1
|
Dutta P, Courties G, Wei Y, Leuschner F, Gorbatov R, Robbins CS, Iwamoto Y, Thompson B, Carlson AL, Heidt T, Majmudar MD, Lasitschka F, Etzrodt M, Waterman P, Waring MT, Chicoine AT, van der Laan AM, Niessen HWM, Piek JJ, Rubin BB, Butany J, Stone JR, Katus HA, Murphy SA, Morrow DA, Sabatine MS, Vinegoni C, Moskowitz MA, Pittet MJ, Libby P, Lin CP, Swirski FK, Weissleder R, Nahrendorf M. Myocardial infarction accelerates atherosclerosis. Nature 2012; 487:325-9. [PMID: 22763456 PMCID: PMC3401326 DOI: 10.1038/nature11260] [Citation(s) in RCA: 826] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 05/25/2012] [Indexed: 12/14/2022]
Abstract
During progression of atherosclerosis, myeloid cells destabilize lipid-rich plaque in the arterial wall and cause its rupture, thus triggering myocardial infarction and stroke. Survivors of acute coronary syndromes have a high risk of recurrent events for unknown reasons. Here we show that the systemic response to ischemic injury aggravates chronic atherosclerosis. After myocardial infarction or stroke, apoE−/− mice developed larger atherosclerotic lesions with a more advanced morphology. This disease acceleration persisted over many weeks and was associated with markedly increased monocyte recruitment. When seeking the source of surplus monocytes in plaque, we found that myocardial infarction liberated hematopoietic stem and progenitor cells from bone marrow niches via sympathetic nervous system signaling. The progenitors then seeded the spleen yielding a sustained boost in monocyte production. These observations provide new mechanistic insight into atherogenesis and provide a novel therapeutic opportunity to mitigate disease progression.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
826 |
2
|
Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Donahoe JS, Courties G, Lee KM, Kim JI, Markmann JF, Marinelli B, Panizzi P, Lee WW, Iwamoto Y, Milstein S, Epstein-Barash H, Cantley W, Wong J, Cortez-Retamozo V, Newton A, Love K, Libby P, Pittet MJ, Swirski FK, Koteliansky V, Langer R, Weissleder R, Anderson DG, Nahrendorf M. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol 2011; 29:1005-10. [PMID: 21983520 PMCID: PMC3212614 DOI: 10.1038/nbt.1989] [Citation(s) in RCA: 656] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/29/2011] [Indexed: 12/24/2022]
Abstract
Inflammatory monocytes -- but not the non-inflammatory subset -- depend on the chemokine receptor CCR2 for distribution to injured tissue and stimulate disease progression. Precise therapeutic targeting of this inflammatory monocyte subset could spare innate immunity's essential functions for maintenance of homeostasis and thus limit unwanted effects. Here we developed siRNA nanoparticles targeting CCR2 expression in inflammatory monocytes. We identified an optimized lipid nanoparticle and silencing siRNA sequence that when administered systemically, had rapid blood clearance, accumulated in spleen and bone marrow and showed high cellular localization of fluorescently tagged siRNA inside monocytes. Efficient degradation of CCR2 mRNA in monocytes prevented their accumulation in sites of inflammation. Specifically, the treatment attenuated their number in atherosclerotic plaques, reduced infarct size following coronary artery occlusion, prolonged normoglycemia in diabetic mice after pancreatic islet transplantation and resulted in reduced tumor volumes and lower numbers of tumor-associated macrophages. Taken together, siRNA nanoparticle-mediated CCR2 gene silencing in leukocytes selectively modulates functions of innate immune cell subtypes and may allow for the development of specific anti-inflammatory therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
656 |
3
|
Leuschner F, Rauch PJ, Ueno T, Gorbatov R, Marinelli B, Lee WW, Dutta P, Wei Y, Robbins C, Iwamoto Y, Sena B, Chudnovskiy A, Panizzi P, Keliher E, Higgins JM, Libby P, Moskowitz MA, Pittet MJ, Swirski FK, Weissleder R, Nahrendorf M. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med 2012; 209:123-37. [PMID: 22213805 PMCID: PMC3260875 DOI: 10.1084/jem.20111009] [Citation(s) in RCA: 421] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 12/05/2011] [Indexed: 12/24/2022] Open
Abstract
Monocytes (Mo) and macrophages (MΦ) are emerging therapeutic targets in malignant, cardiovascular, and autoimmune disorders. Targeting of Mo/MΦ and their effector functions without compromising innate immunity's critical defense mechanisms first requires addressing gaps in knowledge about the life cycle of these cells. Here we studied the source, tissue kinetics, and clearance of Mo/MΦ in murine myocardial infarction, a model of acute inflammation after ischemic injury. We found that a) Mo tissue residence time was surprisingly short (20 h); b) Mo recruitment rates were consistently high even days after initiation of inflammation; c) the sustained need of newly made Mo was fostered by extramedullary monocytopoiesis in the spleen; d) splenic monocytopoiesis was regulated by IL-1β; and e) the balance of cell recruitment and local death shifted during resolution of inflammation. Depending on the experimental approach, we measured a 24 h Mo/MΦ exit rate from infarct tissue between 5 and 13% of the tissue cell population. Exited cells were most numerous in the blood, liver, and spleen. Abrogation of extramedullary monocytopoiesis proved deleterious for infarct healing and accelerated the evolution of heart failure. We also detected rapid Mo kinetics in mice with stroke. These findings expand our knowledge of Mo/MΦ flux in acute inflammation and provide the groundwork for novel anti-inflammatory strategies for treating heart failure.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
421 |
4
|
Lee WW, Marinelli B, van der Laan AM, Sena BF, Gorbatov R, Leuschner F, Dutta P, Iwamoto Y, Ueno T, Begieneman MPV, Niessen HWM, Piek JJ, Vinegoni C, Pittet MJ, Swirski FK, Tawakol A, Di Carli M, Weissleder R, Nahrendorf M. PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol 2012; 59:153-63. [PMID: 22222080 DOI: 10.1016/j.jacc.2011.08.066] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/17/2011] [Accepted: 08/23/2011] [Indexed: 10/14/2022]
Abstract
