1
|
Hofmann C, Serafin A, Schwerdt OM, Fischer J, Sicklinger F, Younesi FS, Byrne NJ, Meyer IS, Malovrh E, Sandmann C, Jürgensen L, Kamuf-Schenk V, Stroh C, Löwenthal Z, Finke D, Boileau E, Beisaw A, Bugger H, Rettel M, Stein F, Katus HA, Jakobi T, Frey N, Leuschner F, Völkers M. Transient Inhibition of Translation Improves Cardiac Function After Ischemia/Reperfusion by Attenuating the Inflammatory Response. Circulation 2024; 150:1248-1267. [PMID: 39206545 PMCID: PMC11472906 DOI: 10.1161/circulationaha.123.067479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The myocardium adapts to ischemia/reperfusion (I/R) by changes in gene expression, determining the cardiac response to reperfusion. mRNA translation is a key component of gene expression. It is largely unknown how regulation of mRNA translation contributes to cardiac gene expression and inflammation in response to reperfusion and whether it can be targeted to mitigate I/R injury. METHODS To examine translation and its impact on gene expression in response to I/R, we measured protein synthesis after reperfusion in vitro and in vivo. Underlying mechanisms of translational control were examined by pharmacological and genetic targeting of translation initiation in mice. Cell type-specific ribosome profiling was performed in mice that had been subjected to I/R to determine the impact of mRNA translation on the regulation of gene expression in cardiomyocytes. Translational regulation of inflammation was studied by quantification of immune cell infiltration, inflammatory gene expression, and cardiac function after short-term inhibition of translation initiation. RESULTS Reperfusion induced a rapid recovery of translational activity that exceeds baseline levels in the infarct and border zone and is mediated by translation initiation through the mTORC1 (mechanistic target of rapamycin complex 1)-4EBP1 (eIF4E-binding protein 1)-eIF (eukaryotic initiation factor) 4F axis. Cardiomyocyte-specific ribosome profiling identified that I/R increased translation of mRNA networks associated with cardiac inflammation and cell infiltration. Short-term inhibition of the mTORC1-4EBP1-eIF4F axis decreased the expression of proinflammatory cytokines such as Ccl2 (C-C motif chemokine ligand 2) of border zone cardiomyocytes, thereby attenuating Ly6Chi monocyte infiltration and myocardial inflammation. In addition, we identified a systemic immunosuppressive effect of eIF4F translation inhibitors on circulating monocytes, directly inhibiting monocyte infiltration. Short-term pharmacological inhibition of eIF4F complex formation by 4EGI-1 or rapamycin attenuated translation, reduced infarct size, and improved cardiac function after myocardial infarction. CONCLUSIONS Global protein synthesis is inhibited during ischemia and shortly after reperfusion, followed by a recovery of protein synthesis that exceeds baseline levels in the border and infarct zones. Activation of mRNA translation after reperfusion is driven by mTORC1/eIF4F-mediated regulation of initiation and mediates an mRNA network that controls inflammation and monocyte infiltration to the myocardium. Transient inhibition of the mTORC1-/eIF4F axis inhibits translation and attenuates Ly6Chi monocyte infiltration by inhibiting a proinflammatory response at the site of injury and of circulating monocytes.
Collapse
|
2
|
Bogert NV, Therre M, Din S, Furkel J, Zhou X, El-Battrawy I, Heineke J, Schweizer PA, Akin I, Katus HA, Frey N, Leuschner F, Konstandin MH. Macrophages enhance sodium channel expression in cardiomyocytes. Basic Res Cardiol 2024:10.1007/s00395-024-01084-8. [PMID: 39382673 DOI: 10.1007/s00395-024-01084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Cardiac macrophages facilitate electrical conduction through the atrioventricular-node (AV) in mice. A possible role for cardiomyocyte-macrophage coupling on the effect of antiarrhythmic therapy has not been investigated yet. Holter monitoring was conducted in LysMCrexCsf1rLsL-DTR mice (MMDTR) under baseline conditions and after an elctrophysiological stress test by flecainide. In vivo effects were recapitulated in vitro by patch-clamp experiments. The underlying mechanism was characterized by expression and localization analysis of connexin43 (Cx43) and voltage-gated-sodium-channel-5 (Nav1.5). ECG monitoring in MMDTR mice did not show any significant conduction abnormalities but a significantly attenuated flecainide-induced extension of RR- and PP-intervals. Patch-clamp analysis revealed that the application of flecainide to neonatal rat ventricular cardiomyocytes (CMs) changed their resting-membrane-potential (RMP) to more negative potentials and decreased action-potential-duration (APD50). Coupling of macrophages to CMs significantly enhances the effects of flecainide, with a further reduction of the RMP and APD50, mediated by an upregulation of Cx43 and Nav1.5 surface expression. Macrophage depletion in mice does not correlate with cardiac electric conduction delay. Cardiac macrophages amplify the effects of flecainide on electrophysiological properties of cardiomyocytes in vivo and in vitro. Mechanistically, formation of macrophage-cardiomyocyte cell-cell-contacts via Cx43 facilitates the recruitment of Nav1.5 to the cell membrane increasing flecainide effects.
Collapse
|
3
|
Bernáth-Nagy D, Kalinyaprak MS, Giannitsis E, Ábrahám P, Leuschner F, Frey N, Krohn JB. Circulating extracellular vesicles as biomarkers in the diagnosis, prognosis and therapy of cardiovascular diseases. Front Cardiovasc Med 2024; 11:1425159. [PMID: 39314768 PMCID: PMC11417624 DOI: 10.3389/fcvm.2024.1425159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Cardiovascular disease (CVD) ranks among the primary contributors to worldwide mortality. Hence, the importance of constant research on new circulating biomarkers for the improvement of early diagnosis and prognostication of different CVDs and the development and refinement of therapeutic measures is critical. Extracellular vesicles (EV) have a great potential as diagnostic and prognostic markers, as they represent their parent cell by enclosing cell-specific molecules, which can differ in quality and quantity based on cell state. Assuming that all cell types of the cardiovascular system are capable of releasing EV into circulation, an emerging body of evidence has investigated the potential role of serum- or plasma-derived EV in CVD. Comprehensive research has unveiled alterations in EV quantity and EV-bound cargo in the form of RNA, proteins and lipids in the context of common CVDs such as coronary artery disease, atrial fibrillation, heart failure or inflammatory heart diseases, highlighting their diagnostic and prognostic relevance. In numerous in vitro and in vivo models, EV also showed promising therapeutic potential. However, translation of EV studies to a preclinical or clinical setting has proven to be challenging. This review is intended to provide an overview of the most relevant studies in the field of serum or plasma-derived EV.
