1
|
Zhang WB, Han J, Luo TG, Tian BY, Meng F, Jiang WJ, Jiao YQ, Li XM, Fu JT, Zhao YC, Li F, Meng X, Wang JG. [Comparison of mid-to-long term outcomes between mitral valve repair and biological valve replacement in patients over 60 with rheumatic mitral valve disease based on a propensity score matching study]. ZHONGHUA WAI KE ZA ZHI [CHINESE JOURNAL OF SURGERY] 2024; 62:1016-1023. [PMID: 39394625 DOI: 10.3760/cma.j.cn112139-20240424-00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Objective: To compare and discuss the mid-to-long-term outcomes of mitral valve repair (MVP) versus biological mitral valve replacement (bMVR) in patients over 60 years old with rheumatic mitral valve disease. Methods: This is a retrospective cohort study. A total of 765 patients aged 60 years and older, diagnosed with rheumatic mitral valve disease and who underwent MVP or bMVR at Beijing Anzhen Hospital from January 2010 to January 2023, were retrospectively included. Among them, 186 were male and 579 were female, with an age of (66.1±4.5) years (range: 60 to 82 years). Patients were divided into two groups based on the surgical method: the mitral valve repair group (MVP group, n=256) and the bioprosthetic mitral valve replacement group (bMVR group, n=509). A 1∶1 propensity score matching was performed using a caliper value of 0.2 based on preoperative data. Paired sample t-tests, χ² tests, or Fisher's exact tests were used for intergroup comparisons. Kaplan-Meier method was employed to plot survival curves and valve-related reoperation rate curves for both groups before and after matching, and Log-rank tests were used to compare the mid-to long-term survival rates and valve-related reoperation rates between the two groups. Results: A total of 765 patients who completed follow-up were ultimately included, with a follow-up period (M(IQR)) of 5.1(5.0) years (range: 1.0 to 12.9 years). After matching, each group consisted of 256 patients. The incidence of early postoperative atrial fibrillation (39.1% vs. 49.2%, χ2=4.95, P=0.026) and early mortality rates (2.0% vs. 6.2%, χ2=4.97, P=0.026) were lower in the MVP group. Unadjusted Kaplan-Meier analysis showed significantly higher 5-year and 10-year survival rates for the MVP group (92.54% vs. 83.02%, 86.22% vs. 70.19%, Log-rank P=0.001). After adjustment with propensity scores, the Kaplan-Meier analysis still indicated higher 5-year and 10-year survival rates in the MVP group compared to the bMVR group (92.54% vs. 85.89%, 86.22% vs. 74.83%, Log-rank P=0.024). There were no significant differences in the rates of valve-related reoperation between the two groups before and after matching (5-year and 10-year reoperation rates pre-matching: 1.75% vs. 0.57%, 5.39% vs. 7.54%, Log-rank P=0.207; post-matching: 1.75% vs. 0%, 5.39% vs. 9.27%, Log-rank P=0.157). Conclusion: For patients over 60 with rheumatic mitral valve disease, mitral valve repair offers better mid-to-long-term survival compared to biological valve replacement.
Collapse
|
2
|
Ablikim M, Achasov MN, Adlarson P, Albrecht M, Aliberti R, Amoroso A, An MR, An Q, Bai Y, Bakina O, Ferroli RB, Balossino I, Ban Y, Batozskaya V, Becker D, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bianco E, Bloms J, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Che GR, Chelkov G, Chen C, Chen C, Chen G, Chen HS, Chen ML, Chen SJ, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen ZJ, Cheng WS, Choi SK, Chu X, Cibinetto G, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du SX, Duan ZH, Egorov P, Fan YL, Fang J, Fang SS, Fang WX, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fischer K, Fritsch M, Fritzsch C, Fu CD, Gao H, Gao YN, Gao Y, Garbolino S, Garzia I, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han WY, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Hou GY, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Huang Z, Hussain T, Hüsken N, Imoehl W, Irshad M, Jackson J, Jaeger S, Janchiv S, Jang E, Jeong JH, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jia ZK, Jiang PC, Jiang SS, Jiang XS, Jiang Y, Jiao JB, Jiao Z, Jin S, Jin Y, Jing MQ, Johansson T, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kühn W, Lane JJ, Lange JS, Larin P, Lavania A, Lavezzi L, Lei TT, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li H, Li HB, Li HJ, Li HN, Li JQ, Li JS, Li JW, Li K, Li LJ, Li LK, Li L, Li MH, Li PR, Li SX, Li SY, Li T, Li WD, Li WG, Li XH, Li XL, Li X, Li YG, Li ZX, Li ZY, Liang C, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Limphirat A, Lin CX, Lin DX, Lin T, Liu BJ, Liu C, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu GM, Liu H, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XY, Ma Y, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Muchnoi NY, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pei YP, Pelizaeus M, Peng HP, Peters K, Ping JL, Ping RG, Plura S, Pogodin S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qian Z, Qiao CF, Qin JJ, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Redmer CF, Ren KJ, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Ruan SN, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi HC, Shi JY, Shi QQ, Shi RS, Shi X, Song JJ, Song WM, Song YX, Sosio S, Spataro S, Stieler F, Su PP, Su YJ, Sun GX, Sun H, Sun HK, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun YJ, Sun YZ, Sun ZT, Tan YX, Tang CJ, Tang GY, Tang J, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian Y, Uman I, Wang B, Wang B, Wang BL, Wang CW, Wang DY, Wang F, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang S, Wang S, Wang T, Wang TJ, Wang W, Wang WH, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang YD, Wang YF, Wang YH, Wang YQ, Wang Y, Wang Z, Wang ZY, Wang Z, Wei DH, Weidner F, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YJ, Wu Z, Xia L, Xiang T, Xiao D, Xiao GY, Xiao H, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu QJ, Xu XP, Xu YC, Xu ZP, Yan F, Yan L, Yan WB, Yan WC, Yang HJ, Yang HL, Yang HX, Yang SL, Yang T, Yang YF, Yang YX, Yang Y, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu T, Yu XD, Yuan CZ, Yuan L, Yuan SC, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng X, Zeng Y, Zhai XY, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang HH, Zhang HH, Zhang HQ, Zhang HY, Zhang JL, Zhang JQ, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang P, Zhang QY, Zhang S, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang XY, Zhang Y, Zhang YT, Zhang YH, Zhang Y, Zhang Y, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng WJ, Zheng YH, Zhong B, Zhong C, Zhong X, Zhou H, Zhou LP, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhu J, Zhu K, Zhu KJ, Zhu LX, Zhu SH, Zhu SQ, Zhu TJ, Zhu WJ, Zhu YC, Zhu ZA, Zou JH, Zu J. Extracting the femtometer structure of strange baryons using the vacuum polarization effect. Nat Commun 2024; 15:8812. [PMID: 39394218 PMCID: PMC11470094 DOI: 10.1038/s41467-024-51802-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 08/19/2024] [Indexed: 10/13/2024] Open
Abstract
One of the fundamental goals of particle physics is to gain a microscopic understanding of the strong interaction. Electromagnetic form factors quantify the structure of hadrons in terms of charge and magnetization distributions. While the nucleon structure has been investigated extensively, data on hyperons are still scarce. It has recently been demonstrated that electron-positron annihilations into hyperon-antihyperon pairs provide a powerful tool to investigate their inner structure. We present a method useful for hyperon-antihyperon pairs of different types which exploits the cross section enhancement due to the effect of vacuum polarization at the J/ψ resonance. Using the 10 billion J/ψ events collected with the BESIII detector, this allows a precise determination of the hyperon structure function. The result is essentially a precise snapshot of theΛ ¯ Σ 0 ( Λ Σ ¯ 0 ) transition process, encoded in the transition form factor ratio and phase. Their values are measured to be R = 0.860 ± 0.029(stat.) ± 0.015(syst.), Δ Φ Λ ¯ Σ 0 = ( 1.011 ± 0.094 ( stat. ) ± 0.010 ( syst. ) ) r a d and Δ Φ Λ Σ ¯ 0 = ( 2.128 ± 0.094 ( stat. ) ± 0.010 ( syst. ) ) r a d . Furthermore, charge-parity (CP) breaking is investigated in this reaction and found to be consistent with CP symmetry.
Collapse
Grants
- The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key R&D Program of China under Contracts Nos. 2020YFA0406300, 2020YFA0406400; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11635010, 11735014, 11835012, 11875115, 11935015, 11935016, 11935018, 11961141012, 12022510, 12025502, 12035009, 12035013, 12075250, 12165022, 12192260, 12192261, 12192262, 12192263, 12192264, 12192265, 12225509; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No. U1832207; the CAS Center for Excellence in Particle Physics (CCEPP); 100 Talents Program of CAS; The Institute of Nuclear and Particle Physics (INPAC) and Shanghai Key Laboratory for Particle Physics and Cosmology; Yunnan Fundamental Research Project under Contract No. 202301AT070162; ERC under Contract No. 758462; European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement under Contract No. 894790; German Research Foundation DFG under Contracts Nos. 443159800, 455635585, Collaborative Research Center CRC 1044, FOR5327, GRK 2149; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Science and Technology fund; National Science Research and Innovation Fund (NSRF) via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation under Contract No. B16F640076; Olle Engkvist Foundation under Contract No. 200-0605; STFC (United Kingdom); Suranaree University of Technology (SUT), Thailand Science Research and Innovation (TSRI), and National Science Research and Innovation Fund (NSRF) under Contract No. 160355; Polish National Science Centre under Contract 2019/35/O/ST2/02907; The Royal Society, UK under Contracts Nos. DH140054, DH160214; The Knut and Alice Wallenberg Foundation (Sweden); The Swedish Research Council; The Swedish Foundation for International Cooperation in Research and Higher Education (STINT); U. S. Department of Energy under Contract No. DE-FG02-05ER41374.
Collapse
|
3
|
An FP, Bai WD, Balantekin AB, Bishai M, Blyth S, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen HY, Chen SM, Chen Y, Chen YX, Chen ZY, Cheng J, Cheng J, Cheng YC, Cheng ZK, Cherwinka JJ, Chu MC, Cummings JP, Dalager O, Deng FS, Ding XY, Ding YY, Diwan MV, Dohnal T, Dolzhikov D, Dove J, Dugas KV, Duyang HY, Dwyer DA, Gallo JP, Gonchar M, Gong GH, Gong H, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Han Y, Hans S, He M, Heeger KM, Heng YK, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang JH, Huang XT, Huang YB, Huber P, Jaffe DE, Jen KL, Ji XL, Ji XP, Johnson RA, Jones D, Kang L, Kettell SH, Kohn S, Kramer M, Langford TJ, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li F, Li HL, Li JJ, Li QJ, Li RH, Li S, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu JX, Lu C, Lu HQ, Luk KB, Ma BZ, Ma XB, Ma XY, Ma YQ, Mandujano RC, Marshall C, McDonald KT, McKeown RD, Meng Y, Napolitano J, Naumov D, Naumova E, Nguyen TMT, Ochoa-Ricoux JP, Olshevskiy A, Park J, Patton S, Peng JC, Pun CSJ, Qi FZ, Qi M, Qian X, Raper N, Ren J, Morales Reveco C, Rosero R, Roskovec B, Ruan XC, Russell B, Steiner H, Sun JL, Tmej T, Treskov K, Tse WH, Tull CE, Tung YC, Viren B, Vorobel V, Wang CH, Wang J, Wang M, Wang NY, Wang RG, Wang W, Wang X, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wei LH, Wei W, Wen LJ, Whisnant K, White CG, Wong HLH, Worcester E, Wu DR, Wu Q, Wu WJ, Xia DM, Xie ZQ, Xing ZZ, Xu HK, Xu JL, Xu T, Xue T, Yang CG, Yang L, Yang YZ, Yao HF, Ye M, Yeh M, Young BL, Yu HZ, Yu ZY, Yue BB, Zavadskyi V, Zeng S, Zeng Y, Zhan L, Zhang C, Zhang FY, Zhang HH, Zhang JL, Zhang JW, Zhang QM, Zhang SQ, Zhang XT, Zhang YM, Zhang YX, Zhang YY, Zhang ZJ, Zhang ZP, Zhang ZY, Zhao J, Zhao RZ, Zhou L, Zhuang HL, Zou JH. Measurement of Electron Antineutrino Oscillation Amplitude and Frequency via Neutron Capture on Hydrogen at Daya Bay. PHYSICAL REVIEW LETTERS 2024; 133:151801. [PMID: 39454173 DOI: 10.1103/physrevlett.133.151801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/23/2024] [Indexed: 10/27/2024]
Abstract
This Letter reports the first measurement of the oscillation amplitude and frequency of reactor antineutrinos at Daya Bay via neutron capture on hydrogen using 1958 days of data. With over 3.6 million signal candidates, an optimized candidate selection, improved treatment of backgrounds and efficiencies, refined energy calibration, and an energy response model for the capture-on-hydrogen sensitive region, the relative ν[over ¯]_{e} rates and energy spectra variation among the near and far detectors gives sin^{2}2θ_{13}=0.0759_{-0.0049}^{+0.0050} and Δm_{32}^{2}=(2.72_{-0.15}^{+0.14})×10^{-3} eV^{2} assuming the normal neutrino mass ordering, and Δm_{32}^{2}=(-2.83_{-0.14}^{+0.15})×10^{-3} eV^{2} for the inverted neutrino mass ordering. This estimate of sin^{2}2θ_{13} is consistent with and essentially independent from the one obtained using the capture-on-gadolinium sample at Daya Bay. The combination of these two results yields sin^{2}2θ_{13}=0.0833±0.0022, which represents an 8% relative improvement in precision regarding the Daya Bay full 3158-day capture-on-gadolinium result.