OBJECTIVES The aim of this study was to explore post-myocardial infarction (MI) myocardial inflammation. BACKGROUND Innate immune cells are centrally involved in infarct healing and are emerging therapeutic targets in cardiovascular disease; however, clinical tools to assess their presence in tissue are scarce. Furthermore, it is currently not known if the nonischemic remote zone recruits monocytes. METHODS Acute inflammation was followed in mice with coronary ligation by 18-fluorodeoxyglucose ((18)FDG) positron emission tomography/magnetic resonance imaging, fluorescence-activated cell sorting, polymerase chain reaction, and histology. RESULTS Gd-DTPA-enhanced infarcts showed high (18)FDG uptake on day 5 after MI. Cell depletion and isolation data confirmed that this largely reflected inflammation; CD11b(+) cells had 4-fold higher (18)FDG uptake than the infarct tissue from which they were isolated (p < 0.01). Surprisingly, there was considerable monocyte recruitment in the remote myocardium (approximately 10(4)/mg of myocardium, 5.6-fold increase; p < 0.01), a finding mirrored by macrophage infiltration in the remote myocardium of patients with acute MI. Temporal kinetics of cell recruitment were slower than in the infarct, with peak numbers on day 10 after ischemia. Quantitative polymerase chain reaction showed a robust increase of recruiting adhesion molecules and chemokines in the remote myocardium (e.g., 12-fold increase of monocyte chemoattractant protein-1), although levels were always lower than in the infarct. Finally, matrix metalloproteinase activity was significantly increased in noninfarcted myocardium, suggesting that monocyte recruitment to the remote zone may contribute to post-MI dilation. CONCLUSIONS This study shed light on the innate inflammatory response in remote myocardium after MI.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
265 |
5
|
Majmudar MD, Keliher EJ, Heidt T, Leuschner F, Truelove J, Sena BF, Gorbatov R, Iwamoto Y, Dutta P, Wojtkiewicz G, Courties G, Sebas M, Borodovsky A, Fitzgerald K, Nolte MW, Dickneite G, Chen JW, Anderson DG, Swirski FK, Weissleder R, Nahrendorf M. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation 2013; 127:2038-46. [PMID: 23616627 DOI: 10.1161/circulationaha.112.000116] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Exaggerated and prolonged inflammation after myocardial infarction (MI) accelerates left ventricular remodeling. Inflammatory pathways may present a therapeutic target to prevent post-MI heart failure. However, the appropriate magnitude and timing of interventions are largely unknown, in part because noninvasive monitoring tools are lacking. Here, we used nanoparticle-facilitated silencing of CCR2, the chemokine receptor that governs inflammatory Ly-6C(high) monocyte subset traffic, to reduce infarct inflammation in apolipoprotein E-deficient (apoE(-/-)) mice after MI. We used dual-target positron emission tomography/magnetic resonance imaging of transglutaminase factor XIII (FXIII) and myeloperoxidase (MPO) activity to monitor how monocyte subset-targeted RNAi altered infarct inflammation and healing. METHODS AND RESULTS Flow cytometry, gene expression analysis, and histology revealed reduced monocyte numbers and enhanced resolution of inflammation in infarcted hearts of apoE(-/-) mice that were treated with nanoparticle-encapsulated siRNA. To follow extracellular matrix cross-linking noninvasively, we developed a fluorine-18-labeled positron emission tomography agent ((18)F-FXIII). Recruitment of MPO-rich inflammatory leukocytes was imaged with a molecular magnetic resonance imaging sensor of MPO activity (MPO-Gd). Positron emission tomography/magnetic resonance imaging detected anti-inflammatory effects of intravenous nanoparticle-facilitated siRNA therapy (75% decrease of MPO-Gd signal; P<0.05), whereas (18)F-FXIII positron emission tomography reflected unimpeded matrix cross-linking in the infarct. Silencing of CCR2 during the first week after MI improved ejection fraction on day 21 after MI from 29% to 35% (P<0.05). CONCLUSION CCR2-targeted RNAi reduced recruitment of Ly-6C(high) monocytes, attenuated infarct inflammation, and curbed post-MI left ventricular remodeling.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
216 |
6
|
Leuschner F, Panizzi P, Chico-Calero I, Lee WW, Ueno T, Cortez-Retamozo V, Waterman P, Gorbatov R, Marinelli B, Iwamoto Y, Chudnovskiy A, Figueiredo JL, Sosnovik DE, Pittet MJ, Swirski FK, Weissleder R, Nahrendorf M. Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ Res 2010; 107:1364-73. [PMID: 20930148 DOI: 10.1161/circresaha.110.227454] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Monocytes recruited to ischemic myocardium originate from a reservoir in the spleen, and the release from their splenic niche relies on angiotensin (Ang) II signaling. OBJECTIVE Because monocytes are centrally involved in tissue repair after ischemia, we hypothesized that early angiotensin-converting enzyme (ACE) inhibitor therapy impacts healing after myocardial infarction partly via effects on monocyte traffic. METHODS AND RESULTS In a mouse model of permanent coronary ligation, enalapril arrested the release of monocytes from the splenic reservoir and consequently reduced their recruitment into the healing infarct by 45%, as quantified by flow cytometry of digested infarcts. Time-lapse intravital microscopy revealed that enalapril reduces monocyte motility in the spleen. In vitro migration assays and Western blotting showed that this was caused by reduced signaling through the Ang II type 1 receptor. We then studied the long-term consequences of blocked splenic monocyte release in atherosclerotic apolipoprotein (apo)E(-/-) mice, in which infarct healing is impaired because of excessive inflammation in the cardiac wound. Enalapril improved histologic healing biomarkers and reduced inflammation in infarcts measured by FMT-CT (fluorescence molecular tomography in conjunction with x-ray computed tomography) of proteolytic activity. ACE inhibition improved MRI-derived ejection fraction by 14% on day 21, despite initially comparable infarct size. In apoE(-/-) mice, ischemia/reperfusion injury resulted in larger infarct size and enhanced monocyte recruitment and was reversible by enalapril treatment. Splenectomy reproduced antiinflammatory effects of enalapril. CONCLUSION This study suggests that benefits of early ACE inhibition after myocardial infarction can partially be attributed to its potent antiinflammatory impact on the splenic monocyte reservoir.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
188 |
7
|