Collapse
|
4
|
Marin‐Cuartas M, de Waha S, de la Cuesta M, Deo SV, Kaminski A, Fach A, Meyer AL, Popov A, Hagl C, Joskowiak D, Kuhn EW, Ius F, Leuschner F, Awad G, Thiele H, Abdalla A, Garbade J, Ender J, Wehrmann K, Eghbalzadeh K, Vitanova K, Conradi L, Diab M, Franz M, Geyer M, Meineri M, Misfeld M, Abdel‐Wahab M, Bhadra OD, Osteresch R, Sandoval Boburg R, Lange R, Leontyev S, Saha S, Desch S, Lehmann S, Noack T, Doenst T, Borger MA, Kiefer P. Incidence and Outcomes of Emergency Intraprocedural Surgical Conversion During Transcatheter Aortic Valve Implantation: A Multicentric Analysis. J Am Heart Assoc 2024; 13:e033964. [PMID: 38958140 PMCID: PMC11292742 DOI: 10.1161/jaha.123.033964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/08/2024] [Indexed: 07/04/2024]
|
5
|
Frank D, Durand E, Lauck S, Muir DF, Spence M, Vasa-Nicotera M, Wood D, Saia F, Urbano-Carrillo CA, Bouchayer D, Iliescu VA, Saint Etienne C, Leclercq F, Auffret V, Asmarats L, Di Mario C, Veugeois A, Maly J, Schober A, Nombela-Franco L, Werner N, Gómez-Hospital JA, Mascherbauer J, Musumeci G, Meneveau N, Meurice T, Mahfoud F, De Marco F, Seidler T, Leuschner F, Joly P, Collet JP, Vogt F, Di Lorenzo E, Kuhn E, Disdier VP, Hachaturyan V, Lüske CM, Rakova R, Wesselink W, Kurucova J, Bramlage P, McCalmont G. A streamlined pathway for transcatheter aortic valve implantation: the BENCHMARK study. Eur Heart J 2024; 45:1904-1916. [PMID: 38554125 PMCID: PMC11143387 DOI: 10.1093/eurheartj/ehae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/23/2024] [Accepted: 02/27/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND AND AIMS There is significant potential to streamline the clinical pathway for patients undergoing transcatheter aortic valve implantation (TAVI). The purpose of this study was to evaluate the effect of implementing BENCHMARK best practices on the efficiency and safety of TAVI in 28 sites in 7 European countries. METHODS This was a study of patients with severe symptomatic aortic stenosis (AS) undergoing TAVI with balloon-expandable valves before and after implementation of BENCHMARK best practices. Principal objectives were to reduce hospital length of stay (LoS) and duration of intensive care stay. Secondary objective was to document patient safety. RESULTS Between January 2020 and March 2023, 897 patients were documented prior to and 1491 patients after the implementation of BENCHMARK practices. Patient characteristics were consistent with a known older TAVI population and only minor differences. Mean LoS was reduced from 7.7 ± 7.0 to 5.8 ± 5.6 days (median 6 vs. 4 days; P < .001). Duration of intensive care was reduced from 1.8 to 1.3 days (median 1.1 vs. 0.9 days; P < .001). Adoption of peri-procedure best practices led to increased use of local anaesthesia (96.1% vs. 84.3%; P < .001) and decreased procedure (median 47 vs. 60 min; P < .001) and intervention times (85 vs. 95 min; P < .001). Thirty-day patient safety did not appear to be compromised with no differences in all-cause mortality (0.6% in both groups combined), stroke/transient ischaemic attack (1.4%), life-threatening bleeding (1.3%), stage 2/3 acute kidney injury (0.7%), and valve-related readmission (1.2%). CONCLUSIONS Broad implementation of BENCHMARK practices contributes to improving efficiency of TAVI pathway reducing LoS and costs without compromising patient safety.
Collapse
|
6
|
Schnitter F, Stangl F, Noeske E, Bille M, Stadtmüller A, Vogt N, Sicklinger F, Leuschner F, Frey A, Schreiber L, Frantz S, Beyersdorf N, Ramos G, Gladow N, Hofmann U. Characterizing the immune response to myocardial infarction in pigs. Basic Res Cardiol 2024; 119:453-479. [PMID: 38491291 PMCID: PMC11143055 DOI: 10.1007/s00395-024-01036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/18/2024]
Abstract
Though myocardial infarction (MI) in pigs is a well-established translational large animal model, it has not yet been widely used for immunotherapy studies, and a comprehensive description of the immune response to MI in this species is lacking. We induced MI in Landrace pigs by balloon occlusion of the left anterior descending artery over 90 min. Within 14 days, the necrotic myocardium was progressively replaced by scar tissue with involvement of myofibroblasts. We characterized the immune response in the heart ex vivo by (immuno)histology, flow cytometry, and RNA sequencing of myocardial tissue on days 3, 7, and 14 after MI. Besides a clear predominance of myeloid cells among heart-infiltrating leukocytes, we detected activated T cells and an increasing proportion of CD4+ Foxp3+ regulatory T cells (Treg), especially in the infarct core-findings that closely mirror what has been observed in mice and humans after MI. Transcriptome data indicated inflammatory activity that was persistent but markedly changing in character over time and linked to extracellular matrix biology. Analysis of lymphocytes in heart-draining lymph nodes revealed significantly higher proliferation rates of T helper cell subsets, including Treg on day 7 after MI, compared to sham controls. Elevated frequencies of myeloid progenitors in the spleen suggest that it might be a site of emergency myelopoiesis after MI in pigs, as previously shown in mice. We thus provide a first description of the immune response to MI in pigs, and our results can aid future research using the species for preclinical immunotherapy studies.