Collapse
|
4
|
Li F, Phadte A, Bhatia M, Barndt S, Monte Carlo AR, Hou CFD, Yang R, Strock S, Pluciennik A. Structural and molecular basis of FAN1 defects in promoting Huntington's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617005. [PMID: 39416186 PMCID: PMC11482860 DOI: 10.1101/2024.10.07.617005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
FAN1 is a DNA dependent nuclease whose proper function is essential for maintaining human health. For example, a genetic variant in FAN1, Arg507 to His hastens onset of Huntington's disease, a repeat expansion disorder for which there is no cure. How the Arg507His mutation affects FAN1 structure and enzymatic function is unknown. Using cryo-EM and biochemistry, we have discovered that FAN1 arginine 507 is critical for its interaction with PCNA, and mutation of Arg507 to His attenuates assembly of the FAN1-PCNA on a disease-relevant extrahelical DNA extrusions formed within DNA repeats. This mutation concomitantly abolishes PCNA-FAN1-dependent cleavage of such extrusions, underscoring the importance of PCNA to the genome stabilizing function of FAN1. These results unravel the molecular basis for a specific mutation in FAN1 that dramatically hastens the onset of Huntington's disease.
Collapse
|
5
|
Song L, Jin L, Zhang YH, Yang XM, Duan YL, Zheng MC, Zhai XW, Liu Y, Liu W, Liu AS, Yuan XJ, Dai YP, Zhang LP, Wang J, Sun LR, Liu R, Zhang BX, Jiang L, Wei HX, Chen KL, Jin RM, Wang XG, Zhou HX, Wang HM, Zhuang SS, Zhou CJ, Gao ZF, Mu X, Zhang KH, Li F. [A multicenter study on effect of delayed chemotherapy on prognosis of Burkitt lymphoma in children]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2024; 62:941-948. [PMID: 39327960 DOI: 10.3760/cma.j.cn112140-20240210-00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Objective: To analyze the factors affecting delayed chemotherapy in children with Burkitt lymphoma (BL) and their influence on prognosis. Methods: Retrospective cohort study. Clinical data of 591 children aged ≤18 years with BL from May 2017 to December 2022 in China Net Childhood Lymphoma (CNCL) was collected. The patients were treated according to the protocol CNCL-BL-2017. According to the clinical characteristics, therapeutic regimen was divided into group A, group B and group C .Based on whether the total chemotherapy time was delayed, patients were divided into two groups: the delayed chemotherapy group and the non-delayed chemotherapy group. Based on the total delayed time of chemotherapy, patients in group C were divided into non-delayed chemotherapy group, 1-7 days delayed group and more than 7 days delayed group. Relationships between delayed chemotherapy and gender, age, tumor lysis syndrome before chemotherapy, bone marrow involvement, disease group (B/C group), serum lactate dehydrogenase (LDH) > 4 times than normal, grade Ⅲ-Ⅳ myelosuppression after chemotherapy, minimal residual disease in the interim assessment, and severe infection (including severe pneumonia, sepsis, meningitis, chickenpox, etc.) were analyzed. Logistic analysis was used to identify the relevant factors. Kaplan-Meier method was used to analyze the patients' survival information. Log-Rank was used for comparison between groups. Results: Among 591 patients, 504 were males and 87 were females, the follow-up time was 34.8 (18.6,50.1) months. The 3-year overall survival (OS) rate was (92.5±1.1)%,and the 3-year event-free survival (EFS) rate was (90.5±1.2)%. Seventy-three (12.4%) patients were in delayed chemotherapy group and 518 (87.6%) patients were in non-delayed chemotherapy group. The reasons for chemotherapy delay included 72 cases (98.6%) of severe infection, 65 cases (89.0%) of bone marrow suppression, 35 cases (47.9%) of organ dysfunction, 22 cases (30.1%) of tumor lysis syndrome,etc. There were 7 cases of chemotherapy delay in group B, which were seen in COPADM (vincristine+cyclophosphamide+prednisone+daunorubicin+methotrexate+intrathecal injection,4 cases) and CYM (methotrexate+cytarabine+intrathecal injection,3 cases) stages. There were 66 cases of chemotherapy delay in group C, which were common in COPADM (28 cases) and CYVE 1 (low dose cytarabine+high dose cytarabine+etoposide+methotrexate, 12 cases) stages. Multinomial Logistic regression analysis showed that the age over 10 years old (OR=0.54,95%CI 0.30-0.93), tumor lysis syndrome before chemotherapy (OR=0.48,95%CI 0.27-0.84) and grade Ⅲ-Ⅳ myelosuppression after chemotherapy (OR=0.55,95%CI 0.33-0.91)were independent risk factors for chemotherapy delay.The 3-year OS rate and the 3-year EFS rate of children with Burkitt lymphoma in the delayed chemotherapy group were lower than those in the non-delayed chemotherapy group ((79.4±4.9)% vs. (94.2±1.1)%, (80.2±4.8)% vs. (92.0±1.2)%,both P<0.05). The 3-year OS rate of the group C with chemotherapy delay >7 days (42 cases) was lower than that of the group with chemotherapy delay of 1-7 days (22 cases) and the non-delay group (399 cases) ((76.7±6.9)% vs. (81.8±8.2)% vs. (92.7±1.3)%, P=0.002).The 3-year OS rate of the chemotherapy delay group (9 cases) in the COP (vincristine+cyclophosphamide+prednisone) phase was lower than that of the non-chemotherapy delay group (454 cases) ((66.7±15.7)% vs. (91.3±1.4)%, P=0.005). Similarly, the 3-year OS rate of the chemotherapy delay group (11 cases) in the COPADM1 phase was lower than that of the non-chemotherapy delay group (452 cases) ((63.6±14.5)% vs. (91.5±1.3)%, P=0.001). Conclusions: The delayed chemotherapy was related to the age over 10 years old, tumor lysis syndrome before chemotherapy and grade Ⅲ-Ⅳ myelosuppression after chemotherapy in pediatric BL. There is a significant relationship between delayed chemotherapy and prognosis of BL in children.
Collapse
|
6
|
Jiang R, Gao CC, Bai J, Li A, Wang XH, Cao F, Li F. [Progress in the diagnosis and treatment of pancreatic cancer with acute pancreatitis as the initial symptom]. ZHONGHUA WAI KE ZA ZHI [CHINESE JOURNAL OF SURGERY] 2024; 62:971-975. [PMID: 39183023 DOI: 10.3760/cma.j.cn112139-20240418-00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Pancreatic cancer patients often have complaints such as upper abdominal pain and obstructive jaundice when seeking diagnosis and treatment. However, acute pancreatitis as a rare initial clinical manifestation of pancreatic cancer is often overlooked in clinical practice. This oversight often leads to a delayed diagnosis of pancreatic cancer, uncertainty in treatment strategies, and significantly affects patients' quality of life and prognosis. Therefore, early diagnosis and treatment, and active follow-up are crucial for patients with acute pancreatitis as an initial symptom of pancreatic cancer. Upon admission to such patients, common causes such as gallstones, alcohol abuse, and hyperlipidemia should be initially ruled out. Evaluation with tumor markers, CT and MRI, and endoscopic ultrasound are essential to confirm the diagnosis of pancreatic cancer. For patients with mild pancreatitis, managing peripancreatic inflammation first before radical resection of pancreatic cancer could reduce postoperative complications. Moreover, pancreatitis serves as a high-risk factor for pancreatic cancer, so it is crucial to closely follow up patients with pancreatitis to detect pancreatic cancer early.
Collapse
|
7
|
Cao Z, Aharonian F, Axikegu, Bai Y, Bao Y, Bastieri D, Bi X, Bi Y, Bian W, Bukevich A, Cao Q, Cao W, Cao Z, Chang J, Chang J, Chen A, Chen E, Chen H, Chen L, Chen L, Chen L, Chen M, Chen M, Chen Q, Chen S, Chen S, Chen S, Chen T, Chen Y, Cheng N, Cheng Y, Cui M, Cui S, Cui X, Cui Y, Dai B, Dai H, Dai Z, Danzengluobu, Dong X, Duan K, Fan J, Fan Y, Fang J, Fang J, Fang K, Feng C, Feng H, Feng L, Feng S, Feng X, Feng Y, Feng Y, Gabici S, Gao B, Gao C, Gao Q, Gao W, Gao W, Ge M, Geng L, Giacinti G, Gong G, Gou Q, Gu M, Guo F, Guo X, Guo Y, Guo Y, Han Y, Hasan M, He H, He H, He J, He Y, Hor Y, Hou B, Hou C, Hou X, Hu H, Hu Q, Hu S, Huang D, Huang T, Huang W, Huang X, Huang X, Huang Y, Ji X, Jia H, Jia K, Jiang K, Jiang X, Jiang Z, Jin M, Kang M, Karpikov I, Kuleshov D, Kurinov K, Li B, Li C, Li C, Li C, Li D, Li F, Li H, Li H, Li J, Li J, Li K, Li S, Li W, Li W, Li X, Li X, Li Y, Li Z, Li Z, Liang E, Liang Y, Lin S, Liu B, Liu C, Liu D, Liu D, Liu H, Liu H, Liu J, Liu J, Liu M, Liu R, Liu S, Liu W, Liu Y, Liu Y, Luo Q, Luo Y, Lv H, Ma B, Ma L, Ma X, Mao J, Min Z, Mitthumsiri W, Mu H, Nan Y, Neronov A, Ou L, Pattarakijwanich P, Pei Z, Qi J, Qi M, Qiao B, Qin J, Raza A, Ruffolo D, Sáiz A, Saeed M, Semikoz D, Shao L, Shchegolev O, Sheng X, Shu F, Song H, Stenkin Y, Stepanov V, Su Y, Sun D, Sun Q, Sun X, Sun Z, Takata J, Tam P, Tang Q, Tang R, Tang Z, Tian W, Wang C, Wang C, Wang G, Wang H, Wang H, Wang J, Wang K, Wang K, Wang L, Wang L, Wang P, Wang R, Wang W, Wang X, Wang X, Wang Y, Wang Y, Wang Y, Wang Z, Wang Z, Wang Z, Wang Z, Wei D, Wei J, Wei Y, Wen T, Wu C, Wu H, Wu Q, Wu S, Wu X, Wu Y, Xi S, Xia J, Xiang G, Xiao D, Xiao G, Xin Y, Xing Y, Xiong D, Xiong Z, Xu D, Xu R, Xu R, Xu W, Xue L, Yan D, Yan J, Yan T, Yang C, Yang C, Yang F, Yang F, Yang L, Yang M, Yang R, Yang W, Yao Y, Yao Z, Yin L, Yin N, You X, You Z, Yu Y, Yuan Q, Yue H, Zeng H, Zeng T, Zeng W, Zha M, Zhang B, Zhang F, Zhang H, Zhang H, Zhang H, Zhang J, Zhang L, Zhang P, Zhang P, Zhang R, Zhang S, Zhang S, Zhang S, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao L, Zhao S, Zhao X, Zheng F, Zhong W, Zhou B, Zhou H, Zhou J, Zhou M, Zhou P, Zhou R, Zhou X, Zhou X, Zhu B, Zhu C, Zhu F, Zhu H, Zhu K, Zou Y, Zuo X, Celli S. Evidence for particle acceleration approaching PeV energies in the W51 complex. Sci Bull (Beijing) 2024; 69:2833-2841. [PMID: 39153903 DOI: 10.1016/j.scib.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 08/19/2024]
Abstract
The γ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays (CRs) accelerated by the shock of supernova remnant (SNR) W51C and the dense molecular clouds in the adjacent star-forming region, W51B. However, the maximum acceleration capability of W51C for CRs remains elusive. Based on observations conducted with the Large High Altitude Air Shower Observatory (LHAASO), we report a significant detection of γ rays emanating from the W51 complex, with energies from 2 to 200 TeV. The LHAASO measurements, for the first time, extend the γ-ray emission from the W51 complex beyond 100 TeV and reveal a significant spectrum bending at tens of TeV. By combining the "π0-decay bump" featured data from Fermi-LAT, the broadband γ-ray spectrum of the W51 region can be well-characterized by a simple pp-collision model. The observed spectral bending feature suggests an exponential cutoff at ∼400 TeV or a power-law break at ∼200 TeV in the CR proton spectrum, most likely providing the first evidence of SNRs serving as CR accelerators approaching the PeV regime. Additionally, two young star clusters within W51B could also be theoretically viable to produce the most energetic γ rays observed by LHAASO. Our findings strongly support the presence of extreme CR accelerators within the W51 complex and provide new insights into the origin of Galactic CRs.