Göser S, Andrassy M, Buss SJ, Leuschner F, Volz CH, Ottl R, Zittrich S, Blaudeck N, Hardt SE, Pfitzer G, Rose NR, Katus HA, Kaya Z. Cardiac troponin I but not cardiac troponin T induces severe autoimmune inflammation in the myocardium. Circulation 2006; 114:1693-702. [PMID: 17015788 DOI: 10.1161/circulationaha.106.635664] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cardiac troponins in blood are the most preferred markers of myocardial damage. The fact that they are normally not found in the circulation provides a high level of clinical sensitivity and specificity even when cardiac lesions are small. After myocardial injury, the troponins enter the circulation, where they can be used for diagnosis of acute coronary syndromes. Thus, the cardiac troponins are paramount for disease classification and risk stratification. However, little is known about the long-term effects of the released troponins on cardiac function. METHODS AND RESULTS In this study we prepared recombinant murine cardiac troponin I (mc-TnI) and murine cardiac troponin T and used them to immunize mice. We report that A/J mice immunized with mc-TnI developed severe inflammation of the myocardium with increased expression of inflammatory chemokines RANTES (regulated on activation normal T cell expressed and secreted), monocyte chemoattractant protein-1, macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, MIP-2, T-cell activation gene 3, and eotaxin and chemokine receptors CCR1, CCR2, and CCR5. The inflammation was followed by cardiomegaly, fibrosis, reduced fractional shortening, and 30% mortality over 270 days. In contrast, mice immunized with murine cardiac troponin T or with the control buffer showed little or no inflammation and no death. Furthermore, we demonstrate that mice preimmunized with mc-TnI before left anterior descending coronary artery ligation showed greater infarct size, more fibrosis, higher inflammation score, and reduced fractional shortening. CONCLUSIONS Overall, our results show for the first time that provocation of an autoimmune response to mc-TnI induces severe inflammation in the myocardium followed by fibrosis and heart failure with increased mortality in mice.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
177 |
8
|
Jung K, Kim P, Leuschner F, Gorbatov R, Kim JK, Ueno T, Nahrendorf M, Yun SH. Endoscopic time-lapse imaging of immune cells in infarcted mouse hearts. Circ Res 2013; 112:891-9. [PMID: 23392842 DOI: 10.1161/circresaha.111.300484] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE High-resolution imaging of the heart in vivo is challenging owing to the difficulty in accessing the heart and the tissue motion caused by the heartbeat. OBJECTIVE Here, we describe a suction-assisted endoscope for visualizing fluorescently labeled cells and vessels in the beating heart tissue through a small incision made in the intercostal space. METHODS AND RESULTS A suction tube with a diameter of 2 to 3 mm stabilizes the local tissue motion safely and effectively at a suction pressure of 50 mm Hg. Using a minimally invasive endoscope integrated into a confocal microscope, we performed fluorescence cellular imaging in both normal and diseased hearts in live mice for an hour per session repeatedly over a few weeks. Real-time imaging revealed the surprisingly rapid infiltration of CX3CR1(+) monocytes into the injured site within several minutes after acute myocardial infarction. CONCLUSIONS The time-lapse analysis of flowing and rolling (patrolling) monocytes in the heart and the peripheral circulation provides evidence that the massively recruited monocytes come first from the vascular reservoir and later from the spleen. The imaging method requires minimal surgical preparation and can be implemented into standard intravital microscopes. Our results demonstrate the applicability of our imaging method for a wide range of cardiovascular research.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
133 |
9
|
Dutta P, Hoyer FF, Grigoryeva LS, Sager HB, Leuschner F, Courties G, Borodovsky A, Novobrantseva T, Ruda VM, Fitzgerald K, Iwamoto Y, Wojtkiewicz G, Sun Y, Da Silva N, Libby P, Anderson DG, Swirski FK, Weissleder R, Nahrendorf M. Macrophages retain hematopoietic stem cells in the spleen via VCAM-1. ACTA ACUST UNITED AC 2015; 212:497-512. [PMID: 25800955 PMCID: PMC4387283 DOI: 10.1084/jem.20141642] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 02/13/2015] [Indexed: 12/21/2022]
Abstract
Dutta et al. show that targeting VACM-1 expression in splenic macrophages impairs extramedullary hematopoiesis, thus reducing inflammation in mouse ischemic heart and atherosclerotic plaques. Splenic myelopoiesis provides a steady flow of leukocytes to inflamed tissues, and leukocytosis correlates with cardiovascular mortality. Yet regulation of hematopoietic stem cell (HSC) activity in the spleen is incompletely understood. Here, we show that red pulp vascular cell adhesion molecule 1 (VCAM-1)+ macrophages are essential to extramedullary myelopoiesis because these macrophages use the adhesion molecule VCAM-1 to retain HSCs in the spleen. Nanoparticle-enabled in vivo RNAi silencing of the receptor for macrophage colony stimulation factor (M-CSFR) blocked splenic macrophage maturation, reduced splenic VCAM-1 expression and compromised splenic HSC retention. Both, depleting macrophages in CD169 iDTR mice or silencing VCAM-1 in macrophages released HSCs from the spleen. When we silenced either VCAM-1 or M-CSFR in mice with myocardial infarction or in ApoE−/− mice with atherosclerosis, nanoparticle-enabled in vivo RNAi mitigated blood leukocytosis, limited inflammation in the ischemic heart, and reduced myeloid cell numbers in atherosclerotic plaques.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
125 |
10
|
Bailey AL, Dmytrenko O, Greenberg L, Bredemeyer AL, Ma P, Liu J, Penna V, Winkler ES, Sviben S, Brooks E, Nair AP, Heck KA, Rali AS, Simpson L, Saririan M, Hobohm D, Stump WT, Fitzpatrick JA, Xie X, Zhang X, Shi PY, Hinson JT, Gi WT, Schmidt C, Leuschner F, Lin CY, Diamond MS, Greenberg MJ, Lavine KJ. SARS-CoV-2 Infects Human Engineered Heart Tissues and Models COVID-19 Myocarditis. JACC Basic Transl Sci 2021; 6:331-345. [PMID: 33681537 PMCID: PMC7909907 DOI: 10.1016/j.jacbts.2021.01.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
There is ongoing debate as to whether cardiac complications of coronavirus disease-2019 (COVID-19) result from myocardial viral infection or are secondary to systemic inflammation and/or thrombosis. We provide evidence that cardiomyocytes are infected in patients with COVID-19 myocarditis and are susceptible to severe acute respiratory syndrome coronavirus 2. We establish an engineered heart tissue model of COVID-19 myocardial pathology, define mechanisms of viral pathogenesis, and demonstrate that cardiomyocyte severe acute respiratory syndrome coronavirus 2 infection results in contractile deficits, cytokine production, sarcomere disassembly, and cell death. These findings implicate direct infection of cardiomyocytes in the pathogenesis of COVID-19 myocardial pathology and provides a model system to study this emerging disease.