Collapse
|
7
|
Cordero J, Elsherbiny A, Wang Y, Jürgensen L, Constanty F, Günther S, Boerries M, Heineke J, Beisaw A, Leuschner F, Hassel D, Dobreva G. Leveraging chromatin state transitions for the identification of regulatory networks orchestrating heart regeneration. Nucleic Acids Res 2024; 52:4215-4233. [PMID: 38364861 PMCID: PMC11077086 DOI: 10.1093/nar/gkae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
The limited regenerative capacity of the human heart contributes to high morbidity and mortality worldwide. In contrast, zebrafish exhibit robust regenerative capacity, providing a powerful model for studying how to overcome intrinsic epigenetic barriers maintaining cardiac homeostasis and initiate regeneration. Here, we present a comprehensive analysis of the histone modifications H3K4me1, H3K4me3, H3K27me3 and H3K27ac during various stages of zebrafish heart regeneration. We found a vast gain of repressive chromatin marks one day after myocardial injury, followed by the acquisition of active chromatin characteristics on day four and a transition to a repressive state on day 14, and identified distinct transcription factor ensembles associated with these events. The rapid transcriptional response involves the engagement of super-enhancers at genes implicated in extracellular matrix reorganization and TOR signaling, while H3K4me3 breadth highly correlates with transcriptional activity and dynamic changes at genes involved in proteolysis, cell cycle activity, and cell differentiation. Using loss- and gain-of-function approaches, we identified transcription factors in cardiomyocytes and endothelial cells influencing cardiomyocyte dedifferentiation or proliferation. Finally, we detected significant evolutionary conservation between regulatory regions that drive zebrafish and neonatal mouse heart regeneration, suggesting that reactivating transcriptional and epigenetic networks converging on these regulatory elements might unlock the regenerative potential of adult human hearts.
Collapse
|
8
|
Bengel F, Epstein JA, Gropler R, Haberkorn U, Kramann R, Lavine K, Leuschner F, Liu Y, Rosenthal N, Wu H. Linking immune modulation to cardiac fibrosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:414-419. [PMID: 39196217 DOI: 10.1038/s44161-024-00459-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
|
9
|
Kaudewitz D, John L, Meis J, Frey N, Lorenz HM, Leuschner F, Blank N. Clinical and serological characterization of acute pleuropericarditis suggests an autoinflammatory pathogenesis and highlights risk factors for recurrent attacks. Clin Res Cardiol 2024:10.1007/s00392-024-02390-w. [PMID: 38358415 DOI: 10.1007/s00392-024-02390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
PURPOSE We describe the manifestations and course of patients with pleuropericarditis (PP). Serum parameters were analyzed to evaluate the contribution of autoimmune and autoinflammatory mechanisms to PP pathogenesis. Finally, we outline risk factors for recurrent PP attacks. METHODS Electronic medical records of the University Hospital Heidelberg were screened for PP diagnosis between the years 2009 and 2021. A total of 164 patients were detected and compared to patients suffering from systemic lupus erythematosus (SLE)-associated PP. Follow-up data were collected until January 2023. RESULTS In 57.3% of a total of 164 PP cases, no trigger was identified (idiopathic PP). The clinical manifestations were similar in subgroups with different triggers (idiopathic, post-cardiac injury and post-infectious). None of the patients in the idiopathic-PP (i-PP) group fulfilled the diagnostic criteria of an autoimmune disease and the i-PP group could be clearly discriminated by clinical, epidemiological and serological means from the control cohort of SLE-associated PP. After a median follow-up of 1048 days, the majority of PP patients (72.7%) had at least one PP relapse. Univariate analyses showed that CRP, SAA (serum amyloid A), troponin T, NT-BNP and post-cardiac injury were negatively correlated, while the presence of fever and an idiopathic trigger were positively correlated with recurrence of PP. Multivariate analyses showed that fever, an idiopathic trigger and low SAA values were risk factors for PP recurrence. CONCLUSION This study highlights that most cases of PP are idiopathic and PP cases with various triggers have an identical clinical phenotype. Our data suggest that the clinical, epidemiological and serological characteristics of idiopathic PP considerably differ from patients with PP caused by autoimmune disease like SLE. We further demonstrate that PP has a high risk of recurrence and identify factors associated with this risk, allowing for a targeted secondary prophylaxis.
Collapse
|
10
|
Aharonian F, Benkhali FA, Aschersleben J, Ashkar H, Backes M, Martins VB, Batzofin R, Becherini Y, Berge D, Bernlöhr K, Bi B, Böttcher M, Boisson C, Bolmont J, de Lavergne MDB, Borowska J, Bouyahiaoui M, Breuhaus M, Brose R, Brown AM, Brun F, Bruno B, Bulik T, Burger-Scheidlin C, Caroff S, Casanova S, Cecil R, Celic J, Cerruti M, Chand T, Chandra S, Chen A, Chibueze J, Chibueze O, Cotter G, Dai S, Mbarubucyeye JD, Djannati-Ataï A, Dmytriiev A, Doroshenko V, Egberts K, Einecke S, Ernenwein JP, Filipovic M, Fontaine G, Füßling M, Funk S, Gabici S, Ghafourizadeh S, Giavitto G, Glawion D, Glicenstein JF, Grolleron G, Haerer L, Hinton JA, Hofmann W, Holch TL, Holler M, Horns D, Jamrozy M, Jankowsky F, Jardin-Blicq A, Joshi V, Jung-Richardt I, Kasai E, Katarzyński K, Khatoon R, Khélifi B, Klepser S, Kluźniak W, Komin N, Kosack K, Kostunin D, Kundu A, Lang RG, Le Stum S, Leitl F, Lemière A, Lenain JP, Leuschner F, Lohse T, Luashvili A, Lypova I, Mackey J, Malyshev D, Malyshev D, Marandon V, Marchegiani P, Marcowith A, Martí-Devesa G, Marx R, Mehta A, Mitchell A, Moderski R, Mohrmann L, Montanari A, Moulin E, Murach T, Nakashima K, de Naurois M, Niemiec J, Noel AP, Ohm S, Olivera-Nieto L, de Ona Wilhelmi E, Ostrowski M, Panny S, Panter M, Parsons RD, Peron G, Prokhorov DA, Pühlhofer G, Punch M, Quirrenbach A, Reichherzer P, Reimer A, Reimer O, Ren H, Renaud M, Reville B, Rieger F, Rowell G, Rudak B, Ricarte HR, Ruiz-Velasco E, Sahakian V, Salzmann H, Santangelo A, Sasaki M, Schäfer J, Schüssler F, Schwanke U, Shapopi JNS, Sol H, Specovius A, Spencer S, Stawarz L, Steenkamp R, Steinmassl S, Steppa C, Streil K, Sushch I, Suzuki H, Takahashi T, Tanaka T, Taylor AM, Terrier R, Tsirou M, Tsuji N, Unbehaun T, van Eldik C, Vecchi M, Veh J, Venter C, Vink J, Wach T, Wagner SJ, Werner F, White R, Wierzcholska A, Wong YW, Zacharias M, Zargaryan D, Zdziarski AA, Zech A, Zouari S, Żywucka N. Acceleration and transport of relativistic electrons in the jets of the microquasar SS 433. Science 2024; 383:402-406. [PMID: 38271522 DOI: 10.1126/science.adi2048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024]
Abstract
SS 433 is a microquasar, a stellar binary system that launches collimated relativistic jets. We observed SS 433 in gamma rays using the High Energy Stereoscopic System (H.E.S.S.) and found an energy-dependent shift in the apparent position of the gamma-ray emission from the parsec-scale jets. These observations trace the energetic electron population and indicate that inverse Compton scattering is the emission mechanism of the gamma rays. Our modeling of the energy-dependent gamma-ray morphology constrains the location of particle acceleration and requires an abrupt deceleration of the jet flow. We infer the presence of shocks on either side of the binary system, at distances of 25 to 30 parsecs, and that self-collimation of the precessing jets forms the shocks, which then efficiently accelerate electrons.
