new blood vessels, and the death of cancer cells. Unfortunately, sorafenib's limited bioavailability, rapid metabolism, and poor solubility have severely limited its clinical use. We developed nanoparticles targeting P-selectin and SOR, with fucoidan (FU) as a ligand. The SOR-CS-FU-NPs were developed by coating polylactide-co-glycolide nanoparticles with chitosan and FU through electrostatic interaction. The SOR-CS-FU-NPs exhibited an average particle diameter of 209.98 ± 1.25 nm and a polydisperse index (PDI) of 0.229 ± 0.022. The SOR-CS-FU nanoparticles exhibited a continuous release pattern for up to 120 h. The SOR-CS-FU nanoparticles exhibited cytotoxicity 8 times greater than free SOR in HCT116 colorectal cancer cells. The cellular absorption of Rhodamine-CS-FU-NPs was three times more than that of free Rhodamine and 19 times greater than that of Rhodamine-CS-NPs. Enhanced reactive oxygen species (ROS) generation and mitochondrial membrane potential damage were also shown in SOR-CS-FU-NPs. An investigation of cell death found that SOR-CS-FU-NPs had an apoptosis index that was 7.5 times greater than free SOR. After that, the SOR-CS-FU-NPs demonstrated a more significant inhibition of cell migration, leading to a wound closure of about 5 %. No toxicity was shown in the non-cancer VERO cell line when exposed to the developed NPs. Taken together, these results provide strong evidence that biocompatible SOR-CS-FU-NPs fabricated effective carriers for the targeted delivery of dasatinib to colorectal cancer.
Collapse
|
7
|
Li Q, Yuan Z, Wang Y, Zhai P, Wang J, Zhang C, Shao Z, Xing C. Unveiling YWHAH: A potential therapeutic target for overcoming CD8 + T cell exhaustion in colorectal cancer. Int Immunopharmacol 2024; 135:112317. [PMID: 38796965 DOI: 10.1016/j.intimp.2024.112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/12/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Colorectal cancer (CRC) is a significant global health challenge, with increasing rates of incidence and mortality. Despite advancements in immunotherapy, resistance, particularly due to T cell exhaustion, remains a major hurdle. This study explores the role of YWHAH, mediated by N4-acetylcytidine (ac4C) modification, in CRC progression and its impact on CD8+ T cell exhaustion. Analysis of five paired CRC patient tissue samples using acetylated RNA immunoprecipitation and sequencing (acRIP-seq)identified ac4C-modified mRNAs. Functional assays, including cell culture, transfection, qRT-PCR, and immune assays, investigated the influence of YWHAH expression on CRC advancement. Bioinformatics analysis of TCGA data assessed the correlation between YWHAH and immune responses, as well as checkpoint inhibitors. Flow cytometry and Immunohistochemistry validated these findings, complemented by a co-culture experiment involving CD8+ T cells and CRC cell lines (LOVO and HCT116). acRIP-seq revealed YWHAH as a potential driver of CRC progression, exhibiting ac4C modification-mediated stability and upregulation. High YWHAH levels correlated with adverse outcomes and immune evasion in CRC patients, showing strong associations with immune checkpoint proteins and modest correlations with CD8+ T cell infiltration. Co-culture experiments demonstrated YWHAH-induced CD8+ T cell exhaustion, characterized by decreased proliferation and increased exhaustion markers. NAT10-mediated ac4C modification enhanced YWHAH stability in CRC. The involvement of YWHAH in CD8 + T cell exhaustion suggests its potential as a therapeutic target and prognostic marker in CRC immunotherapy, highlighting the intricate interplay between epitranscriptomic modifications, the tumor microenvironment, and immune responses in CRC progression.
Collapse
|
8
|
Liu C, Wu H, Li K, Chi Y, Wu Z, Xing C. Identification of biomarkers for abdominal aortic aneurysm in Behçet's disease via mendelian randomization and integrated bioinformatics analyses. J Cell Mol Med 2024; 28:e18398. [PMID: 38785203 PMCID: PMC11117452 DOI: 10.1111/jcmm.18398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Behçet's disease (BD) is a complex autoimmune disorder impacting several organ systems. Although the involvement of abdominal aortic aneurysm (AAA) in BD is rare, it can be associated with severe consequences. In the present study, we identified diagnostic biomarkers in patients with BD having AAA. Mendelian randomization (MR) analysis was initially used to explore the potential causal association between BD and AAA. The Limma package, WGCNA, PPI and machine learning algorithms were employed to identify potential diagnostic genes. A receiver operating characteristic curve (ROC) for the nomogram was constructed to ascertain the diagnostic value of AAA in patients with BD. Finally, immune cell infiltration analyses and single-sample gene set enrichment analysis (ssGSEA) were conducted. The MR analysis indicated a suggestive association between BD and the risk of AAA (odds ratio [OR]: 1.0384, 95% confidence interval [CI]: 1.0081-1.0696, p = 0.0126). Three hub genes (CD247, CD2 and CCR7) were identified using the integrated bioinformatics analyses, which were subsequently utilised to construct a nomogram (area under the curve [AUC]: 0.982, 95% CI: 0.944-1.000). Finally, the immune cell infiltration assay revealed that dysregulation immune cells were positively correlated with the three hub genes. Our MR analyses revealed a higher susceptibility of patients with BD to AAA. We used a systematic approach to identify three potential hub genes (CD247, CD2 and CCR7) and developed a nomogram to assist in the diagnosis of AAA among patients with BD. In addition, immune cell infiltration analysis indicated the dysregulation in immune cell proportions.