Collapse
|
8
|
Ablikim M, Achasov MN, Adlarson P, Afedulidis O, Ai XC, Aliberti R, Amoroso A, An Q, Bai Y, Bakina O, Balossino I, Ban Y, Bao HR, Batozskaya V, Begzsuren K, Berger N, Berlowski M, Bertani M, Bettoni D, Bianchi F, Bianco E, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Che GR, Chelkov G, Chen C, Chen CH, Chen C, Chen G, Chen HS, Chen ML, Chen SJ, Chen SL, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen YQ, Chen ZJ, Chen ZY, Choi SK, Chu X, Cibinetto G, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng CQ, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding B, Ding XX, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du MC, Du SX, Duan ZH, Egorov P, Fan YH, Fang J, Fang J, Fang SS, Fang WX, Fang Y, Fang YQ, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Feng YT, Fischer K, Fritsch M, Fu CD, Fu JL, Fu YW, Gao H, Gao YN, Gao Y, Garbolino S, Garzia I, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Gramigna S, Greco M, Gu MH, Gu YT, Guan CY, Guan ZL, Guo AQ, Guo LB, Guo MJ, Guo RP, Guo YP, Guskov A, Gutierrez J, Han KL, Han TT, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Holtmann T, Hong PC, Hou GY, Hou XT, Hou YR, Hou ZL, Hu BY, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Huang ZY, Hussain T, Hölzken F, Hüsken N, In der Wiesche N, Irshad M, Jackson J, Janchiv S, Jeong JH, Ji Q, Ji QP, Ji W, Ji XB, Ji XL, Ji YY, Jia XQ, Jia ZK, Jiang D, Jiang HB, Jiang PC, Jiang SS, Jiang TJ, Jiang XS, Jiang Y, Jiao JB, Jiao JK, Jiao Z, Jin S, Jin Y, Jing MQ, Jing XM, Johansson T, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kavatsyuk M, Ke BC, Khachatryan V, Khoukaz A, Kiuchi R, Kolcu OB, Kopf B, Kuessner M, Kui X, Kupsc A, Kühn W, Lane JJ, Larin P, Lavezzi L, Lei TT, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li HB, Li HJ, Li HN, Li H, Li JR, Li JS, Li K, Li LJ, Li LK, Li L, Li MH, Li PR, Li QM, Li QX, Li R, Li SX, Li T, Li WD, Li WG, Li X, Li XH, Li XL, Li X, Li YG, Li ZJ, Li ZX, Liang C, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Liao YP, Libby J, Limphirat A, Lin DX, Lin T, Liu BJ, Liu BX, Liu C, Liu CX, Liu FH, Liu F, Liu F, Liu GM, Liu H, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LC, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu X, Liu XY, Liu Y, Liu Y, Liu YB, Liu ZA, Liu ZD, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma H, Ma HL, Ma JL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma XT, Ma XY, Ma Y, Ma YM, Maas FE, Maggiora M, Malde S, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Moses B, Muchnoi NY, Muskalla J, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu QL, Niu WD, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pei YP, Pelizaeus M, Peng HP, Peng YY, Peters K, Ping JL, Ping RG, Plura S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qin JJ, Qin LQ, Qin XS, Qin ZH, Qiu JF, Qu SQ, Qu ZH, Redmer CF, Ren KJ, Rivetti A, Rolo M, Rong G, Rosner C, Ruan SN, Salone N, Sarantsev A, Schelhaas Y, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi HC, Shi JL, Shi JY, Shi QQ, Shi RS, Shi SY, Shi X, Song JJ, Song TZ, Song WM, Song YJ, Sosio S, Spataro S, Stieler F, Su YJ, Sun GB, Sun GX, Sun H, Sun HK, Sun JF, Sun K, Sun L, Sun SS, Sun T, Sun WY, Sun Y, Sun YJ, Sun YZ, Sun ZQ, Sun ZT, Tang CJ, Tang GY, Tang J, Tang YA, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian Y, Tian ZF, Uman I, Wan Y, Wang SJ, Wang B, Wang BL, Wang B, Wang DY, Wang F, Wang HJ, Wang JP, Wang K, Wang LL, Wang M, Wang M, Wang NY, Wang S, Wang S, Wang T, Wang TJ, Wang W, Wang W, Wang WP, Wang X, Wang XF, Wang XJ, Wang XL, Wang XN, Wang Y, Wang YD, Wang YF, Wang YL, Wang YN, Wang YQ, Wang Y, Wang Y, Wang Z, Wang ZL, Wang ZY, Wang Z, Wei D, Wei DH, Weidner F, Wen SP, Wen YR, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu C, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YH, Wu YJ, Wu Z, Xia L, Xian XM, Xiang BH, Xiang T, Xiao D, Xiao GY, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu QJ, Xu QN, Xu W, Xu WL, Xu XP, Xu YC, Xu ZP, Xu ZS, Yan F, Yan L, Yan WB, Yan WC, Yan XQ, Yang HJ, Yang HL, Yang HX, Yang T, Yang Y, Yang YF, Yang YX, Yang Y, Yang ZW, Yao ZP, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yu XD, Yuan CZ, Yuan J, Yuan L, Yuan SC, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng SH, Zeng X, Zeng Y, Zeng YJ, Zeng YJ, Zhai XY, Zhai YC, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang HC, Zhang HH, Zhang HH, Zhang HQ, Zhang HY, Zhang J, Zhang J, Zhang JJ, Zhang JL, Zhang JQ, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang LM, Zhang L, Zhang P, Zhang QY, Zhang S, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang Y, Zhang YT, Zhang YH, Zhang YM, Zhang Y, Zhang Y, Zhang ZD, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhao G, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao RP, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng WJ, Zheng YH, Zhong B, Zhong X, Zhou H, Zhou JY, Zhou LP, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhu J, Zhu K, Zhu KJ, Zhu L, Zhu LX, Zhu SH, Zhu SQ, Zhu TJ, Zhu WJ, Zhu YC, Zhu ZA, Zou JH, Zu J. Search for Rare Decays of D_{s}^{+} to Final States π^{+}e^{+}e^{-}, ρ^{+}e^{+}e^{-}, π^{+}π^{0}e^{+}e^{-}, K^{+}π^{0}e^{+}e^{-}, and K_{S}^{0}π^{+}e^{+}e^{-}. PHYSICAL REVIEW LETTERS 2024; 133:121801. [PMID: 39373421 DOI: 10.1103/physrevlett.133.121801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/21/2024] [Indexed: 10/08/2024]
Abstract
Using 7.33 fb^{-1} of e^{+}e^{-} collision data collected by the BESIII detector at center-of-mass energies in the range of sqrt[s]=4.128-4.226 GeV, we search for the rare decays D_{s}^{+}→h^{+}(h^{0})e^{+}e^{-}, where h represents a kaon or pion. By requiring the e^{+}e^{-} invariant mass to be consistent with a ϕ(1020), 0.98
Collapse
|
9
|
Ablikim M, Achasov MN, Adlarson P, Afedulidis O, Ai XC, Aliberti R, Amoroso A, An Q, Bai Y, Bakina O, Balossino I, Ban Y, Bao HR, Batozskaya V, Begzsuren K, Berger N, Berlowski M, Bertani M, Bettoni D, Bianchi F, Bianco E, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Che GR, Chelkov G, Chen C, Chen CH, Chen C, Chen G, Chen HS, Chen HY, Chen ML, Chen SJ, Chen SL, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen YQ, Chen ZJ, Chen ZY, Choi SK, Cibinetto G, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng CQ, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding B, Ding XX, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du MC, Du SX, Duan YY, Duan ZH, Egorov P, Fan YH, Fang J, Fang J, Fang SS, Fang WX, Fang Y, Fang YQ, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Feng YT, Fritsch M, Fu CD, Fu JL, Fu YW, Gao H, Gao XB, Gao YN, Gao Y, Garbolino S, Garzia I, Ge L, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Gramigna S, Greco M, Gu MH, Gu YT, Guan CY, Guo AQ, Guo LB, Guo MJ, Guo RP, Guo YP, Guskov A, Gutierrez J, Han KL, Han TT, Hanisch F, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Holtmann T, Hong PC, Hou GY, Hou XT, Hou YR, Hou ZL, Hu BY, Hu HM, Hu JF, Hu SL, Hu T, Hu Y, Hu ZM, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Huang YS, Hussain T, Hölzken F, Hüsken N, In der Wiesche N, Jackson J, Janchiv S, Jeong JH, Ji Q, Ji QP, Ji W, Ji XB, Ji XL, Ji YY, Jia XQ, Jia ZK, Jiang D, Jiang HB, Jiang PC, Jiang SS, Jiang TJ, Jiang XS, Jiang Y, Jiao JB, Jiao JK, Jiao Z, Jin S, Jin Y, Jing MQ, Jing XM, Johansson T, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kavatsyuk M, Ke BC, Khachatryan V, Khoukaz A, Kiuchi R, Kolcu OB, Kopf B, Kuessner M, Kui X, Kumar N, Kupsc A, Kühn W, Lane JJ, Lavezzi L, Lei TT, Lei ZH, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li HN, Li H, Li JR, Li JS, Li K, Li KL, Li LJ, Li LK, Li L, Li MH, Li PR, Li QM, Li QX, Li R, Li SX, Li T, Li WD, Li WG, Li X, Li XH, Li XL, Li XY, Li XZ, Li YG, Li ZJ, Li ZY, Liang C, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao YP, Libby J, Limphirat A, Lin CC, Lin DX, Lin T, Liu BJ, Liu BX, Liu C, Liu CX, Liu F, Liu FH, Liu F, Liu GM, Liu H, Liu HB, Liu HH, Liu HM, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LC, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu X, Liu Y, Liu Y, Liu YB, Liu ZA, Liu ZD, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo JR, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma H, Ma HL, Ma JL, Ma LL, Ma LR, Ma MM, Ma QM, Ma RQ, Ma T, Ma XT, Ma XY, Ma Y, Ma YM, Maas FE, Maggiora M, Malde S, Malik QA, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Moses B, Muchnoi NY, Muskalla J, Nefedov Y, Nerling F, Nie LS, Nikolaev IB, Ning Z, Nisar S, Niu QL, Niu WD, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pei YP, Pelizaeus M, Peng HP, Peng YY, Peters K, Ping JL, Ping RG, Plura S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qiao XK, Qin JJ, Qin LQ, Qin LY, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu ZH, Redmer CF, Ren KJ, Rivetti A, Rolo M, Rong G, Rosner C, Ruan SN, Salone N, Sarantsev A, Schelhaas Y, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shang ZJ, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi H, Shi HC, Shi JL, Shi JY, Shi QQ, Shi SY, Shi X, Song JJ, Song TZ, Song WM, Song YJ, Song YX, Sosio S, Spataro S, Stieler F, Su SS, Su YJ, Sun GB, Sun GX, Sun H, Sun HK, Sun JF, Sun K, Sun L, Sun SS, Sun T, Sun WY, Sun Y, Sun YJ, Sun YZ, Sun ZQ, Sun ZT, Tang CJ, Tang GY, Tang J, Tang M, Tang YA, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian Y, Tian ZF, Uman I, Wan Y, Wang SJ, Wang B, Wang BL, Wang B, Wang DY, Wang F, Wang HJ, Wang JJ, Wang JP, Wang K, Wang LL, Wang M, Wang NY, Wang S, Wang S, Wang T, Wang TJ, Wang W, Wang W, Wang WP, Wang X, Wang XF, Wang XJ, Wang XL, Wang XN, Wang Y, Wang YD, Wang YF, Wang YL, Wang YN, Wang YQ, Wang Y, Wang Y, Wang Z, Wang ZL, Wang ZY, Wang Z, Wei DH, Weidner F, Wen SP, Wen YR, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu C, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YH, Wu YJ, Wu Z, Xia L, Xian XM, Xiang BH, Xiang T, Xiao D, Xiao GY, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu M, Xu QJ, Xu QN, Xu W, Xu WL, Xu XP, Xu Y, Xu YC, Xu ZS, Yan F, Yan L, Yan WB, Yan WC, Yan XQ, Yang HJ, Yang HL, Yang HX, Yang T, Yang Y, Yang YF, Yang YF, Yang YX, Yang ZW, Yao ZP, Ye M, Ye MH, Yin JH, Yin J, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu MC, Yu T, Yu XD, Yu YC, Yuan CZ, Yuan J, Yuan J, Yuan L, Yuan SC, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng SH, Zeng X, Zeng Y, Zeng YJ, Zeng YJ, Zhai XY, Zhai YC, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang H, Zhang HC, Zhang HH, Zhang HH, Zhang HQ, Zhang HR, Zhang HY, Zhang J, Zhang J, Zhang JJ, Zhang JL, Zhang JQ, Zhang JS, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang LM, Zhang L, Zhang P, Zhang QY, Zhang RY, Zhang SH, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang XY, Zhang Y, Zhang Y, Zhang YT, Zhang YH, Zhang YM, Zhang Y, Zhang ZD, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhang ZZ, Zhao G, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao N, Zhao RP, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng BM, Zheng JP, Zheng WJ, Zheng YH, Zhong B, Zhong X, Zhou H, Zhou JY, Zhou LP, Zhou S, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhou ZC, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu KS, Zhu L, Zhu LX, Zhu SH, Zhu TJ, Zhu WD, Zhu YC, Zhu ZA, Zou JH, Zu J. Strong and Weak CP Tests in Sequential Decays of Polarized Σ^{0} Hyperons. PHYSICAL REVIEW LETTERS 2024; 133:101902. [PMID: 39303247 DOI: 10.1103/physrevlett.133.101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024]
Abstract
The J/ψ, ψ(3686)→Σ^{0}Σ[over ¯]^{0} processes and subsequent decays are studied using the world's largest J/ψ and ψ(3686) data samples collected with the BESIII detector. The parity-violating decay parameters of the decays Σ^{0}→Λγ and Σ[over ¯]^{0}→Λ[over ¯]γ, α_{Σ^{0}}=-0.0017±0.0021±0.0018 and α[over ¯]_{Σ^{0}}=0.0021±0.0020±0.0022, are measured for the first time. The strong CP symmetry is tested in the decays of the Σ^{0} hyperons for the first time by measuring the asymmetry A_{CP}^{Σ}=α_{Σ^{0}}+α[over ¯]_{Σ^{0}}=(0.4±2.9±1.3)×10^{-3}. The weak CP test is performed in the subsequent decays of their daughter particles Λ and Λ[over ¯]. Also for the first time, the transverse polarizations of the Σ^{0} hyperons in J/ψ and ψ(3686) decays are observed with opposite directions, and the ratios between the S-wave and D-wave contributions of the J/ψ, ψ(3686)→Σ^{0}Σ[over ¯]^{0} decays are obtained. These results are crucial to understand the decay dynamics of the charmonium states and the production mechanism of the Σ^{0}-Σ[over ¯]^{0} pairs.