Collapse
|
11
|
Shumliakivska M, Luxán G, Hemmerling I, Scheller M, Li X, Müller-Tidow C, Schuhmacher B, Sun Z, Dendorfer A, Debes A, Glaser SF, Muhly-Reinholz M, Kirschbaum K, Hoffmann J, Nagel E, Puntmann VO, Cremer S, Leuschner F, Abplanalp WT, John D, Zeiher AM, Dimmeler S. DNMT3A clonal hematopoiesis-driver mutations induce cardiac fibrosis by paracrine activation of fibroblasts. Nat Commun 2024; 15:606. [PMID: 38242884 PMCID: PMC10799021 DOI: 10.1038/s41467-023-43003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/27/2023] [Indexed: 01/21/2024] Open
Abstract
Hematopoietic mutations in epigenetic regulators like DNA methyltransferase 3 alpha (DNMT3A), play a pivotal role in driving clonal hematopoiesis of indeterminate potential (CHIP), and are associated with unfavorable outcomes in patients suffering from heart failure (HF). However, the precise interactions between CHIP-mutated cells and other cardiac cell types remain unknown. Here, we identify fibroblasts as potential partners in interactions with CHIP-mutated monocytes. We used combined transcriptomic data derived from peripheral blood mononuclear cells of HF patients, both with and without CHIP, and cardiac tissue. We demonstrate that inactivation of DNMT3A in macrophages intensifies interactions with cardiac fibroblasts and increases cardiac fibrosis. DNMT3A inactivation amplifies the release of heparin-binding epidermal growth factor-like growth factor, thereby facilitating activation of cardiac fibroblasts. These findings identify a potential pathway of DNMT3A CHIP-driver mutations to the initiation and progression of HF and may also provide a compelling basis for the development of innovative anti-fibrotic strategies.
Collapse
|
12
|
Sauter M, Haag J, Bay C, Leuschner F, Haefeli WE, Kuhn TC, Burhenne J. Bioanalysis of the Ex Vivo Labile PACE4 Inhibitory Peptide Ac-[d-Leu]LLLRVK-Amba in Whole Blood Using Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Quantification. Pharmaceutics 2023; 15:2745. [PMID: 38140086 PMCID: PMC10747822 DOI: 10.3390/pharmaceutics15122745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The calcium-dependent serine endoprotease PACE4 is evaluated as a therapeutic target for prostate cancer. The peptide Ac-[d-Leu]LLLRVK-amba inhibits PACE4 with high affinity and has shown efficacy in preclinical mice xenograft models of prostate cancer. To support in vivo examinations of the potential therapeutic peptide Ac-[d-Leu]LLLRVK-amba, we established a highly sensitive assay for its quantification in mouse whole blood microsamples based on UPLC-MS/MS determination. Ac-[d-Leu]LLLRVK-amba was very labile during sample processing, which was particularly pronounced in plasma. High resolution mass spectrometric investigations of the metabolism/degradation in plasma revealed that no peptide bond hydrolysis generated products were formed, leaving the cause of the observed consumption of the peptide elusive. As a consequence, whole-blood quantification was developed relying on the immediate snap-freezing of blood samples after collection and immediate sample processing after serial thawing to ensure accurate and reliable quantification. The assay was validated according to the applicable recommendations of the FDA and EMA in a range of 10-10,000 ng/mL and applied to determine the pharmacokinetics of Ac-[d-Leu]LLLRVK-amba after intravenous and intraperitoneal administration to mice. Individual pharmacokinetic profiles were assessed using four microsamplings per animal. Intraperitoneal absorption was found to be efficient, demonstrating that this well-manageable route of administration is feasible for preclinical efficacy experiments with Ac-[d-Leu]LLLRVK-amba.
Collapse
|
13
|
Klersy A, Meyer S, Leuschner F, Kessler T, Hecker M, Wagner AH. Ectodomain Shedding by ADAM17 Increases the Release of Soluble CD40 from Human Endothelial Cells under Pro-Inflammatory Conditions. Cells 2023; 12:1926. [PMID: 37566005 PMCID: PMC10417149 DOI: 10.3390/cells12151926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Homozygosity for the C allele of the -1T>C single nucleotide polymorphism (SNP) of the CD40 gene (rs1883832) is associated with susceptibility to coronary heart disease (CHD), enhanced CD40 expression, and shedding. The disintegrin metalloprotease ADAM17 can cleave various cell surface proteins. This study investigates an association between ADAM17-mediated CD40 shedding and inflammation in CC genotype human endothelial cells. METHODS Human umbilical vein endothelial cells (HUVEC) carrying the CC genotype were stimulated with soluble CD40 ligand (sCD40L) or tumor necrosis factor-α (TNFα). Messenger RNA and protein expression were determined with standard methods. Levels of high sensitive c-reactive protein (hs-CRP), interleukin-6 (IL-6), and sCD40 in plasma samples from patients with CHD were assessed using ELISA. RESULTS ADAM17 surface abundance was elevated following stimulation with CD40L and TNFα just as its regulator iRhom2. Inhibition of ADAM17 prevented TNFα-induced sCD40 and soluble vascular cell adhesion molecule-1 release into the conditioned medium and reinforced CD40 surface abundance. Secondary to inhibition of ADAM17, stimulation with CD40L or TNFα upregulated monocyte chemoattractant protein-1 mRNA and protein. Levels of sCD40 and the inflammatory biomarkers hs-CRP and IL-6 were positively correlated in the plasma of patients with CHD. CONCLUSIONS We provide a mechanism by which membrane-bound CD40 is shed from the endothelial cell surface by ADAM17, boosting sCD40 formation and limiting downstream CD40 signaling. Soluble CD40 may represent a robust biomarker for CHD, especially in conjunction with homozygosity for the C allele of the -1T>C SNP of the CD40 gene.