Collapse
|
9
|
Li X, Zhou Z, Zhu B, Wu Y, Xing C. Development and validation of machine learning models and nomograms for predicting the surgical difficulty of laparoscopic resection in rectal cancer. World J Surg Oncol 2024; 22:111. [PMID: 38664824 PMCID: PMC11044303 DOI: 10.1186/s12957-024-03389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/14/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND The objective of this study is to develop and validate a machine learning (ML) prediction model for the assessment of laparoscopic total mesorectal excision (LaTME) surgery difficulty, as well as to identify independent risk factors that influence surgical difficulty. Establishing a nomogram aims to assist clinical practitioners in formulating more effective surgical plans before the procedure. METHODS This study included 186 patients with rectal cancer who underwent LaTME from January 2018 to December 2020. They were divided into a training cohort (n = 131) versus a validation cohort (n = 55). The difficulty of LaTME was defined based on Escal's et al. scoring criteria with modifications. We utilized Lasso regression to screen the preoperative clinical characteristic variables and intraoperative information most relevant to surgical difficulty for the development and validation of four ML models: logistic regression (LR), support vector machine (SVM), random forest (RF), and decision tree (DT). The performance of the model was assessed based on the area under the receiver operating characteristic curve(AUC), sensitivity, specificity, and accuracy. Logistic regression-based column-line plots were created to visualize the predictive model. Consistency statistics (C-statistic) and calibration curves were used to discriminate and calibrate the nomogram, respectively. RESULTS In the validation cohort, all four ML models demonstrate good performance: SVM AUC = 0.987, RF AUC = 0.953, LR AUC = 0.950, and DT AUC = 0.904. To enhance visual evaluation, a logistic regression-based nomogram has been established. Predictive factors included in the nomogram are body mass index (BMI), distance between the tumor to the dentate line ≤ 10 cm, radiodensity of visceral adipose tissue (VAT), area of subcutaneous adipose tissue (SAT), tumor diameter >3 cm, and comorbid hypertension. CONCLUSION In this study, four ML models based on intraoperative and preoperative risk factors and a nomogram based on logistic regression may be of help to surgeons in evaluating the surgical difficulty before operation and adopting appropriate responses and surgical protocols.
Collapse
|
10
|
Rosenberg E, Andersen TI, Samajdar R, Petukhov A, Hoke JC, Abanin D, Bengtsson A, Drozdov IK, Erickson C, Klimov PV, Mi X, Morvan A, Neeley M, Neill C, Acharya R, Allen R, Anderson K, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Bardin JC, Bilmes A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Campero J, Chang HS, Chen Z, Chiaro B, Chik D, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Debroy DM, Barba ADT, Demura S, Di Paolo A, Dunsworth A, Earle C, Faoro L, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Garcia G, Genois É, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Dau AG, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hill G, Hoffmann MR, Hong S, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lensky YD, Lester BJ, Lill AT, Liu W, Locharla A, Mandrà S, Martin O, Martin S, McClean JR, McEwen M, Meeks S, Miao KC, Mieszala A, Montazeri S, Movassagh R, Mruczkiewicz W, Nersisyan A, Newman M, Ng JH, Nguyen A, Nguyen M, Niu MY, O'Brien TE, Omonije S, Opremcak A, Potter R, Pryadko LP, Quintana C, Rhodes DM, Rocque C, Rubin NC, Saei N, Sank D, Sankaragomathi K, Satzinger KJ, Schurkus HF, Schuster C, Shearn MJ, Shorter A, Shutty N, Shvarts V, Sivak V, Skruzny J, Smith WC, Somma RD, Sterling G, Strain D, Szalay M, Thor D, Torres A, Vidal G, Villalonga B, Heidweiller CV, White T, Woo BWK, Xing C, Yao ZJ, Yeh P, Yoo J, Young G, Zalcman A, Zhang Y, Zhu N, Zobrist N, Neven H, Babbush R, Bacon D, Boixo S, Hilton J, Lucero E, Megrant A, Kelly J, Chen Y, Smelyanskiy V, Khemani V, Gopalakrishnan S, Prosen T, Roushan P. Dynamics of magnetization at infinite temperature in a Heisenberg spin chain. Science 2024; 384:48-53. [PMID: 38574139 DOI: 10.1126/science.adi7877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the one-dimensional Heisenberg model were conjectured as to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we studied the probability distribution of the magnetization transferred across the chain's center, [Formula: see text]. The first two moments of [Formula: see text] show superdiffusive behavior, a hallmark of KPZ universality. However, the third and fourth moments ruled out the KPZ conjecture and allow for evaluating other theories. Our results highlight the importance of studying higher moments in determining dynamic universality classes and provide insights into universal behavior in quantum systems.