Collapse
|
10
|
Zhang X, Cui GM, Luo GJ, Ban HF, Li F, Deng W, Wang YB, Sun Q. [A case of renal hypodysplasia and aplasia-1 associated with ITGA8 gene variation]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2024; 62:888-890. [PMID: 39192449 DOI: 10.3760/cma.j.cn112140-20240117-00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
|
11
|
Ablikim M, Achasov MN, Adlarson P, Ai XC, Aliberti R, Amoroso A, An MR, An Q, Bai Y, Bakina O, Balossino I, Ban Y, Batozskaya V, Begzsuren K, Berger N, Berlowski M, Bertani M, Bettoni D, Bianchi F, Bianco E, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang TT, Chang WL, Che GR, Chelkov G, Chen C, Chen C, Chen G, Chen HS, Chen ML, Chen SJ, Chen SL, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen YQ, Chen ZJ, Cheng WS, Choi SK, Chu X, Cibinetto G, Coen SC, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding B, Ding XX, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du MC, Du SX, Duan ZH, Egorov P, Fan YH, Fang J, Fang SS, Fang WX, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fischer K, Fritsch M, Fu CD, Fu JL, Fu YW, Gao H, Gao YN, Gao Y, Garbolino S, Garzia I, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Gramigna S, Greco M, Gu MH, Gu YT, Guan CY, Guan ZL, Guo AQ, Guo LB, Guo MJ, Guo RP, Guo YP, Guskov A, Han TT, Han WY, Hao XQ, Harris FA, He KK, He KL, Heinsius FHH, Heinz CH, Heng YK, Herold C, Holtmann T, Hong PC, Hou GY, Hou XT, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Hussain T, Hüsken N, In der Wiesche N, Irshad M, Jackson J, Jaeger S, Janchiv S, Jeong JH, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jia XQ, Jia ZK, Jiang HJ, Jiang PC, Jiang SS, Jiang TJ, Jiang XS, Jiang Y, Jiao JB, Jiao Z, Jin S, Jin Y, Jing MQ, Johansson T, Kui X, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kavatsyuk M, Ke BC, Khoukaz A, Kiuchi R, Kliemt R, Kolcu OB, Kopf B, Kuessner M, Kupsc A, Kühn W, Lane JJ, Larin P, Lavania A, Lavezzi L, Lei TT, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li HB, Li HJ, Li HN, Li H, Li JR, Li JS, Li JW, Li KL, Li K, Li LJ, Li LK, Li L, Li MH, Li PR, Li QX, Li SX, Li T, Li WD, Li WG, Li XH, Li XL, Li X, Li YG, Li ZJ, Li ZX, Liang C, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Liao YP, Libby J, Limphirat A, Lin DX, Lin T, Liu BJ, Liu BX, Liu C, Liu CX, Liu FH, Liu F, Liu F, Liu GM, Liu H, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LC, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu Y, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma HL, Ma JL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XY, Ma Y, Ma YM, Maas FE, Maggiora M, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Muchnoi NY, Muskalla J, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu QL, Niu WD, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pei YP, Pelizaeus M, Peng HP, Peng YY, Peters K, Ping JL, Ping RG, Plura S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qin JJ, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Redmer CF, Ren KJ, Rivetti A, Rolo M, Rong G, Rosner C, Ruan SN, Salone N, Sarantsev A, Schelhaas Y, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi HC, Shi JL, Shi JY, Shi QQ, Shi RS, Shi X, Song JJ, Song TZ, Song WM, Song YJ, Song YX, Sosio S, Spataro S, Stieler F, Su YJ, Sun GB, Sun GX, Sun H, Sun HK, Sun JF, Sun K, Sun L, Sun SS, Sun T, Sun WY, Sun Y, Sun YJ, Sun YZ, Sun ZT, Tan YX, Tang CJ, Tang GY, Tang J, Tang YA, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian WH, Tian Y, Tian ZF, Uman I, Wang SJ, Wang B, Wang BL, Wang B, Wang CW, Wang DY, Wang F, Wang HJ, Wang HP, Wang JP, Wang K, Wang LL, Wang M, Wang M, Wang S, Wang S, Wang T, Wang TJ, Wang W, Wang W, Wang WP, Wang X, Wang XF, Wang XJ, Wang XL, Wang Y, Wang YD, Wang YF, Wang YH, Wang YN, Wang YQ, Wang Y, Wang Y, Wang Z, Wang ZL, Wang ZY, Wang Z, Wei D, Wei DH, Weidner F, Wen SP, Wenzel CW, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu C, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YH, Wu YJ, Wu Z, Xia L, Xian XM, Xiang T, Xiao D, Xiao GY, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu QJ, Xu QN, Xu W, Xu WL, Xu XP, Xu YC, Xu ZP, Xu ZS, Yan F, Yan L, Yan WB, Yan WC, Yan XQ, Yang HJ, Yang HL, Yang HX, Yang T, Yang Y, Yang YF, Yang YX, Yang Y, Yang ZW, Yao ZP, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yu XD, Yuan CZ, Yuan L, Yuan SC, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng X, Zeng Y, Zeng YJ, Zhai XY, Zhai YC, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang HC, Zhang HH, Zhang HH, Zhang HQ, Zhang HY, Zhang J, Zhang JJ, Zhang JL, Zhang JQ, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang P, Zhang QY, Zhang S, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang X, Zhang Y, Zhang Y, Zhang YT, Zhang YH, Zhang Y, Zhang Y, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng WJ, Zheng YH, Zhong B, Zhong X, Zhou H, Zhou LP, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhu J, Zhu K, Zhu KJ, Zhu L, Zhu LX, Zhu SH, Zhu SQ, Zhu TJ, Zhu WJ, Zhu YC, Zhu ZA, Zou JH, Zu J. Precise Measurement of Born Cross Sections for e^{+}e^{-}→DD[over ¯] at sqrt[s]=3.80-4.95 GeV. PHYSICAL REVIEW LETTERS 2024; 133:081901. [PMID: 39241714 DOI: 10.1103/physrevlett.133.081901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/24/2024] [Accepted: 07/29/2024] [Indexed: 09/09/2024]
Abstract
Using data samples collected with the BESIII detector at the BEPCII collider at center-of-mass energies ranging from 3.80 to 4.95 GeV, corresponding to an integrated luminosity of 20 fb^{-1}, a measurement of Born cross sections for the e^{+}e^{-}→D^{0}D[over ¯]^{0} and D^{+}D^{-} processes is presented with unprecedented precision. Many clear peaks in the line shape of e^{+}e^{-}→D^{0}D[over ¯]^{0} and D^{+}D^{-} around the mass range of G(3900), ψ(4040), ψ(4160), Y(4260), and ψ(4415), etc., are foreseen. These results offer crucial experimental insights into the nature of hadron production in the open-charm region.
Collapse
|
12
|
Cao Z, Aharonian F, Axikegu, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Bian W, Bukevich AV, Cao Q, Cao WY, Cao Z, Chang J, Chang JF, Chen AM, Chen ES, Chen HX, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen S, Chen SH, Chen SZ, Chen TL, Chen Y, Cheng N, Cheng YD, Cui MY, Cui SW, Cui XH, Cui YD, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Dong XQ, Duan KK, Fan JH, Fan YZ, Fang J, Fang JH, Fang K, Feng CF, Feng H, Feng L, Feng SH, Feng XT, Feng Y, Feng YL, Gabici S, Gao B, Gao CD, Gao Q, Gao W, Gao WK, Ge MM, Geng LS, Giacinti G, Gong GH, Gou QB, Gu MH, Guo FL, Guo XL, Guo YQ, Guo YY, Han YA, Hasan M, He HH, He HN, He JY, He Y, Hor YK, Hou BW, Hou C, Hou X, Hu HB, Hu Q, Hu SC, Huang DH, Huang TQ, Huang WJ, Huang XT, Huang XY, Huang Y, Ji XL, Jia HY, Jia K, Jiang K, Jiang XW, Jiang ZJ, Jin M, Kang MM, Karpikov I, Kuleshov D, Kurinov K, Li BB, Li CM, Li C, Li C, Li D, Li F, Li HB, Li HC, Li J, Li J, Li K, Li SD, Li WL, Li WL, Li XR, Li X, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu DB, Liu H, Liu HD, Liu J, Liu JL, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Luo Q, Luo Y, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Min Z, Mitthumsiri W, Mu HJ, Nan YC, Neronov A, Ou LJ, Pattarakijwanich P, Pei ZY, Qi JC, Qi MY, Qiao BQ, Qin JJ, Raza A, Ruffolo D, Sáiz A, Saeed M, Semikoz D, Shao L, Shchegolev O, Sheng XD, Shu FW, Song HC, Stenkin YV, Stepanov V, Su Y, Sun DX, Sun QN, Sun XN, Sun ZB, Takata J, Tam PHT, Tang QW, Tang R, Tang ZB, Tian WW, Wang C, Wang CB, Wang GW, Wang HG, Wang HH, Wang JC, Wang K, Wang K, Wang LP, Wang LY, Wang PH, Wang R, Wang W, Wang XG, Wang XY, Wang Y, Wang YD, Wang YJ, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu QW, Wu S, Wu XF, Wu YS, Xi SQ, Xia J, Xiang GM, Xiao DX, Xiao G, Xin YL, Xing Y, Xiong DR, Xiong Z, Xu DL, Xu RF, Xu RX, Xu WL, Xue L, Yan DH, Yan JZ, Yan T, Yang CW, Yang CY, Yang F, Yang FF, Yang LL, Yang MJ, Yang RZ, Yang WX, Yao YH, Yao ZG, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Yue H, Zeng HD, Zeng TX, Zeng W, Zha M, Zhang BB, Zhang F, Zhang H, Zhang HM, Zhang HY, Zhang JL, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SB, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zhao XH, Zheng F, Zhong WJ, Zhou B, Zhou H, Zhou JN, Zhou M, Zhou P, Zhou R, Zhou XX, Zhou XX, Zhu BY, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zou YC, Zuo X. Stringent Tests of Lorentz Invariance Violation from LHAASO Observations of GRB 221009A. PHYSICAL REVIEW LETTERS 2024; 133:071501. [PMID: 39213544 DOI: 10.1103/physrevlett.133.071501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/21/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024]
Abstract
On 9 October 2022, the Large High Altitude Air Shower Observatory (LHAASO) reported the observation of the very early TeV afterglow of the brightest-of-all-time gamma-ray burst 221009A, recording the highest photon statistics in the TeV band ever obtained from a gamma-ray burst. We use this unique observation to place stringent constraints on the energy dependence of the speed of light in vacuum, a manifestation of Lorentz invariance violation (LIV) predicted by some quantum gravity (QG) theories. Our results show that the 95% confidence level lower limits on the QG energy scales are E_{QG,1}>10 times the Planck energy E_{Pl} for the linear LIV effect, and E_{QG,2}>6×10^{-8}E_{Pl} for the quadratic LIV effect. Our limits on the quadratic LIV case improve previous best bounds by factors of 5-7.