Collapse
|
Journal Article |
4 |
115 |
11
|
Nahrendorf M, Keliher E, Marinelli B, Leuschner F, Robbins CS, Gerszten RE, Pittet MJ, Swirski FK, Weissleder R. Detection of macrophages in aortic aneurysms by nanoparticle positron emission tomography-computed tomography. Arterioscler Thromb Vasc Biol 2011; 31:750-7. [PMID: 21252070 DOI: 10.1161/atvbaha.110.221499] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Current management of aortic aneurysms (AAs) relies primarily on size criteria to determine whether invasive repair is indicated to preempt rupture. We hypothesized that emerging molecular imaging tools could be used to more sensitively gauge local inflammation. Because macrophages are key effector cells that destabilize the extracellular matrix in the arterial wall, it seemed likely that they would represent suitable imaging targets. We here aimed to develop and validate macrophage-targeted nanoparticles labeled with fluorine-18 ((18)F) for positron emission tomography-computed tomography (PET-CT) detection of inflammation in AAs. METHODS AND RESULTS Aneurysms were induced in apolipoprotein E-/- mice via systemic administration of angiotensin II. Mice were imaged using PET-CT and a monocyte/macrophage-targeted nanoparticle. AAs were detected by contrast-enhanced micro-CT and had a mean diameter of 1.85 ± 0.08 mm, whereas normal aortas measured 1.07 ± 0.03 (P < 0.05). The in vivo PET signal was significantly higher in aneurysms (standard uptake value, 2.46 ± 0.48) compared with wild-type aorta (0.82 ± 0.05, P < 0.05). Validation with scintillation counting, autoradiography, fluorescence, and immunoreactive histology and flow cytometry demonstrated that nanoparticles localized predominantly to monocytes and macrophages within the aneurysmatic wall. CONCLUSIONS PET-CT imaging with (18)F-labeled nanoparticles allows quantitation of macrophage content in a mouse model of AA.
Collapse
|
Validation Study |
14 |
114 |
12
|
Leuschner F, Courties G, Dutta P, Mortensen LJ, Gorbatov R, Sena B, Novobrantseva TI, Borodovsky A, Fitzgerald K, Koteliansky V, Iwamoto Y, Bohlender M, Meyer S, Lasitschka F, Meder B, Katus HA, Lin C, Libby P, Swirski FK, Anderson DG, Weissleder R, Nahrendorf M. Silencing of CCR2 in myocarditis. Eur Heart J 2014; 36:1478-88. [PMID: 24950695 DOI: 10.1093/eurheartj/ehu225] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 05/13/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Myocarditis is characterized by inflammatory cell infiltration of the heart and subsequent deterioration of cardiac function. Monocytes are the most prominent population of accumulating leucocytes. We investigated whether in vivo administration of nanoparticle-encapsulated siRNA targeting chemokine (C-C motif) receptor 2 (CCR2)-a chemokine receptor crucial for leucocyte migration in humans and mice--reduces inflammation in autoimmune myocarditis. METHODS AND RESULTS In myocardium of patients with myocarditis, CCL2 mRNA levels and CCR2(+) cells increased (P < 0.05), motivating us to pursue CCR2 silencing. Flow cytometric analysis showed that siRNA silencing of CCR2 (siCCR2) reduced the number of Ly6C(high) monocytes in hearts of mice with acute autoimmune myocarditis by 69% (P < 0.05), corroborated by histological assessment. The nanoparticle-delivered siRNA was not only active in monocytes but also in bone marrow haematopoietic progenitor cells. Treatment with siCCR2 reduced the migration of bone marrow granulocyte macrophage progenitors into the blood. Cellular magnetic resonance imaging (MRI) after injection of macrophage-avid magnetic nanoparticles detected myocarditis and therapeutic effects of RNAi non-invasively. Mice with acute myocarditis showed enhanced macrophage MRI contrast, which was prevented by siCCR2 (P < 0.05). Follow-up MRI volumetry revealed that siCCR2 treatment improved ejection fraction (P < 0.05 vs. control siRNA-treated mice). CONCLUSION This study highlights the importance of CCR2 in the pathogenesis of myocarditis. In addition, we show that siCCR2 affects leucocyte progenitor trafficking. The data also point to a novel therapeutic strategy for the treatment of myocarditis.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
100 |
13
|
Zacchigna S, Paldino A, Falcão-Pires I, Daskalopoulos EP, Dal Ferro M, Vodret S, Lesizza P, Cannatà A, Miranda-Silva D, Lourenço AP, Pinamonti B, Sinagra G, Weinberger F, Eschenhagen T, Carrier L, Kehat I, Tocchetti CG, Russo M, Ghigo A, Cimino J, Hirsch E, Dawson D, Ciccarelli M, Oliveti M, Linke WA, Cuijpers I, Heymans S, Hamdani N, de Boer M, Duncker DJ, Kuster D, van der Velden J, Beauloye C, Bertrand L, Mayr M, Giacca M, Leuschner F, Backs J, Thum T. Towards standardization of echocardiography for the evaluation of left ventricular function in adult rodents: a position paper of the ESC Working Group on Myocardial Function. Cardiovasc Res 2020; 117:43-59. [PMID: 32365197 DOI: 10.1093/cvr/cvaa110] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/28/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Echocardiography is a reliable and reproducible method to assess non-invasively cardiac function in clinical and experimental research. Significant progress in the development of echocardiographic equipment and transducers has led to the successful translation of this methodology from humans to rodents, allowing for the scoring of disease severity and progression, testing of new drugs, and monitoring cardiac function in genetically modified or pharmacologically treated animals. However, as yet, there is no standardization in the procedure to acquire echocardiographic measurements in small animals. This position paper focuses on the appropriate acquisition and analysis of echocardiographic parameters in adult mice and rats, and provides reference values, representative images, and videos for the accurate and reproducible quantification of left ventricular function in healthy and pathological conditions.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