Collapse
|
11
|
Shen W, Li Y, Yang Z, Li W, Cao Y, Liu Y, Wang Z, Pei R, Xing C. Tumor microenvironment reprogramming combined with immunogenic enhancement by nanoemulsions potentiates immunotherapy. J Nanobiotechnology 2024; 22:154. [PMID: 38581017 PMCID: PMC10996274 DOI: 10.1186/s12951-024-02401-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/18/2024] [Indexed: 04/07/2024] Open
Abstract
The combination of immune checkpoint inhibitors and immunogenic cell death (ICD) inducers has become a promising strategy for the treatment of various cancers. However, its efficacy remains unmet because of the dense stroma and defective vasculatures in the tumor microenvironment (TME) that restricts the intratumoral infiltration of cytotoxic T lymphocytes (CTLs). Herein, cancer-associated fibroblasts (CAFs)-targeted nanoemulsions are tailored to combine the ICD induction and the TME reprogramming to sensitize checkpoint blockade immunotherapy. Melittin, as an ICD inducer and an antifibrotic agent, is efficiently encapsulated into the nanoemulsion accompanied by a nitric oxide donor to improve its bioavailability and tumor targeting. The nanoemulsions exhibited dual functionality by directly inducing direct cancer cell death and enhancing the tumoral immunogenicity, while also synergistically reprogramming the TME through reversing the activated CAFs, decreasing collagen deposition and restoring tumor vessels. Consequently, these nanemulsions successfully facilitated the CTLs infiltration and suppressing the recruitment of immunosuppressive cells. A combination of AE-MGNPs and anti-CTLA-4 antibody greatly elicited a striking level of antitumor T-cell response to suppress tumor growth in CAFs-rich colorectal tumor models. Our work emphasized the integration of the ICD induction with simultaneous modulation of the TME to enhance the sensitivity of patients to checkpoint blockade immunotherapy.
Collapse
|
12
|
Shao L, Wu Y, Cao J, Zhong F, Yang X, Xing C. Activation of M2 macrophage autophagy by rapamycin increases the radiosensitivity of colorectal cancer xenografts. J Cancer Res Ther 2024; 20:695-705. [PMID: 38687942 DOI: 10.4103/jcrt.jcrt_215_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/20/2023] [Indexed: 05/02/2024]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are intimately involved in cancer radiochemotherapy resistance. However, the mechanism by which macrophages affect radiosensitivity through autophagy remains unclear. The purpose of our study was to investigate how activating autophagy in type-II macrophages (M2) by using rapamycin (RAP) would affect the radiosensitivity of colorectal cancer (CRC) xenografts. MATERIALS AND METHODS A nude mouse CRC model was established by injecting LoVo CRC cells. After tumor formation, supernatant from M2 cells (autophagy-unactivated), autophagy-activated M2 cells, or autophagy-downregulated M2 cells was injected peritumorally. All tumor-bearing mice were irradiated with 8-Gy X-rays twice, and the radiosensitivity of CRC xenografts was analyzed in each group. RESULTS The mass, volume, and microvessel density (MVD) of tumors in the autophagy-unactivated M2 group significantly increased; however, supernatant from M2 cells that were autophagy-activated by rapamycin significantly decreased tumor weight, volume, and MVD compared with negative control. Combining bafilomycin A1 (BAF-A1) with RAP treatment restored the ability of the M2 supernatant to increase tumor mass, volume, and MVD. Immunohistochemical and Western blot results showed that compared with the negative control group, supernatant from M2 cells that were not activated by autophagy downregulated the expression of Livin and Survivin in tumor tissues; activation of M2 autophagy further downregulated the protein levels. CONCLUSIONS Therefore, autophagy-activated M2 supernatant can downregulate the expression of the antiapoptotic genes Livin and Survivin in CRC xenografts, improving the radiosensitivity of CRC by inducing apoptosis in combination with radiotherapy and inhibiting the growth of transplanted tumors.