Collapse
|
14
|
Varma E, Burghaus J, Schwarzl T, Sekaran T, Gupta P, Górska AA, Hofmann C, Stroh C, Jürgensen L, Kamuf-Schenk V, Li X, Medert R, Leuschner F, Kmietczyk V, Freichel M, Katus HA, Hentze MW, Frey N, Völkers M. Translational control of Ybx1 expression regulates cardiac function in response to pressure overload in vivo. Basic Res Cardiol 2023; 118:25. [PMID: 37378715 PMCID: PMC10307726 DOI: 10.1007/s00395-023-00996-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/31/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
RNA-protein interactions are central to cardiac function, but how activity of individual RNA-binding protein is regulated through signaling cascades in cardiomyocytes during heart failure development is largely unknown. The mechanistic target of rapamycin kinase is a central signaling hub that controls mRNA translation in cardiomyocytes; however, a direct link between mTOR signaling and RNA-binding proteins in the heart has not been established. Integrative transcriptome and translatome analysis revealed mTOR dependent translational upregulation of the RNA binding protein Ybx1 during early pathological remodeling independent of mRNA levels. Ybx1 is necessary for pathological cardiomyocyte growth by regulating protein synthesis. To identify the molecular mechanisms how Ybx1 regulates cellular growth and protein synthesis, we identified mRNAs bound to Ybx1. We discovered that eucaryotic elongation factor 2 (Eef2) mRNA is bound to Ybx1, and its translation is upregulated during cardiac hypertrophy dependent on Ybx1 expression. Eef2 itself is sufficient to drive pathological growth by increasing global protein translation. Finally, Ybx1 depletion in vivo preserved heart function during pathological cardiac hypertrophy. Thus, activation of mTORC1 links pathological signaling cascades to altered gene expression regulation by activation of Ybx1 which in turn promotes translation through increased expression of Eef2.
Collapse
|
15
|
Amrute JM, Lai L, Ma P, Koenig AL, Kamimoto K, Bredemeyer A, Shankar TS, Kuppe C, Kadyrov FF, Schulte LJ, Stoutenburg D, Kopecky BJ, Navankasattusas S, Visker J, Morris SA, Kramann R, Leuschner F, Mann DL, Drakos SG, Lavine KJ. Defining cardiac functional recovery in end-stage heart failure at single-cell resolution. NATURE CARDIOVASCULAR RESEARCH 2023; 2:399-416. [PMID: 37583573 PMCID: PMC10426763 DOI: 10.1038/s44161-023-00260-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/01/2023] [Indexed: 08/17/2023]
Abstract
Recovery of cardiac function is the holy grail of heart failure therapy yet is infrequently observed and remains poorly understood. In this study, we performed single-nucleus RNA sequencing from patients with heart failure who recovered left ventricular systolic function after left ventricular assist device implantation, patients who did not recover and non-diseased donors. We identified cell-specific transcriptional signatures of recovery, most prominently in macrophages and fibroblasts. Within these cell types, inflammatory signatures were negative predictors of recovery, and downregulation of RUNX1 was associated with recovery. In silico perturbation of RUNX1 in macrophages and fibroblasts recapitulated the transcriptional state of recovery. Cardiac recovery mediated by BET inhibition in mice led to decreased macrophage and fibroblast Runx1 expression and diminished chromatin accessibility within a Runx1 intronic peak and acquisition of human recovery signatures. These findings suggest that cardiac recovery is a unique biological state and identify RUNX1 as a possible therapeutic target to facilitate cardiac recovery.
Collapse
|
16
|
Dietrich M, Antonovici A, Hölle T, Nusshag C, Kapp AC, Studier-Fischer A, Arif R, Nickel F, Weigand MA, Frey N, Lichtenstern C, Leuschner F, Fischer D. Microcirculatory tissue oxygenation correlates with kidney function after transcatheter aortic valve implantation-Results from a prospective observational study. Front Cardiovasc Med 2023; 10:1108256. [PMID: 36865886 PMCID: PMC9971913 DOI: 10.3389/fcvm.2023.1108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/20/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Kidney dysfunction is common in patients with aortic stenosis (AS) and correction of the aortic valve by transcatheter aortic valve implantation (TAVI) often affects kidney function. This may be due to microcirculatory changes. Methods We evaluated skin microcirculation with a hyperspectral imaging (HSI) system, and compared tissue oxygenation (StO2), near-infrared perfusion index (NIR), tissue hemoglobin index (THI) and tissue water index (TWI) in 40 patients undergoing TAVI versus 20 control patients. HSI parameters were measured before TAVI (t1), directly after TAVI (t2), and on postinterventional day 3 (t3). The primary outcome was the correlation of tissue oxygenation (StO2) to the creatinine level after TAVI. Results We performed 116 HSI image recordings in patients undergoing TAVI for the treatment of severe aortic stenosis and 20 HSI image recordings in control patients. Patients with AS had a lower THI at the palm (p = 0.034) and a higher TWI at the fingertips (p = 0.003) in comparison to control patients. TAVI led to an increase of TWI, but had no uniform enduring effect on StO2 and THI. Tissue oxygenation StO2 at both measurement sites correlated negatively with creatinine levels after TAVI at t2 (palm: ρ = -0.415; p = 0.009; fingertip: ρ = -0.519; p < 0.001) and t3 (palm: ρ = -0.427; p = 0.008; fingertip: ρ = -0.398; p = 0.013). Patients with higher THI at t3 reported higher physical capacity and general health scores 120 days after TAVI. Conclusion HSI is a promising technique for periinterventional monitoring of tissue oxygenation and microcirculatory perfusion quality, which are related to kidney function, physical capacity, and clinical outcomes after TAVI. Clinical trial registration https://drks.de/search/de/trial, identifier DRKS00024765.