95 |
14
|
Weinreuter M, Kreusser MM, Beckendorf J, Schreiter FC, Leuschner F, Lehmann LH, Hofmann KP, Rostosky JS, Diemert N, Xu C, Volz HC, Jungmann A, Nickel A, Sticht C, Gretz N, Maack C, Schneider MD, Gröne HJ, Müller OJ, Katus HA, Backs J. CaM Kinase II mediates maladaptive post-infarct remodeling and pro-inflammatory chemoattractant signaling but not acute myocardial ischemia/reperfusion injury. EMBO Mol Med 2015; 6:1231-45. [PMID: 25193973 PMCID: PMC4287929 DOI: 10.15252/emmm.201403848] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CaMKII was suggested to mediate ischemic myocardial injury and adverse cardiac remodeling. Here, we investigated the roles of different CaMKII isoforms and splice variants in ischemia/reperfusion (I/R) injury by the use of new genetic CaMKII mouse models. Although CaMKIIδC was upregulated 1 day after I/R injury, cardiac damage 1 day after I/R was neither affected in CaMKIIδ-deficient mice, CaMKIIδ-deficient mice in which the splice variants CaMKIIδB and C were re-expressed, nor in cardiomyocyte-specific CaMKIIδ/γ double knockout mice (DKO). In contrast, 5 weeks after I/R, DKO mice were protected against extensive scar formation and cardiac dysfunction, which was associated with reduced leukocyte infiltration and attenuated expression of members of the chemokine (C-C motif) ligand family, in particular CCL3 (macrophage inflammatory protein-1α, MIP-1α). Intriguingly, CaMKII was sufficient and required to induce CCL3 expression in isolated cardiomyocytes, indicating a cardiomyocyte autonomous effect. We propose that CaMKII-dependent chemoattractant signaling explains the effects on post-I/R remodeling. Taken together, we demonstrate that CaMKII is not critically involved in acute I/R-induced damage but in the process of post-infarct remodeling and inflammatory processes.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
92 |
15
|
Heckmann MB, Reinhardt F, Finke D, Katus HA, Haberkorn U, Leuschner F, Lehmann LH. Relationship Between Cardiac Fibroblast Activation Protein Activity by Positron Emission Tomography and Cardiovascular Disease. Circ Cardiovasc Imaging 2020; 13:e010628. [PMID: 32912030 PMCID: PMC7497888 DOI: 10.1161/circimaging.120.010628] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Supplemental Digital Content is available in the text. Background: FAP (fibroblast activation protein) plays an important role in cardiac wound healing and remodeling. Although initially developed as a theranostic ligand for metastasized cancer, FAPI (FAP inhibitor) tracers have recently been used to study cardiac remodeling following myocardial infarction in small-animal models. The aim of the study was to evaluate the activity of FAP via FAPI–positron emission tomography–computed tomography scans in human hearts. Methods: FAPI–positron emission tomography–computed tomography scans of 229 patients of 2 consecutive cohorts (modeling cohort: n=185; confirmatory cohort: n=44) suffering from metastasized cancer were analyzed applying the American Heart Association 17-segment model of the left ventricle. Logistic regression models were created using data from the modeling cohort. Multivariate regression models were established using Akaike information criterion in a step-down approach. Results: Fourteen percent of patients had preexisting coronary artery disease (n=31), 33% arterial hypertension (n=75), and 12% diabetes mellitus type II (n=28). Forty-three percent had been treated with platin derivatives (n=100), 14% with anthracyclines (n=32), and 10% had a history of prior radiation to the chest (n=23). High left ventricular FAPI signals correlated with the presence of cardiovascular risk factors (odds ratio [OR], 4.3, P=0.0029), a focal myocardial signal pattern (OR, 3.9, P=0.0068), diabetes mellitus type II (OR, 4.1, P=0.046), and beta-blocker use (OR, 3.8, P=0.049) in univariate regression models. In a multivariate analysis, increased signal intensity was significantly higher in patients with cardiovascular risk factors (overweight [OR, 2.6, P=0.023], diabetes mellitus type II [OR, 2.9, P=0.041], certain chemotherapies [platinum derivatives; OR, 3.0, P=0.034], and a history of radiation to the chest [OR, 3.5, P=0.024]). A focal enrichment pattern was more frequently observed in patients with known cardiovascular risk factors (P<0.0001). Conclusions: FAPI–positron emission tomography–computed tomography scans represent a new imaging modality to investigate cardiac FAP. High signal intensities correlate with cardiovascular risk factors and metabolic disease.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
89 |
16
|
Kaya Z, Göser S, Buss SJ, Leuschner F, Ottl R, Li J, Völkers M, Zittrich S, Pfitzer G, Rose NR, Katus HA. Identification of cardiac troponin I sequence motifs leading to heart failure by induction of myocardial inflammation and fibrosis. Circulation 2008; 118:2063-72. [PMID: 18955666 DOI: 10.1161/circulationaha.108.788711] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Despite the widespread use of cardiac troponins for diagnosis of myocyte injury and risk stratification in acute cardiac disorders, little is known about the long-term effects of the released troponins on cardiac function. Recently, we showed that an autoimmune response to cardiac troponin I (cTnI) induces severe inflammation and subsequent fibrosis in the myocardium. This autoimmune disorder predisposes to heart failure and cardiac death in mice. METHODS AND RESULTS To investigate the role of cTnI-specific T cells, T cells were isolated from splenocytes of mice immunized with murine cTnI (mcTnI). Wild-type mice that received mcTnI-specific T cells showed high mcTnI-specific antibody titers, increased production of the proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha, severe inflammation and fibrosis in the myocardium, and reduced fractional shortening. To identify the antigenic determinants of troponin I responsible for the