Collapse
|
13
|
Mi X, Michailidis AA, Shabani S, Miao KC, Klimov PV, Lloyd J, Rosenberg E, Acharya R, Aleiner I, Andersen TI, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Bardin JC, Bengtsson A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Chen Z, Chiaro B, Chik D, Chou C, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Dau AG, Debroy DM, Del Toro Barba A, Demura S, Di Paolo A, Drozdov IK, Dunsworth A, Erickson C, Faoro L, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Genois É, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hoffmann MR, Hong S, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Kechedzhi K, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lensky YD, Lester BJ, Lill AT, Liu W, Locharla A, Malone FD, Martin O, McClean JR, McEwen M, Mieszala A, Montazeri S, Morvan A, Movassagh R, Mruczkiewicz W, Neeley M, Neill C, Nersisyan A, Newman M, Ng JH, Nguyen A, Nguyen M, Niu MY, O'Brien TE, Opremcak A, Petukhov A, Potter R, Pryadko LP, Quintana C, Rocque C, Rubin NC, Saei N, Sank D, Sankaragomathi K, Satzinger KJ, Schurkus HF, Schuster C, Shearn MJ, Shorter A, Shutty N, Shvarts V, Skruzny J, Smith WC, Somma R, Sterling G, Strain D, Szalay M, Torres A, Vidal G, Villalonga B, Heidweiller CV, White T, Woo BWK, Xing C, Yao ZJ, Yeh P, Yoo J, Young G, Zalcman A, Zhang Y, Zhu N, Zobrist N, Neven H, Babbush R, Bacon D, Boixo S, Hilton J, Lucero E, Megrant A, Kelly J, Chen Y, Roushan P, Smelyanskiy V, Abanin DA. Stable quantum-correlated many-body states through engineered dissipation. Science 2024; 383:1332-1337. [PMID: 38513021 DOI: 10.1126/science.adh9932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for quantum simulation of high-temperature superconductivity or quantum magnetism. Using up to 49 superconducting qubits, we prepared low-energy states of the transverse-field Ising model through coupling to dissipative auxiliary qubits. In one dimension, we observed long-range quantum correlations and a ground-state fidelity of 0.86 for 18 qubits at the critical point. In two dimensions, we found mutual information that extends beyond nearest neighbors. Lastly, by coupling the system to auxiliaries emulating reservoirs with different chemical potentials, we explored transport in the quantum Heisenberg model. Our results establish engineered dissipation as a scalable alternative to unitary evolution for preparing entangled many-body states on noisy quantum processors.
Collapse
|
14
|
Pu Y, Wei J, Wu Y, Zhao K, Wu Y, Wu S, Yang X, Xing C. Correction: THUMPD3-AS1 facilitates cell growth and aggressiveness by the miR-218-5p/SKAP1 axis in colorectal cancer. Cell Biochem Biophys 2024; 82:315. [PMID: 38010601 DOI: 10.1007/s12013-023-01199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
|
15
|
Zhai P, Zhang H, Li Q, Yang M, Guo Y, Xing C. DNMT1-mediated NR3C1 DNA methylation enables transcription activation of connexin40 and augments angiogenesis during colorectal cancer progression. Gene 2024; 892:147887. [PMID: 37813207 DOI: 10.1016/j.gene.2023.147887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/12/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Colorectal cancer (CRC) continues to be a major contributor to cancer-related mortality. Connexin 40 (CX40) is one of the major gap junction proteins with the capacity in regulating cell-to-cell communication and angiogenesis. This study investigates its role in angiogenesis in CRC and explores the regulatory mechanism. Aberrant high CX40 expression was detected in tumor tissues, which was associated with a poor prognosis in CRC patients. Elevated CX40 expression was detected in CRC cell lines as well. Conditioned medium of SW620 and HT29 cell lines was used to induce angiogenesis of human umbilical vein endothelial cells (HUVECs). CX40 knockdown in CRC cells reduced angiogenesis and mobility of HUVECs and blocked CRC cell proliferation, mobility, and survival. Following bioinformatics predictions, we validated by chromatin immunoprecipitation and luciferase assays that nuclear receptor subfamily 3 group C member 1 (NR3C1), which was poorly expressed in CRC samples, suppressed CX40 transcription. The poor NR3C1 expression was attributive to DNA hypermethylation induced by DNA methyltransferase 1 (DNMT1). Restoration of NR3C1 suppressed the pro-angiogenic effect, proliferation and survival, and tumorigenic activity of CRC cells, which were, however, rescued by CX40 upregulation. Collectively, this study demonstrates that transcription activation of CX40 upon DNMT1-mediated NR3C1 DNA methylation potentiates angiogenesis in CRC.
Collapse
|
16
|
Yu W, Shen J, Wang X, Qin H, Xing C. CircFNTA promotes tumorigenesis and progression of gastric cancer via miR-604/miR-647/SCN8A axis. J Biochem Mol Toxicol 2024; 38:e23546. [PMID: 37942847 DOI: 10.1002/jbt.23546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023]
Abstract
Gastric cancer (GC) is a major contributor to cancer-related deaths and is characterized by high heterogeneity in epidemiology and histopathology worldwide. Increasing evidence indicates that circular RNAs (circRNAs) play multifaceted roles in cellular processes in human cancers. Here, we demonstrated that circFNTA high expression increases the proliferation, metastasis, and epithelial-mesenchymal transition process and tumorigenicity of GC cells. First, we found that circFNTA was upregulated in GC cells and tissues, and the high circFNTA levels were positively associated with the poor prognosis in GC patients. Using luciferase reporter and RNA-pull down assays, we elucidated that circFNTA sponged two microRNAs, miR-604 and miR-647. In addition, the proliferation and metastatic ability of GC cell reduction caused by silencing circFNTA was hindered by inhibitors of miR-604 and miR-647. Moreover, SCN8A was predicted by miRDB as a common target gene of miR-604 and miR-647, which was then verified by the luciferase reporter assay. Knockdown of circFNTA causes messenger RNA and protein levels in SCN8A to be downregulated in GC cells. However, this effect was overturned by cotransfection miR-604 and miR-647. Also, we identified that SCN8A was downregulated in GC tissues, which was positively correlated with circFNTA expression. In rescue experiments, the attenuated cell proliferation and metastatic ability caused by circFNTA knockdown was reversed by miR-604 and miR-647 inhibitors and SCN8A overexpression. Collectively, our findings suggest an oncogenic role of circFNTA in GC progression and elucidate that circFNTA exerts its function by modulating the miR-604/miR-647/SCN8A axis.