Collapse
|
13
|
Chen J, Zeng X, Li F, Peng J. Study on the value of 3D visualization in differentiating IA and non-IA pulmonary ground-glass nodules. Clin Radiol 2024:S0009-9260(24)00420-3. [PMID: 39266373 DOI: 10.1016/j.crad.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/04/2024] [Accepted: 08/03/2024] [Indexed: 09/14/2024]
Abstract
OBJECTIVE To determine the most effective diagnostic markers and their associated thresholds for Ground-glass nodules (GGN) for identification of invasive adenocarcinoma (IA) and non-IA (including atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS), and minimally invasive adenocarcinoma (MIA)), and to explore the application in preoperative surgical evaluation. METHODS AND METHODS A total of 126 cases, confirmed by pathology, were retrospectively analyzed. 70 cases were classified as the IA group, while the non-IA group consisted of cases of AAH, AIS, and MIA, with a total of 56 cases. The study compared the differences in demographic, morphological, and three-dimensional (3D) quantitative parameters between the two groups. RESULTS There were statistically significant differences in various signs such as air bronchogram, lobulation, pleural indentation, spiculation, shape, and margin between the two groups. Additionally, Statistical significance was observed in all 3D quantitative parameters for both groups. Notably, when 3D volume of lesions exceeded 447 mm3, the sensitivity to predict IA was 81% with specificity at 69%. Utilizing multivariate logistic regression analysis, it was identified that the independent predictive value in discriminating between IA and non-IA lies with both the 3D volume and solid proportion. Combining these two indexes significantly improved the prediction accuracy (AUC = 0.826). CONCLUSIONS Reasonable utilization of 3D visualization technology can effectively aid in distinguishing between IA and non-IA. When coupled with clinical data and CT signs, this technique holds vital importance in directing the evaluation of surgical interventions prior to surgery.
Collapse
|
14
|
Cao Z, Aharonian F, An Q, Axikegu, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai JT, Cao Q, Cao WY, Cao Z, Chang J, Chang JF, Chen AM, Chen ES, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen Y, Cheng N, Cheng YD, Cui MY, Cui SW, Cui XH, Cui YD, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Della Volpe D, Dong XQ, Duan KK, Fan JH, Fan YZ, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng XT, Feng YL, Gabici S, Gao B, Gao CD, Gao LQ, Gao Q, Gao W, Gao WK, Ge MM, Geng LS, Giacinti G, Gong GH, Gou QB, Gu MH, Guo FL, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JY, He XB, He Y, Heller M, Hor YK, Hou BW, Hou C, Hou X, Hu HB, Hu Q, Hu SC, Huang DH, Huang TQ, Huang WJ, Huang XT, Huang XY, Huang Y, Huang ZC, Ji XL, Jia HY, Jia K, Jiang K, Jiang XW, Jiang ZJ, Jin M, Kang MM, Ke T, Kuleshov D, Kurinov K, Li BB, Li C, Li C, Li D, Li F, Li HB, Li HC, Li HY, Li J, Li J, Li J, Li K, Li WL, Li WL, Li XR, Li X, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Lu R, Luo Q, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Min Z, Mitthumsiri W, Mu HJ, Nan YC, Neronov A, Ou ZW, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Qi YQ, Qiao BQ, Qin JJ, Ruffolo D, Sáiz A, Semikoz D, Shao CY, Shao L, Shchegolev O, Sheng XD, Shu FW, Song HC, Stenkin YV, Stepanov V, Su Y, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang QW, Tang ZB, Tian WW, Wang C, Wang CB, Wang GW, Wang HG, Wang HH, Wang JC, Wang K, Wang LP, Wang LY, Wang PH, Wang R, Wang W, Wang XG, Wang XY, Wang Y, Wang YD, Wang YJ, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu XF, Wu YS, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao DX, Xiao G, Xin GG, Xin YL, Xing Y, Xiong Z, Xu DL, Xu RF, Xu RX, Xu WL, Xue L, Yan DH, Yan JZ, Yan T, Yang CW, Yang F, Yang FF, Yang HW, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Yue H, Zeng HD, Zeng TX, Zeng W, Zha M, Zhang BB, Zhang F, Zhang HM, Zhang HY, Zhang JL, Zhang LX, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SB, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zhou B, Zhou H, Zhou JN, Zhou M, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zuo X. Constraints on Ultraheavy Dark Matter Properties from Dwarf Spheroidal Galaxies with LHAASO Observations. PHYSICAL REVIEW LETTERS 2024; 133:061001. [PMID: 39178452 DOI: 10.1103/physrevlett.133.061001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/01/2024] [Accepted: 06/12/2024] [Indexed: 08/25/2024]
Abstract
In this Letter we try to search for signals generated by ultraheavy dark matter at the Large High Altitude Air Shower Observatory (LHAASO) data. We look for possible γ rays by dark matter annihilation or decay from 16 dwarf spheroidal galaxies in the field of view of the LHAASO. Dwarf spheroidal galaxies are among the most promising targets for indirect detection of dark matter that have low fluxes of astrophysical γ-ray background while having large amount of dark matter. By analyzing more than 700 days of observational data at LHAASO, no significant dark matter signal from 1 TeV to 1 EeV is detected. Accordingly we derive the most stringent constraints on the ultraheavy dark matter annihilation cross section up to EeV. The constraints on the lifetime of dark matter in decay mode are also derived.
Collapse
|
15
|
An FP, Bai WD, Balantekin AB, Bishai M, Blyth S, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen HY, Chen SM, Chen Y, Chen YX, Chen ZY, Cheng J, Cheng YC, Cheng ZK, Cherwinka JJ, Chu MC, Cummings JP, Dalager O, Deng FS, Ding XY, Ding YY, Diwan MV, Dohnal T, Dolzhikov D, Dove J, Dugas KV, Duyang HY, Dwyer DA, Gallo JP, Gonchar M, Gong GH, Gong H, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Han Y, Hans S, He M, Heeger KM, Heng YK, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang JH, Huang XT, Huang YB, Huber P, Jaffe DE, Jen KL, Ji XL, Ji XP, Johnson RA, Jones D, Kang L, Kettell SH, Kohn S, Kramer M, Langford TJ, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li F, Li HL, Li JJ, Li QJ, Li RH, Li S, Li S, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu JX, Lu C, Lu HQ, Luk KB, Ma BZ, Ma XB, Ma XY, Ma YQ, Mandujano RC, Marshall C, McDonald KT, McKeown RD, Meng Y, Napolitano J, Naumov D, Naumova E, Nguyen TMT, Ochoa-Ricoux JP, Olshevskiy A, Park J, Patton S, Peng JC, Pun CSJ, Qi FZ, Qi M, Qian X, Raper N, Ren J, Morales Reveco C, Rosero R, Roskovec B, Ruan XC, Russell B, Steiner H, Sun JL, Tmej T, Tse WH, Tull CE, Tung YC, Viren B, Vorobel V, Wang CH, Wang J, Wang M, Wang NY, Wang RG, Wang W, Wang X, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wei LH, Wei W, Wen LJ, Whisnant K, White CG, Wong HLH, Worcester E, Wu DR, Wu Q, Wu WJ, Xia DM, Xie ZQ, Xing ZZ, Xu HK, Xu JL, Xu T, Xue T, Yang CG, Yang L, Yang YZ, Yao HF, Ye M, Yeh M, Young BL, Yu HZ, Yu ZY, Yuan CZ, Yue BB, Zavadskyi V, Zeng S, Zeng Y, Zhan L, Zhang C, Zhang FY, Zhang HH, Zhang JL, Zhang JW, Zhang QM, Zhang SQ, Zhang XT, Zhang YM, Zhang YX, Zhang YY, Zhang ZJ, Zhang ZP, Zhang ZY, Zhao J, Zhao RZ, Zhou L, Zhuang HL, Zou JH. Search for a Sub-eV Sterile Neutrino Using Daya Bay's Full Dataset. PHYSICAL REVIEW LETTERS 2024; 133:051801. [PMID: 39159085 DOI: 10.1103/physrevlett.133.051801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/21/2024] [Indexed: 08/21/2024]
Abstract
This Letter presents results of a search for the mixing of a sub-eV sterile neutrino with three active neutrinos based on the full data sample of the Daya Bay Reactor Neutrino Experiment, collected during 3158 days of detector operation, which contains 5.55×10^{6} reactor ν[over ¯]_{e} candidates identified as inverse beta-decay interactions followed by neutron capture on gadolinium. The analysis benefits from a doubling of the statistics of our previous result and from improvements of several important systematic uncertainties. No significant oscillation due to mixing of a sub-eV sterile neutrino with active neutrinos was found. Exclusion limits are set by both Feldman-Cousins and CLs methods. Light sterile neutrino mixing with sin^{2}2θ_{14}≳0.01 can be excluded at 95% confidence level in the region of 0.01 eV^{2}≲|Δm_{41}^{2}|≲0.1 eV^{2}. This result represents the world-leading constraints in the region of 2×10^{-4} eV^{2}≲|Δm_{41}^{2}|≲0.2 eV^{2}.
Collapse
|
16
|
McAnirlin O, Thrift J, Li F, Pope J, Browning M, Moutogiannis P, Thomas G, Farrell E, Evatt M, Fasolino T. The Tandem VR™ protocol: Synchronized nature-based and other outdoor experiences in virtual reality for hospice patients and their caregivers. Contemp Clin Trials Commun 2024; 40:101318. [PMID: 39045392 PMCID: PMC11263497 DOI: 10.1016/j.conctc.2024.101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/15/2024] [Accepted: 06/01/2024] [Indexed: 07/25/2024] Open
Abstract
Background Nature-based and other outdoor virtual reality (VR) experiences in head-mounted displays (HMDs) offer powerful, non-pharmacological tools for hospice teams to help patients undergoing end-of-life (EOL) transitions. However, the psychological distress of the patient-caregiver dyad is interconnected and highlights the interdependence and responsiveness to distress as a unit. Hospice care services and healthcare need strategies to help patients and informal caregivers with EOL transitions. Methods Our study uses the synchronized Tandem VR TM approach where patient-caregiver dyads experience immersive nature-based and other outdoor VR content. This mixed methods study will recruit 20 patient-caregiver dyads (N = 40) enrolled in home hospice services nearing EOL. Dyads will experience a personalized nature-based and other outdoor VR experience lasting 5-15 min. Self-reported questionnaires and semi-structured interviews will be collected pre/post the VR intervention to identify the impacts of Tandem VR TM experiences on the QOL, pain, and fear of death in patient-caregiver dyads enrolled with hospice services. Additionally, this protocol will determine the acceptance of Tandem VR TM experiences by dyads as a non-pharmacological modality for addressing patient and caregiver needs. Acceptance will be quantified by the number of dyads accepting or declining the VR experience during recruitment. Discussion Using personalized, nature-based and other outdoor VR content, the patient-caregiver dyads can simultaneously engage in an immersive encounter may help alleviate symptoms associated with declining health and EOL phases for the patient and the often overburdened caregiver. This protocol focuses on meeting the need for person-centered, non-pharmacological interventions to reduce physical, psychological, and spiritual distress. Trial registration NCT06186960.