observed inflammation, fibrosis, and heart failure, 16 overlapping 16mer to 18mer peptides covering the entire amino acid sequence of mcTnI (211 residues) were synthesized. Only mice immunized with residues 105 to 122 of mcTnI developed significant inflammation and fibrosis in the myocardium, with increased expression of the inflammatory chemokines RANTES, monocyte chemotactic protein-1, macrophage inflammatory protein-1alpha, macrophage inflammatory protein-1beta, macrophage inflammatory protein-2, T-cell activation-3, and eotaxin and the chemokine receptors CCR1, CCR2, and CCR5. Mice immunized with the corresponding human cTnI residues 104 to 121 and the mcTnI residues 131 to 148 developed milder disease. CONCLUSIONS Transfer of troponin I-specific T cells can induce inflammation and fibrosis in wild-type mice, which leads to deterioration of contractile function. Furthermore, 2 sequence motifs of cTnI that induce inflammation and fibrosis in the myocardium are characterized.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
88 |
17
|
Leuschner F, Nahrendorf M. Molecular imaging of coronary atherosclerosis and myocardial infarction: considerations for the bench and perspectives for the clinic. Circ Res 2011; 108:593-606. [PMID: 21372291 PMCID: PMC3397211 DOI: 10.1161/circresaha.110.232678] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 11/29/2010] [Indexed: 11/16/2022]
Abstract
Motivated by the promise to transform preclinical research and clinical care, cardiovascular molecular imaging has made advances toward targeting coronary atherosclerosis and heart failure. Here, we discuss recent progress in the field, highlight how molecular imaging may facilitate preventive patient care, and review specific challenges associated with coronary and heart failure imaging. Practical considerations stress the potential of fluorescence imaging for basic research and discuss hybrid protocols such as FMT-CT and PET-MRI.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
87 |
18
|
Heo GS, Kopecky B, Sultan D, Ou M, Feng G, Bajpai G, Zhang X, Luehmann H, Detering L, Su Y, Leuschner F, Combadière C, Kreisel D, Gropler RJ, Brody SL, Liu Y, Lavine KJ. Molecular Imaging Visualizes Recruitment of Inflammatory Monocytes and Macrophages to the Injured Heart. Circ Res 2019; 124:881-890. [PMID: 30661445 PMCID: PMC6435034 DOI: 10.1161/circresaha.118.314030] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/14/2019] [Indexed: 12/19/2022]
Abstract
RATIONALE Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and adult hematopoietic progenitors. Under steady-state conditions, the heart is largely populated by CCR2- (C-C chemokine receptor type 2) macrophages of embryonic descent. After tissue injury, a dramatic shift in macrophage composition occurs whereby CCR2+ monocytes are recruited to the heart and differentiate into inflammatory CCR2+ macrophages that contribute to heart failure progression. Currently, there are no techniques to noninvasively detect CCR2+ monocyte recruitment into the heart and thus identify patients who may be candidates for immunomodulatory therapy. OBJECTIVE To develop a noninvasive molecular imaging strategy with high sensitivity and specificity to visualize inflammatory monocyte and macrophage accumulation in the heart. METHODS AND RESULTS We synthesized and tested the performance of a positron emission tomography radiotracer (68Ga-DOTA [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-ECL1i [extracellular loop 1 inverso]) that allosterically binds to CCR2. In naive mice, the radiotracer was quickly cleared from the blood and displayed minimal retention in major organs. In contrast, biodistribution and positron emission tomography demonstrated strong myocardial tracer uptake in 2 models of cardiac injury (diphtheria toxin induced cardiomyocyte ablation and reperfused myocardial infarction). 68Ga-DOTA-ECL1i signal localized to sites of tissue injury and was independent of blood pool activity as assessed by quantitative positron emission tomography and ex vivo autoradiography. 68Ga-DOTA-ECL1i uptake was associated with CCR2+ monocyte and CCR2+ macrophage infiltration into the heart and was abrogated in CCR2-/- mice, demonstrating target specificity. Autoradiography demonstrated that 68Ga-DOTA-ECL1i specifically binds human heart failure specimens and with signal intensity associated with CCR2+ macrophage abundance. CONCLUSIONS These findings demonstrate the sensitivity and specificity of 68Ga-DOTA-ECL1i in the mouse heart and highlight the translational potential of this agent to noninvasively visualize CCR2+ monocyte recruitment and inflammatory macrophage accumulation in patients.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
83 |
19
|
Leuschner F, Li J, Goser S, Reinhardt L, Ottl R, Bride P, Zehelein J, Pfitzer G, Remppis A, Giannitsis E, Katus HA, Kaya Z. Absence of auto-antibodies against cardiac troponin I predicts improvement of left ventricular function after acute myocardial infarction. Eur Heart J 2008; 29:1949-55. [DOI: 10.1093/eurheartj/ehn268] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
|
17 |
79 |
20
|