Collapse
|
17
|
Pu W, Wang F, Li K, Xing C, Zhuang Z, Wang H, Bian H, Zhang R, Xiao L. Novel Method for Detection of PIK3CA Mutations in Circulating Tumor DNA of Patients with Colorectal Cancer. Appl Biochem Biotechnol 2023; 195:7821-7831. [PMID: 37093531 DOI: 10.1007/s12010-023-04488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
The PIK3CA mutation is considered a potential target for treatment of colorectal cancer. We evaluated a PIK3CA mutation assay on plasma cell-free DNA (cfDNA) using a newly developed PCR with restriction digestion integrated and followed by Sanger's sequencing. We analyzed PIK3CA mutation in plasma with our newly developed assays and in matching tumor tissues by routine methods. We detected the PIK3CA gene mutation status by both methods in samples from 40 colorectal cancer patients. Three H1047R mutations of PIK3CA gene were detected in the cfDNA of the 40 patients by restriction digestion PCR. Neither E545K nor H1047R mutations were detected in the cfDNA by routine PCR/sequencing. The PIK3CA H1047R and E545K mutations in cfDNA can be sensitively detected with our newly developed assays. The colorectal cancer has been used as a clinical example in testing our new assays, which indicates that the new assays may have wider applications in detecting mutations in precision oncology. Trial registration: Current Controlled Trials ChiCTR-DDT-12002848, 8 October 2012.
Collapse
|
18
|
Hoke JC, Ippoliti M, Rosenberg E, Abanin D, Acharya R, Andersen TI, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Bardin JC, Bengtsson A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Chen Z, Chiaro B, Chik D, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Dau AG, Debroy DM, Del Toro Barba A, Demura S, Di Paolo A, Drozdov IK, Dunsworth A, Eppens D, Erickson C, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hoffmann MR, Hong S, Huang T, Huff A, Huggins WJ, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Kechedzhi K, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klimov PV, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lensky YD, Lester BJ, Lill AT, Liu W, Locharla A, Martin O, McClean JR, McEwen M, Miao KC, Mieszala A, Montazeri S, Morvan A, Movassagh R, Mruczkiewicz W, Neeley M, Neill C, Nersisyan A, Newman M, Ng JH, Nguyen A, Nguyen M, Niu MY, O’Brien TE, Omonije S, Opremcak A, Petukhov A, Potter R, Pryadko LP, Quintana C, Rocque C, Rubin NC, Saei N, Sank D, Sankaragomathi K, Satzinger KJ, Schurkus HF, Schuster C, Shearn MJ, Shorter A, Shutty N, Shvarts V, Skruzny J, Smith WC, Somma R, Sterling G, Strain D, Szalay M, Torres A, Vidal G, Villalonga B, Heidweiller CV, White T, Woo BWK, Xing C, Yao ZJ, Yeh P, Yoo J, Young G, Zalcman A, Zhang Y, Zhu N, Zobrist N, Neven H, Babbush R, Bacon D, Boixo S, Hilton J, Lucero E, Megrant A, Kelly J, Chen Y, Smelyanskiy V, Mi X, Khemani V, Roushan P. Measurement-induced entanglement and teleportation on a noisy quantum processor. Nature 2023; 622:481-486. [PMID: 37853150 PMCID: PMC10584681 DOI: 10.1038/s41586-023-06505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/01/2023] [Indexed: 10/20/2023]
Abstract
Measurement has a special role in quantum theory1: by collapsing the wavefunction, it can enable phenomena such as teleportation2 and thereby alter the 'arrow of time' that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time3-10 that go beyond the established paradigms for characterizing phases, either in or out of equilibrium11-13. For present-day noisy intermediate-scale quantum (NISQ) processors14, the experimental realization of such physics can be problematic because of hardware limitations and the stochastic nature of quantum measurement. Here we address these experimental challenges and study measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping9,15-17 to avoid mid-circuit measurement and access different manifestations of the underlying phases, from entanglement scaling3,4 to measurement-induced teleportation18. We obtain finite-sized signatures of a phase transition with a decoding protocol that correlates the experimental measurement with classical simulation data. The phases display remarkably different sensitivity to noise, and we use this disparity to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realizing measurement-induced physics at scales that are at the limits of current NISQ processors.