Collapse
|
17
|
Zhao Y, Huang S, Jia YP, Zhang LP, Duan YL, Jin L, Zhai XW, Wang HS, Hu B, Liu Y, Liu AS, Liu W, Zheng MC, Li F, Sun LR, Yuan XJ, Dai YP, Zhang BX, Jiang L, Wang XG, Wang HM, Zhou CJ, Gao ZF, Zhang YH. [Interim efficacy of a multicenter cohort study for China Net Childhood Lymphoma mature B-cell lymphoma 2017 regimen in the treatment of pediatric High-grade-B cell lymphoma]. ZHONGHUA YI XUE ZA ZHI 2024; 104:2751-2758. [PMID: 39075995 DOI: 10.3760/cma.j.cn112137-20240305-00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Objective: To analyze the mid-term efficacy of the China Net Childhood Lymphoma mature B-cell lymphoma 2017 (CNCL-B-NHL-2017) regimen in treating children with high-grade B-cell lymphoma (HGBL). Methods: Clinical and pathological data of HGBL children aged≤18 years admitted to 16 hospitals of the Chinese Children's Lymphoma Collaborative Group (CNCL) from May 2017 to April 2021 were collected retrospectively. They were divided in to high-grade B-cell lymphoma with double hit/triple hit (HGBL-DH/TH) group and high-grade B-cell lymphoma non-specified (HGBL-NOS) group, according to the 2016 version of the World Health Organization (WHO) Hematopoietic and Lymphoid Tissues Cancer Classification. Both groups of patients were treated with stratified chemotherapy by risk according to the CNCL-B-NHL-2017 scheme. The deadline for follow-up was December 31, 2023. All the patients were examined by chromosome fluorescence in situ hybridization (FISH), and the rearrangement of genes MYC, BCL-2 and BCL-6 was confirmed. The clinical and pathological characteristics of patients at disease onset were analyzed, and the therapeutic effects of patients in different clinical stages and risk groups were compared. Survival analysis was drawn by Kaplan Meier method, the log-rank test was used to compare the differences in the cumulative survival rate between different groups, and multivariate Cox regression model was used to identify the prognostic factors. Results: A total of 62 patients were included, with an onset age [M(Q1, Q3)] of 7 (4, 11) years, including 48 males and 14 females. There were 11 (17.7%) patients in stageⅡ, 33(53.2%)patients in stage Ⅲ and 18(29.1%)patients in stage Ⅳ. FISH testing showed that 4 cases (6.5%) were HGBL-DH and 3 (4.8%) were HGBL-TH. The remaining 55 cases (88.7%) were HGBL-NOS, with 18 cases accompanied by MYC rearrangement. There were 7 cases in the HGBL-DH/TH group and 55 cases in the HGBL-NOS group. Thirteen cases (20.9%) were treated with the B1 regimen, 3 cases (4.8%) with B2 regimen, 37 cases (59.6%) with C1 regimen, and 9 cases (14.7%) with the C2 regimen. Forty-eight cases (77.4%) received rituximab therapy at the same time. Five cases (8.0%) progressed during treatment. The follow-up time [M(Q1, Q3)] was 43.5 (36.1, 53.7) months. The complete remission rate was 91.9% (57/62). The 3 year overall survival rate was 93.5% and event-free survival (EFS) rate was 91.9%. The 3-year overall survival rate in the HGBL-NOS group was higher than that in the HGBL-DH/TH group (96.3% vs 71.4%, P=0.011). The 3-year EFS rate of the HGBL-NOS group was higher than that of the HGBL-DH/TH group (94.5% vs 71.4%, P=0.037). In the HGBL-NOS subgroup, the overall survival rate of children with MYC rearrangement was lower (100% vs 88.9%,P=0.039). Multivariate Cox regression analysis showed that central invasion (HR=6.05, 95%CI: 1.96-38.13, P=0.046) was a risk factor for overall survival. Conclusion: CNCL-B-NHL-2017 regimen shows significant effects in the treatment of pediatric HGBL, with a good prognosis.
Collapse
|
18
|
Yu D, He A, Feng Y, Yang G, Yang C, Li F. [Spatiotemporal clustering and hot spot analysis of visceral leishmaniasis in Gansu Province from 1993 to 2023]. ZHONGGUO XUE XI CHONG BING FANG ZHI ZA ZHI = CHINESE JOURNAL OF SCHISTOSOMIASIS CONTROL 2024; 36:334-338. [PMID: 39322291 DOI: 10.16250/j.32.1374.2024056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
OBJECTIVE To investigate the spatiotemporal clustering characteristics of the reported incidence of visceral leishmaniasis (VL) in Gansu Province from 1993 to 2023, so as to provide insights into the containment of VL and prevention of VL recurrence. METHODS County (district)-level epidemical data of VL in Gansu Province from 1993 to 2023 were collected, and the geographical information database of reported VL incidence in Gansu Province was created according to the county-level administrative code and electronic maps in Gansu Province. In addition, the spatial autocorrelation analysis and hot spot analysis of the reported VL incidence were performed in Gansu Province using the software ArcGIS 10.8. RESULTS A total of 2 597 VL cases were reported in Gansu Province from 1993 to 2023, with an annual average incidence rate of 3.036/105. Spatial autocorrelation analysis showed spatial clustering of the reported VL incidence in Gansu Province (Moran's I = 0.605, Z = 5.240, P < 0.001), appearing high-high clustering features (Getis-Ord G = 0.080, Z = 4.137, P < 0.001), and high-high clustering of the reported incidence of VL was identified in Diebu County, Tanchang County, Zhouqu County and Wenxian County. Hot spot analysis showed hot-spot areas of the reported VL incidence in Tanchang County, Zhouqu County, Wudu District and Wenxian County along the Bailong River basins and cold-spot areas in Qin'an County and Gangu County. CONCLUSIONS There was spatial clustering and hot spots of the reported VL incidence in Gansu Province from 1993 to 2023. Intensified surveillance and control is required to prevent the spread of VL.
Collapse
|
19
|
Ablikim M, Achasov MN, Adlarson P, Afedulidis O, Ai XC, Aliberti R, Amoroso A, An Q, Anderle D, Bai Y, Bakina O, Balossino I, Ban Y, Bao HR, Batozskaya V, Begzsuren K, Berger N, Berlowski M, Bertani M, Bettoni D, Bianchi F, Bianco E, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Che GR, Chelkov G, Chen C, Chen CH, Chen C, Chen G, Chen HS, Chen HY, Chen ML, Chen SJ, Chen SL, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen YQ, Chen ZJ, Chen ZY, Choi SK, Cibinetto G, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng CQ, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding B, Ding XX, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du MC, Du SX, Duan YY, Duan ZH, Egorov P, Fan YH, Fang J, Fang J, Fang SS, Fang WX, Fang Y, Fang YQ, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Feng YT, Fritsch M, Fu CD, Fu JL, Fu YW, Gao H, Gao XB, Gao YN, Gao Y, Garbolino S, Garzia I, Ge L, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Gramigna S, Greco M, Gu MH, Gu YT, Guan CY, Guan ZL, Guo AQ, Guo LB, Guo MJ, Guo RP, Guo YP, Guskov A, Gutierrez J, Han KL, Han TT, Hanisch F, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Holtmann T, Hong PC, Hou GY, Hou XT, Hou YR, Hou ZL, Hu BY, Hu HM, Hu JF, Hu SL, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Hussain T, Hölzken F, Hüsken N, Hüsken N, In der Wiesche N, Jackson J, Janchiv S, Jeong JH, Ji Q, Ji QP, Ji W, Ji XB, Ji XL, Ji YY, Jia XQ, Jia ZK, Jiang D, Jiang HB, Jiang PC, Jiang SS, Jiang TJ, Jiang XS, Jiang Y, Jiao JB, Jiao JK, Jiao Z, Jin S, Jin Y, Jing MQ, Jing XM, Johansson T, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kavatsyuk M, Ke BC, Khachatryan V, Khoukaz A, Kiuchi R, Kolcu OB, Kopf B, Kuessner M, Kui X, Kumar N, Kupsc A, Kühn W, Lane JJ, Larin P, Lavezzi L, Lei TT, Lei ZH, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li HN, Li H, Li JR, Li JS, Li K, Li LJ, Li LK, Li L, Li MH, Li MY, Li PR, Li QM, Li QX, Li R, Li SX, Li T, Li WD, Li WG, Li X, Li XH, Li XL, Li XZ, Li X, Li YG, Li ZJ, Li ZX, Li ZY, Liang C, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Limphirat A, Lin CC, Lin DX, Lin T, Liu BJ, Liu BX, Liu C, Liu CX, Liu FH, Liu F, Liu F, Liu GM, Liu H, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LC, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu X, Liu Y, Liu Y, Liu YB, Liu ZA, Liu ZD, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma H, Ma HL, Ma JL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma T, Ma XT, Ma XY, Ma Y, Ma YM, Maas FE, Maggiora M, Malde S, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Moses B, Muchnoi NY, Muskalla J, Nefedov Y, Nerling F, Nie LS, Nikolaev IB, Ning Z, Nisar S, Niu QL, Niu WD, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pei YP, Pelizaeus M, Peng HP, Peng YY, Peters K, Ping JL, Ping RG, Plura S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qiao XK, Qin JJ, Qin LQ, Qin LY, Qin XS, Qin ZH, Qiu JF, Qu ZH, Redmer CF, Ren KJ, Rivetti A, Rolo M, Rong G, Rosner C, Ruan SN, Salone N, Sarantsev A, Schelhaas Y, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shang ZJ, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi H, Shi HC, Shi JL, Shi JY, Shi QQ, Shi SY, Shi X, Song JJ, Song TZ, Song WM, Song YJ, Song YX, Sosio S, Spataro S, Stieler F, Su YJ, Sun GB, Sun GX, Sun H, Sun HK, Sun JF, Sun K, Sun L, Sun SS, Sun T, Sun WY, Sun Y, Sun YJ, Sun YZ, Sun ZQ, Sun ZT, Tang CJ, Tang GY, Tang J, Tang M, Tang YA, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian Y, Tian ZF, Uman I, Wan Y, Wang SJ, Wang B, Wang BL, Wang B, Wang DY, Wang F, Wang HJ, Wang JJ, Wang JP, Wang K, Wang LL, Wang M, Wang M, Wang NY, Wang S, Wang S, Wang T, Wang TJ, Wang W, Wang W, Wang WP, Wang X, Wang XF, Wang XJ, Wang XL, Wang XN, Wang Y, Wang YD, Wang YF, Wang YL, Wang YN, Wang YQ, Wang Y, Wang Y, Wang Z, Wang ZL, Wang ZY, Wang Z, Wei DH, Weidner F, Wen SP, Wen YR, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu C, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YH, Wu YJ, Wu Z, Xia L, Xian XM, Xiang BH, Xiang T, Xiao D, Xiao GY, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing HX, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu M, Xu QJ, Xu QN, Xu W, Xu WL, Xu XP, Xu YC, Xu ZP, Xu ZS, Yan F, Yan L, Yan WB, Yan WC, Yan XQ, Yang HJ, Yang HL, Yang HX, Yang T, Yang Y, Yang YF, Yang YX, Yang Y, Yang ZW, Yao ZP, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yu XD, Yu YC, Yuan CZ, Yuan J, Yuan L, Yuan SC, Yuan Y, Yuan YJ, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng SH, Zeng X, Zeng Y, Zeng YJ, Zhai XY, Zhai YC, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang H, Zhang HC, Zhang HH, Zhang HH, Zhang HQ, Zhang HR, Zhang HY, Zhang J, Zhang J, Zhang JJ, Zhang JL, Zhang JQ, Zhang JS, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang LM, Zhang L, Zhang P, Zhang QY, Zhang RY, Zhang S, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang Y, Zhang YT, Zhang YH, Zhang YM, Zhang Y, Zhang Y, Zhang ZD, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhang ZZ, Zhao G, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao N, Zhao RP, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng BM, Zheng JP, Zheng WJ, Zheng YH, Zhong B, Zhong X, Zhou H, Zhou JY, Zhou LP, Zhou S, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhu J, Zhu K, Zhu KJ, Zhu KS, Zhu L, Zhu LX, Zhu SH, Zhu SQ, Zhu TJ, Zhu WD, Zhu YC, Zhu ZA, Zou JH, Zu J. Measurements of Normalized Differential Cross Sections of Inclusive η Production in e^{+}e^{-} Annihilation at Energy from 2.0000 to 3.6710 GeV. PHYSICAL REVIEW LETTERS 2024; 133:021901. [PMID: 39073971 DOI: 10.1103/physrevlett.133.021901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 07/31/2024]
Abstract
Using data samples collected with the BESIII detector operating at the BEPCII storage ring, the cross section of the inclusive process e^{+}e^{-}→η+X, normalized by the total cross section of e^{+}e^{-}→hadrons, is measured at eight center-of-mass energy points from 2.0000 to 3.6710 GeV. These are the first measurements with momentum dependence in this energy region. Our measurement shows a significant discrepancy compared to the existing fragmentation functions. To address this discrepancy, a new QCD analysis is performed at the next-to-next-to-leading order with hadron mass corrections and higher twist effects, which can explain both the established high-energy data and our measurements reasonably well.