Feng G, Bajpai G, Ma P, Koenig A, Bredemeyer A, Lokshina I, Lai L, Förster I, Leuschner F, Kreisel D, Lavine KJ. CCL17 Aggravates Myocardial Injury by Suppressing Recruitment of Regulatory T Cells. Circulation 2022; 145:765-782. [PMID: 35113652 PMCID: PMC8957788 DOI: 10.1161/circulationaha.121.055888] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Recent studies have established that CCR2 (C-C chemokine receptor type 2) marks proinflammatory subsets of monocytes, macrophages, and dendritic cells that contribute to adverse left ventricle (LV) remodeling and heart failure progression. Elucidation of the effector mechanisms that mediate adverse effects of CCR2+ monocytes, macrophages, and dendritic cells will yield important insights into therapeutic strategies to suppress myocardial inflammation. METHODS We used mouse models of reperfused myocardial infarction, angiotensin II and phenylephrine infusion, and diphtheria toxin cardiomyocyte ablation to investigate CCL17 (C-C chemokine ligand 17). We used Ccl17 knockout mice, flow cytometry, RNA sequencing, biochemical assays, cell trafficking studies, and in vivo cell depletion to identify the cell types that generate CCL17, define signaling pathways that controlled its expression, delineate the functional importance of CCL17 in adverse LV remodeling and heart failure progression, and determine the mechanistic basis by which CCL17 exerts its effects. RESULTS We demonstrated that CCL17 is expressed in CCR2+ macrophages and cluster of differentiation 11b+ conventional dendritic cells after myocardial infarction, angiotensin II and phenylephrine infusion, and diphtheria toxin cardiomyocyte ablation. We clarified the transcriptional signature of CCL17+ macrophages and dendritic cells and identified granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling as a key regulator of CCL17 expression through cooperative activation of STAT5 (signal transducer and activator of transcription 5) and canonical NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells) signaling. Ccl17 deletion resulted in reduced LV remodeling, decreased myocardial fibrosis and cardiomyocyte hypertrophy, and improved LV systolic function after myocardial infarction and angiotensin II and phenylephrine infusion. We observed increased abundance of regulatory T cells (Tregs) in the myocardium of injured Ccl17 knockout mice. CCL17 inhibited Treg recruitment through biased activation of CCR4. CCL17 activated Gq signaling and CCL22 (C-C chemokine ligand 22) activated both Gq and ARRB (β-arrestin) signaling downstream of CCR4. CCL17 competitively inhibited CCL22 stimulated ARRB signaling and Treg migration. We provide evidence that Tregs mediated the protective effects of Ccl17 deletion on myocardial inflammation and adverse LV remodeling. CONCLUSIONS These findings identify CCL17 as a proinflammatory mediator of CCR2+ macrophages and dendritic cells and suggest that inhibition of CCL17 may serve as an effective strategy to promote Treg recruitment and suppress myocardial inflammation.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
63 |
21
|
Leuschner F, Katus HA, Kaya Z. Autoimmune myocarditis: past, present and future. J Autoimmun 2009; 33:282-9. [PMID: 19679447 DOI: 10.1016/j.jaut.2009.07.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 07/15/2009] [Indexed: 01/22/2023]
Abstract
Heart failure has become an increasingly prevalent disorder with considerable morbidity and mortality. While many causal mechanisms such as inherited cardiomyopathies, ischemic cardiomyopathy or muscular overload are easily identified in clinical practice, the molecular mechanisms that determine the progression of heart failure or ventricular remodelling are largely unknown. Autoimmune responses and inflammation are involved in the pathogenesis of many cardiovascular diseases. There is compelling evidence that inflammatory mechanisms may contribute to progressive heart failure. Thus, myocardial infiltration of lymphocytes and mononuclear cells, increased expression of pro-inflammatory chemokines and cytokines and circulating autoantibodies are frequently observed in myocarditis and dilated cardiomyopathy. In this review we give an overview on myocarditis and describe why diagnosis and treatment of myocarditis in the clinic can be difficult. We present current animal models and describe possible experimental approaches to improve diagnosis. Finally, we give an outlook on possible drug targets by describing the latest findings in the animal models focussing on chemokines and cytokines, T cell responses and interactions, tolerance induction and the development of autoantibodies.
Collapse
|
Review |
16 |
57 |
22
|
Finke D, Heckmann MB, Herpel E, Katus HA, Haberkorn U, Leuschner F, Lehmann LH. Early Detection of Checkpoint Inhibitor-Associated Myocarditis Using 68Ga-FAPI PET/CT. Front Cardiovasc Med 2021; 8:614997. [PMID: 33718446 PMCID: PMC7946849 DOI: 10.3389/fcvm.2021.614997] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
Objective: Checkpoint inhibitors (ICIs) have gained importance in recent years regarding the treatment of a variety of oncologic diseases. The possibilities of diagnosing cardiac adverse autoimmune effects of ICIs are still limited. We aimed to implement FAPI PET/CT imaging in detecting ICI-associated myocarditis. Methods: In a retrospective study, FAPI PET/CT scans of 26 patients who received ICIs from 01/2017 to 10/2019 were analyzed. We compared tracer enrichment in the heart of patients without any signs of a cardiac disease (n = 23) to three patients with suspected ICI-associated myocarditis. To exclude any significant coronary heart disease, cardiac catherization was performed. All three patients' myocardial biopsies were examined for inflammatory cells. Results: Three patients showed clinical manifestations of an ICI syndrome including myocarditis with elevated levels of hsTnT (175 pg/ml, 1,771 pg/ml, 157 pg/ml). Further cardiological assessments revealed ECG abnormalities, lymphocyte infiltration of the myocardium in the biopsies or wall motion abnormalities in echocardiography. These patients' FAPI PET/CTs showed cardiac enrichment of the marker which was less distinct or absent in patients receiving ICIs without any signs of immunological adverse effects or cardiac impairment (n = 23) [Median SUV myocarditis patients: 1.79 (IQR: 1.65, 1.85), median SUV non-myocarditis patients: 1.15 (IQR: 0.955, 1.52)]. Conclusions: Apart from the successful implementation of ICIs in oncological treatments, ICI-associated myocarditis is still a challenging adverse effect. FAPI PET/CT may be used in order to identify affected patients at an early stage. Moreover, when integrated into cancer stage diagnostics, it contributes to cardiac risk stratification besides biomarker, ECG and echocardiography.