Collapse
|
19
|
Clark CA, Zhang Z, Zhang Y, Xing C, Larimer B, Yang ES. Tumor Cell-Intrinsic PD-L1 Effects on Radiation-Induced Locoregional Antitumor Immunity. Int J Radiat Oncol Biol Phys 2023; 117:e224. [PMID: 37784910 DOI: 10.1016/j.ijrobp.2023.06.1130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
PURPOSE/OBJECTIVE(S) Targeting PD-L1 is a beneficial strategy to reinvigorate antitumor immunity, however variable response and resistance are challenging and suggest the need for multimodality approaches. Tumor cell-intrinsic PD-L1 signals also regulate non-canonical pathogenic pathways that may impact treatment resistance. Ionizing radiation (IR) can induce antitumor immunity and has demonstrated therapeutic synergy with immunotherapy in some cases, however tumor-driven immunologic mechanisms affecting clinical outcomes remain incompletely understood. In this study, we investigated the impact of tumor cell-intrinsic PD-L1 signals on IR-induced locoregional immune response and tumor control. MATERIALS/METHODS We used orthotopic B16-F10 melanoma (WT-B16) and 4T1 triple negative breast cancer (WT-4T1) murine tumor models, as well as PD-L1 disabled variants (KO) generated by CRISPR/Cas9, implanted bilaterally. IR (10 Gy) was targeted at one tumor alone to evaluate both direct and indirect IR effects based on tumor PD-L1 status. We evaluated response by tumor volume (TV) measurements, flow cytometry of tumor-infiltrating lymphocytes (TILs) and tumor draining lymph nodes (TDLNs) in both irradiated and unirradiated compartments, and granzyme B (GZB) PET imaging to assess functional in vivo changes. Chemokine-based multiplex assays were used to assess cell lines receiving IR (4Gy) and ex vivo tumor lysates and serum. RESULTS IR-induced local tumor control was not significantly affected based on tumor PD-L1 status, however deactivation of tumor cell PD-L1 enhanced IR-induced regional tumor control. Unirradiated WT tumors in mice harboring irradiated KO but not irradiated WT tumors demonstrated a significant mean reduction in TV with instances of complete distant tumor regression. PET imaging demonstrated a nearly 2-fold higher concentration of GZB in KO versus WT tumors, in line with known locally immunosuppressive effects of tumor PD-L1. Remarkably, GZB levels were >1.5-fold higher in unirradiated WT tumors in mice harboring an irradiated KO versus WT tumor, which correlated with a 50% increase in PD-1+CD8+ T cells. Higher levels of CD62+CD44- naïve CD4+ (4-fold) and CD8+ (2-fold) memory T cells were seen in TDLNs of irradiated KO versus WT tumors. Cytokine levels positively correlated with immune recruitment and activation status, as CXCL10, CCL2 and CCL5 were significantly upregulated in PD-L1 KO versus WT tumors cells. CONCLUSION Results from this study demonstrate cell-intrinsic PD-L1 inhibits IR-induced locoregional immune activation and frequency of regional tumor control, with clinical implications including therapeutic targeting of tumor cell-intrinsic PD-L1 signals to enhance IR-induced immunogenicity, utility of IR based on tumor PD-L1 status particularly in the metastatic setting, and immunotherapy combinations. Future studies investigating mechanisms of resistance to IR-induced immune activation to enhance responsiveness are warranted.
Collapse
|
20
|
Zhang Z, Fu J, Zhang Y, Qin X, Wang Y, Xing C. METTL3 regulates N6-methyladenosine modification of ANGPTL3 mRNA and potentiates malignant progression of stomach adenocarcinoma. BMC Gastroenterol 2023; 23:217. [PMID: 37344779 PMCID: PMC10283274 DOI: 10.1186/s12876-023-02844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is associated with mammalian mRNA biogenesis, decay, translation and metabolism, and also contributes greatly to gastrointestinal tumor formation and development. Therefore, the specific mechanisms and signaling pathways mediated by methyltransferase-like 3 (METTL3), which catalyzes the formation of m6A chemical labeling in stomach adenocarcinoma (STAD), are still worth exploring. METHODS Quantitative real-time PCR (qRT-PCR) was constructed to detect the expression of METTL3 in gastric cancer cell lines and patient tissues. The biological function of METTL3 was investigated in vitro/in vivo by Cell Counting Kit-8, colony formation assay, Transwell assay and nude mouse tumorigenesis assay. Based on the LinkedOmics database, the genes co-expressed with METTL3 in the TCGA STAD cohort were analyzed to clarify the downstream targets of METTL3. Methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) and RNA stability analysis were employed to explore the mechanism of METTL3 in gastric cancer progression. RESULTS We analyzed TCGA data and found that METTL3 was frequently elevated in STAD, and demonstrated that METTL3 was present at high levels in clinical STAD tissues and cells. High METTL3 expression was more likely to have advanced TNM tumors and distant metastasis. On the other hand, METTL3 silencing effectively impeded the higher oncogenic capacity of AGS and HGC27 cells in vivo and in vitro, as reflected by slowed cell growth and diminished migration and invasion capacities. Continued mining of the TCGA dataset identified the co-expression of angiopoietin-like 3 (ANGPTL3) and METTL3 in STAD. Lower level of ANGPTL3 was related to increased level of METTL3 in STAD samples and shorter survival times in STAD patients. ANGPTL3 enrichment limited the growth and metastasis of STAD cells. Besides, ANGPTL3 mRNA levels could be decreased by METTL3-dominated m6A modifications, a result derived from a combination of MeRIP-qPCR and RNA half-life experiments. Importantly, the inhibitory effect of METTL3 silencing on cancer could be reversed to some extent by ANGPTL3 inhibition. CONCLUSIONS Overall, our findings suggested that METTL3 functioned an oncogenic role in STAD by reducing ANGPTL3 expression in an m6A-dependent manner. The discovery of the METTL3-ANGPTL3 axis and its effect on STAD tumor growth will contribute to further studies on the mechanisms of gastric adenocarcinoma development.