Collapse
|
20
|
Li F, Yu D, Liang H, Yang C, Yang G, Yang J. [Epidemiological characteristics of visceral leishmaniasis in Gansu Province from 2017 to 2023]. ZHONGGUO XUE XI CHONG BING FANG ZHI ZA ZHI = CHINESE JOURNAL OF SCHISTOSOMIASIS CONTROL 2024; 36:339-345. [PMID: 39322292 DOI: 10.16250/j.32.1374.2024018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
OBJECTIVE To analyze the epidemiological characteristics of visceral leishmaniasis in Gansu Province from 2017 to 2023, so as to provide insights into formulation of the visceral leishmaniasis control strategy in the province. METHODS All epidemiological features of confirmed and clinically diagnosed cases of visceral leishmaniasis reported in Gansu Province from January 1, 2017 to December 31, 2023 were retrieved from the Chinese Disease Prevention and Control Information System, and the epidemiological characteristics of visceral leishmaniasis cases were analyzed descriptively. RESULTS A total of 280 visceral leishmaniasis cases were reported in 39 counties (cities and districts) of Gansu Province from 2017 to 2023, including 258 local cases reported in 21 endemic counties (districts) and 22 imported cases reported in 18 non-endemic areas. Of the 280 cases, there were 262 cases with mountain type zoonotic visceral leishmaniasis (MT-ZVL), 12 cases with desert-type zoonotic visceral leishmaniasis (DT-ZVL), and 6 cases with unknown type. Re-emerging MT-ZVL occurred in Maiji District, Qinzhou District, Lixian County, Kangxian County, Zhenyuan County, Qin'an County and Yongjing County, and re-emerging DT-ZVL occurred in Dunhuang City, while emerging DT-ZVL occurred in Yumen City. The five counties (districts) reporting the highest number of visceral leishmaniasis cases included Wudu District, Wenxian County, Tanchang County, Zhouqu County and Diebu County, and a total of 220 cases were reported in these five counties, accounting for 78.57% of all visceral leishmaniasis cases in the province. Visceral leishmaniasis cases were reported each month throughout the year, with the peak in July. All reported visceral leishmaniasis cases had ages of 6 months to 81 years, including 50.71% (142/280) under 15 years of age, 49.29% (138/280) at ages of 15 years and older, and of all cases under 15 years of age, children at ages of 0 to 3 years were the most commonly affected (27.14%, 76/280). Among 280 visceral leishmaniasis cases, there were 173 males and 107 females with a male to female ratio of 1.62∶1, and farmer was the most common occupation (40.36%), followed by diaspora children (37.86%). CONCLUSIONS The prevalence of visceral leishmaniasis appeared an overall tendency towards a decline in Gansu Province from 2017 to 2023; however, there are still multiple challenges for visceral leishmaniasis control in the province. Reinforced dog monitoring and management, intensified human health education and improved capability building among professionals are recommended to manage the rebounding and spread of visceral leishmaniasis.
Collapse
|
21
|
Li YX, Wei G, Chen G, Li F, Pan SD. [Comparative analysis of the effects of bronchial intubation and bronchial blocker on the outcomes of thoracoscopic surgery in infants and small children]. ZHONGHUA YI XUE ZA ZHI 2024; 104:2154-2159. [PMID: 38871473 DOI: 10.3760/cma.j.cn112137-20231212-01364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Objective: To compare the effects of bronchial intubation and blocker on the outcomes of thoracoscopic surgery in infants and small children. Methods: A total of 387 children, including 210 males and 177 females, aged (17.5±8.3) months, who underwent elective thoracoscopic surgery under general anesthesia in Children's Hospital Affiliated to Capital Institute of Pediatrics from January 2019 to August 2023 were retrospectively analyzed. The children were divided into bronchial intubation group and bronchial blocker group according to the intraoperative single-lung ventilation mode. After matching the age factor using the propensity score matching with nearest neighbor matching method, 258 cases were finally included in the bronchial intubation group, and 129 cases were included in the bronchial blocker group. The primary outcome was the incidence of postoperative pulmonary complications in two groups. The secondary outcomes included the incidence of intraoperative hypoxemia, postoperative oxygenation index, postoperative extubation time, the length of postoperative hospitalization and the total medical expenses during hospitalization between the two groups. Results: The incidence of postoperative pulmonary complications in the bronchial intubation group and bronchial blocker group was 15.5% (40/258) and 12.4% (16/129), the incidence of intraoperative hypoxemia was 20.2% (52/258) and 16.3% (21/129), the postoperative oxygen indexes were 306 (269, 323) and 311 (274, 336) mmHg (1 mmHg=0.133 kPa), the extubation time was (9.2±4.5) and (8.9±4.2) min, the length of postoperative hospitalization was (5.5±0.6) and (5.5±0.5) days and the total medical expenses were (34±6) and (35±6) thousand yuan, with no statistically significant differences between the two groups (all P>0.05). Conclusion: Both bronchial intubation and blocker can be used for one lung ventilation in thoracoscopic surgery for infants and small children, without affecting the postoperative outcomes.
Collapse
|
22
|
Ablikim M, Achasov MN, Adlarson P, Afedulidis O, Ai XC, Aliberti R, Amoroso A, An Q, Bai Y, Bakina O, Balossino I, Ban Y, Bao HR, Batozskaya V, Begzsuren K, Berger N, Berlowski M, Bertani M, Bettoni D, Bianchi F, Bianco E, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Che GR, Chelkov G, Chen C, Chen CH, Chen C, Chen G, Chen HS, Chen HY, Chen ML, Chen SJ, Chen SL, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen YQ, Chen ZJ, Chen ZY, Choi SK, Cibinetto G, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng CQ, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding B, Ding XX, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du MC, Du SX, Duan ZH, Egorov P, Fan YH, Fang J, Fang J, Fang SS, Fang WX, Fang Y, Fang YQ, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Feng YT, Fritsch M, Fu CD, Fu JL, Fu YW, Gao H, Gao XB, Gao YN, Gao Y, Garbolino S, Garzia I, Ge L, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Gramigna S, Greco M, Gu MH, Gu YT, Guan CY, Guan ZL, Guo AQ, Guo LB, Guo MJ, Guo RP, Guo YP, Guskov A, Gutierrez J, Han KL, Han TT, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Holtmann T, Hong PC, Hou GY, Hou XT, Hou YR, Hou ZL, Hu BY, Hu HM, Hu JF, Hu SL, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Hussain T, Hölzken F, Hüsken N, In der Wiesche N, Jackson J, Janchiv S, Jeong JH, Ji Q, Ji QP, Ji W, Ji XB, Ji XL, Ji YY, Jia XQ, Jia ZK, Jiang D, Jiang HB, Jiang PC, Jiang SS, Jiang TJ, Jiang XS, Jiang Y, Jiao JB, Jiao JK, Jiao Z, Jin S, Jin Y, Jing MQ, Jing XM, Johansson T, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kavatsyuk M, Ke BC, Khachatryan V, Khoukaz A, Kiuchi R, Kolcu OB, Kopf B, Kuessner M, Kui X, Kumar N, Kupsc A, Kühn W, Lane JJ, Larin P, Lavezzi L, Lei TT, Lei ZH, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li HN, Li H, Li JR, Li JS, Li K, Li LJ, Li LK, Li L, Li MH, Li PR, Li QM, Li QX, Li R, Li SX, Li T, Li WD, Li WG, Li X, Li XH, Li XL, Li XZ, Li X, Li YG, Li ZJ, Li ZX, Liang C, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Limphirat A, Lin CC, Lin DX, Lin T, Liu BJ, Liu BX, Liu C, Liu CX, Liu FH, Liu F, Liu F, Liu GM, Liu H, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LC, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu X, Liu Y, Liu Y, Liu YB, Liu ZA, Liu ZD, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma H, Ma HL, Ma JL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma T, Ma XT, Ma XY, Ma Y, Ma YM, Maas FE, Maggiora M, Malde S, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Moses B, Muchnoi NY, Muskalla J, Nefedov Y, Nerling F, Nie LS, Nikolaev IB, Ning Z, Nisar S, Niu QL, Niu WD, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pei YP, Pelizaeus M, Peng HP, Peng YY, Peters K, Ping JL, Ping RG, Plura S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qiao XK, Qin JJ, Qin LQ, Qin LY, Qin XS, Qin ZH, Qiu JF, Qu ZH, Redmer CF, Ren KJ, Rivetti A, Rolo M, Rong G, Rosner C, Ruan SN, Salone N, Sarantsev A, Schelhaas Y, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shang ZJ, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi H, Shi HC, Shi JL, Shi JY, Shi QQ, Shi SY, Shi X, Song JJ, Song TZ, Song WM, Song YJ, Song YX, Sosio S, Spataro S, Stieler F, Su YJ, Sun GB, Sun GX, Sun H, Sun HK, Sun JF, Sun K, Sun L, Sun SS, Sun T, Sun WY, Sun Y, Sun YJ, Sun YZ, Sun ZQ, Sun ZT, Tang CJ, Tang GY, Tang J, Tang M, Tang YA, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian Y, Tian ZF, Uman I, Wan Y, Wang SJ, Wang B, Wang BL, Wang B, Wang DY, Wang F, Wang HJ, Wang JJ, Wang JP, Wang K, Wang LL, Wang M, Wang M, Wang NY, Wang S, Wang S, Wang T, Wang TJ, Wang W, Wang W, Wang WP, Wang X, Wang XF, Wang XJ, Wang XL, Wang XN, Wang Y, Wang YD, Wang YF, Wang YL, Wang YN, Wang YQ, Wang Y, Wang Y, Wang Z, Wang ZL, Wang ZY, Wang Z, Wei DH, Weidner F, Wen SP, Wen YR, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu C, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YH, Wu YJ, Wu Z, Xia L, Xian XM, Xiang BH, Xiang T, Xiao D, Xiao GY, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu M, Xu QJ, Xu QN, Xu W, Xu WL, Xu XP, Xu YC, Xu ZP, Xu ZS, Yan F, Yan L, Yan WB, Yan WC, Yan XQ, Yang HJ, Yang HL, Yang HX, Yang T, Yang Y, Yang YF, Yang YX, Yang Y, Yang ZW, Yao ZP, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yu XD, Yu YC, Yuan CZ, Yuan J, Yuan L, Yuan SC, Yuan Y, Yuan YJ, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng SH, Zeng X, Zeng Y, Zeng YJ, Zhai XY, Zhai YC, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang H, Zhang HC, Zhang HH, Zhang HH, Zhang HQ, Zhang HR, Zhang HY, Zhang J, Zhang J, Zhang JJ, Zhang JL, Zhang JQ, Zhang JS, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang LM, Zhang L, Zhang P, Zhang QY, Zhang RY, Zhang S, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang Y, Zhang YT, Zhang YH, Zhang YM, Zhang Y, Zhang Y, Zhang ZD, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhang ZZ, Zhao G, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao N, Zhao RP, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng BM, Zheng JP, Zheng WJ, Zheng YH, Zhong B, Zhong X, Zhou H, Zhou JY, Zhou LP, Zhou S, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhu J, Zhu K, Zhu KJ, Zhu KS, Zhu L, Zhu LX, Zhu SH, Zhu SQ, Zhu TJ, Zhu WD, Zhu YC, Zhu ZA, Zou JH, Zu J. First Study of Antihyperon-Nucleon Scattering Λ[over ¯]p→Λ[over ¯]p and Measurement of Λp→Λp Cross Section. PHYSICAL REVIEW LETTERS 2024; 132:231902. [PMID: 38905649 DOI: 10.1103/physrevlett.132.231902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 06/23/2024]
Abstract
Using (10.087±0.044)×10^{9} J/ψ events collected with the BESIII detector at the BEPCII storage ring, the processes Λp→Λp and Λ[over ¯]p→Λ[over ¯]p are studied, where the Λ/Λ[over ¯] baryons are produced in the process J/ψ→ΛΛ[over ¯] and the protons are the hydrogen nuclei in the cooling oil of the beam pipe. Clear signals are observed for the two reactions. The cross sections in -0.9≤cosθ_{Λ/Λ[over ¯]}≤0.9 are measured to be σ(Λp→Λp)=(12.2±1.6_{stat}±1.1_{syst}) and σ(Λ[over ¯]p→Λ[over ¯]p)=(17.5±2.1_{stat}±1.6_{syst}) mb at the Λ/Λ[over ¯] momentum of 1.074 GeV/c within a range of ±0.017 GeV/c, where the θ_{Λ/Λ[over ¯]} are the scattering angles of the Λ/Λ[over ¯] in the Λp/Λ[over ¯]p rest frames. Furthermore, the differential cross sections of the two reactions are also measured, where there is a slight tendency of forward scattering for Λp→Λp, and a strong forward peak for Λ[over ¯]p→Λ[over ¯]p. We present an approach to extract the total elastic cross sections by extrapolation. The study of Λ[over ¯]p→Λ[over ¯]p represents the first study of antihyperon-nucleon scattering, and these new measurements will serve as important inputs for the theoretical understanding of the (anti)hyperon-nucleon interaction.