Collapse
|
Journal Article |
4 |
57 |
23
|
Kaya Z, Dohmen KM, Wang Y, Schlichting J, Afanasyeva M, Leuschner F, Rose NR. Cutting edge: a critical role for IL-10 in induction of nasal tolerance in experimental autoimmune myocarditis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1552-6. [PMID: 11823481 DOI: 10.4049/jimmunol.168.4.1552] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Appropriate treatment of autoimmune myocarditis following virus infection remains a major clinical problem. Induction of nasal tolerance may provide a new approach to treatment. However, the exact mechanism of nasal tolerance is unknown. To assess the mechanism of nasal tolerance, we examined the role of IL-10 in the induction and suppression of autoimmune myocarditis. First we showed that blocking IL-10 concurrent with nasal administration of Ag abolished the disease-suppressing effect of nasal tolerization. It also led to increased cardiac myosin-specific IL-1 and TNF-alpha production. Then we demonstrated that blocking IL-10 during the effector phase increased not only the incidence and severity of disease but also Ag-specific IL-2, IL-4, and TNF-alpha production as well as cardiac myosin-specific IgG1 and IgG2b production, whereas blocking IL-10 during the induction phase had no effect. This study implicates IL-10 in the induction of nasal tolerance and in limiting inflammation later during the disease process.
Collapse
|
|
23 |
55 |
24
|
Sicklinger F, Meyer IS, Li X, Radtke D, Dicks S, Kornadt MP, Mertens C, Meier JK, Lavine KJ, Zhang Y, Kuhn TC, Terzer T, Patel J, Boerries M, Schramm G, Frey N, Katus HA, Voehringer D, Leuschner F. Basophils balance healing after myocardial infarction via IL-4/IL-13. J Clin Invest 2021; 131:e136778. [PMID: 34196299 DOI: 10.1172/jci136778] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/06/2021] [Indexed: 01/02/2023] Open
Abstract
The inflammatory response after myocardial infarction (MI) is a precisely regulated process that greatly affects subsequent remodeling. Here, we show that basophil granulocytes infiltrated infarcted murine hearts, with a peak occurring between days 3 and 7. Antibody-mediated and genetic depletion of basophils deteriorated cardiac function and resulted in enhanced scar thinning after MI. Mechanistically, we found that basophil depletion was associated with a shift from reparative Ly6Clo macrophages toward increased numbers of inflammatory Ly6Chi monocytes in the infarcted myocardium. Restoration of basophils in basophil-deficient mice by adoptive transfer reversed this proinflammatory phenotype. Cellular alterations in the absence of basophils were accompanied by lower cardiac levels of IL-4 and IL-13, two major cytokines secreted by basophils. Mice with basophil-specific IL-4/IL-13 deficiency exhibited a similarly altered myeloid response with an increased fraction of Ly6Chi monocytes and aggravated cardiac function after MI. In contrast, IL-4 induction in basophils via administration of the glycoprotein IPSE/α-1 led to improved post-MI healing. These results in mice were corroborated by the finding that initially low counts of blood basophils in patients with acute MI were associated with a worse cardiac outcome after 1 year, characterized by a larger scar size. In conclusion, we show that basophils promoted tissue repair after MI by increasing cardiac IL-4 and IL-13 levels.
Collapse
|
Journal Article |
4 |
53 |
25
|
Meyer IS, Jungmann A, Dieterich C, Zhang M, Lasitschka F, Werkmeister S, Haas J, Müller OJ, Boutros M, Nahrendorf M, Katus HA, Hardt SE, Leuschner F. The cardiac microenvironment uses non-canonical WNT signaling to activate monocytes after myocardial infarction. EMBO Mol Med 2018; 9:1279-1293. [PMID: 28774883 PMCID: PMC5582413 DOI: 10.15252/emmm.201707565] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A disturbed inflammatory response following myocardial infarction (MI) is associated with poor prognosis and increased tissue damage. Monocytes are key players in healing after MI, but little is known about the role of the cardiac niche in monocyte activation. This study investigated microenvironment‐dependent changes in inflammatory monocytes after MI. RNA sequencing analysis of murine Ly6Chigh monocytes on day 3 after MI revealed differential regulation depending on location. Notably, the local environment strongly impacted components of the WNT signaling cascade. Analysis of WNT modulators revealed a strong upregulation of WNT Inhibitory Factor 1 (WIF1) in cardiomyocytes—but not fibroblasts or endothelial cells—upon hypoxia. Compared to wild‐type (WT) littermates, WIF1 knockout mice showed severe adverse remodeling marked by increased scar size and reduced ejection fraction 4 weeks after MI. While FACS analysis on day 1 after MI revealed no differences in neutrophil numbers, the hearts of WIF1 knockouts contained significantly more inflammatory monocytes than hearts from WT animals. Next, we induced AAV‐mediated cardiomyocyte‐specific WIF1 overexpression, which attenuated the monocyte response and improved cardiac function after MI, as compared to control‐AAV‐treated animals. Finally, WIF1 overexpression in isolated cardiomyocytes limited the activation of non‐canonical WNT signaling and led to reduced IL‐1β and IL‐6 expression in monocytes/macrophages. Taken together, we investigated the cardiac microenvironment's interaction with recruited monocytes after MI and identified a novel mechanism of monocyte activation. The local initiation of non‐canonical WNT signaling shifts the accumulating myeloid cells toward a pro‐inflammatory state and impacts healing after myocardial infarction.
Collapse
|
Journal Article |
7 |
51 |