Collapse
|
21
|
Andersen TI, Lensky YD, Kechedzhi K, Drozdov IK, Bengtsson A, Hong S, Morvan A, Mi X, Opremcak A, Acharya R, Allen R, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Babbush R, Bacon D, Bardin JC, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Chen Z, Chiaro B, Chik D, Chou C, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Debroy DM, Del Toro Barba A, Demura S, Dunsworth A, Eppens D, Erickson C, Faoro L, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Dau AG, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hilton J, Hoffmann MR, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klimov PV, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lester BJ, Lill AT, Liu W, Locharla A, Lucero E, Malone FD, Martin O, McClean JR, McCourt T, McEwen M, Miao KC, Mieszala A, Mohseni M, Montazeri S, Mount E, Movassagh R, Mruczkiewicz W, Naaman O, Neeley M, Neill C, Nersisyan A, Newman M, Ng JH, Nguyen A, Nguyen M, Niu MY, O’Brien TE, Omonije S, Petukhov A, Potter R, Pryadko LP, Quintana C, Rocque C, Rubin NC, Saei N, Sank D, Sankaragomathi K, Satzinger KJ, Schurkus HF, Schuster C, Shearn MJ, Shorter A, Shutty N, Shvarts V, Skruzny J, Smith WC, Somma R, Sterling G, Strain D, Szalay M, Torres A, Vidal G, Villalonga B, Heidweiller CV, White T, Woo BWK, Xing C, Yao ZJ, Yeh P, Yoo J, Young G, Zalcman A, Zhang Y, Zhu N, Zobrist N, Neven H, Boixo S, Megrant A, Kelly J, Chen Y, Smelyanskiy V, Kim EA, Aleiner I, Roushan P. Non-Abelian braiding of graph vertices in a superconducting processor. Nature 2023; 618:264-269. [PMID: 37169834 PMCID: PMC10247379 DOI: 10.1038/s41586-023-05954-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/14/2023] [Indexed: 06/09/2023]
Abstract
Indistinguishability of particles is a fundamental principle of quantum mechanics1. For all elementary and quasiparticles observed to date-including fermions, bosons and Abelian anyons-this principle guarantees that the braiding of identical particles leaves the system unchanged2,3. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions4-8. Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well-developed mathematical description of non-Abelian anyons and numerous theoretical proposals9-22, the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. Whereas efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasiparticles, superconducting quantum processors allow for directly manipulating the many-body wavefunction by means of unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons9,10, we implement a generalized stabilizer code and unitary protocol23 to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of using the anyons for quantum computation and use braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and, through the future inclusion of error correction to achieve topological protection, could open a path towards fault-tolerant quantum computing.