Collapse
|
23
|
Wang MJ, Li F. [Progress in lipoarabinomannan antigen detection for tuberculosis diagnosis in people living with HIV/AIDS]. ZHONGHUA JIE HE HE HU XI ZA ZHI = ZHONGHUA JIEHE HE HUXI ZAZHI = CHINESE JOURNAL OF TUBERCULOSIS AND RESPIRATORY DISEASES 2024; 47:475-480. [PMID: 38706072 DOI: 10.3760/cma.j.cn112147-20231114-00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Tuberculosis (TB) is the leading cause of death among people living with HIV/AIDS (PLWHA), posing a significant disease burden. Early TB screening in PLWHA is a key intervention to reduce transmission and control disease progression. Lipoarabinomannan (LAM) is a glycolipid of Mycobacterium tuberculosis (MTB) that can be detected in the urine of tuberculosis patients. LAM is useful for the rapid and accurate diagnosis of tuberculosis. This article reviews LAM and its application and limitations in the diagnosis of PLWHA, hoping to provide a reference for the diagnosis of tuberculosis in PLWHA.
Collapse
|
24
|
Ablikim M, Achasov MN, Adlarson P, Ai XC, Aliberti R, Amoroso A, An MR, An Q, Bai Y, Bakina O, Balossino I, Ban Y, Batozskaya V, Begzsuren K, Berger N, Berlowski M, Bertani M, Bettoni D, Bianchi F, Bianco E, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang TT, Chang WL, Che GR, Chelkov G, Chen C, Chen C, Chen G, Chen HS, Chen ML, Chen SJ, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen YQ, Chen ZJ, Cheng WS, Choi SK, Chu X, Cibinetto G, Coen SC, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding B, Ding XX, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du MC, Du SX, Duan ZH, Egorov P, Fan YL, Fang J, Fang SS, Fang WX, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fischer K, Fritsch M, Fritzsch C, Fu CD, Fu JL, Fu YW, Gao H, Gao YN, Gao Y, Garbolino S, Garzia I, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Gramigna S, Greco M, Gu MH, Gu YT, Guan CY, Guan ZL, Guo AQ, Guo LB, Guo MJ, Guo RP, Guo YP, Guskov A, Han TT, Han WY, Hao XQ, Harris FA, He KK, He KL, Heinsius FHH, Heinz CH, Heng YK, Herold C, Holtmann T, Hong PC, Hou GY, Hou XT, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Hussain T, Hüsken N, Imoehl W, Irshad M, Jackson J, Jaeger S, Janchiv S, Jeong JH, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jia XQ, Jia ZK, Jiang HJ, Jiang LL, Jiang PC, Jiang SS, Jiang TJ, Jiang XS, Jiang Y, Jiao JB, Jiao Z, Jin S, Jin Y, Jing MQ, Johansson T, Kui X, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Khoukaz A, Kiuchi R, Kliemt R, Kolcu OB, Kopf B, Kuessner MK, Kupsc A, Kühn W, Lane JJ, Larin P, Lavania A, Lavezzi L, Lei TT, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li HB, Li HJ, Li HN, Li H, Li JR, Li JS, Li JW, Li KL, Li K, Li LJ, Li LK, Li L, Li MH, Li PR, Li QX, Li SX, Li T, Li WD, Li WG, Li XH, Li XL, Li X, Li YG, Li ZJ, Li ZX, Liang C, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Liao YP, Libby J, Limphirat A, Lin DX, Lin T, Liu BJ, Liu BX, Liu C, Liu CX, Liu FH, Liu F, Liu F, Liu GM, Liu H, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LC, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu Y, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma HL, Ma JL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XY, Ma Y, Ma YM, Maas FE, Maggiora M, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Muchnoi NY, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pei YP, Pelizaeus M, Peng HP, Peters K, Ping JL, Ping RG, Plura S, Pogodin S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qin JJ, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Redmer CF, Ren KJ, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Ruan SN, Salone N, Sarantsev A, Schelhaas Y, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi HC, Shi JL, Shi JY, Shi QQ, Shi RS, Shi X, Song JJ, Song TZ, Song WM, Song YJ, Song YX, Sosio S, Spataro S, Stieler F, Su YJ, Sun GB, Sun GX, Sun H, Sun HK, Sun JF, Sun K, Sun L, Sun SS, Sun T, Sun WY, Sun Y, Sun YJ, Sun YZ, Sun ZT, Tan YX, Tang CJ, Tang GY, Tang J, Tang YA, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian WH, Tian Y, Tian ZF, Uman I, Wang SJ, Wang B, Wang BL, Wang B, Wang CW, Wang DY, Wang F, Wang HJ, Wang HP, Wang JP, Wang K, Wang LL, Wang M, Wang M, Wang S, Wang S, Wang T, Wang TJ, Wang W, Wang W, Wang WP, Wang X, Wang XF, Wang XJ, Wang XL, Wang Y, Wang YD, Wang YF, Wang YH, Wang YN, Wang YQ, Wang Y, Wang Y, Wang Z, Wang ZL, Wang ZY, Wang Z, Wei D, Wei DH, Weidner F, Wen SP, Wenzel CW, Wiedner UW, Wilkinson G, Wolke M, Wollenberg L, Wu C, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YJ, Wu Z, Xia L, Xian XM, Xiang T, Xiao D, Xiao GY, Xiao H, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu QJ, Xu QN, Xu W, Xu WL, Xu XP, Xu YC, Xu ZP, Xu ZS, Yan F, Yan L, Yan WB, Yan WC, Yan XQ, Yang HJ, Yang HL, Yang HX, Yang T, Yang Y, Yang YF, Yang YX, Yang Y, Yang ZW, Yao ZP, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yu XD, Yuan CZ, Yuan L, Yuan SC, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng X, Zeng Y, Zeng YJ, Zhai XY, Zhai YC, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang HH, Zhang HH, Zhang HQ, Zhang HY, Zhang JJ, Zhang JL, Zhang JQ, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang P, Zhang QY, Zhang S, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang X, Zhang Y, Zhang Y, Zhang YT, Zhang YH, Zhang Y, Zhang Y, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng WJ, Zheng YH, Zhong B, Zhong X, Zhou H, Zhou LP, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhu J, Zhu K, Zhu KJ, Zhu L, Zhu LX, Zhu SH, Zhu SQ, Zhu TJ, Zhu WJ, Zhu YC, Zhu ZA, Zou JH, Zu J. First Observation of a Three-Resonance Structure in e^{+}e^{-}→Nonopen Charm Hadrons. PHYSICAL REVIEW LETTERS 2024; 132:191902. [PMID: 38804946 DOI: 10.1103/physrevlett.132.191902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 05/29/2024]
Abstract
We report the measurement of the inclusive cross sections for e^{+}e^{-}→nOCH (where nOCH denotes non-open charm hadrons) with improved precision at center-of-mass (c.m.) energies from 3.645 to 3.871 GeV. We observe three resonances: R(3760), R(3780), and R(3810) with significances of 8.1σ, 13.7σ, and 8.8σ, respectively. The R(3810) state is observed for the first time, while the R(3760) and R(3780) states are observed for the first time in the nOCH cross sections. Two sets of resonance parameters describe the energy-dependent line shape of the cross sections well. In set I [set II], the R(3810) state has mass (3805.7±1.1±2.7) [(3805.7±1.1±2.7)] MeV/c^{2}, total width (11.6±2.9±1.9) [(11.5±2.8±1.9)] MeV, and an electronic width multiplied by the nOCH decay branching fraction of (10.9±3.8±2.5) [(11.0±3.4±2.5)] eV. In addition, we measure the branching fractions B[R(3760)→nOCH]=(25.2±16.1±30.4)%[(6.4±4.8±7.7)%] and B[R(3780)→nOCH]=(12.3±6.6±8.3)%[(10.4±4.8±7.0)%] for the first time. The R(3760) state can be interpreted as an open-charm (OC) molecular state, but containing a simple four-quark state component. The R(3810) state can be interpreted as a hadrocharmonium state.
Collapse
|
25
|
Liu B, Yuan Y, Li F, Li JB, Bian L, Wang T, Zhang SH, Jiang ZF. [Efficacy analysis of chemotherapy and endocrine therapy combined with targeted drugs after progression on cyclin-dependent kinase 4/6 inhibitor treatment in hormone receptor positive/human epidermal growth factor receptor 2-low metastatic breast cancer]. ZHONGHUA YI XUE ZA ZHI 2024; 104:1507-1513. [PMID: 38706058 DOI: 10.3760/cma.j.cn112137-20240207-00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Objective: To evaluate the efficacy of chemotherapy and endocrine therapy combined with targeted drugs after progression on cyclin-dependent kinase 4/6 (CDK4/6) inhibitor treatment in hormone receptor (HR) positive/human epidermal growth factor receptor 2 (HER2)-low metastatic breast cancer. Methods: Patients with metastatic breast cancer diagnosed with HR positive/HER2 low expression at the Fifth Medical Center of PLA General Hospital from October 1, 2018 to September 30, 2023 were retrospectively included. All patients received sequential chemotherapy or sequential endocrine therapy combined with targeted drugs after progression on CDK4/6 inhibitor treatment.The median follow-up was 9 months, and the follow-up ended on October 31, 2023. The patients were divided into chemotherapy group (receiving sequential chemotherapy) and endocrine therapy group (receiving sequential endocrine therapy combined with targeted drugs), according to the treatment plan. Information on demographic data, clinical and pathological diagnosis, treatment regimen, and efficacy evaluation was collected. The basic conditions of patients who may affect the curative effect of different treatment schemes were preset as stratified subgroups, including age, progesterone receptor (PR) status, HER2 status, disease-free survival, number of previous endocrine therapy and chemotherapy, and visceral metastasis. The primary endpoint was progression-free survival (PFS), the secondary endpoints were objective response rate (ORR), clinical benefit rate(CBR) and PFS based on stratification factors. The survival curve was plotted by Kaplan-Meier method, the comparison of PFS between groups was performed by log-rank test, and the comparison of ORR and CBR between groups were performed by χ2 test. Results: A total of 188 patients were included, including 126 patients in the chemotherapy group [all females, aged 29-74 (51±10) years] and 62 patients in the endocrine therapy group [1 male and 61 female, aged 29-77 (51±12) years]. ORR of chemotherapy group was 23.0% (29/126), higher than that of endocrine treatment group [3.2% (2/62)] (P<0.001); The CBR of chemotherapy group and endocrine therapy group were 46.8% (59/126) and 33.9% (21/62), respectively, with no statistical significance (P=0.091). The median PFS of chemotherapy group and endocrine therapy group were 5.0 (95%CI: 4.3-5.7) and 4.0 (95%CI: 1.6-6.4) months, respectively, with no statistical significance (P=0.484). In the preset stratified subgroups, the median PFS of chemotherapy [6.0 (95%CI: 5.4-6.6) months] was longer than that of endocrine combined with targeted therapy [2.0 (95%CI: 1.8-2.2) months] (P<0.001) in PR negative patients; In patients who had progressed on over 2 previous endocrine treatments, the median PFS of chemotherapy [5.0 (95%CI: 3.8-6.2) months] was longer than that of endocrine combined with targeted therapy [2.0 (95%CI: 0.6-3.4) months] (P=0.045). Conclusions: After progression on treatment with CDK4/6 inhibitors for HR-positive/HER2-low expression metastatic breast cancer, both chemotherapy and endocrine therpy combined with targeted drugs are viable treatment options. However, for patients with PR negative or ≥2 lines of endocrine therapy previously, priority should be accorded to chemotherapy.
Collapse
|