Collapse
|
17
|
Wienecke LM, Leid JM, Leuschner F, Lavine KJ. Imaging Targets to Visualize the Cardiac Immune Landscape in Heart Failure. Circ Cardiovasc Imaging 2023; 16:e014071. [PMID: 36649453 PMCID: PMC9858350 DOI: 10.1161/circimaging.122.014071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Heart failure involves a complex interplay between diverse populations of immune cells that dynamically shift across the natural history of disease. Within this context, the character of the immune response is a key determinant of clinical outcomes. Recent technological advances in single-cell transcriptomic, spatial, and proteomic technologies have fueled an explosion of new and clinically relevant insights into distinct immune cell populations that reside within the diseased heart including potential targets for molecular imaging and therapy. In this review, we will discuss the immune cell types and their respective functions with respect to myocardial infarction remodeling, dilated cardiomyopathy, and heart failure with preserved ejection fraction. In addition, we give a brief overview regarding myocarditis and cardiac sarcoidosis as inflammatory heart failure etiologies. We will highlight markers and cell populations as targets for molecular imaging to visualize inflammation and tissue healing and discuss clinical implications including the development and implementation of precision medicine approaches.
Collapse
|
18
|
Berlin M, Londoño JEC, Ottenheijm R, Kraft A, Bacmeister L, Tsvilovskyy V, Meyer S, Hennis K, Gerndt S, Offen K, Leuschner F, Bracher F, Fenske S, Biel M, Hansen A, Grimm C, Wahl-Schott C, Freichel M. An endo-lysosomal Ca2+ store in cardiomyocytes controlled by OCaR proteins determines fatal tachyarrhythmias. J Mol Cell Cardiol 2022. [DOI: 10.1016/j.yjmcc.2022.08.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Meyer IS, Li X, Meyer C, Voloshanenko O, Pohl S, Boutros M, Katus HA, Frey N, Leuschner F. Blockade of Wnt Secretion Attenuates Myocardial Ischemia-Reperfusion Injury by Modulating the Inflammatory Response. Int J Mol Sci 2022; 23:ijms232012252. [PMID: 36293109 PMCID: PMC9602582 DOI: 10.3390/ijms232012252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Wnt (a portmanteau of Wingless and Int-1) signaling in the adult heart is largely quiescent. However, there is accumulating evidence that it gets reactivated during the healing process after myocardial infarction (MI). We here tested the therapeutic potential of the Wnt secretion inhibitor LGK-974 on MI healing. Ischemia/reperfusion (I/R) injury was induced in mice and Wnt signaling was inhibited by oral administration of the porcupine inhibitor LGK-974. The transcriptome was analyzed from infarcted tissue by using RNA sequencing analysis. The inflammatory response after I/R was evaluated by flow cytometry. Heart function was assessed by echocardiography and fibrosis by Masson's trichrome staining. Transcriptome and gene set enrichment analysis revealed a modulation of the inflammatory response upon administration of the Wnt secretion inhibitor LGK-974 following I/R. In addition, LGK-974-treated animals showed an attenuated inflammatory response and improved heart function. In an in vitro model of hypoxic cardiomyocyte and monocyte/macrophage interaction, LGK974 inhibited the activation of Wnt signaling in monocytes/macrophages and reduced their pro-inflammatory phenotype. We here show that Wnt signaling affects inflammatory processes after MI. The Wnt secretion inhibitor LGK-974 appears to be a promising compound for future immunomodulatory approaches to improve cardiac remodeling after MI.
Collapse
|
20
|
Schenz J, Rump K, Siegler BH, Hemmerling I, Rahmel T, Thon JN, Nowak H, Fischer D, Hafner A, Tichy L, Bomans K, Meggendorfer M, Koos B, von Groote T, Zarbock A, Fiedler MO, Zemva J, Larmann J, Merle U, Adamzik M, Müller-Tidow C, Haferlach T, Leuschner F, Weigand MA. Increased prevalence of clonal hematopoiesis of indeterminate potential in hospitalized patients with COVID-19. Front Immunol 2022; 13:968778. [PMID: 36311800 PMCID: PMC9614713 DOI: 10.3389/fimmu.2022.968778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/05/2022] [Indexed: 11/14/2022] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) leads to higher mortality, carries a cardiovascular risk and alters inflammation. All three aspects harbor overlaps with the clinical manifestation of COVID-19. This study aimed to identify the impact of CHIP on COVID-19 pathophysiology. 90 hospitalized patients were analyzed for CHIP. In addition, their disease course and outcome were evaluated. With a prevalence of 37.8%, the frequency of a CHIP-driver mutation was significantly higher than the prevalence expected based on median age (17%). CHIP increases the risk of hospitalization in the course of the disease but has no age-independent impact on the outcome within the group of hospitalized patients. Especially in younger patients (45 – 65 years), CHIP was associated with persistent lymphopenia. In older patients (> 65 years), on the other hand, CHIP-positive patients developed neutrophilia in the long run. To what extent increased values of cardiac biomarkers are caused by CHIP independent of age could not be elaborated solely based on this study. In conclusion, our results indicate an increased susceptibility to a severe course of COVID-19 requiring hospitalization associated with CHIP. Secondly, they link it to a differentially regulated cellular immune response under the pressure of SARS-CoV-2 infection. Hence, a patient’s CHIP-status bears the potential to serve as biomarker for risk stratification and to early guide treatment of COVID-19 patients.
Collapse
|
21
|
Kokot K, Kneuer J, John D, Rebs S, Mueller M, Haas J, Thiele H, Mueller OJ, Hille S, Leuschner F, Dimmeler S, Streckfuss-Boemeke K, Meder B, Laufs U, Boeckel JN. Decrease of RNA editing in the failing heart leads to induction of circRNAs. Eur Heart J 2022. [DOI: 10.1093/eurheartj/ehac544.2962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background and purpose
Adenosine-to-Inosine (A-to-I) RNA editing is a post-transcriptional modification process that affects the secondary structure of RNAs. Changes in RNA editing have been associated with human diseases. We therefore aimed to analyze editing in the healthy and failing human heart.