Collapse
|
22
|
Cheng X, Priest ER, Li HT, Chen J, Aulanier G, Chitta LP, Wang YL, Peter H, Zhu XS, Xing C, Ding MD, Solanki SK, Berghmans D, Teriaca L, Aznar Cuadrado R, Zhukov AN, Guo Y, Long D, Harra L, Smith PJ, Rodriguez L, Verbeeck C, Barczynski K, Parenti S. Author Correction: Ultra-high-resolution observations of persistent null-point reconnection in the solar corona. Nat Commun 2023; 14:2372. [PMID: 37185588 PMCID: PMC10130028 DOI: 10.1038/s41467-023-38149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
|
23
|
Peng W, Yan S, Huang Y, Cheng M, Liu T, Ren R, Chen Q, Zhang J, Gong W, Xing C, Wu Y. Laparoscopic proximal gastrectomy with right-sided overlap and single-flap valvuloplasty (ROSF): a case-series study. BMC Surg 2023; 23:90. [PMID: 37060019 PMCID: PMC10105452 DOI: 10.1186/s12893-023-01975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/28/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND There is no standard reconstruction method following proximal gastrectomy, of which gastroesophageal reflux and anastomotic complications are of great concern. Though several techniques have been devised to overcome these postoperative complications, such as double tract reconstruction, double-flap technique and side overlap fundoplication by Yamashita, none of them is considered a perfect solution. Herein, we designed a novel method of esophagogastrostomy after laparoscopic proximal gastrectomy (LPG), named right-sided overlap and single-flap valvuloplasty (ROSF). METHODS Between March 2021 and December 2021, 20 consecutive patients underwent LPG-ROSF at Department of Gastrointestinal Surgery, Second Affiliated Hospital of Soochow University. Surgical outcomes and postoperative complications were recorded. All patients were followed-up until December 2022. Endoscopy and assessment of gastrointestinal symptoms were performed 1 year after surgery. Nutrition-related parameters including total body weight, hemoglobin, lymphocyte count, serum total protein, serum albumin and serum prealbumin were evaluated 1 year after surgery and compared with those before surgery. RESULTS The mean surgery time and anastomosis time was 285.3 ± 71.3 and 61.3 ± 11.2 min respectively. None of the patients had gastrointestinal early postoperative complications. Symptomatic reflux was observed in one patient (5%) while reflux esophagitis (Los Angeles Grade A) was observed in another patient (5%). Four patients (20%) had mild dysphagia (Visick score = II) but none of them had anastomotic stenosis. There were no significant changes in nutritional status postoperatively. CONCLUSIONS ROSF can be safely performed after LPG and has satisfactory outcomes in preventing reflux and stenosis, and maintaining nutritional status. This technique requires further validation.
Collapse
|
24
|
Cheng X, Priest ER, Li HT, Chen J, Aulanier G, Chitta LP, Wang YL, Peter H, Zhu XS, Xing C, Ding MD, Solanki SK, Berghmans D, Teriaca L, Aznar Cuadrado R, Zhukov AN, Guo Y, Long D, Harra L, Smith PJ, Rodriguez L, Verbeeck C, Barczynski K, Parenti S. Ultra-high-resolution observations of persistent null-point reconnection in the solar corona. Nat Commun 2023; 14:2107. [PMID: 37055427 PMCID: PMC10102217 DOI: 10.1038/s41467-023-37888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
Magnetic reconnection is a key mechanism involved in solar eruptions and is also a prime possibility to heat the low corona to millions of degrees. Here, we present ultra-high-resolution extreme ultraviolet observations of persistent null-point reconnection in the corona at a scale of about 390 km over one hour observations of the Extreme-Ultraviolet Imager on board Solar Orbiter spacecraft. The observations show formation of a null-point configuration above a minor positive polarity embedded within a region of dominant negative polarity near a sunspot. The gentle phase of the persistent null-point reconnection is evidenced by sustained point-like high-temperature plasma (about 10 MK) near the null-point and constant outflow blobs not only along the outer spine but also along the fan surface. The blobs appear at a higher frequency than previously observed with an average velocity of about 80 km s-1 and life-times of about 40 s. The null-point reconnection also occurs explosively but only for 4 minutes, its coupling with a mini-filament eruption generates a spiral jet. These results suggest that magnetic reconnection, at previously unresolved scales, proceeds continually in a gentle and/or explosive way to persistently transfer mass and energy to the overlying corona.
Collapse
|
25
|
Zou J, Huang Y, Chen Y, Wu Z, Xie H, Zhou H, Xing C. FOXC2-induced circCASK aggravates colorectal cancer progression by upregulating SIX1 expression. IUBMB Life 2023. [PMID: 36961205 DOI: 10.1002/iub.2718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/15/2023] [Indexed: 03/25/2023]
Abstract
Colorectal cancer (CRC) ranks as the most common gastrointestinal solid carcinoma globally. Substantial evidence has established a pivotal role for circular RNAs (circRNAs) in CRC progression. In this study, differentially expressed circRNAs were analyzed based on a public dataset (GSE126094) and elevated expression of circCASK (hsa_circ_0001917) was validated in CRC. Moreover, increased circCASK was also confirmed in CRC patients. Functionally, circCASK knockdown led to a significant decrease in CRC cell growth and attenuated cell migration and invasion. Similarly, circCASK knockdown markedly attenuated tumor growth in vivo. Mechanistically, circCASK sponged miR-1271-5p and enhanced sine oculis homeobox homolog 1 (SIX1) expression. More importantly, both SIX1 overexpression and miR-1271-5p knockdown could reverse the cellular behavior inhibition induced by circCASK knockdown. Furthermore, SIX1 was most strongly and positively linked with Wnt/β-catenin signaling pathways, circCASK triggered Wnt/β-catenin signaling through the miR-1271-5p/SIX1 axis, and FOXC2 transcriptionally induced circCASK expression. In conclusion, circCASK induced by FOXC2 accelerated CRC progression through the miR-1271-5p/SIX1 axis, thus providing an interesting insight into CRC tumorigenesis.
Collapse
|