Methods and results
Transcriptome sequencing of human heart samples of heart failure (HF) patients (n=20) and controls (n=10) revealed A-to-I editing as the major type of editing (>80%). In HF patients, RNA editing was reduced, which was primarily attributable to Alu elements in introns of protein-coding genes. We identified 166 upregulated circRNAs in HF, with the majority showing reduced RNA editing in their parental host gene (88.3%). CircRNA expression did not correlate with their corresponding host gene (R=0.07, P<0.05), suggesting that an alternative splicing mechanism gives rise to the elevated circRNA levels in HF. The RNA editing enzyme ADAR2, which binds to RNA regions that are edited from adenosine to inosine, was decreased in failing human hearts (−68.2%). In vitro, reduction of ADAR2 increased circRNA levels suggesting a causal effect of reduced ADAR2 levels on increased circRNAs in the failing human heart. To gain mechanistic insight, we examined the formation of circRNAs on one exemplary candidate. AKAP13 was among the top edited mRNAs in the human heart and gave rise to a circular transcript, which was elevated in HF. ADAR2 reduced the formation of double-stranded structures in AKAP13 pre-mRNA, thereby reducing the stability of Alu elements and the circularization of the resulting circRNA. Overexpression of circAKAP13 impaired the sarcomere regularity of human induced pluripotent stem cell-derived cardiomyocytes (−31.0%).
Conclusion
Our study shows that ADAR2 mediates A-to-I RNA editing in the human heart. We describe an alternative splicing mechanism of circRNAs in the human heart. In the healthy human heart, A-to-I RNA editing represses the formation of dsRNA structures of Alu elements thereby favoring linear mRNA splicing. Our results contribute to a better mechanistic understanding into the human-specific regulation of circRNA formation and are relevant to diseases with reduced RNA editing and increased circRNA levels.
Funding Acknowledgement
Type of funding sources: None.
Collapse
|
22
|
Abdalla H, Aharonian F, Benkhali FA, Angüner EO, Armand C, Ashkar H, Backes M, Baghmanyan V, Martins VB, Batzofin R, Becherini Y, Berge D, Bernlöhr K, Bi B, Böttcher M, Bolmont J, de Lavergne MDB, Brose R, Brun F, Cangemi F, Caroff S, Cerruti M, Chand T, Chen A, Cotter G, Mbarubucyeye JD, Devin J, Djannati-Ataï A, Dmytriiev A, Doroshenko V, Egberts K, Fiasson A, de Clairfontaine GF, Fontaine G, Funk S, Gabici S, Giavitto G, Glawion D, Glicenstein JF, Grondin MH, Hinton JA, Hofmann W, Holch TL, Holler M, Horns D, Huang Z, Jamrozy M, Jankowsky F, Kasai E, Katarzyński K, Katz U, Khélifi B, Kluźniak W, Komin N, Kosack K, Kostunin D, Lamanna G, Lemoine-Goumard M, Lenain JP, Leuschner F, Lohse T, Luashvili A, Lypova I, Mackey J, Malyshev D, Malyshev D, Marandon V, Marchegiani P, Martí-Devesa G, Marx R, Maurin G, Meyer M, Mitchell A, Moderski R, Montanari A, Moulin E, Muller J, de Naurois M, Niemiec J, Noel AP, Ohm S, Olivera-Nieto L, Wilhelmi EDO, Ostrowski M, Panny S, Panter M, Parsons RD, Peron G, Poireau V, Prokoph H, Pühlhofer G, Punch M, Quirrenbach A, Reichherzer P, Reimer A, Reimer O, Renaud M, Rieger F, Rowell G, Rudak B, Ricarte HR, Ruiz-Velasco E, Sahakian V, Salzmann H, Santangelo A, Sasaki M, Schüssler F, Schutte HM, Schwanke U, Senniappan M, Shapopi JNS, Sol H, Specovius A, Spencer S, Stawarz Ł, Stegmann C, Steinmassl S, Steppa C, Takahashi T, Tanaka T, Terrier R, Thorpe-Morgan C, Tluczykont M, Tsirou M, Tsuji N, Uchiyama Y, van Eldik C, Veh J, Vink J, Wagner SJ, White R, Wierzcholska A, Wong YW, Zacharias M, Zargaryan D, Zdziarski AA, Zech A, Zhu SJ, Zouari S, Żywucka N. Search for Dark Matter Annihilation Signals in the H.E.S.S. Inner Galaxy Survey. PHYSICAL REVIEW LETTERS 2022; 129:111101. [PMID: 36154418 DOI: 10.1103/physrevlett.129.111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/17/2022] [Accepted: 07/13/2022] [Indexed: 06/16/2023]
Abstract
The central region of the Milky Way is one of the foremost locations to look for dark matter (DM) signatures. We report the first results on a search for DM particle annihilation signals using new observations from an unprecedented γ-ray survey of the Galactic Center (GC) region, i.e., the Inner Galaxy Survey, at very high energies (≳100 GeV) performed with the H.E.S.S. array of five ground-based Cherenkov telescopes. No significant γ-ray excess is found in the search region of the 2014-2020 dataset and a profile likelihood ratio analysis is carried out to set exclusion limits on the annihilation cross section ⟨σv⟩. Assuming Einasto and Navarro-Frenk-White (NFW) DM density profiles at the GC, these constraints are the strongest obtained so far in the TeV DM mass range. For the Einasto profile, the constraints reach ⟨σv⟩ values of 3.7×10^{-26} cm^{3} s^{-1} for 1.5 TeV DM mass in the W^{+}W^{-} annihilation channel, and 1.2×10^{-26} cm^{3} s^{-1} for 0.7 TeV DM mass in the τ^{+}τ^{-} annihilation channel. With the H.E.S.S. Inner Galaxy Survey, ground-based γ-ray observations thus probe ⟨σv⟩ values expected from thermal-relic annihilating TeV DM particles.
Collapse
|
23
|
Boileau E, Li X, Naarmann-de Vries IS, Becker C, Casper R, Altmüller J, Leuschner F, Dieterich C. Full-Length Spatial Transcriptomics Reveals the Unexplored Isoform Diversity of the Myocardium Post-MI. Front Genet 2022; 13:912572. [PMID: 35937994 PMCID: PMC9354982 DOI: 10.3389/fgene.2022.912572] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
We introduce Single-cell Nanopore Spatial Transcriptomics (scNaST), a software suite to facilitate the analysis of spatial gene expression from second- and third-generation sequencing, allowing to generate a full-length near-single-cell transcriptional landscape of the tissue microenvironment. Taking advantage of the Visium Spatial platform, we adapted a strategy recently developed to assign barcodes to long-read single-cell sequencing data for spatial capture technology. Here, we demonstrate our workflow using four short axis sections of the mouse heart following myocardial infarction. We constructed a de novo transcriptome using long-read data, and successfully assigned 19,794 transcript isoforms in total, including clinically-relevant, but yet uncharacterized modes of transcription, such as intron retention or antisense overlapping transcription. We showed a higher transcriptome complexity in the healthy regions, and identified intron retention as a mode of transcription associated with the infarct area. Our data revealed a clear regional isoform switching among differentially used transcripts for genes involved in cardiac muscle contraction and tissue morphogenesis. Molecular signatures involved in cardiac remodeling integrated with morphological context may support the development of new therapeutics towards the treatment of heart failure and the reduction of cardiac complications.
Collapse
|
24
|
Mayer D, Altvater M, Schenz J, Arif R, Karck M, Leuschner F, Weigand MA, Uhle F, Lichtenstern C. Monocyte Metabolism and Function in Patients Undergoing Cardiac Surgery. Front Cardiovasc Med 2022; 9:853967. [PMID: 35935635 PMCID: PMC9347004 DOI: 10.3389/fcvm.2022.853967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Objective Cardiopulmonary bypass (CPB) can lead to systemic inflammation, which is associated with higher morbidity. Therefore, we investigated the metabolism of isolated blood monocytes before and after CPB compared to healthy controls. Methods In this prospective, monocentric, observational study, we included 30 patients undergoing CPB and 20 controls. We isolated monocytes from heparinized blood and investigated their metabolism by using Seahorse technology before (t0), 4 h (t4), and 24 h (t24) after the start of the CPB. We also examined programmed cell death 1 ligand (PD-L1), PD-L2, V-domain Ig suppressor of T cell activation (VISTA), and human leukocyte antigen-DR isotype (HLA-DR) using fluorescence-activated cell sorting analysis. Additionally, we investigated plasma cytokine levels in patients without and after ex vivo stimulation. Results CPB-induced inflammatory responses are shown by significantly elevated plasma interleukin-6 levels in the CPB group compared to baseline and controls [t0: 0 ng/ml (95%CI 0-0 ng/ml); t4: 0.16 ng/ml (95%CI 0.1-0.197 ng/ml), p < 0.0001; t24: 0.11 ng/ml (95% CI 0.1-0.16 ng/ml), p < 0.0001, and controls: 0 ng/ml (95% CI 0-0 ng/ml)]. The cytokine release in the ex vivo stimulation is reduced for lipopolysaccharide stimulation at t4 [t0: 35.68 ng/ml (95% CI 22.17-46.57 ng/ml) vs. t4: 15.02 (95% CI 10.25-24.78 ng/ml), p < 0.0001]. Intracellular metabolism of monocytes after CPB showed a protracted shift to aerobic glycolysis [t0: 179.2 pmol/min (95% CI 138.0-205.1 pmol/min) vs. t24: 250.1 pmol/min (95% CI 94.8-300.2 pmol/min), p < 0.0001]. Additionally, we observed an altered metabolism in monocytes in patients undergoing cardiac surgery compared to controls even before any surgical procedure [t0: 179.2 pmol/min (95% CI 138.0-205.1) vs. controls 97.4 (95% CI 59.13-144.6 pmol/min), p = 0.0031]. Conclusion After CPB, patients' monocytes show a shift in metabolism from oxidative phosphorylation to aerobic glycolysis, which is associated with energy-demanding and proinflammatory processes. This is the first study to show changes in monocyte immunometabolism in cardiac surgery. Monocytes of patients undergoing cardiac surgery were leaning toward aerobic glycolysis even before any surgical procedure was conducted. Leaving the question of the pathophysiological mechanisms for future studies to be investigated and paving the way for potential therapy approaches preventing inflammatory effects of CPB.
Collapse
|
25
|
Kokot KE, Kneuer JM, John D, Rebs S, Möbius-Winkler MN, Erbe S, Müller M, Andritschke M, Gaul S, Sheikh BN, Haas J, Thiele H, Müller OJ, Hille S, Leuschner F, Dimmeler S, Streckfuss-Bömeke K, Meder B, Laufs U, Boeckel JN. Reduction of A-to-I RNA editing in the failing human heart regulates formation of circular RNAs. Basic Res Cardiol 2022; 117:32. [PMID: 35737129 PMCID: PMC9226085 DOI: 10.1007/s00395-022-00940-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 01/31/2023]
Abstract
Alterations of RNA editing that affect the secondary structure of RNAs can cause human diseases. We therefore studied RNA editing in failing human hearts. Transcriptome sequencing showed that adenosine-to-inosine (A-to-I) RNA editing was responsible for 80% of the editing events in the myocardium. Failing human hearts were characterized by reduced RNA editing. This was primarily attributable to Alu elements in introns of protein-coding genes. In the failing left ventricle, 166 circRNAs were upregulated and 7 circRNAs were downregulated compared to non-failing controls. Most of the upregulated circRNAs were associated with reduced RNA editing in the host gene. ADAR2, which binds to RNA regions that are edited from A-to-I, was decreased in failing human hearts. In vitro, reduction of ADAR2 increased circRNA levels suggesting a causal effect of reduced ADAR2 levels on increased circRNAs in the failing human heart. To gain mechanistic insight, one of the identified upregulated circRNAs with a high reduction of editing in heart failure, AKAP13, was further characterized. ADAR2 reduced the formation of double-stranded structures in AKAP13 pre-mRNA, thereby reducing the stability of Alu elements and the circularization of the resulting circRNA. Overexpression of circAKAP13 impaired the sarcomere regularity of human induced pluripotent stem cell-derived cardiomyocytes. These data show that ADAR2 mediates A-to-I RNA editing in the human heart. A-to-I RNA editing represses the formation of dsRNA structures of Alu elements favoring canonical linear mRNA splicing and inhibiting the formation of circRNAs. The findings are relevant to diseases with reduced RNA editing and increased circRNA levels and provide insights into the human-specific regulation of circRNA formation.
Collapse
|